JPH067958B2 - Microbial activator using sewage sludge incineration ash and its manufacturing method - Google Patents
Microbial activator using sewage sludge incineration ash and its manufacturing methodInfo
- Publication number
- JPH067958B2 JPH067958B2 JP7634288A JP7634288A JPH067958B2 JP H067958 B2 JPH067958 B2 JP H067958B2 JP 7634288 A JP7634288 A JP 7634288A JP 7634288 A JP7634288 A JP 7634288A JP H067958 B2 JPH067958 B2 JP H067958B2
- Authority
- JP
- Japan
- Prior art keywords
- sewage sludge
- obsidian
- incineration ash
- activator
- sludge incineration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は廃水等の中の有機物を除去するために使用す
る下水汚泥焼却灰を利用した微生物活性化材(以下、微
生物活性材という。)とその製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] This invention uses a sewage sludge incineration ash used to remove organic matter in wastewater and the like (hereinafter referred to as microbial activation material). And its manufacturing method.
流動床によって有機物を除去する場合、その有機物を分
解する微生物の活性化材、すなわち、微生物を付着、増
殖させる媒体として、従来は砂、活性炭、プラスチッ
ク、ゼオライト等を使用していた。When removing organic matter by a fluidized bed, sand, activated carbon, plastics, zeolite, etc. have been conventionally used as an activator of microorganisms that decompose the organic matter, that is, a medium for adhering and proliferating the microorganisms.
しかし、砂は表面積が極めて小さく、滑らかなため微生
物が付着しにくい。また、比重が約2.6g/cm3と大
きいので、流動床で移動するとき砂の粒子と粒子が衝突
し、付着した微生物が剥がれる。親水性にも乏しくミネ
ラル等の溶出も期待できないため、微生物にとって好ま
しい生存環境をつくれない。However, sand has a very small surface area and is smooth so that microorganisms are unlikely to adhere to it. Moreover, since the specific gravity is as large as about 2.6 g / cm 3 , when moving in a fluidized bed, the particles of sand collide with each other and the attached microorganisms are peeled off. Since it has poor hydrophilicity and cannot be expected to elute minerals, it cannot create a favorable living environment for microorganisms.
活性炭は、表面積は大きいが、細孔径が小さ過ぎて微生
物が細孔の中に入り込めない。また、機械的強度が低い
ので、流動床で移動するとき粒子と粒子が衝突して破砕
され、黒く濁るだけでなく、微生物生存のための物理的
環境が破壊されてしまう。なお、価格の高いのも難点で
ある。Activated carbon has a large surface area, but the pore size is too small to allow microorganisms to enter the pores. In addition, since the mechanical strength is low, when moving in a fluidized bed, the particles collide with each other and are crushed, resulting in black turbidity as well as destruction of the physical environment for microbial survival. The high price is also a drawback.
プラスチックは、砂と同様、表面が滑らかなため、微生
物が付着しにくく、疎水性であるので、微生物の保持量
が小さい。また、ミネラルの溶出も期待できないため、
砂と同様、微生物にとって好ましい生存環境をつくれな
い。Like sand, plastic has a smooth surface, so that it is difficult for microorganisms to adhere to it and is hydrophobic, so the amount of microorganisms retained is small. In addition, since elution of minerals cannot be expected,
Like sand, it cannot create a favorable living environment for microorganisms.
ゼオライトは、親水性でイオン交換能力はあるが、機械
的強度が弱く、細孔がきわめて小さく、微生物の保持媒
体として適さない。Zeolites are hydrophilic and have an ion-exchange ability, but have weak mechanical strength, extremely small pores, and are not suitable as a retention medium for microorganisms.
このように、従来の活性化材は、いずれも微生物の生存
に適した表面細孔が少なく、活性構造になっていない。
また、個々にみれば、粒子の強度は大きいが、重くて流
動床における流動性に欠けるとか、親水性がないとか、
ミネラルの溶出がなくミネラル補給材として期待できな
い等の欠点があった。このため、従来の活性化材では、
微生物を多量に保持し、これを増殖しない活性化させる
という機能を充分に果たせず、したがって廃水中等の有
機物を効果的に除去できないという問題があった。As described above, each of the conventional activators has few surface pores suitable for survival of microorganisms and does not have an active structure.
Also, when viewed individually, the strength of the particles is large, but it is heavy and lacks fluidity in the fluidized bed, or lacks hydrophilicity.
There were drawbacks such as no elution of minerals and no expectation as a mineral supplement. Therefore, in the conventional activator,
There is a problem in that a large amount of microorganisms are retained and the function of activating them without proliferating is not sufficiently fulfilled, and therefore organic matter such as wastewater cannot be effectively removed.
この発明は、このような従来の問題点を解決するために
なされたもので、(1)水中の有機物を除去するために
微生物を活性化させ、一定容積中に高濃度の微生物を保
持できる性能を有し、したがって、水中の有機物の除去
能力が高く、(2)また、下水汚泥焼却灰の有効利用が
可能であり、(3)さらに路盤材等としても利用できる
微生物活性化材とその製造方法を提供することを目的と
する。The present invention has been made to solve such conventional problems, and (1) the ability to activate microorganisms to remove organic matter in water and retain a high concentration of microorganisms in a certain volume. Therefore, the ability to remove organic matter from water is high, and (2) the sewage sludge incineration ash can be effectively used, and (3) the microbial activation material that can also be used as a roadbed material and the production thereof. The purpose is to provide a method.
この発明に係る微生物活性化材は、下水汚泥焼却灰とセ
メントと黒曜石発泡体粉末および/または黒曜石粉砕物
(以下、黒曜石粉末という。)と水の混練物の粒状固化
物より成るものである。The microbial activator according to the present invention comprises sewage sludge incineration ash, cement, obsidian foam powder and / or crushed obsidian powder (hereinafter referred to as obsidian powder), and a granular solidified product of a kneaded water.
また、この発明に係る微生物活性化材の製造方法は、下
水汚泥焼却灰を基材とし、これにセメントと黒曜石粉末
を加えて混合した混合物に水を加えて混練し、得られた
混練物を粒状に加工して養生するか、または養生固化し
たものを粒状に加工することを特徴とするものである。Further, the method for producing a microbial activator according to the present invention is based on sewage sludge incineration ash as a base material, and cement and obsidian powder are added to the mixture and kneaded to obtain a kneaded product. It is characterized in that it is processed into granules and cured, or that it is cured and solidified into granules.
上記下水汚泥焼却灰は基材であり、セメントは固化材で
あり、黒曜石粉末は比重調節材である。これら各材料の
好ましい配合割合は、下水汚泥焼却灰が50重量%以
上、セメントが5重量%以上、黒曜石粉末が1重量%以
上である。The sewage sludge incineration ash is a base material, cement is a solidifying material, and obsidian powder is a specific gravity adjusting material. The preferable mixing ratio of each of these materials is 50% by weight or more of sewage sludge incineration ash, 5% by weight or more of cement, and 1% by weight or more of obsidian powder.
(1)上記微生物活性化材は、下水汚泥焼却灰とセメン
トと黒曜石粉末との水の混練物の粒状固化物であるの
で、比表面積が大きく、表面にバクテリア等の水中微生
物の大きさに近い細孔が多い活性構造体である。このた
め、微生物を高濃度に保持し、これを活性化(増殖)さ
せ易い。(1) Since the microbial activator is a granular solidified product of a water kneaded mixture of sewage sludge incineration ash, cement and obsidian powder, it has a large specific surface area and is close to the size of underwater microorganisms such as bacteria on the surface. It is an active structure with many pores. Therefore, it is easy to keep the microorganism at a high concentration and activate (proliferate) it.
(2)微生物活性化材は、黒曜石粉末を配合しているの
で、軽量な構造体である。このため、流動床で流動性を
もって循環することができる。そして、この流動性は、
上記黒曜石粉末の配合量を可変して活性化材としての比
重を調整することによって最適なものに設定できる。(2) The microbial activator contains obsidian powder, and thus is a lightweight structure. Therefore, it is possible to circulate with fluidity in the fluidized bed. And this liquidity is
It can be set to the optimum one by changing the compounding amount of the obsidian powder to adjust the specific gravity as the activator.
(3)微生物活性化材は、その組成分である下水汚泥焼
却灰とセメントと黒曜石粉末が水に濡れる性質を有する
ので、親水性をもつ構造体である。すなわち、水吸着性
と吸水性がともに大きい。このため活性化材に含有され
るミネラル成分等が溶出し易い。(3) The microbial activator is a hydrophilic structure because it has a property that the composition sewage sludge incineration ash, cement, and obsidian powder are wet with water. That is, both water adsorption and water absorption are large. Therefore, the mineral components contained in the activator are easily eluted.
(4)微生物活性化材は、その組成分であるセメントが
自硬性を有し、組成分である黒曜石粉末が混練物の硬化
によい影響を与えるので、容易に破壊しない強度を有す
る構造体となる。黒曜石粉末が混練物の硬化によい影響
を与える理由としては、次の3つが考えられる。(4) The microbial activator has a structure that has a strength that does not easily break, because the cement that is its component has self-hardening property and the obsidian powder that is the component has a good effect on the hardening of the kneaded product. Become. There are three possible reasons why the obsidian powder has a good influence on the hardening of the kneaded product.
すなわち、(a)黒曜石粉末がSiO2を主成分としな
がらもpHが中性という特性を有すること、(b)黒曜石
粉末の分散性がよいので、これが組成分の均一な混合に
有効に作用すること、(c)下水汚泥焼却灰から発生す
るアンモニアガスは混練物の硬化を妨害するが、黒曜石
粉末がこれを除去するのに有効に作用すること、の3つ
である。That is, (a) the obsidian powder has a characteristic that the pH is neutral while having SiO 2 as a main component, and (b) the dispersibility of the obsidian powder is good, which effectively acts on the uniform mixing of the components. That is, (c) ammonia gas generated from sewage sludge incineration ash interferes with the hardening of the kneaded product, but obsidian powder effectively acts to remove this.
このように、この発明による微生物活性化材は、容易に
破壊しない強度を有するので、流動床における循環過程
で破壊するおそれがない。As described above, since the microbial activator according to the present invention has the strength that does not easily break, there is no risk of breaking during the circulation process in the fluidized bed.
以下、この発明の実施例を説明する。 Examples of the present invention will be described below.
まず、微生物活性化材の製造方法と得られた微生物活性
化材の性質と作用を説明する。First, a method for producing a microbial activator and properties and actions of the obtained microbial activator will be described.
(製造方法1) 自硬性を有する下水汚泥焼却灰80重量%、ボルトラン
ドセメント10重量%、黒曜石発泡体粉末10重量%を
混合機に入れて充分に混ぜあわせる。ついで得られた混
合物に水を25重量%加え、よく混練する。このとき、
混練物は少し湿った状態の砂状とする。(Production Method 1) 80% by weight of sewage sludge incineration ash having self-hardening property, 10% by weight of Boltland cement, and 10% by weight of obsidian foam powder are put in a mixer and mixed sufficiently. Then, 25% by weight of water is added to the obtained mixture and the mixture is kneaded well. At this time,
The kneaded material should be sandy with a little dampness.
次に、砂状混練物を圧力型押し出し機(ディスク型)で
ペレット状に押し出す。押し出されたペレットは、約2
4時間湿潤状態で養生する。この湿潤状態での養生によ
り、ペレットの強度は発現する。強度発現後必要に応じ
て加工する。Next, the sandy kneaded product is extruded into pellets by a pressure type extruder (disk type). About 2 pellets are extruded
Curing in wet condition for 4 hours. Due to the curing in the wet state, the strength of the pellet is developed. After the strength is developed, it is processed if necessary.
(製造方法2) 自硬性を有する下水汚泥焼却灰83重量%、ボルトラン
ドセメント15重量%、黒曜石発泡体粉末2重量%を混
合機に入れて充分混合し、ついで得られた混合物に水2
5重量%を加えよく混練する。(Manufacturing method 2) 83% by weight of sewage sludge incineration ash having self-hardening property, 15% by weight of Boltland cement, and 2% by weight of obsidian foam powder were put into a mixer and mixed sufficiently, and then the resulting mixture was mixed with water 2
Add 5% by weight and knead well.
このようにして準備した混練物を、回転するパン型造粒
機にかけ、同時に水を噴霧すると、球状造粒物が連続的
にできる。造粒物の大きさは、パン型造粒機の回転数、
角度、水の噴霧量の調節によって自由に選択する。成形
された球状物は、必要に応じて、密閉湿潤状態で養生す
る。The kneaded material thus prepared is put into a rotating pan-type granulator and simultaneously sprayed with water, whereby spherical granulated materials can be continuously formed. The size of the granulation product is the number of rotations of the pan granulator,
Select freely by adjusting the angle and spray amount of water. The molded spheres are cured in a hermetically sealed wet state, if necessary.
(製造方法3) 自硬性を有する下水汚泥焼却灰80重量%、ボルトラン
ドセメント10重量%、黒曜石発泡体粉末10重量%を
混合機に入れて充分混合し、ついで得られた混合物に水
を約60重量%加えて混合物に流動性を持たせ、あらか
じめ準備してある所定の形状の形枠の中へ流しこみ養生
し、しかるのち、破砕する。(Manufacturing method 3) 80% by weight of self-hardening sewage sludge incineration ash, 10% by weight of Boltland cement, and 10% by weight of obsidian foam powder were put in a mixer and mixed well, and then the resulting mixture was mixed with water. 60% by weight of the mixture is added to make the mixture fluid, and the mixture is poured into a frame of a predetermined shape prepared in advance for curing, and then crushed.
次に、製造方法1によって得られた微生物活性化材の性
質を各試験項目について調べたところ、以下の結果を得
た。Next, the properties of the microbial activation material obtained by the production method 1 were examined for each test item, and the following results were obtained.
(1)粒子の構造 粒子の全体構造は、第1図の走査型電子顕微鏡写真のよ
うになっていて、表面に微細な凹凸ができていた。第2
図は第1図に示した粒子を拡大した走査型電子顕微鏡写
真で、黒曜石発泡体粉末が混合されている状態を示して
いる。第3図はさらに拡大した走査型電子顕微鏡写真
で、微生物が入り込み易い細孔が多数あることが分っ
た。(1) Grain structure The whole grain structure is as shown in the scanning electron micrograph of FIG. 1, and fine irregularities were formed on the surface. Second
The figure is an enlarged scanning electron micrograph of the particles shown in FIG. 1, showing a state in which obsidian foam powder is mixed. FIG. 3 is a further enlarged scanning electron micrograph showing that there are a large number of pores into which microbes easily enter.
(2)圧縮強度(Kgf/cm2) (JIS A 1108の圧縮試験による) (3)表面積(N2BET法による) 比表面積が53.5m2/gであった。(2) Compressive strength (Kgf / cm 2 ) (according to JIS A 1108 compression test) (3) Surface area (by N 2 BET method) The specific surface area was 53.5 m 2 / g.
(4)細孔径分布(N2吸着等温線をDollimore-Heal法に
より解析) 半径100Å以上に多く分布していた。(4) Pore size distribution (N 2 adsorption isotherm was analyzed by the Dollimore-Heal method) Many distributions were found with a radius of 100 Å or more.
(5)親水性 (a)水吸着性(30℃における水蒸気の等温吸着石英
スプリングを使用した重量法による) 湿度100%で0.23WH2O/g・g-1であった。(5) Hydrophilicity (a) Water adsorption (by gravimetric method using isothermal adsorption quartz spring of water vapor at 30 ° C.) Humidity was 0.23 WH 2 O / g · g −1 at 100% humidity.
(b)吸水性(JIS A 1110の吸水試験によ
る) 吸水率は46.2%であった。(B) Water Absorption (According to Water Absorption Test of JIS A 1110) The water absorption was 46.2%.
(6)重さ(JIS A 1110による) 絶乾比重で1.14であった。(6) Weight (according to JIS A 1110) The absolute dry specific gravity was 1.14.
(7)イオン交換能 陽イオン交換能で31.6meq/100gであった。(7) Ion exchange capacity The cation exchange capacity was 31.6 meq / 100 g.
なお、アンモニウムイオンの吸着に有効である陽イオン
交換能としては、陽イオン交換剤に近いことがわかり、
X線回折分析では、結晶性の大きい化合物は少なく、ガ
ラス質に類似し、触媒として開発された無機物質に近い
ものであることが判明した。It should be noted that the cation exchange capacity, which is effective for the adsorption of ammonium ions, is close to that of cation exchange agents,
By X-ray diffraction analysis, it was found that there were few compounds with large crystallinity, they were similar to glassy substances and were close to the inorganic substances developed as catalysts.
(8)化学成分 (9)ミネラルの溶出状況 (昭和48年環境庁告示第13号による溶出試験によ
る) (a)1年間使用後の溶出量(mg/l) (b)製造直後の溶出量(mg/l) (作用) 次に、上記データからみた微生物活性化剤の性質と、こ
の性質に基づく作用について述べる。(8) Chemical composition (9) Elution status of minerals (according to Environmental Agency Notification No. 13 of 1973) (a) Elution amount after one year of use (mg / l) (B) Elution amount immediately after production (mg / l) (Action) Next, the properties of the microbial activator as seen from the above data and the actions based on this property will be described.
(1)測定結果による比表面積の53.5m2/gは、硅
鉱石の1.4m2/g、砂の0.7m2/g、あるいは吸着
剤として開発されている。例えば、シリカゲルの20〜
30m2/gと比較しても劣らない。(1) 53.5m 2 / g of specific surface area by the measurement results, 1.4 m 2 / g of硅鉱stone, has been developed as 0.7 m 2 / g, or adsorbents sand. For example, silica gel 20-
Comparable to 30 m 2 / g.
また、細孔径分布は、100Å以上が多く発達ている
(第3図)。In addition, the pore size distribution is well developed above 100 Å (Fig. 3).
このことは、得られた活性化材が、比表面積の大きい、
かつバクテリア等の水中微生物に近い表面細孔を多く持
つ活性構造体であることを示している。おそらく、活性
化材が下水汚泥焼却灰とポルトランドセメントと黒曜石
発泡粉末という複数の材料の混練物の固化物であって、
従来の砂、プラスチック等のように単一材料から構成さ
れていないためであろう。This means that the obtained activator has a large specific surface area,
In addition, it is shown that it is an active structure having many surface pores close to those of microorganisms in water such as bacteria. Perhaps the activator is a solidified product of a kneaded material of multiple materials such as sewage sludge incineration ash, Portland cement and obsidian foam powder,
It is probably because it is not composed of a single material like conventional sand, plastic, etc.
このような構造になっているため、上記活性化材は、微
生物を高濃度に付着、増殖させる媒体として適してい
る。Due to such a structure, the activating material is suitable as a medium for adhering and proliferating microorganisms at a high concentration.
(2)測定結果の絶乾比重1.14は、最も軽いと云わ
れている市販軽量骨材粗粒の比重1.20〜1.30と
比較しても劣っていない。(2) The absolutely dry specific gravity of 1.14 in the measurement result is not inferior to the specific gravity of commercially available lightweight aggregate coarse particles of 1.20 to 1.30, which is said to be the lightest.
このことは、得られた活性化材が軽量な構造体となるこ
とを示すと同時に、黒曜石発泡体粉末の配合量によっ
て、比重、つまり単位体積重量を可変し得ることを示し
ている。This shows that the obtained activator becomes a lightweight structure, and at the same time, the specific gravity, that is, the unit volume weight, can be changed by the compounding amount of the obsidian foam powder.
このため、活性化材を流動床において適度の流動性をも
って循環させることができる。Therefore, the activator can be circulated in the fluidized bed with appropriate fluidity.
(3)活性化材の成分は、いずれも水に濡れる性質を有
し、測定結果による水吸着性は、シリカゲルやアルミナ
のそれに類似している。吸水率46.2%は市販軽量骨
材の6〜15%、砂の3%と比較しても大きな値といえ
る。(3) All the components of the activator have a property of being wet with water, and the water adsorption property according to the measurement result is similar to that of silica gel or alumina. It can be said that the water absorption rate of 46.2% is a large value as compared with 6 to 15% of commercially available lightweight aggregate and 3% of sand.
これらの事実は、得られた活性化材が親水性を有する構
造体であることを示す。このため、活性化材が水中にあ
るときは、その中のミネラル成分が溶出し易い。この実
施例の微生物活性化材の場合であれば、Ca,K等が1
年後も溶出し、微生物に対するミネラル供給源となるだ
けでなく、水中のアンモニア態窒素が硝化されるのに必
要なアルカリ供給源となる。These facts indicate that the obtained activator is a structure having hydrophilicity. For this reason, when the activator is in water, the mineral components therein are likely to be eluted. In the case of the microbial activation material of this example, Ca, K, etc. are 1
It will elute even after a year, and will not only serve as a mineral supply source for microorganisms, but also as an alkali supply source necessary for nitrification of ammonia nitrogen in water.
(4)圧縮強度試験の結果からみて、上記活性化材は流
動床内で破壊しないだけの強度を有していることが判
る。(4) From the results of the compressive strength test, it can be seen that the above-mentioned activator has a strength that does not break in the fluidized bed.
これは、ポルトランドセメントが自硬性を持っており、
また、黒曜石発泡体粉末が混練物の硬化によい影響を与
えているためと考えられる。This is because Portland cement has self-hardening properties,
It is also considered that the obsidian foam powder has a good influence on the hardening of the kneaded product.
すなわち、(a)黒曜石粉末がSiO2を主成分としな
がらもpHが中性という特性を有すること、(b)黒曜石
粉末の分散性がよいので、これが組成分の均一な混合に
有効に作用すること、(c)下水汚泥焼却灰から発生す
るアンモニアガスは混練物の硬化を妨害するが、黒曜石
粉末がこれを除去するのに有効に作用すること、の3つ
である。That is, (a) the obsidian powder has a characteristic that the pH is neutral while having SiO 2 as a main component, and (b) the dispersibility of the obsidian powder is good, which effectively acts on the uniform mixing of the components. That is, (c) ammonia gas generated from sewage sludge incineration ash interferes with the hardening of the kneaded product, but obsidian powder effectively acts to remove this.
このため、活性化材が流動床内を循環する過程で破壊す
るおそれはない。また、この微生物活性材の製造にあた
って、例えば、活性炭粉末、木炭粉末、酸化ジルコニウ
ム、カルシウム化合物等の粒子状あるいは粉末状物質を
必要に応じて配合することにより、上記性質に基づく作
用を適当に変化させることができる。Therefore, there is no possibility that the activator will be destroyed in the process of circulating in the fluidized bed. Further, in the production of the microbial active material, for example, activated carbon powder, charcoal powder, zirconium oxide, by adding a powdery substance such as a calcium compound as necessary, the action based on the above properties is appropriately changed. Can be made.
最後に、上記微生物活性化材を使用した場合の有機物除
去効果を、第4図に示す外部循環式三相流動床を使用し
た人工廃水の有機物除去実験によって明らかにする。Finally, the effect of removing organic matter when the above-mentioned microbial activator is used is clarified by an experiment for removing organic matter of artificial wastewater using an external circulation type three-phase fluidized bed shown in FIG.
(実験方法) まず、流動床について説明する。第4図において、1は
環状の流動槽、2は流動槽1に人工廃水を供給する供給
口、3は酸素供給とリフト兼用のエア供給管で、3aは
そのボールフィルタ、4は流動槽1に添加した微生物活
性化材で、この実験では前述の製造方法1で得られた活
性化材を使用した。5は流動槽1を循環し、活性化材に
よって有機物の除去された人工廃水(処理水)の流出口
である。(Experimental Method) First, the fluidized bed will be described. In FIG. 4, 1 is an annular flow tank, 2 is a supply port for supplying artificial wastewater to the flow tank 1, 3 is an air supply pipe for both oxygen supply and lift, 3 a is its ball filter, 4 is the flow tank 1. In the experiment, the activator obtained by the above-mentioned production method 1 was used. Reference numeral 5 denotes an outlet for artificial wastewater (treated water) which circulates in the fluid tank 1 and in which organic substances have been removed by the activator.
実験は次の要領で行った。有効内容積3.76の流動
層1内の粒子径0.42〜0.59mmの上記活性化材4
を0.5添加した。そして、表1の組成を有する人工
廃水を供給口2より供給しながらエア供給管3よりエア
を吹き込み、そのエアリフト効果により活性化材を人工
廃水とは逆の方向に循環させた。人工廃水の供給は、は
じめはバクテリア等の微生物の馴養のため少量とし、徐
々に負荷をあげた。温度は室温とし、pHの調整は行わな
かった。エア吹込量は、1.0〜3.5/minとし
た。The experiment was conducted as follows. The activation material 4 having a particle diameter of 0.42 to 0.59 mm in the fluidized bed 1 having an effective internal volume of 3.76.
0.5 was added. Then, while supplying the artificial wastewater having the composition shown in Table 1 from the supply port 2, air was blown from the air supply pipe 3, and the activator was circulated in the direction opposite to the artificial wastewater by the air lift effect. The artificial wastewater was initially supplied in a small amount for acclimatization of microorganisms such as bacteria, and the load was gradually increased. The temperature was room temperature and the pH was not adjusted. The amount of air blown was 1.0 to 3.5 / min.
活性化材4に付着増殖した微生物により有機物が分解さ
れて除去された処理水は、流出口5より取り出した。The treated water in which the organic matter was decomposed and removed by the microorganisms that adhered to and grew on the activator 4 was taken out through the outlet 5.
(実験結果とその評価) (1)供給した人工廃水の有機物(BOD)濃度は、は
じめ500mg/程度であったが、その後約1400mg
/(最大2730mg/)まで増大させても、良好な
水質の処理水が得られ、処理水中の有機物濃度は、終
始、数mg/から10mg/と安定していた。実験開始
後、1年を経過しても除去率に変化はなかった。 (Experimental results and evaluation) (1) The organic matter (BOD) concentration of the supplied artificial wastewater was about 500 mg / hour at the beginning, but about 1400 mg thereafter.
The treated water with good water quality was obtained even when it was increased to / (maximum 2730 mg /), and the organic substance concentration in the treated water was stable from several mg / to 10 mg / from beginning to end. The removal rate did not change even one year after the start of the experiment.
このことは、実験に供した活性化材が有機物の除去能力
とその持続性において優れていることを示している。This indicates that the activator used in the experiment is excellent in the ability to remove organic substances and its sustainability.
(2)当初、容積負荷0.5kg−BOD/m3・dayで
開始したが、最大17kg−BOD/m3・dayまで負荷
を上昇させることができた。容積負荷17kg−BOD/
m3・daYという高負荷条件でも、処理水中の有機物濃
度は10mg/以下に維持され、この時の流動層内の溶
存酸素は、6mg/以上を保持することができた。(2) Initially, the volume load was started at 0.5 kg-BOD / m 3 · day, but the load could be increased up to 17 kg-BOD / m 3 · day. Volume load 17kg-BOD /
Even under a high load condition of m 3 · daY, the organic matter concentration in the treated water was maintained at 10 mg / or less, and the dissolved oxygen in the fluidized bed at this time could be kept at 6 mg / or more.
このことは、高有機物負荷の条件下でも、この活性化材
を充填した流動床が充分な有機物除去能力を持っている
ことを示している。This indicates that the fluidized bed filled with this activator has a sufficient organic matter removing ability even under a high organic matter loading condition.
(3)処理水のpHは、当初は、活性化材の粒子から溶出
するアルカリ分によって、やや高い値を示したが、粒子
表面に微生物が付着し、負荷が増大するとともに、7〜
7.5の範囲に落ち着くようになった。(3) The pH of the treated water initially showed a slightly high value due to the alkali content eluted from the particles of the activator, but the microorganisms adhere to the surface of the particles, the load increases, and
It came to settle in the range of 7.5.
このことは、人工廃水にアルカリ成分を補給しなくてよ
いこと、すなわち、人工廃水のpH調整が不要であること
を示している。This indicates that it is not necessary to replenish the artificial wastewater with an alkaline component, that is, the pH adjustment of the artificial wastewater is unnecessary.
(4)有機物負荷の増大とともに、微生物保持量も増大
するが、やがて頭打ちとなった。最終的な微生物保持量
は、エア供給量の影響を受けたにもかかわらず、20g
/以上に達した。通常の活性汚泥法ばっ気槽内の微生
物濃度が2〜4g/であるのに比較して5〜10倍高
い値であった。(4) As the load of organic matter increases, the amount of microorganisms retained also increases, but eventually it reached the ceiling. The final microbial retention was 20g, despite being affected by the air supply.
/ We have reached above. The concentration of the microorganisms in the conventional activated sludge aeration tank was 2 to 4 g /, which was 5 to 10 times higher than that.
このことは、活性化材の微生物保持量が極めて大きいこ
とを示しており、これが上記(1),(2)で述べた有
機物の除去能力の向上に大きく寄与していることは容易
に推測できる。This indicates that the amount of microorganisms retained by the activator is extremely large, and it can be easily inferred that this greatly contributes to the improvement of the organic substance removal ability described in (1) and (2) above. .
(5)微生物保持量24g/時において、バクテリア
の他に数十種類の原生動物が確認された。これは流動槽
1内の活性化材が生物相間の食物連鎖機能に有効に作用
したためと考えられる。(5) At a microbial load of 24 g / hour, several dozen types of protozoa were confirmed in addition to bacteria. It is considered that this is because the activator in the fluid tank 1 effectively acted on the food chain function between biota.
このことは、これによって活性化材の有機物除去能力を
一層高め得ることを示している。This indicates that this can further enhance the organic substance removal ability of the activator.
さらに、高負荷流動床を嫌気的条件に放置したところ、
3.2×109個/mlの紅色非イオウ細菌が分離され
た。このことは、硝化菌等、一般に増殖しにくい菌体に
も利用できることを示している。Furthermore, when the high-load fluidized bed was left under anaerobic conditions,
3.2 × 10 9 pieces / ml of red non-sulfur bacteria were isolated. This indicates that it can also be used for cells that are generally difficult to grow, such as nitrifying bacteria.
上述した製造方法1〜3は、自硬性を有する下水汚泥焼
却灰を対象とし、これに黒曜石粉末として黒曜石発泡体
粉末を使用した例である。次に述べる製造方法4は、自
硬性を持たない下水汚泥焼却灰を対象とし、これに黒曜
石粉末として黒曜石発泡体粉末と黒曜石粉砕物を使用し
た例であり、製造方法5は、自硬性を有する下水汚泥焼
却灰を対象とし、これに黒曜石発泡体粉末と黒曜石粉砕
物を使用した例である。The above-described manufacturing methods 1 to 3 are examples of using sewage sludge incineration ash having self-hardening property and using obsidian foam powder as obsidian powder. The following production method 4 is an example in which sewage sludge incineration ash that does not have self-hardening property is used, and obsidian foam powder and obsidian crushed material are used as obsidian powder, and production method 5 has self-hardening property. This is an example in which obsidian foam powder and crushed obsidian are used for sewage sludge incineration ash.
いずれの製造方法による粒状固化物も、圧縮強度が著し
く大きくなる点で特徴的であった。The granular solidified products produced by any of the production methods were characteristic in that the compressive strength was significantly increased.
(製造方法4) 自硬性を持たない下水汚泥焼却灰50重量%、ポルトラ
ンドセメント42重量%、黒曜石発泡体粉末2重量%、
黒曜石粉砕物3重量%、水酸化カルシウム3重量%を混
合機に入れて充分混合し、得られた混合物に適量の水を
加えて混練し、養生する。(Production method 4) 50% by weight of sewage sludge incineration ash having no self-hardening property, 42% by weight of Portland cement, 2% by weight of obsidian foam powder,
3% by weight of crushed obsidian and 3% by weight of calcium hydroxide are put in a mixer and thoroughly mixed, and an appropriate amount of water is added to the obtained mixture, and the mixture is kneaded and cured.
この製造方法により得られた粒状固化物の一軸圧縮強度
は、材齡7日で203kgf/cm2、28日で313kgf/cm2
であった。The uniaxial compressive strength of the resulting granular solid was purified by production method, 313kgf / cm 2 at 203kgf / cm 2, 28 days Zai齡7 days
Met.
(製造方法5) 自硬性を有する下水汚泥焼却灰50重量%、ポルトラン
ドセメント46重量%、黒曜石発泡体粉末1重量%、黒
曜石粉砕物3重量%を混合機に入れて充分混合し、得ら
れた混合物に適量の水を加えて混練し養生する。(Production method 5) 50% by weight of sewage sludge incineration ash having self-hardening property, 46% by weight of Portland cement, 1% by weight of obsidian foam powder, and 3% by weight of crushed obsidian were put into a mixer and sufficiently mixed to obtain An appropriate amount of water is added to the mixture, and the mixture is kneaded and cured.
この製造方法により得られた粒状固化物の一軸圧縮強度
は、材齡7日で438kgf/cm2、28日で663kgf/cm2
であった。The uniaxial compressive strength of the resulting granular solid was purified by production method, 663kgf / cm 2 at 438kgf / cm 2, 28 days Zai齡7 days
Met.
以上説明したように、この発明によれば、(1)比重表
面積が大きく、表面に微生物に適した細孔を有し、
(2)比重調整が可能であり、かつ流動床において容易
に流動する程度に軽量であり、(3)親水性を有し、
(4)流動床において破壊しない強度を有し、(5)微
生物の増殖に必要であり、かつ微生物の栄養源となる水
中のアンモニア態窒素を硝化するに必要なアルカリ源で
あるミネラルを水中に溶出する性質を有し、したがっ
て、水中の有機物の除去に優れた能力を発揮する微生物
活性化材とその製造方法を得ることができる。As described above, according to the present invention, (1) the specific gravity surface area is large, and the surface has pores suitable for microorganisms,
(2) The specific gravity can be adjusted, the weight is light enough to easily flow in a fluidized bed, and (3) it has hydrophilicity,
(4) It has a strength such that it does not break in a fluidized bed, and (5) it contains minerals, which are necessary for the growth of microorganisms and are an alkali source necessary for nitrifying ammonia nitrogen in water, which is a nutrient source of microorganisms, into water. It is possible to obtain a microbial activator having a property of eluting and therefore exhibiting an excellent ability to remove organic substances in water and a method for producing the same.
また、この発明による微生物活性化材は、その物理的化
学的性質を利用し、微生物活性化材以外の用途、例えば
モルタル、コンクリート用の軽量骨材、セメントに代る
結合材、路盤材、透水材、保水材、通気性園芸資材、透
気性の壁材、礫間接触酸化材、歩道用平板、透水性レン
ガ、軽量ブロック、水貯溜性路盤材、植木鉢、園芸用プ
ランター、透水性U字溝、透水性廃水管、コンクリート
積みブロック、テトラポッド等に、所要の加工を施し
て、利用することができる。Further, the microbial activator according to the present invention utilizes its physical and chemical properties, and uses other than the microbial activator, for example, mortar, lightweight aggregate for concrete, binder instead of cement, roadbed material, water permeability. Materials, water retention materials, breathable horticultural materials, permeable wall materials, gravel contact oxidation materials, sidewalk flat plates, water permeable bricks, lightweight blocks, water storage roadbed materials, flowerpots, gardening planters, water permeable U-shaped grooves , Permeable wastewater pipes, concrete blocks, tetrapods, etc. can be used after being subjected to required processing.
さらに、この発明による微生物活性化材は、下水汚泥焼
却灰を基材として50重量%以上使用している。したが
って、この発明によれば、従来、処理、処分に苦慮して
いた下水汚泥焼却灰の資源化が可能になる。すなわち、
その有効活用が可能になる。Further, the microbial activation material according to the present invention uses 50% by weight or more of sewage sludge incineration ash as a base material. Therefore, according to the present invention, it becomes possible to recycle the sewage sludge incineration ash, which has conventionally been difficult to treat and dispose. That is,
The effective utilization becomes possible.
第1〜3図はこの発明の実施例に係るペレツト状の微生
物活性化材の粒子構造を示す顕微鏡写真であり、第1図
は粒子の全体像を示し、第2図および第3図は第1図を
拡大したものである。第4図は実施例に係るペレット状
の微生物活性化材について行った有機物除去実験に使用
した外部循環式三相流動床の構成図である。 1……流動槽 2……供給口 3……エア供給管 4……微生物活性化材 5……流出口1 to 3 are micrographs showing the particle structure of pellet-shaped microbial activator according to the embodiment of the present invention, FIG. 1 shows the whole image of the particles, and FIGS. 2 and 3 show 1 is an enlarged view of FIG. FIG. 4 is a block diagram of an external circulation type three-phase fluidized bed used in an organic matter removal experiment conducted on pellet-shaped microbial activator according to the example. 1 ... Flow tank 2 ... Supply port 3 ... Air supply pipe 4 ... Microorganism activation material 5 ... Outflow port
───────────────────────────────────────────────────── フロントページの続き (72)発明者 米山 悦夫 神奈川県横浜市磯子区滝頭1―2―15 横 浜市公害研究所内 (56)参考文献 特開 昭50−124459(JP,A) 特開 昭60−143896(JP,A) 特開 昭61−71892(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuo Yoneyama 1-2-15 Takigashira, Isogo-ku, Yokohama-shi, Kanagawa Yokohama-shi pollution research institute (56) Reference JP-A-50-124459 (JP, A) Sho 60-143896 (JP, A) JP-A 61-71892 (JP, A)
Claims (2)
粉末および/または黒曜石粉砕物と水の混練物の粒状固
化物より成る下水汚泥焼却灰を利用した微生物活性化
材。1. A microbial activation material using sewage sludge incineration ash, which comprises sewage sludge incineration ash, cement, obsidian foam powder, and / or pulverized solid of obsidian pulverized product and kneaded water.
トと黒曜石発泡体粉末および/または黒曜石粉砕物を加
えて混合した混合物に水を加えて混練し、得られた混練
物を粒状に加工して養生するか、または養生固化したも
のを粒状に加工することを特徴とする下水汚泥焼却灰を
利用した微生物活性化材の製造方法。2. A sewage sludge incineration ash as a base material, to which cement and obsidian foam powder and / or crushed obsidian powder are added and mixed, and water is added and kneaded, and the obtained kneaded material is granulated. A method for producing a microbial activation material using sewage sludge incineration ash, which comprises processing and curing or curing and curing the material into particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7634288A JPH067958B2 (en) | 1987-04-27 | 1988-03-31 | Microbial activator using sewage sludge incineration ash and its manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10180987 | 1987-04-27 | ||
JP62-101809 | 1987-04-27 | ||
JP7634288A JPH067958B2 (en) | 1987-04-27 | 1988-03-31 | Microbial activator using sewage sludge incineration ash and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6427695A JPS6427695A (en) | 1989-01-30 |
JPH067958B2 true JPH067958B2 (en) | 1994-02-02 |
Family
ID=26417484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7634288A Expired - Lifetime JPH067958B2 (en) | 1987-04-27 | 1988-03-31 | Microbial activator using sewage sludge incineration ash and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH067958B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2559638B2 (en) * | 1990-03-19 | 1996-12-04 | 勲 大和久 | Inspection method and preparation method of cooked food |
JPH08132084A (en) * | 1994-11-15 | 1996-05-28 | Sada Naritoshi | Filter medium and its production |
JP3737689B2 (en) * | 2000-09-27 | 2006-01-18 | 青木電器工業株式会社 | How to use pellets containing humic substances |
US10207954B2 (en) * | 2016-12-22 | 2019-02-19 | Nano And Advanced Materials Institute Limited | Synthetic aggregate from waste materials |
-
1988
- 1988-03-31 JP JP7634288A patent/JPH067958B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6427695A (en) | 1989-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0175568B1 (en) | Three phase fluidized bed bioreactor process | |
CN102965365B (en) | Preparation method for microbial nanospheres for water quality purification | |
EP1129996A1 (en) | Denitrifying composition for removing nitrate nitrogen and process for producing the same | |
JPS6222857A (en) | Production of polymer bonding composition containing filler and obtained composition and its use | |
JPH11123076A (en) | Carrier for biological treatment | |
CN103382098B (en) | Light biological carrier for water treatment, and preparation method and application of light biological carrier | |
CN116510707B (en) | Foaming particle suitable for natural water body water treatment, preparation method and application | |
JP4545408B2 (en) | Water treatment material, nitrate nitrogen treatment material and production method thereof | |
JPH067958B2 (en) | Microbial activator using sewage sludge incineration ash and its manufacturing method | |
CN111036170B (en) | Water purification sludge composite adsorbent and application thereof | |
KR100393267B1 (en) | Staircase type waste water disposal system and adsorbent for purification of livestock waste water | |
CN116282547A (en) | Molecular sieve functional filler for denitrification and dephosphorization of subsurface flow constructed wetland | |
JPS6342788A (en) | Cleaning method for water tank | |
JP4947247B2 (en) | Composition for removing nitrate nitrogen and the like and method for producing the same | |
CN1238275C (en) | Filter material having phosphor adsorbing and biological membrane function and its preparing method | |
JP4269087B2 (en) | Method for producing activated material for removing nitrate nitrogen | |
US5447653A (en) | Method for the production of water purifying substances | |
CN113979687A (en) | Microbial composite filler, preparation method and application thereof | |
JP2000070960A (en) | Dephosphorization material produced by utilizing building waste | |
KR100506329B1 (en) | Material for water-treating and water-treating apparatus | |
JPH0223237B2 (en) | ||
JPH09163981A (en) | Entrapped immobilized bacterium carrier and its production | |
JPH0378157B2 (en) | ||
JPH0683832B2 (en) | Microorganism carrier | |
CN113321299B (en) | Denitrification filler and application thereof |