JP4545408B2 - Water treatment material, nitrate nitrogen treatment material and production method thereof - Google Patents

Water treatment material, nitrate nitrogen treatment material and production method thereof Download PDF

Info

Publication number
JP4545408B2
JP4545408B2 JP2003315854A JP2003315854A JP4545408B2 JP 4545408 B2 JP4545408 B2 JP 4545408B2 JP 2003315854 A JP2003315854 A JP 2003315854A JP 2003315854 A JP2003315854 A JP 2003315854A JP 4545408 B2 JP4545408 B2 JP 4545408B2
Authority
JP
Japan
Prior art keywords
powder
sulfur
water
treatment material
nitrate nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003315854A
Other languages
Japanese (ja)
Other versions
JP2004167471A (en
Inventor
勝弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2003315854A priority Critical patent/JP4545408B2/en
Publication of JP2004167471A publication Critical patent/JP2004167471A/en
Application granted granted Critical
Publication of JP4545408B2 publication Critical patent/JP4545408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、硫黄-アルカリ(土類)金属炭酸塩系の硝酸性窒素処理材に関し、硫黄酸化細菌による生物的処理によって水中の硝酸性窒素を脱窒処理する処理材に関する。   The present invention relates to a sulfur-alkali (earth) metal carbonate-based nitrate nitrogen treatment material, and to a treatment material for denitrifying nitrate nitrogen in water by biological treatment with sulfur-oxidizing bacteria.

河川、湖沼、閉鎖水域,閉鎖海域などの富栄養化の原因となる生活排水、産業排水、畜産排水、農業排水、水産養殖排水中の硝酸性窒素分を除去する技術として、独立栄養系硫黄酸化脱窒細菌(以下、硫黄酸化細菌という)を用いた硝酸性窒素除去システムは、従属栄養系脱窒細菌を用いたシステムとは異なり、メタノール添加等の高い維持コストが不要なため、各方面で注目されている。   Autotrophic sulfur oxidation is a technology that removes nitrate nitrogen in domestic wastewater, industrial wastewater, livestock wastewater, agricultural wastewater, and aquaculture wastewater that cause eutrophication in rivers, lakes, closed water areas, closed sea areas, etc. Unlike the system using heterotrophic denitrifying bacteria, the nitrate nitrogen removal system using denitrifying bacteria (hereinafter referred to as sulfur-oxidizing bacteria) does not require high maintenance costs such as the addition of methanol. Attention has been paid.

硫黄酸化細菌を用いた硝酸性窒素除去システム(以下、脱窒システムという)については、例えば特公昭62-56798号公報、特公昭63-45274号公報、特公昭60-3876 号公報、特公平1-31958号公報、特公平4-9199号公報、特開平4-74598号公報、特開平4-151000号公報、特開平4-197498号公報、特開平6-182393号公報など種々提案されている。
下記特許文献1、特許文献2には、硫黄と石灰石の溶融混合物に硫黄酸化細菌を含有させた脱窒システムが提案されており、メンテナンスの容易さと脱窒処理にかかるコストの面で優れた効果を示している。特許文献3では、脱窒処理材の製造を加熱溶融・急冷固化という工程を経ずに非加熱で硫黄と石灰石を混ぜてプレスにより造粒する方法を提案している。
Regarding nitrate nitrogen removal system using sulfur-oxidizing bacteria (hereinafter referred to as denitrification system), for example, Japanese Patent Publication No. 62-56798, Japanese Patent Publication No. 63-45274, Japanese Patent Publication No. 60-3876, Japanese Patent Publication No. 1 -31958, JP 4-9199, JP 4-74598, JP 4-151000, JP 4-197498, JP 6-182393, etc. .
Patent Documents 1 and 2 below propose a denitrification system in which a sulfur-oxidizing bacterium is contained in a molten mixture of sulfur and limestone, and are excellent in terms of ease of maintenance and cost for denitrification treatment. Is shown. Patent Document 3 proposes a method of granulating with a press by mixing sulfur and limestone without heating without the steps of heating, melting, and rapid solidification of the denitrification material.

しかし、上記の硫黄と石灰石とを加熱溶融によって一体化する手法では、加熱混練機内で溶解している硫黄を再び固化させないように、混合する石灰石の粉体や他の添加剤を徐々に添加するか、硫黄以外の粉体原料を予備加熱させておく必要があり、また、最終的には冷却して破砕し、分級といった手間がかかり、生産性については問題となる場合がある。更に、硫黄の加熱溶融により製造された処理材の表面は、かなり平滑であり、水流や振動により硫黄酸化細菌が離脱しやすい状態であることから細菌が繁殖する場所としては不適となる場合がある。 However, in the above-described method of integrating sulfur and limestone by heating and melting, limestone powder to be mixed and other additives are gradually added so as not to solidify again the sulfur dissolved in the heating kneader. In addition, it is necessary to preheat powder raw materials other than sulfur, and finally, it takes time and effort to cool and crush and classify, which may cause problems in productivity. Furthermore, the surface of the treated material produced by heating and melting of the sulfur is quite smooth, it may become unsuitable as a place bacteria breed since sulfur oxidizing bacteria by water flow or vibration is in the state easily disengaged .

また、特許文献4におけるように非加熱で硫黄と石灰石を混ぜてプレスする方法は、バッチ式のみならず、連続成形にも適応できるため、粉砕や分級工程も必要がなく処理材の生産性を向上させることができる。しかしながら、プレスだけで造粒する方法においては、粉同士の結合力が弱く、水処理中に表面から硫黄と石灰石の粉として徐々に剥離し流出することで処理能力の減少又は処理材の補給などといった問題が残されている。   In addition, the method of mixing and pressing sulfur and limestone without heating as in Patent Document 4 can be applied not only to the batch type but also to continuous molding, so there is no need for pulverization and classification processes, and the productivity of the treated material is reduced. Can be improved. However, in the method of granulating only with the press, the binding force between the powders is weak, and the treatment capacity decreases or the processing material is replenished by gradually peeling and flowing out as sulfur and limestone powder from the surface during water treatment. Such a problem remains.

また、窒素やリン等の栄養源が湖沼や海域などに排出されると、徐々に肥沃化され、藻類が増殖繁茂し、いわゆる富栄養化の原因となる。また、その水質が累積的に悪化する赤潮等の現象もみられ、水質保全上問題となっており、一旦水質の汚濁が進むとその回復が困難となる。すなわち、湖沼においては透明度の低下や水色の変化による美観の劣化のほか、水道におけるろ過障害や異臭味など種々の弊害を生じている。また、海域においては赤潮や青潮による漁業被害等が深刻化している。よって、富栄養化による水質の汚濁を防止し水質の保全を図るため、窒素・リンに係る環境基準が設定され、近年、益々厳しい方向にある。しかし、未だ、窒素とリンとを同時に簡便に除去する方策は見出されていない。なお、下水道の発達や工業系排水の規制化によって一部湖沼等での水質改善が見られつつあるものの、多くの海や湖沼等では依然水質改善が進まない状況である。   In addition, when nutrient sources such as nitrogen and phosphorus are discharged to lakes and marshes, etc., they are gradually fertilized and algae grow and proliferate, causing so-called eutrophication. In addition, phenomena such as red tide, where the water quality deteriorates cumulatively, is a problem in terms of water quality conservation, and once the water quality has progressed, it becomes difficult to recover. In other words, in lakes and marshes, in addition to deterioration in aesthetics due to a decrease in transparency and a change in light blue, various problems such as filtration problems in the water supply and off-flavors are caused. In the sea area, damage to fisheries due to red tide and blue tide is becoming serious. Therefore, in order to prevent water pollution due to eutrophication and to preserve water quality, environmental standards related to nitrogen and phosphorus have been set and are becoming increasingly severe in recent years. However, a method for easily removing nitrogen and phosphorus at the same time has not yet been found. Although some water quality improvements in lakes and marshes are being observed due to the development of sewers and the regulation of industrial wastewater, many seas and lakes still do not improve water quality.

従来の脱リン方法としては、プラス極板にカーボン、マイナス極板にステンレス等を用いて両極板の間に陰イオン交換膜、陽イオン交換膜を配設することにより廃水中のリンを含む塩類を透析分離する方法や、嫌気処理プロセスと好気処理プロセスの2段を連設し、凝集剤を添加してなる廃水の脱リン方法(特許文献5)、浄化槽汚泥を混合した後、無機凝集剤と高分子凝集剤とを添加し、分離水を生物学的硝化脱窒処理する方法(特許文献6)、特定割合の石灰を廃水に添加する凝集脱リン方法(特許文献7)、一次処理として石灰を、二次処理として高分子凝集剤を添加する脱リン方法(特許文献8)等がある。しかし、これらはいずれも脱リン率、脱リン効率等において十分ではない。例えば、特許文献5などについては設備が過大となり、設備投資及び運転コストが嵩む。特許文献6などの石灰による凝集法では凝集時間がかかり大量処理に不向きである。また、スラグとマグネシア吸着剤との混合物(特許文献9)、スラグとセメントとの混合物(特許文献10)を用いて脱リン処理する方法もある。しかし、これらも粉末状であるため、脱リン処理によって、いわゆるスライムを発生してしまい、大掛かりなシックナー等の設備を必要とする。   Conventional dephosphorization methods include dialysis of phosphorus-containing salts by disposing an anion exchange membrane and a cation exchange membrane between the two plates using carbon for the positive plate and stainless steel for the negative plate. A separation method, a two-stage anaerobic treatment process and an aerobic treatment process are connected in series, a dephosphorization method of waste water formed by adding a flocculant (Patent Document 5), and after mixing septic tank sludge, A method of adding a polymer flocculant and biologically nitrifying and denitrifying the separated water (Patent Document 6), an aggregation dephosphorizing method of adding a specific proportion of lime to wastewater (Patent Document 7), and lime as a primary treatment As a secondary treatment, there is a dephosphorization method in which a polymer flocculant is added (Patent Document 8). However, none of these are sufficient in dephosphorization rate, dephosphorization efficiency, and the like. For example, for Patent Document 5, etc., the facilities are excessive, and the capital investment and operating costs increase. The agglomeration method using lime as disclosed in Patent Document 6 takes time to agglomerate and is not suitable for mass processing. There is also a dephosphorization method using a mixture of slag and magnesia adsorbent (Patent Document 9) and a mixture of slag and cement (Patent Document 10). However, since these are also in a powder form, so-called slime is generated by the dephosphorization process, and equipment such as a large thickener is required.

特開2001-47086公報Japanese Patent Laid-Open No. 2001-47086 特開2001-104993号公報Japanese Patent Laid-Open No. 2001-104993 特開2002-66592公報JP 2002-66592 A 特開2002-66592公報JP 2002-66592 A 特開平5‐185091号公報Japanese Patent Laid-Open No. 5-185091 特開平6‐226290号公報JP-A-6-226290 特開平54‐129757号公報Japanese Patent Laid-Open No. 54-129757 特開昭57‐187092号公報Japanese Unexamined Patent Publication No. 57-187092 特開昭61‐28491号公報JP 61-28491 A 特開昭61‐64392号公報JP-A-61-64392

したがって、本発明の目的は、連続的な造粒も可能であり、細菌が繁殖し易くかつ離脱しにくい、脱窒能力に優れた比較的強固な硝酸性窒素処理材を提供することにある。また、こうした環境汚染の原因物質である硝酸性窒素及びリンを簡便に、且つ同時に除去できる処理材を提供することにある。   Accordingly, an object of the present invention is to provide a relatively strong nitrate-nitrogen treatment material that is capable of continuous granulation, easily propagates bacteria, and is difficult to detach and has an excellent denitrification ability. It is another object of the present invention to provide a treatment material that can easily and simultaneously remove nitrate nitrogen and phosphorus which are causative substances of such environmental pollution.

本発明者等は、かかる課題を解決するために鋭意検討を重ねた結果、硫黄−炭酸塩の系において、硫黄のみをバインダーとしても利用するのではなく、水不溶性の有機バインダーを別途配合することにより、上記目的を達成できるとを見出し、本発明を完成した。   As a result of intensive studies in order to solve such problems, the present inventors have not separately used sulfur alone as a binder in the sulfur-carbonate system, but separately formulated a water-insoluble organic binder. Thus, the inventors have found that the above object can be achieved, and completed the present invention.

本発明は、硫黄酸化細菌による生物的処理によって硝酸性窒素を脱窒処理するために使用される硝酸性窒素処理材であって、炭酸カルシウム粉末30〜70重量部及び硫黄粉末30〜70重量部を含有し、両者の合計100重量部に対して、該粉末を一体化するための水又は有機溶剤に分散又は溶解された有機系高分子に由来する水不溶性又は難溶性の有機系バインダー0.1〜30重量部を配合してなることを特徴とする硝酸性窒素処理材である。また、本発明は、炭酸カルシウム粉末及び硫黄粉末を、有機系バインダーで一体化、又は、担体表面に付着担持してなる前記の硝酸性窒素処理材である。更に、本発明は、炭酸カルシウム粉末及び硫黄粉末の合計100重量部に対して、無機添加材を1〜100重量部含有する前記の硝酸性窒素処理材である。
The present invention is a nitrate nitrogen treatment material used for denitrification of nitrate nitrogen by biological treatment with sulfur-oxidizing bacteria, comprising 30 to 70 parts by weight of calcium carbonate powder and 30 to 70 parts by weight of sulfur powder. A water-insoluble or hardly soluble organic binder derived from an organic polymer dispersed or dissolved in water or an organic solvent for integrating the powder with respect to a total of 100 parts by weight of both. It is a nitrate nitrogen processing material characterized by mix | blending 1-30 weight part. In addition, the present invention is the above-described nitrate nitrogen treatment material in which calcium carbonate powder and sulfur powder are integrated with an organic binder or attached to and supported on a support surface. Furthermore, this invention is said nitrate nitrogen processing material containing 1-100 weight part of inorganic additives with respect to a total of 100 weight part of calcium carbonate powder and sulfur powder.

本発明の前記硝酸性窒素処理材の製造方法は、アルカリ(土類)金属炭酸塩粉末及び硫黄粉末を、水不溶性又は難溶性の有機系バインダーを与える有機系バインダー溶液に配合し、均一に混練した後、液体を除去することを特徴とする方法である。   The method for producing a nitrate nitrogen-treated material according to the present invention comprises mixing an alkaline (earth) metal carbonate powder and a sulfur powder in an organic binder solution that gives a water-insoluble or hardly soluble organic binder, and uniformly kneading the mixture. And then removing the liquid.

更に、本発明の水処理材は、硫黄酸化細菌による生物的処理によって硝酸性窒素を脱窒処理するとともに脱リン処理も行う水処理材であって、アルカリ(土類)金属炭酸塩粉末30〜70重量部及び硫黄粉末30〜70重量部を含有し、両者の合計100重量部に対して、該粉末を一体化するための水不溶性又は難溶性の有機系バインダー0.1〜30重量部を配合してなり、脱窒処理とともに脱リン処理も行うことを特徴とする水処理材である。   Furthermore, the water treatment material of the present invention is a water treatment material that denitrifies nitrate nitrogen by biological treatment with sulfur-oxidizing bacteria and also performs dephosphorization treatment, and the alkaline (earth) metal carbonate powder 30 ~ 70 parts by weight and 30 to 70 parts by weight of sulfur powder, and 0.1 to 30 parts by weight of a water-insoluble or hardly soluble organic binder for integrating the powder with respect to a total of 100 parts by weight of both. It is a water treatment material characterized by being mixed and dephosphorizing as well as denitrifying.

以下、本発明を詳細に説明する。
本発明の硝酸性窒素処理材又は硝酸性窒素及びリン処理材(以下、水処理材ともいう)は、脱窒材又は脱窒材兼脱リン材として使用される。この水処理材はアルカリ(土類)金属炭酸塩(以下、炭酸塩ともいう)粉末、硫黄粉末及び水不溶性又は難溶性の有機系バインダー(以下、有機系バインダーともいう)を必須成分とし、必要に応じてこれらを担持する担体又はこれらに添加する無機添加材等からなることができる。
Hereinafter, the present invention will be described in detail.
The nitrate nitrogen treatment material or nitrate nitrogen and phosphorus treatment material (hereinafter also referred to as water treatment material) of the present invention is used as a denitrification material or a denitrification material / dephosphorization material. This water treatment material contains alkali (earth) metal carbonate (hereinafter also referred to as carbonate) powder, sulfur powder and water-insoluble or hardly soluble organic binder (hereinafter also referred to as organic binder) as essential components. Depending on the case, it can be composed of a carrier for supporting them or an inorganic additive added to them.

アルカリ(土類)金属炭酸塩は、硫黄酸化細菌の炭素源となる炭酸を有した化合物であり、カルシウム、マグネシウムなどのアルカリ土類金属の炭酸塩、ナトリウム、カリウム、リチウムなどのアルカリ金属の炭酸塩あるいは重炭酸塩又はそれらの混合物などがあげられる。しかし、中でも炭酸カルシウムは自然界に石灰石として豊富に存在し、かつ適度な水不溶性を有するので、処理材の寿命という面から特に有用である。   Alkali (earth) metal carbonate is a compound that has carbonic acid as a carbon source for sulfur-oxidizing bacteria. Carbonate of alkaline earth metal such as calcium and magnesium, carbonate of alkali metal such as sodium, potassium and lithium. Examples thereof include salts, bicarbonates, and mixtures thereof. However, among them, calcium carbonate is abundant in nature as limestone, and has an appropriate water insolubility, so that it is particularly useful from the viewpoint of the life of the treatment material.

この炭酸塩粉末の粒径としては、特に限定されないが、数μm〜数100μm程度が好ましい。本来、微生物が硫黄と炭酸塩を消費することを考えると、その接触面積を大きくするため粒子を小さくした方が好ましいが、あまりに小さすぎると扱いにくい傾向となる。また、接着に使用するバインダー量も多く必要となるので、上記範囲が適当となる。   The particle diameter of the carbonate powder is not particularly limited, but is preferably about several μm to several hundred μm. Originally, considering that microorganisms consume sulfur and carbonate, it is preferable to make the particles smaller in order to increase the contact area, but if it is too small, it tends to be difficult to handle. Moreover, since a large amount of binder is required for bonding, the above range is appropriate.

硫黄としては、例えば石油脱硫や石炭脱硫プラントの回収硫黄や天然硫黄などが上げられるが特に制限されるものではない。
硫黄粉末の粒径についても、炭酸塩粉末の粒径と同様な理由により、数μm〜数100μm程度が好ましい。
Examples of sulfur include, but are not limited to, sulfur recovered from petroleum desulfurization and coal desulfurization plants, natural sulfur, and the like.
The particle size of the sulfur powder is preferably about several μm to several hundred μm for the same reason as the particle size of the carbonate powder.

従来は、こうした硫黄粉末と炭酸塩粉末を一体化する場合、硫黄を溶融してバインダーとして利用していたが、本発明においては、別途に有機系バインダーを使用する。有機系バインダーとしては、これらの粉体を接着でき、かつ湖沼などの水中の硝酸性窒素等を処理するためには必然的に水に不溶又は難溶なものでなければならない。
バインダーとしては、アルミナやジルコニア等のセラミックス系接着剤やセメントや石膏などの無機系バインダーの使用が考えられるが、これらは比重が硫黄や炭酸塩にくらべ高いために、粉末同士や粉末と各種担体を接着させる場合には、かなりの添加量を必要とするため不利である。これに対して、有機系バインダーは、無機系バインダーに比較して比重が小さいことから添加量も少なくて済み、造粒も均一にでき、また接着力も高いという利点がある。
Conventionally, when such sulfur powder and carbonate powder are integrated, sulfur is melted and used as a binder, but in the present invention, an organic binder is separately used. As an organic binder, these powders can be adhered, and in order to treat nitrate nitrogen in water such as lakes, it is inevitably insoluble or hardly soluble in water.
As the binder, ceramic adhesives such as alumina and zirconia, and inorganic binders such as cement and gypsum can be considered. When adhering, it is disadvantageous because a considerable amount of addition is required. On the other hand, the organic binder has the advantages that the specific gravity is smaller than that of the inorganic binder, so that the addition amount is small, the granulation can be made uniform, and the adhesive strength is high.

本発明で使用する有機系バインダーとしては、熱可塑性樹脂や熱硬化性樹脂又は天然高分子などが挙げられる。かかる有機系バインダーは、熱硬化性樹脂のように硬化反応等を伴ってバインダーとして作用する場合は、硬化反応等の後、水不溶性又は難溶性を示せばよい。熱可塑性樹脂のように溶媒の蒸発又は冷却固化の後にバインダーとして作用する場合は、その前後において水不溶性又は難溶性を示すものであればよい。   Examples of the organic binder used in the present invention include thermoplastic resins, thermosetting resins, and natural polymers. When such an organic binder acts as a binder with a curing reaction or the like like a thermosetting resin, it may be water-insoluble or hardly soluble after the curing reaction or the like. In the case of acting as a binder after evaporation of the solvent or solidification by cooling like a thermoplastic resin, it may be water-insoluble or hardly soluble before and after that.

水又は有機溶剤に分散又は溶解された有機系高分子を用いることが簡便であり、かつ均一に造粒できることから都合がよい。すなわち、造粒に用いられる有機系高分子の状態としては、水に分散されたディスパージョン及び有機溶剤に分散又は溶解されたものがよい。それらの有機系高分子として水に分散されるものとしては、たとえばスチレン系、アクリル系、エポキシ系、ウレタン系、塩化ビニル系エマルジョンや天然ゴムラテックス及びクロロプレンゴムやスチレンブタジエンゴム等の合成ゴムラテックス又はアスファルトやパラフィン等の瀝青質のエマルジョン等が挙げられる。また、有機溶剤に溶解される有機系高分子としては、スチレン系、アクリル系、ポリカーボネート系等の非晶質系熱可塑性樹脂やエポキシ系、ウレタン系等の硬化前の熱硬化性樹脂、更にはアスファルトや天然ゴム等の天然高分子が挙げられる。有機溶剤としてはトルエンやキシレン等の芳香族系溶剤やアセトンや酢酸エチル等のケトン、エステル系溶剤や石油エーテル等の炭化水素系溶剤、リモネン等の天然系溶剤などがあるが、これに限られない。   It is convenient to use an organic polymer dispersed or dissolved in water or an organic solvent because it is simple and can be granulated uniformly. That is, the state of the organic polymer used for granulation is preferably a dispersion dispersed in water and a state dispersed or dissolved in an organic solvent. Those organic polymers dispersed in water include, for example, styrene, acrylic, epoxy, urethane, vinyl chloride emulsion, natural rubber latex, synthetic rubber latex such as chloroprene rubber and styrene butadiene rubber, or Examples include bituminous emulsions such as asphalt and paraffin. The organic polymer dissolved in the organic solvent includes amorphous thermoplastic resins such as styrene, acrylic and polycarbonate, thermosetting resins before curing such as epoxy and urethane, Examples include natural polymers such as asphalt and natural rubber. Examples of organic solvents include aromatic solvents such as toluene and xylene, ketones such as acetone and ethyl acetate, hydrocarbon solvents such as ester solvents and petroleum ether, and natural solvents such as limonene. Absent.

本発明の水処理材は、炭酸塩粉末及び硫黄粉末を、有機系バインダーで一体化し、造粒したものであることが好ましい。粒は処理材上に棲む微生物(細菌)と処理液の接触面積を大きくするために有効である。粒の大きさは、例えば1〜100mm、好ましくは2〜50mmである。他方、上記粒より細かい粉末であれば接触面積はより大きくなり脱窒効果も高いが、実用的には取り扱いにくく使用に際して流出し易くなる。   The water treatment material of the present invention is preferably obtained by integrating and granulating carbonate powder and sulfur powder with an organic binder. The grains are effective for increasing the contact area between the microorganisms (bacteria) living on the treatment material and the treatment liquid. The size of the grains is, for example, 1 to 100 mm, preferably 2 to 50 mm. On the other hand, if the powder is finer than the above particles, the contact area is larger and the denitrification effect is higher, but it is practically difficult to handle and easily flows out during use.

粒でなくても炭酸塩粉末と硫黄粉末が均一に担体表面に存在しておれば、脱窒は進行することから、担体表面に炭酸塩粉末と硫黄粉末に付着担持されたものであることも好ましい。この場合の水処理材の大きさは、例えば1〜100mm、好ましくは2〜50mmであることがよい。担体を使用することにより、炭酸塩粉末と硫黄粉末の使用量を減じることができるだけでなく、複雑な形状にすることもできるので、表面積も大きくできるなどの効果がある。   Denitrification proceeds if carbonate powder and sulfur powder are uniformly present on the surface of the carrier, even if it is not a grain, so that it may be supported by carbonate powder and sulfur powder on the surface of the carrier. preferable. In this case, the size of the water treatment material is, for example, 1 to 100 mm, preferably 2 to 50 mm. By using the carrier, not only the amount of carbonate powder and sulfur powder used can be reduced, but also a complicated shape can be obtained, so that the surface area can be increased.

担体としては、硫黄粉末と炭酸塩粉末を担体表面に有機系バインダーにより担持させることができるものであれば、特に制限はない。従って担体としては、硫黄粉末等と同時に混練できる比較的小さい担体と、硫黄粉末等と同時に混練できないので該硫黄粉末等のスラリーを塗布する比較的大きい担体があり、いずれも使用可能である。径で捉えると、単一粒子で5mmアンダーで見た目に粉状(粒状又は繊維状)のものを小さい担体、5mmを超えるもので成形加工品やその粗破砕品などを大きい担体である。小さい担体としては粒子や繊維でもよく、また大きい担体としてはそれらの加工品やその破砕品あってもよい。   The carrier is not particularly limited as long as it can support sulfur powder and carbonate powder on the surface of the carrier with an organic binder. Accordingly, as the carrier, there are a relatively small carrier that can be kneaded simultaneously with the sulfur powder and the like, and a relatively large carrier that can be kneaded simultaneously with the sulfur powder and the like so that a slurry such as the sulfur powder is applied, and both can be used. In terms of diameter, it is a single particle with a powdery (granular or fibrous) one that looks under 5 mm, a small carrier, and a one that exceeds 5 mm with a molded product or a coarsely crushed product that is a large carrier. The small carrier may be particles or fibers, and the large carrier may be a processed product or a crushed product thereof.

粒径の大きい担体を使用することにより、硫黄粉末と炭酸塩粉末は、この表面にコーティングされて、担体表面に付着担持された硝酸性窒素処理材とすることができる。コーティング方法としては、硫黄粉末と炭酸塩粉末と有機系バインダーを含む液又はスラリーを担体に付着又は塗布させ、乾燥又は冷却する方法が好ましく例示される。かかる担体としては、各種繊維の織物や不織布や成形加工品、その他鉱物、高分子材料、木材、木炭、金属、セラミック成形品、軽石又は貝殻、骨、サンゴ等の生物体などがあるが、特に限定されない。   By using a carrier having a large particle size, the sulfur powder and carbonate powder can be coated on this surface to be a nitrate nitrogen treatment material adhered and supported on the surface of the carrier. As the coating method, a method of adhering or applying a liquid or slurry containing sulfur powder, carbonate powder and an organic binder to a carrier and drying or cooling is preferably exemplified. Examples of such carriers include woven fabrics and nonwoven fabrics of various fibers, molded products, other minerals, polymer materials, wood, charcoal, metal, ceramic molded products, organisms such as pumice or shells, bones, corals, etc. It is not limited.

粒径の小さい担体を使用する場合は、硫黄粉末と炭酸塩粉末と担体は、ほぼ均一に混合されて、有機系バインダーにより一体化することにより水処理材とすることができる。この場合、成形して特定形状とすることもできる。小さい担体の粒子としては、砂、サンゴ砂、パーライト、水砕スラグ、ゼオライト、珪藻土、フライアッシュ、シラスバルーン、雲母その他各種鉱物粒子が上げられる。繊維としては、ワラストナイト、セピオライト、石綿等の天然鉱物繊維やロックウール、グラスウール、セラミック繊維、炭素繊維等の人造鉱物繊維又はセルロース、ナイロン、ポリプロピレンやポリエチレン等の有機系繊維等があるがこれに限定されない。   When a carrier having a small particle size is used, the sulfur powder, carbonate powder and carrier are mixed almost uniformly and integrated with an organic binder to obtain a water treatment material. In this case, it can be formed into a specific shape. Examples of small carrier particles include sand, coral sand, perlite, granulated slag, zeolite, diatomaceous earth, fly ash, shirasu balloon, mica and other various mineral particles. The fibers include natural mineral fibers such as wollastonite, sepiolite, asbestos, artificial mineral fibers such as rock wool, glass wool, ceramic fibers and carbon fibers, or organic fibers such as cellulose, nylon, polypropylene and polyethylene. It is not limited to.

本発明の水処理材の表面はミクロ的に硫黄粉と炭酸塩粉が均一に粒子の集合体として存在していることから、凹凸が激しく、また、粒子内に多量の空隙を有していることから、硫黄の加熱溶融法よりも比表面積が非常に高く、微生物が繁殖しやすく、かつ水流や振動等の衝撃によっても容易に欠落することがない状態になっている。
なお、本発明で担体という場合、それが粒径の小さい担体のときは通常全体の50v%以上を占める場合をいう。担体を複数種使用することも可能であり、この場合上記計算ではその合計をいう。また、通常50v%未満添加する成分は添加材という。
Since the surface of the water treatment material of the present invention has a microscopically uniform sulfur powder and carbonate powder as an aggregate of particles, it has severe irregularities and a large amount of voids in the particles. Therefore, the specific surface area is much higher than that of the sulfur heating and melting method, the microorganisms are easy to propagate, and they are not easily lost even by an impact such as water flow or vibration.
In the present invention, the term “carrier” refers to a case where it usually occupies 50% or more of the whole when the carrier has a small particle size. It is possible to use a plurality of types of carriers, and in this case, the above calculation refers to the total. Moreover, the component normally added in less than 50v% is called an additive.

本発明の処理材は、硫黄粉と炭酸塩粉の合計に対し、等量以下の無機添加材を含むものであることも好ましい。かかる、処理材は、炭酸塩粉末及び硫黄粉末及び無機添加材を、有機系バインダーで一体化し、造粒したものであることが好ましい。粒の大きさは、例えば1〜100mm、好ましくは2〜50mmである。
かかる無機添加材としては、上記小さな担体と同様な成分があるが、担体として作用する場合は、含まない。その他、必要に応じて水酸化アルミニウムや水酸化マグネシウムなどの難燃剤や酸化鉄等の硫化水素発生防止剤等を添加してもよい。
It is also preferable that the treatment material of the present invention contains an equal amount or less of an inorganic additive with respect to the sum of sulfur powder and carbonate powder. Such a treatment material is preferably a granulated powder obtained by integrating carbonate powder, sulfur powder and an inorganic additive with an organic binder. The size of the grains is, for example, 1 to 100 mm, preferably 2 to 50 mm.
Such an inorganic additive has the same components as those of the small carrier, but is not included when acting as a carrier. In addition, flame retardants such as aluminum hydroxide and magnesium hydroxide, hydrogen sulfide generation inhibitors such as iron oxide, and the like may be added as necessary.

本発明の水処理材に含まれるそれぞれの含有量として、まず有機系バインダーは、0.1〜30(重量)%がよい。0.1%未満では硫黄や石灰石等の炭酸塩の粉体を強固に接着させることができず、脱窒処理中に粉体が剥離して流出することがある。一方、30%を超えると粉体を強固に接着できるが、脱窒に必要な硫黄や石灰石等の炭酸塩が有機高分子に覆われて有効に活用できず、また粒内の空隙も少なくなり、微生物の活性を高めることができない。担体又は添加材を使用しない場合は、上記範囲で硫黄、炭酸塩及び有機系バインダーの配合量が定まる。   As each content contained in the water treatment material of this invention, 0.1-30 (weight)% of an organic type binder is good first. If it is less than 0.1%, carbonate powder such as sulfur and limestone cannot be firmly adhered, and the powder may be peeled off during denitrification. On the other hand, if it exceeds 30%, the powder can be firmly adhered, but carbonates such as sulfur and limestone necessary for denitrification are covered with organic polymers and cannot be used effectively, and the voids in the grains are reduced. Can not increase the activity of microorganisms. When no carrier or additive is used, the blending amounts of sulfur, carbonate and organic binder are determined within the above range.

担体を使用する場合、担体の量については、処理材の使用方法(例えば、処理水に浸すだけ、処理水を掛け流し、流動床タイプ、循環方法等)、能力、担体の形状・体積・重量により異なる。即ち、担体に比べて、硫黄粉末等が非常に少なければ(例えば薄皮1枚程度)、接触面積は膨大で処理速度は非常に高くなる一方、薄皮がなくなれば効果はなくなり寿命という面では短くなる。よって、寿命を重視する場合には、担体より硫黄粉末等を多くすべきであり、処理速度を高めるためには、担体より硫黄粉末等を少なくすべきである。   When using a carrier, the amount of the carrier is determined according to the method of using the treatment material (for example, just immersing it in the treated water, sprinkling the treated water, fluidized bed type, circulation method, etc.), capacity, shape, volume and weight of the carrier. Varies by That is, if the amount of sulfur powder is very small compared to the carrier (for example, about one thin skin), the contact area is enormous and the processing speed becomes very high. . Therefore, when importance is attached to the lifetime, the sulfur powder and the like should be increased from the support, and in order to increase the processing speed, the sulfur powder and the like should be decreased from the support.

本発明の水処理材は、造粒した粒状であることが好ましく、大きさや形状が揃えられたものであっても、不定形で大きさに分布を持つものであってもよく、平均径が1〜50mmの範囲にあることが望ましい。造粒(粒状)する方法は、水又は有機溶剤を除去する前に、例えば連続押出し機によって混練造粒する方法が好ましく例示される。   The water treatment material of the present invention is preferably a granulated granule, and may have a uniform size or shape, may be irregularly shaped and have a size distribution, and has an average diameter. It is desirable to be in the range of 1-50 mm. The method of granulating (pulverized) is preferably exemplified by a method of kneading and granulating with a continuous extruder, for example, before removing water or an organic solvent.

本発明の硝酸性窒素脱窒処理材の製造方法は、炭酸塩の粉末と硫黄の粉末を、水又は有機溶剤等の液体中に分散又は溶解された有機系バインダーと配合し、均一に混練した後、これを乾燥する方法である。この場合、混練後に造粒を行って所定の粒径にすることが好ましい。
例えば、処理材の製造容器に所定量の水又は有機溶剤に分散された有機系バインダー及び所定量の硫黄、炭酸塩の粉末と、必要に加えられる粒子や繊維等の担体又は添加材を加え、混練機、例えばホモジナイザー、ニーダー又は攪拌機により、均一に混練した後、乾燥機やブロワー又は自然乾燥等で乾燥することにより水分や有機溶剤を除去することで硝酸性窒素脱窒処理材が製造できる。
In the method for producing a nitrate nitrogen denitrification material of the present invention, carbonate powder and sulfur powder are blended with an organic binder dispersed or dissolved in a liquid such as water or an organic solvent and uniformly kneaded. Later, this is a method of drying. In this case, it is preferable to perform granulation after kneading to obtain a predetermined particle size.
For example, an organic binder dispersed in a predetermined amount of water or an organic solvent and a predetermined amount of sulfur, carbonate powder, and a carrier or additive such as particles and fibers added as necessary, are added to the treatment material manufacturing container, After uniformly kneading with a kneader, for example, a homogenizer, a kneader, or a stirrer, the nitrate nitrogen denitrification treatment material can be produced by removing moisture and organic solvent by drying with a dryer, blower or natural drying.

有機系バインダーの硬化又は接着作用の向上は、乾燥、加熱等により進行するが、加熱等せずに、徐々に硬化させることが好ましい。例えば、液状のエポキシ樹脂では、主剤と硬化剤を混ぜれば高い熱をかけなくても硬化し、本発明における充分な強度を有する。また、熱可塑性樹脂は常温では固化状態であるが、それが水に分散されたエマルジョンや有機溶剤に溶かされたものがあり、こうした熱可塑性樹脂は水や溶媒がなくなれば固化する。硫黄粉末が可燃性であることからすれば、加熱は避けることが望ましい。
水又は有機溶剤を除去した後に、粉砕等により適度な粒度にしたものでもよい。水又は有機溶剤を除去する方法としては、自然乾燥、高温乾燥又は真空乾燥などの公知の方法でよい。
Improvement of the curing or adhesion of the organic binder proceeds by drying, heating, etc., but it is preferable to gradually cure without heating. For example, in the case of a liquid epoxy resin, if a main agent and a curing agent are mixed, the liquid epoxy resin is cured without applying high heat and has sufficient strength in the present invention. Thermoplastic resins are in a solidified state at room temperature, but some are dissolved in an emulsion or an organic solvent dispersed in water. Such thermoplastic resins are solidified when water or the solvent is exhausted. Given that the sulfur powder is flammable, it is desirable to avoid heating.
After removing water or the organic solvent, it may be an appropriate particle size by pulverization or the like. The method for removing water or the organic solvent may be a known method such as natural drying, high temperature drying or vacuum drying.

更に、担体表面に硫黄粉末と炭酸塩粉末を接着させる方法としては、硫黄粉末と炭酸塩粉末及び有機系高分子とを同時に混ぜて作成したスラリーを塗布又はスプレーした後、水又は有機溶剤を除去することで接着させることができる。あるいは、担体を予め、有機高分子を含むディスパージョン又は溶液で含浸又は濡らしたものに、硫黄粉末と炭酸塩粉末を塗布させた後に水又は有機溶剤を除去することで付着させることができるが、この方法に限られない。水又は有機溶剤を除去する方法としては、粒状にする場合と同様に自然乾燥、高温乾燥又は真空乾燥などの公知の方法でよい。   Furthermore, as a method of adhering sulfur powder and carbonate powder to the surface of the carrier, after applying or spraying slurry prepared by mixing sulfur powder, carbonate powder and organic polymer at the same time, water or organic solvent is removed. It can be made to adhere by doing. Alternatively, the carrier can be adhered to a dispersion or solution impregnated or wetted with an organic polymer in advance by applying water or an organic solvent after applying sulfur powder and carbonate powder, It is not limited to this method. The method for removing water or the organic solvent may be a known method such as natural drying, high temperature drying or vacuum drying, as in the case of granulating.

硫黄粉末等を有機バインダーで一体化(接着)する場合と、担体を更に一体化する場合とでは、比較的小さい担体においては、硫黄粉末等と同時に混練して担体表面に硫黄等を担持できるが、比較的大きな担体においては、一度に担持するのは困難であり、まず硫黄粉末等をスラリー状態にして、その後担体にこのスラリーを塗布することがよい。   In the case of integrating (adhering) sulfur powder or the like with an organic binder and in the case of further integrating the carrier, it is possible to carry sulfur or the like on the carrier surface by kneading simultaneously with the sulfur powder or the like in a relatively small carrier. In the case of a relatively large carrier, it is difficult to carry it at a time, and it is preferable to first form a sulfur powder or the like in a slurry state and then apply this slurry to the carrier.

本発明の水処理材を使用して硝酸性窒素を除去したり、リンを同時除去する方法には制限はなく、前記した刊行物に記載の使用方法等が採用できる。なお、リン酸性等のリンを同時除去する場合は、アルカリ(土類)金属がリン酸等によっても消費されるので、アルカリ(土類)金属炭酸塩の配合量を硫黄に対して、上記範囲内で多めにすることがよい。   There is no limitation on the method of removing nitrate nitrogen using the water treatment material of the present invention or removing phosphorus simultaneously, and the method of use described in the above-mentioned publications can be employed. When removing phosphorus such as phosphoric acid at the same time, alkali (earth) metal is also consumed by phosphoric acid, etc., so the blending amount of alkali (earth) metal carbonate is within the above range with respect to sulfur. It is better to make more.

本発明の硝酸性窒素処理材(水処理材)は、優れた脱窒能力を発揮でき、その製造は簡便であり、硫黄酸化細菌による生物的処理によって水中の硝酸性窒素を脱窒処理する処理材として優れる。更に、環境汚染の原因物質である硝酸性窒素及びリンを簡便に、且つ同時に除去できる水処理材であり、水質環境保全に極めて有用である。   The nitrate nitrogen treatment material (water treatment material) of the present invention can exhibit excellent denitrification ability, its production is simple, and treatment for denitrification of nitrate nitrogen in water by biological treatment with sulfur-oxidizing bacteria Excellent as a material. Furthermore, it is a water treatment material that can easily and simultaneously remove nitrate nitrogen and phosphorus, which are environmental pollutants, and is extremely useful for water quality environmental conservation.

硝酸性窒素処理材は、イオウ(200メッシュ、軽井沢精錬製)、炭酸カルシウム(T−200、ニッチツ製)、各種担体:不織布(PET繊維、東亜防食製)、ロックウール(エスファイバー粒状綿、新日鉄化学製)、水砕スラグ(平均粒子径1mm、新日鉄化学製)及び有機系バインダー(ポリスチレン樹脂、ウレタン樹脂)を表1に示す配合により作成した。
有機バインダーの配合量は、固形分としての数値を示す。有機バインダーとしてのポリスチレン樹脂は、東洋スチレン(株)製ハイインパクトポリスチレン(製品名:XL4)をトルエンに希釈した5%溶液を、また熱硬化性樹脂としてのウレタン樹脂は、大日本インキ化学工業(株)製水分散型ウレタン樹脂(製品名:1980NS)を樹脂分2〜20%に調整したものを使用した。
Nitric acid nitrogen treatment materials are sulfur (200 mesh, manufactured by Karuizawa Seisen), calcium carbonate (T-200, manufactured by Nichetsu), various carriers: non-woven fabric (PET fiber, manufactured by Toa Anticorrosion), rock wool (S fiber granular cotton, Nippon Steel) Chemical), granulated slag (average particle size 1 mm, manufactured by Nippon Steel Chemical Co., Ltd.) and organic binder (polystyrene resin, urethane resin) were prepared according to the formulation shown in Table 1.
The compounding quantity of an organic binder shows the numerical value as solid content. The polystyrene resin as the organic binder is a 5% solution of Toyo Styrene's high impact polystyrene (product name: XL4) diluted in toluene, and the urethane resin as the thermosetting resin is Dainippon Ink & Chemicals ( A water dispersion type urethane resin (product name: 1980NS) manufactured by Co., Ltd., adjusted to a resin content of 2 to 20% was used.

実施例1(参考例)、実施例
1000mlのガラスビーカー内に所定量のイオウ粉末と炭酸カルシウム粉末を入れてよく混合し、水又はトルエンで所定濃度に調整されたで有機バインダーを加え、粉末全体がよく湿るように金属ヘラで均一に攪拌混合する。60℃の恒温層で、1昼夜放置して水又は有機溶剤を完全に除去し、固化した処理材のかたまりを、軽く木槌で叩き粉砕して製造した。脱窒処理に用いた粒状の水処理材は、5〜20mmのものとした。なお、実施例1は有機バインダー量が多いため、3日後の硝酸性イオンの濃度がやや高いものとなり、参考例である。
Example 1 (reference example), Example 2
Put a predetermined amount of sulfur powder and calcium carbonate powder in a 1000 ml glass beaker, mix well, adjust to a predetermined concentration with water or toluene, add an organic binder, and evenly with a metal spatula so that the whole powder gets wet well Stir and mix. In a constant temperature layer of 60 ° C., it was left to stand for one day and night to completely remove water or organic solvent, and a lump of the solidified treatment material was lightly beaten with a mallet and pulverized. The granular water treatment material used for the denitrification treatment was 5 to 20 mm. In addition, since Example 1 has a large amount of organic binder, the concentration of nitrate ions after 3 days is slightly high, which is a reference example.

実施例3
担体として不織布を用いた。まず、水で所定濃度に調整されたで有機バインダーを所定量だけ担体全体に良く湿らせ、次に、イオウと炭酸カルシウムを所定量混合した粉体を、不織布担体表面に金属ヘラで均一塗布する。塗布量は、乾燥後重量で、不織布100cm2当たりに6gとした。60℃の恒温層で、1昼夜放置して水を完全に除去した。
Example 3
Nonwoven fabric was used as the carrier. First, the carrier is thoroughly moistened with a predetermined amount of an organic binder adjusted to a predetermined concentration with water, and then a powder mixed with a predetermined amount of sulfur and calcium carbonate is uniformly applied to the surface of the nonwoven fabric carrier with a metal spatula. . The coating amount was 6 g per 100 cm 2 of nonwoven fabric in terms of weight after drying. In a constant temperature layer of 60 ° C., it was left for one day and night to completely remove water.

実施例4〜8
担体として、繊維又はスラグを用いた。繊維又はスラグ担体を入れ、水又はトルエンで所定濃度に調整されたで有機バインダーを担体が全体によく湿る量を加える。次に、イオウと炭酸カルシウムを所定量混合したものを加えて金属ヘラで均一に攪拌混合する。60℃の恒温層で、1昼夜放置して水又は有機溶剤を完全に除去し、固化した処理材のかたまりを、軽く木槌で叩き粉砕して製造した。脱窒処理に用いた粒状の水処理材は、5〜20mmのものとした。
Examples 4-8
Fiber or slag was used as the carrier. A fiber or slag carrier is added, and an organic binder is added in an amount adjusted to a predetermined concentration with water or toluene so that the carrier is fully wetted. Next, a mixture of a predetermined amount of sulfur and calcium carbonate is added and mixed uniformly with a metal spatula. In a constant temperature layer of 60 ° C., it was left for one day and night to completely remove water or an organic solvent, and a lump of the solidified treatment material was lightly beaten with a mallet and pulverized. The granular water treatment material used for the denitrification treatment was 5 to 20 mm.

比較例1〜3
有機系バインダーを使用しない例(比較例1)、有機系バインダーが少な過ぎる例(比較例1)、逆に多すぎる例(比較例3)とし、配合割合を表1に示すとおりとした他は、実施例1と同様にして水処理材を得た。
Comparative Examples 1-3
Except that the organic binder was not used (Comparative Example 1), the organic binder was too little (Comparative Example 1), on the contrary, the amount was too much (Comparative Example 3), and the blending ratio was as shown in Table 1. In the same manner as in Example 1, a water treatment material was obtained.

比較例4〜7
表3に示す配合組成とした他は、実施例4〜8と同様にして、処理材を得た。
Comparative Examples 4-7
A treated material was obtained in the same manner as in Examples 4 to 8 except that the composition shown in Table 3 was used.

実施例1〜8及び比較例1〜3の硝酸性窒素処理材を使用して、水中の硝酸性窒素を除去した。すなわち、200mlのポリビンに硝酸カリウムで調整した硝酸イオン200mg/lの溶液を100ml入れ、表に示す処理材を各20g(担体がある場合には、担体を除いての量)を加え、更に攪拌により脱気を行い、更に予め調整しておいたイオウ酸化細菌入りの乾燥汚泥を0.1gづつ添加し良く攪拌して、25℃の恒温槽に3日放置したのち、イオンクロマトグラフィーにて硝酸イオンの濃度を測定した。   The nitrate nitrogen treatment materials of Examples 1 to 8 and Comparative Examples 1 to 3 were used to remove nitrate nitrogen in water. That is, 100 ml of a solution of 200 mg / l of nitrate ion adjusted with potassium nitrate is added to 200 ml of polyvin, and 20 g of each treatment material shown in the table (the amount excluding the carrier when there is a carrier) is added, and further stirred. After deaeration, 0.1 g of dry sludge containing sulfur-oxidizing bacteria prepared in advance was added and stirred well, left in a thermostatic bath at 25 ° C. for 3 days, and nitrate ion was determined by ion chromatography. The concentration of was measured.

表1〜3に配合割合と脱窒処理結果示す。表において、配合量を示す数字は重量部である。塗布性とは、担体表面に硫黄粉末等からなるスラリーを接着させる場合の作業性や強度(乾燥後粉が発生しやすいかどうか)をいい、優れるものは○とした。造粒性とは、担体を使用しない場合の造粒性であり、次の基準で判断したものをいう。
造粒性の評価:○;簡便に製造できる、×1);従来のイオウと炭酸カルシウムの加熱溶融法で手間がかかる。造粒物は、硬いが粉も多量に発生する。×2)バインダーが少なすぎるために、粉が多量に発生し造粒できない。
Tables 1 to 3 show blending ratios and denitrification treatment results. In the table, the number indicating the blending amount is part by weight. The applicability means workability and strength (whether powder is likely to be generated after drying) when a slurry made of sulfur powder or the like is adhered to the surface of the carrier. The granulation property is the granulation property when no carrier is used, and is determined according to the following criteria.
Evaluation of granulation property: ○: Can be easily manufactured, × 1): It takes time and effort by the conventional heating and melting method of sulfur and calcium carbonate. The granulated product is hard but generates a large amount of powder. × 2) Since there is too little binder, a large amount of powder is generated and granulation is impossible.

Figure 0004545408
Figure 0004545408

Figure 0004545408
Figure 0004545408

Figure 0004545408
Figure 0004545408

実施例9、比較例8
実施例2、比較例1と同様にして得た水処理材の各200gを、硝酸カリウムで調整した硝酸イオン880mg/lの硝酸液300mlとともに500mlのビーカーに入れ、更に予め調整しておいたイオウ酸化細菌入りの乾燥汚泥を1.0gづつ添加し良く攪拌して、25℃の恒温槽に10日間放置した。これによって硫黄酸化細菌の担持された水処理材を得て、この水処理材を硝酸性窒素とリン酸の同時除去材として使用した。
すなわち、循環式処理槽に、硝酸カリウムとリン酸ナトリウムで調整した硝酸イオン200mg/l、リン酸イオン100mg/lの溶液を500ml入れ、この溶液を上記水処理材を200gで32時間処理した。脱窒性能及び脱リン性能は、イオンクロマトグラフィーにて硝酸イオンとリン酸イオンの濃度を測定することにより行った。
この場合、循環は600ml/分のポンプを用い、1分/4時間の割合で間欠的に循環した。
その結果を、下記表4に示す。
Example 9 and Comparative Example 8
200 g of each of the water treatment materials obtained in the same manner as in Example 2 and Comparative Example 1 was put into a 500 ml beaker together with 300 ml of nitric acid solution of 880 mg / l nitrate ion adjusted with potassium nitrate, and further pre-adjusted sulfur oxidation 1.0 g of dried sludge containing bacteria was added and stirred well, and left in a thermostatic bath at 25 ° C. for 10 days. As a result, a water treatment material carrying sulfur-oxidizing bacteria was obtained, and this water treatment material was used as a simultaneous removal material for nitrate nitrogen and phosphoric acid.
That is, 500 ml of a solution of nitrate ion 200 mg / l and phosphate ion 100 mg / l adjusted with potassium nitrate and sodium phosphate was placed in a circulating treatment tank, and this solution was treated with 200 g of the water treatment material for 32 hours. Denitrification performance and dephosphorization performance were performed by measuring the concentration of nitrate ion and phosphate ion by ion chromatography.
In this case, circulation was performed intermittently at a rate of 1 minute / 4 hours using a pump of 600 ml / min.
The results are shown in Table 4 below.

Figure 0004545408
Figure 0004545408

これから、有機バインダーを用いた水処理材は、有機バインダーを用いないものよりも硝酸性窒素の処理能力が高いばかりではなく、リン酸も同時に多く処理できることは明らかである。   From this, it is clear that a water treatment material using an organic binder not only has a higher ability to treat nitrate nitrogen than a material not using an organic binder, but can also treat more phosphoric acid at the same time.

Claims (5)

硫黄酸化細菌による生物的処理によって硝酸性窒素を脱窒処理するために使用される硝酸性窒素処理材であって、炭酸カルシウム粉末30〜70重量部及び硫黄粉末30〜70重量部を含有し、両者の合計100重量部に対して、該粉末を一体化するための水又は有機溶剤に分散又は溶解された有機系高分子に由来する水不溶性又は難溶性の有機系バインダー0.1〜30重量部配合してなることを特徴とする硝酸性窒素処理材。 A nitrate nitrogen treatment material used to denitrify nitrate nitrogen by biological treatment with sulfur-oxidizing bacteria, comprising 30 to 70 parts by weight of calcium carbonate powder and 30 to 70 parts by weight of sulfur powder, 0.1-30 weight of water-insoluble or hardly soluble organic binder derived from an organic polymer dispersed or dissolved in water or an organic solvent for integrating the powder with respect to 100 parts by weight of both A nitrate nitrogen treatment material characterized by being partly blended. 炭酸カルシウム粉末及び硫黄粉末を、有機系バインダーで一体化してなる請求項1記載の硝酸性窒素処理材。 The nitrate nitrogen treatment material according to claim 1, wherein the calcium carbonate powder and the sulfur powder are integrated with an organic binder. 炭酸カルシウム粉末及び硫黄粉末を、有機系バインダーによって、担体表面に付着担持していることを特徴とする請求項1記載の硝酸性窒素処理材。 2. The nitrate nitrogen treatment material according to claim 1, wherein the calcium carbonate powder and the sulfur powder are adhered and supported on the surface of the carrier by an organic binder. 炭酸カルシウム粉末及び硫黄粉末の合計100重量部に対して、無機添加材を1〜100重量部含有する請求項1〜3のいずれかに記載の硝酸性窒素処理材。 The nitrate nitrogen treatment material according to any one of claims 1 to 3 , comprising 1 to 100 parts by weight of an inorganic additive with respect to 100 parts by weight of the total of calcium carbonate powder and sulfur powder. 炭酸カルシウム粉末30〜70重量部及び硫黄粉末30〜70重量部を含有し、両者の合計100重量部に対して、該粉末を一体化するための水又は有機溶剤に分散又は溶解された有機系高分子に由来する水不溶性又は難溶性の有機系バインダー0.1〜30重量部を配合してなり、硫黄酸化細菌による生物的処理によって硝酸性窒素を脱窒処理するために使用される硝酸性窒素処理材を製造するに当たり、炭酸カルシウム粉末及び硫黄粉末を、水不溶性又は難溶性の有機系バインダーを与える有機系バインダー溶液に配合し、均一に混練した後、液体を除去することを特徴とする硝酸性窒素処理材の製造方法。An organic system containing 30 to 70 parts by weight of calcium carbonate powder and 30 to 70 parts by weight of sulfur powder and dispersed or dissolved in water or an organic solvent for integrating the powder with respect to a total of 100 parts by weight of both. It contains 0.1-30 parts by weight of a water-insoluble or hardly soluble organic binder derived from a polymer, and is used for denitrification of nitrate nitrogen by biological treatment with sulfur-oxidizing bacteria. In producing a nitrogen-treated material, calcium carbonate powder and sulfur powder are mixed in an organic binder solution that gives a water-insoluble or hardly soluble organic binder, and after kneading uniformly, the liquid is removed. Manufacturing method of nitrate nitrogen treatment material.
JP2003315854A 2002-11-05 2003-09-08 Water treatment material, nitrate nitrogen treatment material and production method thereof Expired - Fee Related JP4545408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315854A JP4545408B2 (en) 2002-11-05 2003-09-08 Water treatment material, nitrate nitrogen treatment material and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002321549 2002-11-05
JP2003315854A JP4545408B2 (en) 2002-11-05 2003-09-08 Water treatment material, nitrate nitrogen treatment material and production method thereof

Publications (2)

Publication Number Publication Date
JP2004167471A JP2004167471A (en) 2004-06-17
JP4545408B2 true JP4545408B2 (en) 2010-09-15

Family

ID=32715962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315854A Expired - Fee Related JP4545408B2 (en) 2002-11-05 2003-09-08 Water treatment material, nitrate nitrogen treatment material and production method thereof

Country Status (1)

Country Link
JP (1) JP4545408B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493927B2 (en) * 2003-04-28 2010-06-30 新日鐵化学株式会社 Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP4649887B2 (en) * 2004-06-22 2011-03-16 株式会社大林組 Water purification promotion material, highly functional water purification material, and water purification method using them
JP2006015310A (en) * 2004-07-05 2006-01-19 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and production method therefor
JP4593183B2 (en) * 2004-07-05 2010-12-08 新日鐵化学株式会社 Nitrate-containing nitrogen-treated material containing denitrifying bacteria and method for producing the same
JP4541110B2 (en) * 2004-11-17 2010-09-08 新日鐵化学株式会社 Method of treating wastewater containing fluorine and nitrate nitrogen
JP4660456B2 (en) * 2006-12-08 2011-03-30 西松建設株式会社 Water purification method and apparatus for removing nitrogen and phosphorus
EP2557129B1 (en) * 2011-08-09 2018-02-28 Omya International AG Surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions
CN106984644A (en) * 2017-05-10 2017-07-28 青岛科技大学 The preparation of calcium polysulfide renovation agent and its application in pollution law
CN110776090A (en) * 2019-11-07 2020-02-11 苏州方舟环境发展有限公司 Nitrogen and phosphorus removal filter material
CN114524507A (en) * 2022-03-02 2022-05-24 深圳市播绿者生态科技股份有限公司 Self-activated nitrogen and phosphorus removal carrier material and preparation method and application thereof

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159894A (en) * 1982-03-17 1983-09-22 Unitika Ltd Treatment of sewage by fluidized bed type apparatus
JPS60193588A (en) * 1984-03-15 1985-10-02 Denka Consult & Eng Co Ltd Device for biological treatment of sewage and method therefor
JPS61197095A (en) * 1985-02-27 1986-09-01 Mitsubishi Plastics Ind Ltd Microbe carrier
JPS637897A (en) * 1986-06-28 1988-01-13 Shimizu Constr Co Ltd Floatable granulated material and its preparation
JPS63296895A (en) * 1987-05-28 1988-12-02 Nippon Steel Corp Carrier for immobilizing microorganism having particles of granulated slag of shaft furnace adhered thereto
JPH0330816A (en) * 1989-06-29 1991-02-08 Mitsubishi Materials Corp Tray having drain hole and layer containing microorganism
JPH05115892A (en) * 1991-10-29 1993-05-14 Kamata Bio Eng Kk Water quality improving material
JPH05309361A (en) * 1992-04-30 1993-11-22 Tonen Corp Porous medium for water treament
JPH08155479A (en) * 1994-12-02 1996-06-18 Nippon Steel Chem Co Ltd Filter medium for water purification and water purification method
JPH1076290A (en) * 1996-09-03 1998-03-24 Takagi Eizo Filter medium for water treatment and its production
JPH11285380A (en) * 1998-04-03 1999-10-19 Green Tec:Kk Microorganism carrier
JP2000093997A (en) * 1998-09-25 2000-04-04 Nitchitsu Co Ltd Nitrate nitrogen denitrifying substrate
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production
JP2001047086A (en) * 1999-08-10 2001-02-20 Nippon Steel Chem Co Ltd Activation material for denitrifying nitrate nitrogen
JP2001104993A (en) * 1999-10-01 2001-04-17 Nitchitsu Co Ltd Nitrate nitrogen denitrifying composition and production thereof
JP2002066592A (en) * 2000-08-31 2002-03-05 Nitchitsu Co Ltd Method for manufacturing activating material for nitrate nitrogen removal
JP2002079285A (en) * 2000-06-27 2002-03-19 Yokohama Rubber Co Ltd:The Carbonaceous microorganism fixed carrier
WO2002046104A1 (en) * 2000-12-08 2002-06-13 Bicom Corporation High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system
JP2002239593A (en) * 2001-02-20 2002-08-27 Nippon Steel Chem Co Ltd Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2004174328A (en) * 2002-11-25 2004-06-24 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material
JP2004255272A (en) * 2003-02-25 2004-09-16 Nippon Steel Chem Co Ltd Recycling method and production method of denitrification material for removing underwater nitrate nitrogen
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647996A (en) * 1987-06-30 1989-01-11 Iwao Jiki Kogyo Rotary plate body for waste water treatment

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159894A (en) * 1982-03-17 1983-09-22 Unitika Ltd Treatment of sewage by fluidized bed type apparatus
JPS60193588A (en) * 1984-03-15 1985-10-02 Denka Consult & Eng Co Ltd Device for biological treatment of sewage and method therefor
JPS61197095A (en) * 1985-02-27 1986-09-01 Mitsubishi Plastics Ind Ltd Microbe carrier
JPS637897A (en) * 1986-06-28 1988-01-13 Shimizu Constr Co Ltd Floatable granulated material and its preparation
JPS63296895A (en) * 1987-05-28 1988-12-02 Nippon Steel Corp Carrier for immobilizing microorganism having particles of granulated slag of shaft furnace adhered thereto
JPH0330816A (en) * 1989-06-29 1991-02-08 Mitsubishi Materials Corp Tray having drain hole and layer containing microorganism
JPH05115892A (en) * 1991-10-29 1993-05-14 Kamata Bio Eng Kk Water quality improving material
JPH05309361A (en) * 1992-04-30 1993-11-22 Tonen Corp Porous medium for water treament
JPH08155479A (en) * 1994-12-02 1996-06-18 Nippon Steel Chem Co Ltd Filter medium for water purification and water purification method
JPH1076290A (en) * 1996-09-03 1998-03-24 Takagi Eizo Filter medium for water treatment and its production
JPH11285380A (en) * 1998-04-03 1999-10-19 Green Tec:Kk Microorganism carrier
JP2000093997A (en) * 1998-09-25 2000-04-04 Nitchitsu Co Ltd Nitrate nitrogen denitrifying substrate
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production
JP2001047086A (en) * 1999-08-10 2001-02-20 Nippon Steel Chem Co Ltd Activation material for denitrifying nitrate nitrogen
JP2001104993A (en) * 1999-10-01 2001-04-17 Nitchitsu Co Ltd Nitrate nitrogen denitrifying composition and production thereof
JP2002079285A (en) * 2000-06-27 2002-03-19 Yokohama Rubber Co Ltd:The Carbonaceous microorganism fixed carrier
JP2002066592A (en) * 2000-08-31 2002-03-05 Nitchitsu Co Ltd Method for manufacturing activating material for nitrate nitrogen removal
WO2002046104A1 (en) * 2000-12-08 2002-06-13 Bicom Corporation High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system
JP2002239593A (en) * 2001-02-20 2002-08-27 Nippon Steel Chem Co Ltd Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2004174328A (en) * 2002-11-25 2004-06-24 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material
JP2004255272A (en) * 2003-02-25 2004-09-16 Nippon Steel Chem Co Ltd Recycling method and production method of denitrification material for removing underwater nitrate nitrogen
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method

Also Published As

Publication number Publication date
JP2004167471A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
CN111285462B (en) Synergistic denitrification composite suspended filler, preparation method and application thereof
KR100990730B1 (en) Material for treating nitrate nitrogen and producing method thereof, method and apparatus for eliminating nitrate nitrogen from water, and material for denitration
JP4316225B2 (en) Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material
CN110104760A (en) A kind of preparation of calcium/magnesium carbonate powder body material modified sulfur light material and its application method
JP4545408B2 (en) Water treatment material, nitrate nitrogen treatment material and production method thereof
FI89072C (en) FREQUENCY REQUIREMENTS FOR THE USE OF FYLLMATERIAL INNEHAOLLANDE POLYMERBUNDNA BAERARMASSOR, MED DETTA FOERFARANDE FRAMSTAELLDA BAERARMASSOR OCH DERAS ANVAENDNING
CN106517504A (en) Slow-release carbon source filler as well as preparation method and application thereof
CN113480002B (en) Denitrifying denitrification biological filler and preparation method and application thereof
EP1129996A1 (en) Denitrifying composition for removing nitrate nitrogen and process for producing the same
JP3328439B2 (en) Composition for fluid treatment agent
CN110407334B (en) Preparation and application of synchronous denitrification biological filler for adsorbing nitrate ions
JPH10136980A (en) Support for bioreactor and its production
CN113121013B (en) Autotrophic denitrification filter material with active bacterial coating and preparation method thereof
JP4947247B2 (en) Composition for removing nitrate nitrogen and the like and method for producing the same
JP2004237170A (en) Method and apparatus for treating nitrate nitrogen and phosphorus-containing water
JP2001047086A (en) Activation material for denitrifying nitrate nitrogen
JP4593183B2 (en) Nitrate-containing nitrogen-treated material containing denitrifying bacteria and method for producing the same
CN113979687A (en) Microbial composite filler, preparation method and application thereof
JP4269087B2 (en) Method for producing activated material for removing nitrate nitrogen
CN108314179A (en) Strengthen the method for activated sludge removal sewerage nitrogen and phosphor and toxic organic compound difficult to degrade
JPH11285377A (en) Composition provided with microbial activity, and its production
CN112552664A (en) Polylactic acid and lactide blended slow-release material
JP4493927B2 (en) Nitrate nitrogen treatment material and nitrate nitrogen treatment method
CN114644397B (en) Autotrophic heterotrophic synergistic denitrification composite denitrification filter material and preparation method thereof
JP4316256B2 (en) Regeneration method and production method of denitrification material for removal of nitrate nitrogen in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160709

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees