WO2002046104A1 - High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system - Google Patents

High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system Download PDF

Info

Publication number
WO2002046104A1
WO2002046104A1 PCT/JP2001/010412 JP0110412W WO0246104A1 WO 2002046104 A1 WO2002046104 A1 WO 2002046104A1 JP 0110412 W JP0110412 W JP 0110412W WO 0246104 A1 WO0246104 A1 WO 0246104A1
Authority
WO
WIPO (PCT)
Prior art keywords
density
bacteria
adsorbent
nitrifying
bacterial
Prior art date
Application number
PCT/JP2001/010412
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Yoneda
Kimihiro Egawa
Original Assignee
Bicom Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bicom Corporation filed Critical Bicom Corporation
Priority to JP2002547848A priority Critical patent/JPWO2002046104A1/en
Priority to AU2002224123A priority patent/AU2002224123A1/en
Publication of WO2002046104A1 publication Critical patent/WO2002046104A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/06Enzymes or microbial cells immobilised on or in an organic carrier attached to the carrier via a bridging agent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a high-density bacterial adsorbent, and more particularly, to a high-density bacterial adsorbent comprising a large number of microbial cells fixed on an adsorbent substrate. Or denitrifying bacteria on the body substrate such as non-woven fabric
  • cells / m 1 cells / m 1
  • a closed-circulation cultured seedling production system incorporating the high-density bacterial adsorbent hereinafter simply referred to as It also refers to “aquaculture systems”
  • fish and shellfish raised by the aquaculture systems relates to fish and shellfish raised by the aquaculture systems.
  • a cell concentration of 109 (cells / m 1) or more” means that the corresponding number of bacteria (the number of viable bacteria) is recognized.
  • the measurement of the viable cell count can be determined by a conventionally known method. .
  • Nitrifying bacteria ammonium oxidizing bacteria and nitrite oxidizing bacteria
  • Denitrifying bacteria nitrate oxidizing bacteria
  • a high-density bacterial adsorbent in which microbial cells of nitrifying bacteria and denitrifying bacteria are established at a high density, cannot be obtained naturally.
  • the adsorbent can be used as a bioreactor or biosensor.
  • efficiency efficiency
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-density bacterial adsorbent in which microbial cells of nitrifying bacteria, sulfur-oxidizing bacteria, or denitrifying bacteria are established at a high density.
  • the present invention provides a closed-circulation aquaculture and seed production system incorporating the above-mentioned high-density bacterial adsorbent, and further provides fish and shellfish grown by the aquaculture system.
  • the first invention is a bacterial high-density adsorbent comprising a large number of microbial cells fixed on an adsorption substrate, wherein the microbial cells are nitrified bacteria or sulfur, each of which is cultured at high density.
  • C a bacterial high-density adsorbent characterized by being oxidizing bacteria
  • a second invention is a bacterial high-density adsorbent in which a large number of microbial cells are fixed on an adsorption substrate, wherein the microbial cells are denitrified bacteria cultured at high density. It is a bacterial high density adsorbent.
  • the breeding water discharged from the breeding aquarium includes at least a breeding aquarium unit, a pH control unit, an oxygen supply unit for increasing dissolved oxygen, and a nitrification reaction tank unit.
  • a closed-circulation aquaculture and seed production system configured to be purified by passing through an H control section, an oxygen supply section, and a nitrification reaction tank section, and returned to the rearing tank. Further, there is provided a closed circulation type aquaculture and seed production system, wherein the nitrification reaction tank section is provided with the high-density bacterial adsorbent according to any one of claims 1 to 6.
  • a fourth invention is a fish or shellfish that has been raised by the closed-circulation type culture and seed and seedling production system according to any one of claims 12 to 14.
  • FIG. 1 is a schematic explanatory view showing an example of a sludge nitrification acclimation apparatus.
  • Fig. 2 is a curve showing the concentration of remaining NH4-N 4 hours after injection of NH4-N (10 Om gZ liter), and shows the change of NH4-N concentration during the nitrification acclimation process of sludge.
  • FIG. The symbol “ ⁇ ” in the figure indicates the introduction of NH4-N (1 O OmgZ liter).
  • FIG. 3 is a graph showing the daily change of the MLSS concentration during the nitrification acclimation process of sludge.
  • FIG. 4 is a graph showing the change over time of the sulfur oxidation rate.
  • FIG. 5 is a schematic explanatory view showing an example of a sludge denitrification acclimation apparatus.
  • Fig. 6 is a graph showing the daily change of NO3-N concentration in the process of denitrification of sludge.
  • FIG. 7 is a schematic explanatory diagram showing an example of a closed farming seedling production system on land.
  • a binder can also be used to fix the microbial cells on the adsorption substrate.
  • the binder that can be used in the present invention and the binder that fixes the cells on the adsorption substrate are not particularly limited as long as the cells can be fixed on the adsorption substrate while they are alive. .
  • cross-linked polyvinyl pyridinum halide examples include cross-linked polyvinyl pyridinum halide, agar, K-force larginan, calcium alginate, photocurable resin, polyacrylamide, etc., especially nitrifying bacteria, sulfur oxidation Biel-based copolymers such as crosslinked polyvinylpyridinium halides have the property of adsorbing bacteria and sulfur yellow bacteria efficiently and being able to capture and fix the cells at a high density. Preferably, it is used.
  • this compound is insoluble or hardly soluble in water and soluble in organic solvents, it can be dissolved in organic solvents and treated as a solution when surface treatment is performed on an adsorption substrate, and used in water In this case, there is no adverse effect such as elution, which is convenient. That is, for example, the above-mentioned vinyl copolymer can be dissolved in an organic solvent such as methanol, and this can be applied to the adsorbent substrate by, for example, spraying or applying (surface processing).
  • a porous substrate is preferable because the surface area is large, so that the cells can be fixed at a higher density.
  • the porous substrate include a nonwoven fabric, a knitted fabric (a knitted fabric, a woven fabric), an aggregate of porous inorganic materials such as silica zeolite, and a foam. One of these may be used alone, or two or more thereof may be used in combination.
  • the cross-sectional shape of the fibers constituting the non-woven fabric should be ⁇ (it should be a three-dimensional non-woven fabric having a radial cross-sectional shape and a linear joint inside). This is preferable in that the surface area is further increased.
  • a nonwoven fabric can be manufactured based on the technology disclosed in Japanese Patent No. 2881672.
  • a product obtained by subjecting a nonwoven fabric produced using a fiber (polyester fiber) having a star-shaped cross section to the above-mentioned cross-linked polypyridinium halide treatment is commercially available (Bioflex®). (Registered trademark), manufactured by Japan Vilene Co., Ltd., with an area of 103 to 106 m2 per m3 ).
  • the activated sludge used in the present invention includes sewage sludge and night soil sludge. This They may be freshwater-diluted or seawater-diluted, but nitrate bacteria ⁇ sulfur-oxidizing bacteria or denitrifying bacteria can be obtained from seawater-diluted sludge. If cultured, marine nitrifying bacteria, marine denitrifying bacteria, and marine sulfur-oxidizing bacteria, which are considered to be rare, can be obtained in large quantities, and marine bacterial cells can be established on the above-mentioned adsorption substrate. It is preferable to use seawater-diluted activated sludge.
  • natural seawater contains marine nitrifying bacteria, which are considered to have higher salt tolerance than freshwater nitrifying bacteria, but their abundance is very small and pure separation is difficult.
  • its research is delayed compared to freshwater nitrifying bacteria.
  • a high concentration of marine nitrifying bacteria can be obtained by using the activated sludge that has been subjected to the seawater dilution treatment as described above as a raw material.
  • Marine nitrifying bacteria have multiple cell walls and are strongly resistant to various chemicals that inhibit osmotic pressure change and growth of treated water. The same applies to sulfur oxidizing bacteria and denitrifying bacteria.
  • the following embodiments can be considered as a mixture for promoting the high-concentration bacterium of the mixture used both in the pH adjustment and the carbon source used in the present invention. That is,
  • the autotrophic bacterium When the autotrophic bacterium is acclimated for a predetermined period of time in order to culture it at a high concentration, the pH of the medium, which is inclined to the acidic side in the acclimation process, is maintained within a predetermined range, and the autotrophic bacterium high-concentration cultivation promoter as a carbon source And a property capable of maintaining the pH of the culture medium that exhibits basicity by dissociation and leans toward the acidic side within a predetermined range, and a property that can serve as a carbon source during growth of the autotrophic bacterium.
  • the two properties can be provided by one kind of compound, at least one kind of the compound, or if the above two properties can be given by two or more kinds of compounds, a mixture of such compounds It is characterized by being compounded Autotrophic bacteria high concentration culture promoter.
  • the components of the above-mentioned accelerator include the property of exhibiting basicity by dissociation and maintaining the pH of the medium, which is inclined toward the acidic side during acclimation, within a predetermined range (7.0 to 9.0),
  • the compound is not particularly limited as long as it has two properties, that is, a property that can serve as a carbon source during the growth of the autotrophic bacterium.
  • At least one kind of the compound is a component of the accelerator of the present invention.
  • a mixture of the compounds is a component of the accelerator of the present invention.
  • a mixture of (A) a carbonate which is soluble in water and exhibits basicity by dissociation, and (B) a bicarbonate which is soluble in water can be mentioned.
  • the component include hydroxides such as sodium hydroxide and potassium hydroxide and alkali metal salts such as sodium carbonate.
  • the component (B) includes sodium hydrogen carbonate, magnesium carbonate (4 mg 0 3.. Carbonate such as Mg (OH) 2 ⁇ 5H 2 O).
  • the component (A) is an alkali metal carbonate or an alkaline earth metal salt that is soluble in water, such as sodium carbonate, sodium potassium carbonate, potassium carbonate, etc.
  • the component (B) Is a water-soluble alkaline metal bicarbonate or an alkaline earth metal bicarbonate that is soluble in water, such as sodium bicarbonate and lithium bicarbonate. It is preferable in that it can be added to the water, and among them, a combination of sodium carbonate and sodium hydrogen carbonate is most preferable.
  • the culture system of the present invention enables not only fry, but also fertilized eggs (fertilized eggs such as o 'nikkoze, flounder, and tiger gull) to grow into fry and produce so-called seeds and seedlings. Since such seedling production does not allow seawater to enter from outside, there is no transmission by pathogens that enter the breeding water during breeding without vertical transmission from the parent fish.
  • fertilized eggs such as o 'nikkoze, flounder, and tiger gull
  • the amount of breeding water used is 30- There is a 60-fold difference, and it is thought that the location conditions of the production site will be expanded while saving breeding water.
  • the culture of nitrifying bacteria contained in the activated sludge is performed by nitrifying the activated sludge with a sludge treatment wastewater such as a sludge dewatered filtrate (anaerobic) digestion / desorption solution for a predetermined period (for example, 1 month, 2 months or more).
  • a sludge treatment wastewater such as a sludge dewatered filtrate (anaerobic) digestion / desorption solution for a predetermined period (for example, 1 month, 2 months or more).
  • the nitrification must be performed aerobically, and the dissolved oxygen (D O) must be 2 mg / liter or more.
  • D O dissolved oxygen
  • the dissolved oxygen (DO) concentration is most preferably 2 to 4 mg Z liter.
  • the pH must be 7.0 to 9.0, (especially when using activated sludge diluted with seawater), preferably 7.5 to 8.5, and more preferably 7.5 to 7.8. preferable.
  • the growth speed is high in the range of 20 to 40 ° C, and more preferably 25 to 35 ° C.
  • Equation (C) is an equation for the entire nitrifying bacteria.
  • a compound having a buffering effect by mixing a normal salt and an acid salt with pH, which is inclined toward the acidic side in the culture process is suitable.
  • a mixture of sodium carbonate and sodium hydrogencarbonate can be suitably used.
  • an aqueous solution of the mixture it became possible to effectively supply an inorganic carbon source for assimilation of carbonic acid in a living body while maintaining a gradually decreasing pH.
  • the mixture ratio of sodium carbonate and sodium hydrogencarbonate in the mixture is preferably sodium carbonate: sodium hydrogencarbonate in a molar ratio of 1: 4/7 to 17-7, specifically, carbonic acid Sodium hydrogencarbonate is 4 7 (0.571) ... mo 1 / litre to 1 7 "7 (2.428 8 ⁇ ) mo for 1 mo 1 / liter of sodium A 1 / litre mixed aqueous solution is effective.
  • the monitoring of the pH of the culture system may be performed continuously or at predetermined time intervals. It is preferable to use a continuous pH monitoring device such as a pH controller, but the present invention is not limited to this, and it is also possible to carry out manually by using a pH indicator such as phenol red.
  • the concentration of ammonia in the NH 4 —N-containing liquid is preferably not less than 100 mgZ liter and not more than 300 mgZ liter, and more preferably not more than 200 mg / liter.
  • Ammonia is an energy source for the growth of ammonia-oxidizing bacteria, which are chemoautotrophic bacteria, by assimilating carbon dioxide. There is, however, an excess may rather inhibit growth.
  • nitrite oxidizing bacteria contained in activated sludge like ammonia oxidizing bacteria, are weak against high nitrite concentrations, despite being oxidized by taking over nitrous acid produced by ammonia oxidizing bacteria. The initial concentration cannot be set unnecessarily high. Therefore, the concentration of ammonia
  • sludge treatment waste liquid such as sludge dewatered filtrate or digestion / desorption liquid generated in the water treatment plant.
  • activated sludge is nitrified by sludge treatment wastewater such as sludge dewatered filtrate and digestion desorbent, so that nitrifying bacteria slightly contained in the activated sludge can be cultured at a high concentration.
  • the activated sludge can be reduced to 1Z3 to 1Z4 in 2 months, and nitrified sludge having a large specific gravity can be obtained.
  • nitrifying bacteria are 0.35 ° / in the activated sludge. It is said to contain a certain amount.
  • the content of nitrifying bacteria in the activated sludge can be increased by about 10 times (3.5%).
  • other germs cannihilate and die because no external nutrients (feeds) are provided.
  • feeds feeds
  • nitrifying bacteria sediments in the culture system due to its specific gravity. In order to culture nitrifying bacteria at a high concentration, this good sedimentation property is required. In other words, nitrifying bacteria generally have a low specific gravity and float in pure culture. Therefore, nitrifying bacteria flow out of the culture system.
  • Cultivation of the denitrifying bacteria contained in the activated sludge is performed by subjecting the activated sludge to a predetermined period.
  • the denitrification reaction is a reaction that oxidizes an organic energy source (described later) as a hydrogen donor using molecular oxygen in NO 3-in a NO 3 -N-containing liquid.
  • the denitrification reaction is an organic oxidation reaction that uses NO 3-instead of oxygen as the final hydrogen acceptor, and is expressed by the following equation.
  • the dissolved oxygen (DO) is 2 mgZ liter or less, preferably lmg / liter or less. More preferably, 0.5 mg gZ liter or less. (That is, it is necessary to create conditions that allow nitric acid respiration).
  • the pH may be in the range of 6.0 to 9.0, but if anything, it is preferable to be inclined toward the alkali side. Specifically, pH 6.5 to 8.5 is preferable, pH 7.0 to 8.5 is more preferable, and ⁇ 7.5 to 8.5 is more preferable.
  • the cultivation temperature must be 10 to 40 ° C, since the activity is rapidly reduced if the temperature is lower than 10 ° C, preferably 15 to 30 ° C, and 25 to 30 ° C. ° C is more preferred.
  • a nitrification acclimation treatment liquid generated when culturing nitrifying bacteria using activated sludge as a raw material can be used.
  • organic matter must be supplemented externally as a hydrogen donor and as a carbon source for cell synthesis.
  • methanol is preferred because a higher growth speed can be obtained. It is preferable in that it is inexpensive and easily available.
  • ethanol can be used instead of methanol or in combination with methanol.
  • the concentration of methanol and / or ethanol to be added is not particularly limited, but the concentration of CH30H (mg / liter) / NO3-N (mgZ liter) must be 3.0 or more in terms of methanol. Is preferred.
  • Batch culture was performed in a 2-day cycle in a fillanddraw type culture tank (30 liters) shown in Fig. 1. That is, urine sludge diluted with seawater and anaerobic digestion / desorbed liquid (diluted in seawater so that the concentration of NH4-N is 10 OmgZl) are put into the culture tank, and the temperature in the culture tank is thermostated.
  • the pH and the pH of the pH controller and culture promoter Na 2 CO 3 at 0.5 mo 1 Z liter and 1 mo 1 liter) (Na HCO 3 buffer) was used to maintain the culture at 7.5 to 8.5 (when the initial pH was 8.5 or more, dilute sulfuric acid was added. 8.5 or less).
  • the amount of aeration was adjusted with a baloon so that the dissolved oxygen (DO) concentration was 4 mg / "liter.
  • the replenisher / desorbed solution was added so that the final concentration would be lOOmgZ liter.
  • the aeration was stopped, the sludge was settled for 1 hour, and the supernatant was removed. Then, the digestion / desorption solution was added, and the aeration was restarted.
  • Nh N decrease rate (mg—NH4—NZg—MLSS ⁇ hr)
  • S Sludge MLSS concentration (gZ litre) SV30 and SVI of seawater acclimated nitrifying activated sludge (AMNS) that had been acclimatized after a seawater acclimation period of about 60 days were measured, and sedimentation characteristics were examined. Next, the state of floc formation was observed using an optical microscope.
  • AMNS seawater acclimated nitrifying activated sludge
  • the graph of Fig. 2 shows the process of acclimating human sludge to seawater (the figure shows the concentration of NH4-N at a concentration of 10 Omg / liter after 4 hours).
  • the nitrification rate of nitrifying bacteria in AMN S is shown in the table below.
  • nitrifying bacteria in activated sludge is about 0.35%. From this calculation, it was found that nitrifying bacteria in seawater acclimated nitrifying activated sludge (AMNS) had a high concentration (about 3.5 %).
  • ammonia and nitrite are separately required as energy substrates, but in a mixed culture system, only ammonia needs to be supplied as an energy substrate.
  • a pure culture system it is extremely difficult to grow the cells at a high concentration, but in a mixed culture system, it is easy to grow to the extent that the medium is suspended. This is presumed to be due to the ecology of ammonia-oxidizing bacteria and nitrite-forming bacteria that do not form colonies and flocs within their cognate and live a floating life.
  • the marine nitrifying bacteria obtained in this way have been deposited at the National Institute of Advanced Industrial Science and Technology (FERM BP-7150, Tsukuba East 1-chome, Ibaraki, Japan 1-1-1 Central No. 6 [TEL: 0298-61-62029], Date of deposit: April 27, 2000, Identification: BI COM Nitrifying Bacteria S WA QSP—78).
  • the oxidized sludge was acclimated by the operation method (CF-ROM method).
  • the MLSS concentration could be increased to 600 mg ZL.
  • the resulting sulfur-oxidizing bacteria (cell density:. 1 0 9 or more (measured sulfur oxidation rate of the ce 1 1 s _ m 1)
  • Batch culture was performed in a two-day cycle in a fililanddraw type culture tank shown in FIG.
  • nitrification acclimation treatment solution (a solution containing NO 3 —N) generated by culturing nitrifying bacteria and methanol having a concentration three times the NO 3 —N concentration were added.
  • the temperature of the denitrification tank was maintained at 27 ° C with a thermostat and a heater, and the rising pH was maintained at 7.0 to 8.5 with a pH controller and hydrochloric acid or sulfuric acid.
  • Stir at 70 rpm with a stirrer settle sludge for 1 hour on the second day, remove the supernatant, and then nitrate acclimation treatment containing methanol three times the concentration of -NO3-N Pour the liquid And stirring was resumed.
  • Seawater acclimation started at a seawater ratio of 75% because the original salinity of the sludge was at a seawater ratio of 75%.
  • Fig. 6 shows the process of acclimating seawater to human waste treatment plant sludge.
  • the figure shows the initial NO3-N concentration, the residual ⁇ 3-N concentration after 4 hours of culture, and the seawater ratio.
  • the seawater ratio was increased to 100% when the N03-N concentration of 10 OmgZ liters was completely denitrified one day after culture. After 10 days of habituation, 10 Omg / liter of ⁇ 3-N was almost denitrified after 1 day of culture, so the seawater ratio was increased to 100% and the denitrification activity was further increased.
  • the initial NO3-N concentration was increased to 150 mg / litre and 200 mg Z litre.
  • seawater acclimated denitrification activated sludge ALD S
  • ALD S seawater acclimated denitrification activated sludge
  • the denitrification rate of sludge from the night soil treatment plant and the denitrification rate of AMD S before habituation were calculated based on the following formula, and are shown in [Table 3] below.
  • the rate of change was determined from the slope of the section where NO3-N changes linearly within a few hours after the start of stirring, and the value was divided by the sludge concentration to obtain the denitrification rate (see the following equation).
  • a denitrification activated sludge having a denitrification activity of 16.1 mg-NO3-N / g-MLSS / hr in seawater was prepared.
  • the denitrification rate of AMD S is one order of magnitude higher than the specific denitrification rate reported in sewage treatment (0.04 to 0.08 g—N / g—ML SS ⁇ day). It is thought that nitrifying bacteria have become the dominant species.
  • the above-mentioned denitrification activity is more than 25 1111 £ -N-g-MLSS Shr after two months of acclimation in seawater.
  • a S WAQ SP— 2 1] is stored by the following corporation and The company has a system to receive an application for the sale of a microorganism, but it is necessary to conclude a contract with the microbiological custodian prior to the application for the sale.
  • Microbial consignment contract request The request for microbial consignment application form is also below. "Bicom Co., Ltd., Toyonaka, Osaka Prefecture, Chisen Higashicho, 1-4-2, Senri Life Science Center ( ⁇ 560-00 82), TEL: 06-48 63-750 ].
  • ML SS 6,000 mg / L
  • a high-density nitrifying bacteria adsorbent was obtained in which the high-concentration nitrifying bacteria were fixed on the adsorption substrate.
  • the nonwoven fabric described above is obtained by copolymerizing 4-vinylpyridine and a monobutyl monomer, and then subjecting a vinyl copolymer obtained by the action of a halide to a surface treatment on a base material.
  • the type of fiber used is a polyester fiber with a fineness of 22.5 denier, a thickness of 9 mm, and a basis weight of 250 g / m 2.
  • the high-density denitrifying bacteria and the high-density sulfur-oxidizing bacteria artificially cultured as described above are also treated in the same manner as the nitrifying bacteria (see Example 4 (a)), and the nonwoven fabric (Bioflex ( (Registered trademark) and Nippon Vilene Co., Ltd.) to obtain a high-density adsorbent for denitrifying bacteria and a high-density adsorbent for sulfur-oxidizing bacteria.
  • the measurement conditions were as follows, comparing the retention capacity (adsorption amount) of microbial cells using various adsorption substrates.
  • the bacteria used were nitrifying bacteria (a 10 L culture medium in CGY medium; viable cell count: 4.1 X 109 (cells no m 1)), which was used for pretreatment for viable cell count measurement.
  • An ultrasonic treatment device manufactured by Kaijo, CA—44488Z, 38KHZ was used.
  • a land-based closed-circulation aquaculture system As an example of using the bacterial high-density adsorbent obtained by the present invention, a land-based closed-circulation aquaculture system will be described with reference to FIG.
  • the breeding aquarium (1) which contains a large number of fish and shellfish, for example, larvae o-kokose and prawns, together with artificial seawater (breeding water). Is discharged.
  • This effluent contains ammonia nitrogen (NH4-N).
  • NH4-N ammonia nitrogen
  • solids precipitate and the supernatant is filtered through a micro-staring filter (3) by a pump, where fine solids are removed.
  • the artificial seawater that has passed through the filter flows into a pH control tank (4) also serving as a water level control tank, where the pH of the artificial seawater is maintained at about 7.7.
  • This pH adjustment has a mechanism in which a chemical solution flows from a pH chemical solution storage tank (16) to a pH control tank (4) by a pump as appropriate.
  • the artificial seawater whose pH has been adjusted is discharged in two directions from the PH control tank (4). One of them flows into the gas-liquid contact tank (9) through the titanium chiller (7), which is thermally connected to the air conditioner (8), by the circulation pump (5).
  • the gas-liquid contact tank (9) is supplied with liquid oxygen from the liquid oxygen tank (14), which increases the amount of dissolved oxygen in the artificial seawater.
  • the water flows into the ozone tank (10) by the circulation pump (6) through the titanium chiller (7), which is thermally connected to the air conditioner (8), as described above.
  • Ozone is supplied to the ozone reaction tank (10), and the artificial seawater is sterilized by the ozone.
  • the ozone is supplied from the oxygen generator (13) by the ozone generator (1). Since it was converted by 2), the amount of dissolved oxygen also rises slightly here.
  • the ozone reaction tank (10) has a foam separation function, so Bubbles generated when raw can be removed.
  • the foam separation mechanism a conventionally known mechanism can be adopted.
  • the microbial nitrification reaction tank (11) into which the artificial seawater flows through the gas-liquid contact tank (9) and the microbial nitrification reaction tank into which the artificial seawater flows through the gas-liquid contact tank (9) Although the two tanks (11) are provided, the present invention is not limited to this, and a single microbial nitrification reactor (11) may be used.
  • a plurality of the nitrifying bacteria high-density adsorbents (not shown) obtained in the above example are mounted in a stacked state.
  • a portion of the artificial seawater heading for the microbial nitrification reactor (11) is piped to flow to the denitrification tank (15).
  • the denitrification tank (15) similarly to the microbial nitrification reaction tank (11), a plurality of sheets of the high-density adsorbent for denitrifying bacteria (not shown) obtained in the above example are mounted in a stacked state. ing.
  • part of the artificial seawater circulating in this closed-circulation type aquaculture system is taken out and taken into the denitrification tank (15), and the artificial seawater generated by the microbial nitrification reaction tank (11) is denitrated in the denitrification tank (15) After converting nitrate ions in the seawater to nitrogen gas, the artificial seawater is returned to the circulation flow.
  • the ammoniacal nitrogen generated by breeding (farming) of fish and shellfish in the breeding aquarium (1) is oxidized by nitrifying bacteria at a high concentration fixed on the nitrifying bacteria high-density adsorbent to be converted to nitrate nitrogen, Nitrogen is further oxidized to nitrogen gas by the denitrifying bacteria contained in the high concentration of the denitrifying bacteria high-density adsorbent. After the nitrogen compounds in the wastewater have been converted to nitrogen gas in this way, they are returned to the rearing tank (1) again.
  • the denitrification tank (15) must capture organic matter from the outside as a hydrogen donor and as a carbon source for cell synthesis.
  • a storage tank for supplying methanol that is, a methanol chemical storage tank (17) is provided.
  • Methanol is supplied from the methanol chemical storage tank (17) to the denitrification tank (15) by a pump.
  • the denitrification tank (15) is provided with a denitrification tank stirring pump (18) for stirring the inside.
  • the seafood obtained by the on-shore closed circulation type aquaculture system of the present invention is very pure, and it can be said that it is a safe seafood that could not exist on the earth until now.
  • the land-based closed-circulation aquaculture system of the present invention provides a pH chemical solution storage tank (16) capable of adding a chemical solution comprising a mixture of sodium carbonate and sodium hydrogencarbonate to a breeding aquarium. It has. This not only makes it possible to adjust the pH of the circulating water, but also makes the chemical Since it becomes a carbon source for nitrifying bacteria, it has the effect of two birds with one stone that nitrifying bacteria can grow on the high-density adsorbent for nitrifying bacteria.For example, in the breeding aquarium, the ammonia concentration increases with the growth of fish and shellfish.
  • the nitrifying bacteria used in the culture system of the present invention can achieve a nitrification rate of lmg / g ⁇ hr or more even at a low temperature of 10 ° C. It is a very good fungus Call
  • the breeding water temperature was maintained at 23 ° C to 23.5 ° C from fertilized egg storage to hatching, and was maintained at 24 ° C to 26 ° C after hatching.
  • the hatched larva opened on the second day after hatching and was ready for feeding.
  • the feeds were pemushi (concentrated nannochlorobsis [concentrated nanno] and cultured for 24 hours in PSB (manufactured by Takara Shuzo KK)), Artemia larvae (Marin ⁇ [manufactured by Nisshin Science KK]) and PSB [Takara Shuzo kk's cultured for 24 hours] and mixed feed (mixed feed for flounder, S-1 and S-2 [Higashimaru kk]) were used.
  • 250 ml of concentrated Nanno was added to the breeding water every morning.
  • Feeding Artemia larvae on day 10 confirmed feeding. On the 16th day after hatching, yellow pigment began to appear on the body surface, and on the 18th day, some individuals settled. On day 30, the average total length grew to 15 mm. At this time, the number of picked fish was 15,000, and the survival rate from hatched larvae was 30.0%.
  • the hatched larvae obtained by producing seeds and seedlings in this manner are further grown to adult fish by the aquaculture system of the present invention (see Example 6), so that they can be completely infected with 100% pure (pathogenic microorganisms such as viruses). No) Very safe seafood can be obtained. [Reference to deposited biological material]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biotechnology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

A closed circulatory system for fish farming and fish fry culture containing high-density adsorbents of bacteria in which microbial cells of nitrifying bacteria and denitrifying bacteria are fixed at a high density. This system is composed at least of a water tank unit for fish farming, a pH-controlling unit, an oxygen-supplying unit for elevating the dissolved oxygen concentration, a nitrifying reactor unit and a denitrifying reactor unit. Water discharged from the fish-farming water tank is purified via the pH controlling unit, the oxygen-supplying unit, the nitrifying reactor unit and the denitrifying reactor unit and then returned into the farming fish-water tank. A high-density adsorbent of nitrifying bacteria, in which nitrifying bacteria cultured at a high density have been fixed, is provided in the nitrifying reactor unit, while a high-density adsorbent of denitrifying bacteria, in which denitrifying bacteria cultured at a high density have been fixed, is provided in the denitrifying reactor unit. Also, a chemical solution storage tank is connected directly to the pH-controlling unit so that the pH value of the farming water can be controlled in the pH-controlling unit with a solution of a mixture of sodium carbonate with sodium hydrogencarbonate.

Description

明 細 書 細菌高密度吸着材、 これを組み込んだ閉鎖循環式養殖おょぴ種苗生産シ ステム、 及ぴ該システムにより育成されてなる魚介類  Description Bacterial high-density adsorbent, closed-circulation aquaculture seed and seedling production system incorporating it, and fish and shellfish grown by this system
[技術分野] 本発明は細菌高密度吸着材に関し、 詳しくは、 吸着基材に多数の微生 物菌体が定着してなる細菌高密度吸着材に関し、 高密度の硝化細菌ゃ硫 黄酸化細菌、 又は脱窒細菌が不織布などの本体基材に、 例えば 1 0 9TECHNICAL FIELD The present invention relates to a high-density bacterial adsorbent, and more particularly, to a high-density bacterial adsorbent comprising a large number of microbial cells fixed on an adsorbent substrate. Or denitrifying bacteria on the body substrate such as non-woven fabric
( c e l l s / m 1 ) 以上の高い濃度で以て菌体が定着してなる細菌高 密度吸着材、 及び前記細菌高密度吸着材を組み込んだ閉鎖循環式養殖お ょぴ種苗生産システム (以下、 単に 「養殖システム」 ともいう) 、 さら には当該養殖システムによって育成された魚介類に関する。 (cells / m 1), a high-density bacterial adsorbent on which cells are established at a concentration of at least a high concentration, and a closed-circulation cultured seedling production system incorporating the high-density bacterial adsorbent (hereinafter simply referred to as It also refers to “aquaculture systems”), and also relates to fish and shellfish raised by the aquaculture systems.
なお、 本願明細書において、 例えば 「 1 0 9 ( c e l l s / m 1 ) 以 上の菌体濃度」 というのは、 それに相当する細菌数 (生菌数) が認めら れるという意味であり、 このような生菌数の測定は、 従来公知の方法に よって決定することができる。.  In the specification of the present application, for example, “a cell concentration of 109 (cells / m 1) or more” means that the corresponding number of bacteria (the number of viable bacteria) is recognized. The measurement of the viable cell count can be determined by a conventionally known method. .
[背景技術] 硝化細菌 (アンモニア酸化細菌と亜硝酸酸化細菌) ゃ脱窒細菌 (硝酸 酸化細菌) は、 増殖速度が遅く、 コロニーを作って生活しないことに起 因して、 その存在が確認されて百年以上経た今日まで、 工業的に大量に 高濃度培養することに成功したという報告はない。 [Background technology] Nitrifying bacteria (ammonium oxidizing bacteria and nitrite oxidizing bacteria) ゃ Denitrifying bacteria (nitrate oxidizing bacteria) have been found to be present because they grow slowly and do not live as colonies. Until today, more than a hundred years ago, there have been no reports of successful industrial high-volume cultivation.
すなわち、 従来の培養方法は、 純粋培養を目指す試験管レベルの小規 模のものであり、 2ヶ月程ではフラスコ内の培地が懸濁しない程度であ り、 工業的に応用できる培養方法とは言えなかった。 In other words, conventional culture methods are test tube-level small It was an imitation, and the culture medium in the flask was not suspended in about two months, so it could not be said that it was an industrially applicable culture method.
説明を加えると、 硝化細菌の培養において硝化が始まると、 p Hが低 下するわけであるが、 従来、 この p Hを効果的に上げる方法が分からな かった。 一方、 硝化に伴って炭素源が減少していくわけであるが、 従来, 炭素源の供給として二酸化炭素を使用していた。 二酸化炭素の供給によ り確かに炭素源の枯渴を防ぐことができるが、 前述した: Hの低下がさ らに進み、 延いては硝化細菌の活動が停止し、 これが細菌増殖の限界で あった。  To add an explanation, when nitrification starts in the culture of nitrifying bacteria, the pH drops. Conventionally, it has not been known how to increase this pH effectively. On the other hand, although the carbon source decreases with nitrification, carbon dioxide was conventionally used as a carbon source supply. The supply of carbon dioxide can certainly prevent the depletion of the carbon source, but as mentioned above: the further decrease in H, and in turn the cessation of nitrifying bacteria, is the limit of bacterial growth. there were.
これに従い、 硝化細菌ゃ脱窒細菌の微生物菌体を高密度に定着してな る細菌高密度吸着材は、 当然のことながら入手が不可能であり、 例えば 当該吸着材をバイオリアクターやバイオセンサーにおける微生物菌体の 保持担体として使用する場合、 あるいは陸上養殖システムに適用する場 合、 どうしても効率 (能率) の点で問題となった。  Accordingly, a high-density bacterial adsorbent, in which microbial cells of nitrifying bacteria and denitrifying bacteria are established at a high density, cannot be obtained naturally. For example, the adsorbent can be used as a bioreactor or biosensor. When used as a carrier for holding microbial cells in, or when applied to terrestrial aquaculture systems, there was a problem in terms of efficiency (efficiency).
本発明は上記の実情に鑑みてなされたものであり、 その目的は、 硝化 細菌や硫黄酸化細菌あるいは脱窒細菌の微生物菌体を高密度に定着して なる細菌高密度吸着材を提供するところにあり、 前記細菌高密度吸着材 を組み込んだ閉鎖循環式養殖および種苗生産システムを提供するところ にあり、 さらには当該養殖システムによって育成された魚介類を提供す るところにある。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-density bacterial adsorbent in which microbial cells of nitrifying bacteria, sulfur-oxidizing bacteria, or denitrifying bacteria are established at a high density. The present invention provides a closed-circulation aquaculture and seed production system incorporating the above-mentioned high-density bacterial adsorbent, and further provides fish and shellfish grown by the aquaculture system.
- [発明の開示] 第 1の発明は、 吸着基材に多数の微生物菌体が定着されてなる細菌高 密度吸着材であって、 前記微生物菌体が、 各々高密度培養した硝化細菌 あるいは硫黄酸化細菌であることを特徴とする細菌高密度吸着材である c 第 2の発明は、 吸着基材に多数の微生物菌体が定着されてなる細菌高 密度吸着材であって、 前記微生物菌体が、 高密度培養した脱窒細菌であ ることを特徴とする細菌高密度吸着材である。 -[Disclosure of the Invention] The first invention is a bacterial high-density adsorbent comprising a large number of microbial cells fixed on an adsorption substrate, wherein the microbial cells are nitrified bacteria or sulfur, each of which is cultured at high density. C , a bacterial high-density adsorbent characterized by being oxidizing bacteria A second invention is a bacterial high-density adsorbent in which a large number of microbial cells are fixed on an adsorption substrate, wherein the microbial cells are denitrified bacteria cultured at high density. It is a bacterial high density adsorbent.
第 3の発明は、 飼育水槽部と、 pHコントロール部と、 溶存酸素を高 めるための酸素供給部と、 硝化反応槽部とを少なく とも具備し、 前記飼 育水槽から排出された飼育水が、 前記: Hコン トロール部、 酸素供給部. 及ぴ硝化反応槽部を経由することによって浄化され、 再び飼育水槽に返 送されるように構成された閉鎖循環式養殖および種苗生産システムであ つて、 前記硝化反応槽部内には、 請求項 1〜 6のいずれか 1項に記載の 細菌高密度吸着材が装着されてなることを特徴とする閉鎖循環式養殖お よび種苗生産システムである。  According to a third aspect of the present invention, the breeding water discharged from the breeding aquarium includes at least a breeding aquarium unit, a pH control unit, an oxygen supply unit for increasing dissolved oxygen, and a nitrification reaction tank unit. A closed-circulation aquaculture and seed production system configured to be purified by passing through an H control section, an oxygen supply section, and a nitrification reaction tank section, and returned to the rearing tank. Further, there is provided a closed circulation type aquaculture and seed production system, wherein the nitrification reaction tank section is provided with the high-density bacterial adsorbent according to any one of claims 1 to 6.
第 4の発明は、 請求項 1 2〜 1 4のいずれか 1項記載の閉鎖循環式養 殖および種苗生産システムによって育成されたことを特徴とする魚介類 である。  A fourth invention is a fish or shellfish that has been raised by the closed-circulation type culture and seed and seedling production system according to any one of claims 12 to 14.
[図面の簡単な説明 ] 図 1は、 汚泥硝化馴養装置の一例を示した略示説明図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view showing an example of a sludge nitrification acclimation apparatus.
図 2は、 NH4— N ( 1 0 Om gZリ ッ トル) 投入 4時間後の残存す る NH4— Nの濃度を示す曲線で以て、 汚泥の硝化馴養過程における N H 4—N濃度の変化を示したグラフ図である。 図中の丄印は、 NH4— N (1 O Om gZリ ッ トル) の投入を示す。  Fig. 2 is a curve showing the concentration of remaining NH4-N 4 hours after injection of NH4-N (10 Om gZ liter), and shows the change of NH4-N concentration during the nitrification acclimation process of sludge. FIG. The symbol “丄” in the figure indicates the introduction of NH4-N (1 O OmgZ liter).
図 3は、 汚泥の硝化馴養過程において ML S S濃度の経日的変化を示 したグラフ図である。  FIG. 3 is a graph showing the daily change of the MLSS concentration during the nitrification acclimation process of sludge.
図 4は、 硫黄酸化速度の経時的変化を示したグラフ図である。  FIG. 4 is a graph showing the change over time of the sulfur oxidation rate.
図 5は、 汚泥脱窒馴養装置の一例を示した略示説明図である。 図 6は、 汚泥の脱窒馴養過程において N O 3—N濃度の経日的変化を 示したグラフ図である。 FIG. 5 is a schematic explanatory view showing an example of a sludge denitrification acclimation apparatus. Fig. 6 is a graph showing the daily change of NO3-N concentration in the process of denitrification of sludge.
図 7は、 陸上における閉鎖養殖おょぴ種苗生産システムの一例を示し た略示説明図である。  FIG. 7 is a schematic explanatory diagram showing an example of a closed farming seedling production system on land.
[発明を実施するための最良の形態] バインダー [Best Mode for Carrying Out the Invention] Binder
微生物菌体を吸着基材に定着させるためにバインダーを用いることも できる。 本発明で使用し得るパインダー、 菌体を吸着基材に定着させる バインダーとしては、 当該菌体を生きたまま吸着基材に定着させること ができるのであれば、 特に限定はない。 .  A binder can also be used to fix the microbial cells on the adsorption substrate. The binder that can be used in the present invention and the binder that fixes the cells on the adsorption substrate are not particularly limited as long as the cells can be fixed on the adsorption substrate while they are alive. .
具体的には、 橋かけポリビュルピリジニゥムハライ ド、 寒天、 K—力 ラギーナン、 アルギン酸カルシウム、 光硬化性樹脂、 ポリアクリルアミ ドなどが挙げられるが、 なかでも、 特に硝化細菌、 硫黄酸化細菌及ぴ硫 黄細菌を効率よく吸着する性質があり、 当該菌体を高密度で補足し定着 させることができるという点で、 橋かけポリ ビニルピリジニゥムハライ ドなるビエル系共重合体を用いることが好ましい。 .この化合物は、 水に 不溶か難溶で、 かつ有機溶媒に可溶であるので、 吸着基材へ表面処理す る場合は有機溶媒に溶かして溶液として扱うことができ、 水中で使用す る場合は溶出するなどの悪影響がないので好都合である。 すなわち、 例 えば上記のビニル系共重合体をメタノールなどの有機溶媒に溶かし、 こ れを例えば霧吹き施工したり、 塗布施工して吸着基材に付与 (表面加工 処理) することができる。  Specific examples include cross-linked polyvinyl pyridinum halide, agar, K-force larginan, calcium alginate, photocurable resin, polyacrylamide, etc., especially nitrifying bacteria, sulfur oxidation Biel-based copolymers such as crosslinked polyvinylpyridinium halides have the property of adsorbing bacteria and sulfur yellow bacteria efficiently and being able to capture and fix the cells at a high density. Preferably, it is used. Since this compound is insoluble or hardly soluble in water and soluble in organic solvents, it can be dissolved in organic solvents and treated as a solution when surface treatment is performed on an adsorption substrate, and used in water In this case, there is no adverse effect such as elution, which is convenient. That is, for example, the above-mentioned vinyl copolymer can be dissolved in an organic solvent such as methanol, and this can be applied to the adsorbent substrate by, for example, spraying or applying (surface processing).
前記した橋かけポリビニルピリジニゥムハライ ドの製造に関しては、 特開平 3一 4 7 5 3 6号公報に記載の従来公知の製造方法に従えばよい c 簡単に説明すると、 4—ビュルピリジンとモノビュルモノ マー (ェチレ ン、 プロピレン、 スチレン、 酢酸ビニノレ、 アタリノレ酸、 ァクリ ロ二トリ ルなど) とを共重合した後、 ハロゲン化物 (ハロゲン化アルキル、 ノ、口 ゲン化ベンジル、 ノヽロゲン化ペンタフノレオロフェニルメチルなど) を作 用させて得ることができる。 For the preparation of the above-described bridged polyvinyl pyridinylbenzoyloxy © beam sweep de it may follow the conventionally known production method described in JP-three to 4 7 5 3 6 No. c Briefly, 4-butylpyridine is copolymerized with a monobutyl monomer (eg, ethylene, propylene, styrene, vinylinole acetate, atalinoleic acid, acrylonitrile, etc.), and then the halide (alkyl halide, quinoline, Benzyl genoide, pentaphlorenophenylphenyl phenol).
吸着基材  Adsorption substrate
本発明で使用し得る吸着基材としては、 多孔質基材であることが、 表 面積が大きいので菌体をより高密度に定着させることができるという点 で好ましい。 多孔質基材の具体例としては、 不織布、 編織物 (編物、 織 物) 、 シリカゃゼオライ トなどの多孔性無機物の集合体、 発泡体などが 挙げられる。 これらは 1種類を単独で使用してもよいし、 2種以上を併 用することもできる。  As the adsorption substrate that can be used in the present invention, a porous substrate is preferable because the surface area is large, so that the cells can be fixed at a higher density. Specific examples of the porous substrate include a nonwoven fabric, a knitted fabric (a knitted fabric, a woven fabric), an aggregate of porous inorganic materials such as silica zeolite, and a foam. One of these may be used alone, or two or more thereof may be used in combination.
なお、 バインダーへの処理の容易さ、 表面積の広さ、 取り扱い易いな どの点で不織布を使用することが最も好ましい。 なかでも、 当該不織布 を構成する繊維の断面形状が☆状であることが (放射状のひだを有する 形状の断面を有し、 内部に線状の接合部を有する立体状不織布であるこ とが) 、 さらに表面積が広くなるという点で好ましい。 このような不織 布は、 特許第 2 8 8 1 6 7 2号公報に開示されている技術に基づいて製 造することができる。  It is most preferable to use a nonwoven fabric in terms of ease of processing into a binder, a wide surface area, and easy handling. Above all, the cross-sectional shape of the fibers constituting the non-woven fabric should be ☆ (it should be a three-dimensional non-woven fabric having a radial cross-sectional shape and a linear joint inside). This is preferable in that the surface area is further increased. Such a nonwoven fabric can be manufactured based on the technology disclosed in Japanese Patent No. 2881672.
また、 上記の如く断面星形状の.繊維 (ポリエステル繊維) を使用して 製造された不織布に前記した橋かけポリビュルピリジニゥムハライ ド処 理を施した製品が市販されている (バイオフレックス (登録商標) 、 日 本バイリーン社製、 1 m 3あたり 1 0 3〜 1 0 6 m 2の面積を保有) の で、 これを使用することもできる。 Further, a product obtained by subjecting a nonwoven fabric produced using a fiber (polyester fiber) having a star-shaped cross section to the above-mentioned cross-linked polypyridinium halide treatment is commercially available (Bioflex®). (Registered trademark), manufactured by Japan Vilene Co., Ltd., with an area of 103 to 106 m2 per m3 ).
' 活性汚泥 '' Activated sludge
本発明に使用する活性汚泥は、 下水汚泥やし尿汚泥が挙げられる。 こ れらは、 淡水希釈処理されたものであってもよく、 あるいは海水希釈処 理されたものであっても構わないが、 海水希釈汚泥を原料として硝化細 菌ゃ硫黄酸化細菌あるいは脱窒細菌を培養すれば、 希少価値とされる海 洋性硝化細菌、 海洋性脱窒細菌、 海洋硫黄酸化細菌性が大量に得られ、 上記した吸着基材に海洋性菌体を定着させることができるので、 海水希 釈処理された活性汚泥を使用することが好適である。 The activated sludge used in the present invention includes sewage sludge and night soil sludge. This They may be freshwater-diluted or seawater-diluted, but nitrate bacteria ゃ sulfur-oxidizing bacteria or denitrifying bacteria can be obtained from seawater-diluted sludge. If cultured, marine nitrifying bacteria, marine denitrifying bacteria, and marine sulfur-oxidizing bacteria, which are considered to be rare, can be obtained in large quantities, and marine bacterial cells can be established on the above-mentioned adsorption substrate. It is preferable to use seawater-diluted activated sludge.
説明を加えると、 天然の海水中には淡水性硝化細菌よりも高い耐塩性 を有すると考えられる海洋性の硝化細菌が存在するが、 その存在量は非 常に少なく、 純粋分離が困難であるため、 淡水性硝化細菌に比べてその 研究は遅れている。 しかしながら、 本発明の培養方法であれば、 前述し たように海水希釈処理された活性汚泥を原料とすることにより、 高い濃 度の海洋性硝化細菌を得ることができる。 海洋性硝化細菌は、 多層の細 胞壁を備え、 処理水の浸透圧変化や生育を阻害する種々の化学物質に対 して強力な耐性を持つ。 硫黄酸化細菌、 脱窒細菌についても同様である。  To add an explanation, natural seawater contains marine nitrifying bacteria, which are considered to have higher salt tolerance than freshwater nitrifying bacteria, but their abundance is very small and pure separation is difficult. However, its research is delayed compared to freshwater nitrifying bacteria. However, according to the culture method of the present invention, a high concentration of marine nitrifying bacteria can be obtained by using the activated sludge that has been subjected to the seawater dilution treatment as described above as a raw material. Marine nitrifying bacteria have multiple cell walls and are strongly resistant to various chemicals that inhibit osmotic pressure change and growth of treated water. The same applies to sulfur oxidizing bacteria and denitrifying bacteria.
混合物 (炭酸水素ナトリウムと炭酸ナトリウム)  Mixture (sodium bicarbonate and sodium carbonate)
本発明で使用される p H調整と炭素源との双方を兼ねる混合物は、 細 菌高濃度培養促進剤として、 次のような実施態様が考えられる。 すなわ ち、 ,  The following embodiments can be considered as a mixture for promoting the high-concentration bacterium of the mixture used both in the pH adjustment and the carbon source used in the present invention. That is,,
1 . 独立栄養細菌を高濃度に培養すべく所定期間馴養する際、 当該馴 養過程において酸性側に傾く培地の p Hを所定範囲に維持させると共に 炭素源となる独立栄養細菌高濃度培養促進剤であって、 解離することに より塩基性を呈して前記酸性側に傾く培地の p Hを所定範囲に維持させ るこどのできる性質と、 前記独立栄養細菌の増殖時の炭素源となり うる 性質との 2つの性質を、 1種類の化合物で以て付与できる場合は当該化 合物の少なく とも 1種、 または上記 2つの性質を 2種以上の化合物で以 て付与できる場合は、 当該化合物の混合物が配合されてなることを特徴 とする独立栄養細菌高濃度培養促進剤。 1. When the autotrophic bacterium is acclimated for a predetermined period of time in order to culture it at a high concentration, the pH of the medium, which is inclined to the acidic side in the acclimation process, is maintained within a predetermined range, and the autotrophic bacterium high-concentration cultivation promoter as a carbon source And a property capable of maintaining the pH of the culture medium that exhibits basicity by dissociation and leans toward the acidic side within a predetermined range, and a property that can serve as a carbon source during growth of the autotrophic bacterium. If the two properties can be provided by one kind of compound, at least one kind of the compound, or if the above two properties can be given by two or more kinds of compounds, a mixture of such compounds It is characterized by being compounded Autotrophic bacteria high concentration culture promoter.
2. 前記した混合物が下記 (A) 成分と (B) 成分との混合物である こと.を特徴とする上記の第 1項に記載の独立栄養細菌高濃度培養促進剤 ( 2. The mixture is below the component (A) and (B) be a mixture of ingredients. Autotrophic bacteria-enriched cultures promoters described in paragraph 1 above, wherein the (
(A) :炭酸アルカリ金属塩、 又は炭酸アルカリ土類金属塩。 (A): alkali metal carbonate or alkaline earth metal carbonate.
(B) :炭酸水素アルカリ金属塩、 又は炭酸水素アルカリ土類金属塩 t (B): alkali metal bicarbonate or alkaline earth metal bicarbonate t
3. 前記 (A) 成分: (B) 成分の混合割合がモル比で 1 : .4/ 7〜 1 7 7であることを特徴とする上記の第 2項に記載の独立栄養細菌高 濃度培養促進剤。 3. The high concentration culture of autotrophic bacteria according to the above item 2, wherein the mixing ratio of the component (A) and the component (B) is 1: 1.4 / 7 to 177 in molar ratio. Accelerator.
4. 前記 (A) 成分が、 炭酸ナトリウムであり、 前記 (B) 成分が、 炭酸水素ナトリゥムであることを特徴とする上記の第 2項または第 3項 のいずれか 1項に記載の独立栄養細菌高濃度培養促進剤。  4. The autotroph according to any one of the above items 2 or 3, wherein the component (A) is sodium carbonate, and the component (B) is sodium bicarbonate. Bacterial high concentration culture promoter.
(具体例)  (Concrete example)
上記促進剤の成分としては、 解離することにより塩基性を呈し、 馴養 中に酸性側に傾く培地の p Hを所定範囲 (7. 0〜 9. 0) に維持させ ることのできる性質と、 前記独立栄養細菌の増殖時の炭素源となり うる 性質との 2つの性質を備えている化合物であれば、 特に限定されるもの ではない。  The components of the above-mentioned accelerator include the property of exhibiting basicity by dissociation and maintaining the pH of the medium, which is inclined toward the acidic side during acclimation, within a predetermined range (7.0 to 9.0), The compound is not particularly limited as long as it has two properties, that is, a property that can serve as a carbon source during the growth of the autotrophic bacterium.
前記 2つの性質を 1種類の化合物で以て付与できる場合は当該化合物 の少なく とも 1種が本発明の促進剤の成分となる。  When the above two properties can be imparted by one kind of compound, at least one kind of the compound is a component of the accelerator of the present invention.
その具体例としては、 二炭酸水素三ナトリウム (=セスキ炭酸ナトリ ゥム) (N a 2 C03 - N a H C O 3 · 2 H 2 O) や、 この化合物にお けるナトリウムが、 カリゥムゃマグネシウムなどに一部あるいは全部置 換された化合物などが挙げられる。  Specific examples include trisodium hydrogen bicarbonate (= sodium sesquicarbonate) (Na2C03-NaHCO3.2H2O), and sodium in this compound being converted to potassium magnesium. Compounds partially or wholly substituted are mentioned.
また、 上記 2つの性質を 2種以上の化合物で以て付与できる場合は、 当該化合物の混合物が.本発明の促進剤の成分となる。 例えば、 (A) 水 に可溶性を示し解離することにより塩基性を示す炭酸塩と、 (B) 水に 可溶性を示す炭酸水素塩との混合物が挙げられ、 具体的には、 (A) 成 分として、 水酸化ナトリウム、 水酸化カリウムなどの水酸化物や、 炭酸 ナトリウムなどのアルカリ金属塩が挙げられ、 (B ) 成分としては、 炭 酸水素ナトリ ウム、 炭酸水酸化マグネシウム (4 M g C 0 3. . M g ( O H ) 2 · 5 H 2 O ) などの炭酸塩が挙げられる。 When the above two properties can be provided by two or more compounds, a mixture of the compounds is a component of the accelerator of the present invention. For example, a mixture of (A) a carbonate which is soluble in water and exhibits basicity by dissociation, and (B) a bicarbonate which is soluble in water can be mentioned. Examples of the component include hydroxides such as sodium hydroxide and potassium hydroxide and alkali metal salts such as sodium carbonate. The component (B) includes sodium hydrogen carbonate, magnesium carbonate (4 mg 0 3.. Carbonate such as Mg (OH) 2 · 5H 2 O).
なかでも、 前記 (A ) 成分が、 炭酸ナトリウム、 炭酸ナトリウムカリ ゥム、 炭酸カリ ウム等の、 水に可溶性を示す炭酸アルカリ金属塩又は炭 酸アルカリ土類金属塩であり、 前記 (B ) 成分が、 炭酸水素ナトリ ウム、 炭酸水素力リ ウム等の、 水に可溶性を示す炭酸水素アル力リ金属塩又は 炭酸水素アル力リ土類金属塩であることが、 前述した 2つの性質を効果 的に付与できるという点で好ましく、 なかでも、 炭酸ナトリウムと炭酸 水素ナトリウムの組合せが最も好ましい。  Among them, the component (A) is an alkali metal carbonate or an alkaline earth metal salt that is soluble in water, such as sodium carbonate, sodium potassium carbonate, potassium carbonate, etc., and the component (B). Is a water-soluble alkaline metal bicarbonate or an alkaline earth metal bicarbonate that is soluble in water, such as sodium bicarbonate and lithium bicarbonate. It is preferable in that it can be added to the water, and among them, a combination of sodium carbonate and sodium hydrogen carbonate is most preferable.
閉鎖循環式養殖および種苗生産システム  Closed-circulation aquaculture and seed production system
本発明の養殖システムによって、 稚魚はもちろんのこと、 受精卵 (ォ ' ニォコゼ、 ヒラメ、 トラフグなどの受精卵) から稚魚への育成、 いわゆ る種苗生産が可能となる。 このような種苗生産は、 外部から海水が入る ことがないため、 親魚からの垂直感染がなければ、 飼育の途中で飼育水 から侵入する病原体に.よる感染は起こらない。  The culture system of the present invention enables not only fry, but also fertilized eggs (fertilized eggs such as o 'nikkoze, flounder, and tiger gull) to grow into fry and produce so-called seeds and seedlings. Since such seedling production does not allow seawater to enter from outside, there is no transmission by pathogens that enter the breeding water during breeding without vertical transmission from the parent fish.
また、 飼育期間中に海水を補充することなしに、 着底時期までの生産 が可能であることから、 飼育水の使用量は、 これまでの流水飼育の場合 の飼育水と比べ、 3 0〜 6 0倍の差があり、 飼育水の節約を図ることも さることながら、 生産場所の立地条件が拡大するものと考える。  In addition, since it is possible to produce up to the time of landing without replenishing seawater during the breeding period, the amount of breeding water used is 30- There is a 60-fold difference, and it is thought that the location conditions of the production site will be expanded while saving breeding water.
硝化細菌の培養 (馴養) 条件  Culture (acclimation) conditions for nitrifying bacteria
活性汚泥に含まれる硝化細菌の培養は、 当該活性汚泥を、 所定期間 (例えば、 1ヶ月、 2ヶ月あるいはそれ以上) 、 汚泥脱水濾液ゃ (嫌気 性) 消化脱離液などの汚泥処理廃液により硝化馴養するわけであるが、 この硝化馴養は好気的に行なう必要があるため、 この際の溶存酸素 (D O) を 2m g/リ ットル以上とする必要がある。 しかしながら、 溶存酸 素濃度を無闇に高く し過ぎると逆に増殖スピードが低下する傾向になる ことが今回の実験で初めて分かった。 以下詳述する。 The culture of nitrifying bacteria contained in the activated sludge is performed by nitrifying the activated sludge with a sludge treatment wastewater such as a sludge dewatered filtrate (anaerobic) digestion / desorption solution for a predetermined period (for example, 1 month, 2 months or more). The nitrification must be performed aerobically, and the dissolved oxygen (D O) must be 2 mg / liter or more. However, for the first time in this experiment, it was found that if the dissolved oxygen concentration was too high, the growth rate would tend to decrease. The details will be described below.
硝化細菌による硝化スピードは、 溶存酸素が高ければ高いほど速くな るので、 硝化馴養集積にあっても同様、 高いほど速く進むであろうと考 えられていたが、 あにはからんや、 活性汚泥を原料とした硝化細菌の馴 養集積は、 溶存酸素 (DO) 5mgZリ ットルを超えるところぐらいか らそのスピードが低下することが分かった。 なお、 溶存酸素 (DO) 濃 度 2〜 4 m g Zリットルが最も好ましい。  It was thought that the higher the dissolved oxygen, the higher the rate of nitrification by nitrifying bacteria, and the higher the dissolved oxygen, the higher the rate of nitrification acclimation. It was found that the accumulating rate of nitrifying bacteria using sludge as raw material was reduced at a rate exceeding about 5 mgZ liter of dissolved oxygen (DO). The dissolved oxygen (DO) concentration is most preferably 2 to 4 mg Z liter.
また、 p Hは 7. 0〜 9. 0である必要があり、 (特に海水希釈の活 性汚泥を使用する場合) 7. 5〜8. 5が好ましく、 7. 5〜 7. 8力 更に好ましい。  Further, the pH must be 7.0 to 9.0, (especially when using activated sludge diluted with seawater), preferably 7.5 to 8.5, and more preferably 7.5 to 7.8. preferable.
培養温度に関しては、 20〜40°Cの範囲であれば増殖スピードが速 く、 2 5〜 3 5 °Cであればさらに好ましい。  Regarding the cultivation temperature, the growth speed is high in the range of 20 to 40 ° C, and more preferably 25 to 35 ° C.
なお、 培養の過程において、 p Hが低下するとともに、 アルカリ度が 減少する。 すなわち、 アンモエア酸化細菌による NH4 +の NO 2 -へ の酸化、 亜硝酸酸化細菌による NO 2 -の NO 3 -への酸化は次の In the course of the cultivation, the pH decreases and the alkalinity decreases. That is, the oxidation of NH4 + to NO 2-by the ammonia-oxidizing bacteria and the oxidation of NO 2-to NO 3-by the nitrite-oxidizing bacteria are as follows:
(A) (B) の 2式で示される。 なお、 式 (C) は、 硝化細菌全体とし ての式である。 (A) and (B). Equation (C) is an equation for the entire nitrifying bacteria.
(アンモニア酸化細菌)  (Ammonia oxidizing bacteria)
NH4+ + 1.5 02 → N02- + H2〇 + 2H+ …… (A) (亜硝酸酸化細菌)  NH4 + + 1.502 → N02- + H2〇 + 2H + …… (A) (Nitrite oxidizing bacteria)
N〇2一 + 0.5 02 → Νθ3一 (0N〇2 一 + 0.5 02 → Νθ3 一 ( 0 no
(混合系) (Mixed system)
ΝΗ4+ + 2.0 02 → Ν03- + Η2〇 + 2Η+ …… (C) これらより、 NH4— Nを Νθ 3— Nにまで酸化す.るのに 4. 57 m g O 2/m g NH4— Nの酸素を必要とし、 硝化反応の進行に伴い水素 イオンが放出されるため、 培養系の p Hが低下するとともにアル力リ度 が減少することが分かる。 p Hの低下に伴い培養速度が減少するため、 緩衝液などを使って p Hを所定値に保持しなければ、 従来法と同様、 微 生物の活動が停止してしまう。 ΝΗ4 + + 2.0 02 → Ν03- + Η2〇 + 2Η + …… (C) From these, 4.57 mg O 2 / mg NH4-N oxygen is required to oxidize NH4-N to Νθ3-N, and hydrogen ions are released as the nitrification reaction proceeds. It can be seen that as the pH of the culture system decreases, the degree of reaction decreases. Since the culture speed decreases with a decrease in pH, unless the pH is maintained at a predetermined value by using a buffer or the like, the activity of the microorganisms stops as in the conventional method.
そこで本発明では、 培養過程において酸性側に傾く p Hを、 正塩と酸 性塩とを混合物にして緩衝作用を備えたものが好適であると考え、 具体 的な化合物を見い出すべく、 多数の化合物による トライ · アンド .エラ 一を重ねた結果、 炭酸ナトリゥムと炭酸水素ナトリ ウムとの組み合わせ よりなる培養促進剤の投入によって p Hを復帰させることが最も好適で あることを見い出した。  Therefore, in the present invention, it is considered that a compound having a buffering effect by mixing a normal salt and an acid salt with pH, which is inclined toward the acidic side in the culture process, is suitable. As a result of repeated trial and error with the compounds, it was found that it is most preferable to restore pH by introducing a culture promoter composed of a combination of sodium carbonate and sodium hydrogencarbonate.
一般に、 細菌細胞の合成反応が次式で表現できることが知られている c  In general, it is known that the synthesis reaction of bacterial cells can be expressed by the following equation c
4C02 + HC03 + NH4+ + H20 → C5H7N02 + 502 4C02 + HC03 + NH4 + + H20 → C5H7N02 + 502
これを、 上記した混合培養系 (C) の生化学反応式に適用すると、 お よそ次のようになる。 If this is applied to the biochemical reaction formula of the mixed culture system (C) described above, it is roughly as follows.
ΝΗ4+ + 1.86 02 + 1.98 HC〇3 - → ΝΗ4 + + 1.86 02 + 1.98 HC〇3-→
0.021 C5H7N02 + 0.98 Νθ3- + 1.04 Η2θ + 1.88 H2C03  0.021 C5H7N02 + 0.98 Νθ3- + 1.04 Η2θ + 1.88 H2C03
上式から明らかなように、 硝化細菌の培養には、 エネルギー基質のァ ンモニゥムイオンと比較しても多量の炭素源が必要である。 As is clear from the above equation, culturing nitrifying bacteria requires a large amount of carbon source even when compared to the energy substrate, ammonium ion.
前述したように、 炭酸ナトリゥムと炭酸水素ナトリウムとの組み合わ せよりなる培養促進剤を供給することにより、 硝化細菌の炭酸同化のた めの炭素源を同時に供給することができる。 以下、 説明を加える。 As mentioned above, the combination of sodium carbonate and sodium bicarbonate By supplying a cultivation promoter consisting of a mixture, a carbon source for carbonic assimilation of nitrifying bacteria can be supplied at the same time. The explanation is added below.
炭酸ナトリウムのみを用いると、 当該炭酸ナトリ ゥムが強アル力リで あることからしても、 低下する p Hを上げる効果は充分に認められるが, P H上昇の効果が大きいために多量には使用できず、 充分な炭素源を供 給するには不向きな点がある。 他方、 炭酸水素ナトリウムのみを用いる 場合には、 無機炭素源としての供給という点では問題がないものの、 p Hを保持するという点では大量の供給が必要となり好ましくない。  When only sodium carbonate is used, the effect of increasing pH is sufficiently recognized even though the sodium carbonate is strong, but the effect of increasing pH is large, so that a large amount of sodium carbonate is used. They are unusable and unsuitable for providing sufficient carbon sources. On the other hand, when only sodium bicarbonate is used, there is no problem in terms of supply as an inorganic carbon source, but a large amount of supply is required in terms of maintaining pH, which is not preferable.
このような長短所に鑑み、 炭酸ナトリゥムと炭酸水素ナトリ ウムとの 混合物が好適に利用できる。 当該混合物の水溶液を用いることによって、 漸次低下していく p Hを一定に保ちつつ、 生体の炭酸同化のための無機 炭素源を有効に供給することが可能となった。  In view of such advantages and disadvantages, a mixture of sodium carbonate and sodium hydrogencarbonate can be suitably used. By using an aqueous solution of the mixture, it became possible to effectively supply an inorganic carbon source for assimilation of carbonic acid in a living body while maintaining a gradually decreasing pH.
前記混合物における炭酸ナトリゥムと炭酸水素ナトリゥムの配合割合 としては、 炭酸ナトリウム :炭酸水素ナトリウムが、 モル比で 1 : 4/ 7〜 1 7ノ 7であることが好適であり、 具体的には、 炭酸ナト'リウム 1 m o 1 /リ ツ トルに対し、 炭酸水素ナトリウムが 4 7 (0. 5 7 1 ···) m o 1 /リ ツ トル〜 1 7 "7 (2. 42 8 ·■·) m o 1 /リ ツ トルの 混合水溶液が効果的である。  The mixture ratio of sodium carbonate and sodium hydrogencarbonate in the mixture is preferably sodium carbonate: sodium hydrogencarbonate in a molar ratio of 1: 4/7 to 17-7, specifically, carbonic acid Sodium hydrogencarbonate is 4 7 (0.571) ... mo 1 / litre to 1 7 "7 (2.428 8 ■■) mo for 1 mo 1 / liter of sodium A 1 / litre mixed aqueous solution is effective.
なお、 培養系の pHの監視は、 連続的に行なってもよいし、 所定時間 ごとに行なってもよい。 p Hコントロー 一等の連続 P H監視装置を利 用することが好ましいが、 これに限らず、 フエノールレツ ド等の p H指 示薬を利用して手作業で行なうことも可能である。  The monitoring of the pH of the culture system may be performed continuously or at predetermined time intervals. It is preferable to use a continuous pH monitoring device such as a pH controller, but the present invention is not limited to this, and it is also possible to carry out manually by using a pH indicator such as phenol red.
NH 4— N含有液におけるアンモニアの濃度は 1 O OmgZリ ッ トル 以上であって 3 0 0 m gZリツ トル以下、 さらには 200mg/リ ット ル以下に抑えることが好ましい。 アンモニアは、 化学独立栄養細菌であ るアンモニア酸化細菌が炭酸同化を行って生育する際のエネルギー源で あるが、 過剰にあると、 むしろ生育 '増殖の阻害になる場合がある。 ま た、 アンモニア酸化細菌と同様に活性汚泥に含まれる亜硝酸酸化細菌は、 アンモニア酸化細菌によって生成した亜硝酸を引き継いで酸化する細菌 であるという割りには高い亜硝酸濃度に弱いため、 アンモニアの初期濃 度を無闇に高く設定することはできない。 従って、 アンモニアの濃度がThe concentration of ammonia in the NH 4 —N-containing liquid is preferably not less than 100 mgZ liter and not more than 300 mgZ liter, and more preferably not more than 200 mg / liter. Ammonia is an energy source for the growth of ammonia-oxidizing bacteria, which are chemoautotrophic bacteria, by assimilating carbon dioxide. There is, however, an excess may rather inhibit growth. In addition, nitrite oxidizing bacteria contained in activated sludge, like ammonia oxidizing bacteria, are weak against high nitrite concentrations, despite being oxidized by taking over nitrous acid produced by ammonia oxidizing bacteria. The initial concentration cannot be set unnecessarily high. Therefore, the concentration of ammonia
3 0 0 m g /リッ トルを超える場合には、 適宜、 海水あるいは淡水など で希釈することが好適である。 If it exceeds 300 mg / liter, it is preferable to appropriately dilute with seawater or fresh water.
なお、 N H 4— N含有液として、 水処理場内にて発生する汚泥脱水濾 液や消化脱離液などの汚泥処理廃液を利用することが好ましい。  As the NH 4 —N-containing liquid, it is preferable to use sludge treatment waste liquid such as sludge dewatered filtrate or digestion / desorption liquid generated in the water treatment plant.
上記した培養条件で、 活性汚泥を、 汚泥脱水濾液ゃ消化脱離液などの 汚泥処理廃液により硝化馴養することにより当該活性汚泥にわずかに含 まれる硝化細菌を高濃度に培養することができるわけであるが、 これに 加え、 本発明によれば、 活性汚泥を 2ヶ月で 1 Z 3〜 1 Z 4に減容する ことができ、 かつ比重の大きい硝化汚泥を得ることができる。  Under the above culture conditions, activated sludge is nitrified by sludge treatment wastewater such as sludge dewatered filtrate and digestion desorbent, so that nitrifying bacteria slightly contained in the activated sludge can be cultured at a high concentration. However, in addition to this, according to the present invention, the activated sludge can be reduced to 1Z3 to 1Z4 in 2 months, and nitrified sludge having a large specific gravity can be obtained.
すなわち、 そもそも活性汚泥中には硝化細菌が 0 . 3 5 ° /。程度含有す るといわれている。 このような活性汚泥を原料として N H 4— N含有液 により約 2ヶ月間、 活性汚泥を馴養集積することにより、 当該活性汚泥 中の硝化細菌の含有率が、 約 1 0倍 (3 . 5 % ) に増加する。 その過程 において、 他の雑菌は、 外部から栄養源 (エサ) が与えられないことか ら共食いし死滅していく。 そしてこの結果として、 活性汚泥が減量する c 雑菌がほとんど死に絶えると、 "グラニュー (粒) " と呼ばれる比重 の大きい難分解性有機物となり、 これを核として周囲に硝化細菌が取り 付く。 硝化細菌が取り付いた難分解性有機物は、 比重の大きさから培養 系において沈降する。 硝化細菌を高濃度に培養するには、 この沈降性の 良さが必要となる。 すなわち、 一般的にいって硝化細菌は比重が軽く、 純粋培養では浮遊してしまう。 そのため、 硝化細菌は培養系から流れ出 In other words, nitrifying bacteria are 0.35 ° / in the activated sludge. It is said to contain a certain amount. By accumulating activated sludge using such activated sludge as a raw material in an NH4-N-containing liquid for about two months, the content of nitrifying bacteria in the activated sludge can be increased by about 10 times (3.5%). ). In the process, other germs cannihilate and die because no external nutrients (feeds) are provided. As a result, when almost all of the c- bacteria that reduce the amount of activated sludge cease to die, they become highly refractory organic matter called "granules", which are attached to nitric bacteria around the core. Persistent organic matter attached to nitrifying bacteria sediments in the culture system due to its specific gravity. In order to culture nitrifying bacteria at a high concentration, this good sedimentation property is required. In other words, nitrifying bacteria generally have a low specific gravity and float in pure culture. Therefore, nitrifying bacteria flow out of the culture system.
12 てしまう可能性が高く、 高濃度培養は期待できない。 これにより、 高濃 度の培養には、 上記したような核 (難分解性有機物) の生成が必要にな るわけであるが、 核の生成は、 硝化細菌の純粋培養では見られず、 活性 汚泥を原料としたときにのみ見られる。 12 Therefore, high concentration culture cannot be expected. As a result, the production of nuclei (refractory organic substances) as described above is required for high-concentration culture, but nucleation is not seen in pure culture of nitrifying bacteria, and is not active. Only seen when sludge is used as raw material.
脱窒細菌の培養 (馴養) 条件  Culture (acclimation) of denitrifying bacteria
活性汚泥に含まれる脱窒細菌の培養は、 当該活性汚泥を、 所定期間 Cultivation of the denitrifying bacteria contained in the activated sludge is performed by subjecting the activated sludge to a predetermined period.
(例えば、 1ヶ月、 2ヶ月あるいは 3ヶ月) 、 NO 3— N含有液によつ て脱窒馴養することにより行われる。 (For example, 1 month, 2 months or 3 months), it is carried out by denitrification with NO3-N containing solution.
脱窒反応は、 NO 3—N含有液における NO 3 -中の分子状酸素を用 いて水素供与体としての有機エネルギー源 (後述する) を酸化する反応 である。 つまり、 脱窒反応は、 酸素の代わりに NO 3 -を最終の水素受 容体とする有機物酸化反応で、 下記式で示される。  The denitrification reaction is a reaction that oxidizes an organic energy source (described later) as a hydrogen donor using molecular oxygen in NO 3-in a NO 3 -N-containing liquid. In other words, the denitrification reaction is an organic oxidation reaction that uses NO 3-instead of oxygen as the final hydrogen acceptor, and is expressed by the following equation.
Νθ3 - + AH2 ,→ A + Η2θ + N2 Νθ3-+ AH2, → A + Η2θ + N2
したがって、 この脱窒馴養は嫌気的に行なう必要があるため、 溶存酸 素 (DO) は 2m gZリ ツトル以下、 好ましくは l mg /リツ トル以下. さらに好ましくは、 0. 5 m gZリッ トル以下とする (つまり、 硝酸呼 吸を行ない得る条件を作る必要がある) 。 Therefore, since the denitrification habit must be performed anaerobically, the dissolved oxygen (DO) is 2 mgZ liter or less, preferably lmg / liter or less. More preferably, 0.5 mg gZ liter or less. (That is, it is necessary to create conditions that allow nitric acid respiration).
p Hは 6. 0〜 9. 0の範囲内であればよいが、 どちらかといえば、 アルカリ側に傾いている方が好ましい。 具体的には P H 6 · 5〜 8. 5 が好ましく、 p H 7. 0〜8. 5がさらに好ましく、 ρ Η 7· 5〜 8. 5がさらに好ましい。  The pH may be in the range of 6.0 to 9.0, but if anything, it is preferable to be inclined toward the alkali side. Specifically, pH 6.5 to 8.5 is preferable, pH 7.0 to 8.5 is more preferable, and ρρ7.5 to 8.5 is more preferable.
培養温度としては、 1 0°C未満であれば急激に活性が低下することか ら、 1 0〜 4 0 °Cである必要があり、 1 5〜 30 °Cが好ましく、 2 5〜 3 0°Cがさらに好ましい。 NO 3— N含有液としては、 活性汚泥を原料とした硝化細菌の培養 (前項参照) を実施した際に生成する硝化馴養処理液を使用することが できる。 The cultivation temperature must be 10 to 40 ° C, since the activity is rapidly reduced if the temperature is lower than 10 ° C, preferably 15 to 30 ° C, and 25 to 30 ° C. ° C is more preferred. As the NO3-N-containing liquid, a nitrification acclimation treatment liquid generated when culturing nitrifying bacteria using activated sludge as a raw material (see the preceding section) can be used.
前述したように、 外部から水素供与体として、 また細胞合成の炭素源 として、 有機物を補填しなければならない。 このような外部有機物とし ては、 メタノールを使用することが、 より速い増殖スピードが得られる. 安価である、 入手が容易である、 という点で好ましい。 なお、 メタノー ルに代えて、 あるいはメタノールと併用して、 エタノールを用いること もできる。  As mentioned above, organic matter must be supplemented externally as a hydrogen donor and as a carbon source for cell synthesis. As such an external organic substance, the use of methanol is preferred because a higher growth speed can be obtained. It is preferable in that it is inexpensive and easily available. In addition, ethanol can be used instead of methanol or in combination with methanol.
メタノールおよび/またはェタノールの添加濃度としては特に限定は ないが、 メタノール換算で、 CH30H (mg/リ ッ トル) /NO 3— N (m gZリ ットル) が 3. 0以上となるようにすることが好ましい。 本発明によれば、 硝化細菌ゃ脱窒細菌の微生物菌体を高密度に定着し てなる細菌高密度吸着材を提供することができ、 この細菌高密度吸着材 を閉鎖循環式養殖おょぴ種苗生産システムに組み込むことにより、 飼育 水の浄化を極めて効率よく行なうことが可能となり、 さらには当該養殖 システムによって魚介類を育成することにより、 ウィルスに感染してい ない非常にピュア一で安全な魚介類を得ることができる。  The concentration of methanol and / or ethanol to be added is not particularly limited, but the concentration of CH30H (mg / liter) / NO3-N (mgZ liter) must be 3.0 or more in terms of methanol. Is preferred. According to the present invention, it is possible to provide a high-density bacterial adsorbent in which microbial cells of nitrifying bacteria and denitrifying bacteria are colonized at a high density. Incorporation into a seed and seedling production system makes it possible to purify breeding water extremely efficiently, and furthermore, by raising fish and shellfish using the aquaculture system, it is possible to obtain a very pure and safe fish and shellfish that is not infected by viruses. Kind can be obtained.
以下、 本発明の一実施例を挙げて説明するが、 本発明はこれによって 限定するものではない。  Hereinafter, an example of the present invention will be described, but the present invention is not limited thereto.
実施例 1  Example 1
(硝化細菌の高濃度培養 (硝化活性汚泥の製造) )  (High concentration culture of nitrifying bacteria (manufacture of activated nitrifying sludge))
図 1に示す f i l l a n d d r a w式培養槽 ( 3 0リ ッ トル) で 2 日サイクルの回分培養を行った。 すなわち、 海水希釈し尿汚泥、 及び 嫌気性消化脱離液 (NH4— Nの濃度が 1 0 Om gZリットルとなるよ うに海水希釈されている) を培養槽に入れ、 培養槽内温度をサーモスタ ッ トとヒータで 2 7 °Cとなるように、 また p Hを、 p Hコントローラー 及ぴ培養促進剤 ( 0. 5 m o 1 Zリツ トルの N a 2 C O 3及ぴ 1 m o 1 ノリ ッ トルの N a HCO 3からなる緩衝剤) により 7. 5〜8. 5に保 つように設定して培養を行った (初期の p Hが 8. 5以上の時は、 希硫 酸を加えて 8. 5以下に調整する) 。 また、 溶存酸素 (DO) 濃度が 4 m g/"リツ トルになるように散気球で曝気量を調節した。 Batch culture was performed in a 2-day cycle in a fillanddraw type culture tank (30 liters) shown in Fig. 1. That is, urine sludge diluted with seawater and anaerobic digestion / desorbed liquid (diluted in seawater so that the concentration of NH4-N is 10 OmgZl) are put into the culture tank, and the temperature in the culture tank is thermostated. The pH and the pH of the pH controller and culture promoter (Na 2 CO 3 at 0.5 mo 1 Z liter and 1 mo 1 liter) (Na HCO 3 buffer) was used to maintain the culture at 7.5 to 8.5 (when the initial pH was 8.5 or more, dilute sulfuric acid was added. 8.5 or less). The amount of aeration was adjusted with a baloon so that the dissolved oxygen (DO) concentration was 4 mg / "liter.
曝気開始 1 日後に終濃度が l O OmgZリッ トルとなるように再ぴ消 化脱離液を添加した。 また、 2 日目には曝気を止め、 1時間汚泥を沈殿 させ上澄液を除去した後、 消化脱離液を投入し、 曝気を再開するという 運転を繰り返した。  One day after the start of the aeration, the replenisher / desorbed solution was added so that the final concentration would be lOOmgZ liter. On the second day, the aeration was stopped, the sludge was settled for 1 hour, and the supernatant was removed. Then, the digestion / desorption solution was added, and the aeration was restarted.
元の海水希釈し尿汚泥の塩分濃度が海水比 8 0 %にあたるため、 馴養 は海水比 8 0 %から開始し、 l O Om g/リツ トルの NH4— Nが培養 1 日後に完全に NO 3—Nに硝化されるようになった段階で海水比を 1 00 %に上げた。  Since the salt concentration of the original seawater diluted urine sludge reaches 80% of the seawater ratio, the habituation starts from the seawater ratio of 80%, and lO Omg / liter of NH4—N is completely NO 3— after one day of culture. The seawater ratio was raised to 100% when nitration began to occur.
曝気開始後の数時間は NH4— N濃度が直線的に減少するため、 曝気 開始から、 0, 1, 2, 3, 4時間後の残存 NH 4— N濃度を測定し、 NH 4—N濃度が直線的に変化する区間の傾きから変化速度を求め、 こ れを ML S S濃度で除した値を硝化速度とした (下記式参照) 。  Since the NH4-N concentration decreases linearly for several hours after the start of aeration, the remaining NH4-N concentrations at 0, 1, 2, 3, and 4 hours after the start of aeration are measured, and the NH4-N concentration is measured. The rate of change was determined from the slope of the section where changes linearly, and the value obtained by dividing this by the MLSS concentration was used as the nitrification rate (see the following equation).
R d NH4— N 1 R d NH4— N 1
NH4-N = ' '  NH4-N = ''
d S  d S
ΡΐΝΗ4-Ν : Nh — N減少速度 (mg— NH4— NZg— MLSS · h r) ΡΐΝΗ4-Ν: Nh — N decrease rate (mg—NH4—NZg—MLSS · hr)
S : 汚泥 MLSS濃度 (gZリッ トル) 約 6 0 日間の海水馴養期間を経て馴養が完了した海水馴養硝化活性汚 泥 (AMNS) の S V 30、 S V Iを測定し、 沈降特性を調べるととも に、 光学顕微鏡を用いてフロック形成状況を観察した。 S: Sludge MLSS concentration (gZ litre) SV30 and SVI of seawater acclimated nitrifying activated sludge (AMNS) that had been acclimatized after a seawater acclimation period of about 60 days were measured, and sedimentation characteristics were examined. Next, the state of floc formation was observed using an optical microscope.
図 2のグラフに、 し尿汚泥の海水馴養過程を示す (図には、 濃度 1 0 Omg/リツ トルの NH 4— Nの 4時間後の濃度を示した) 。  The graph of Fig. 2 shows the process of acclimating human sludge to seawater (the figure shows the concentration of NH4-N at a concentration of 10 Omg / liter after 4 hours).
図 2のグラフから、 馴養開始 2ヶ月後には、 海水比 1 0 0 %で 1 00 ni g Zリツ トルの NH4— Nを 4時間でほぼ完全に硝化できる AMN S を調製することができることが分かる。 無機炭素源の不足による硝化活 性汚泥の損失を防ぐべく、 N a HC03と N a 2 C〇 3を組み合わせた 無機炭素源による p H調整を採用したが、 これにより、 馴養 2ヶ月後に は、 図 3に示すように、 AMN Sの ML S S濃度を馴養前と比べ 2倍に 増やすことができた。  From the graph in Fig. 2, it can be seen that two months after the start of acclimation, it is possible to prepare AMN S that can almost completely nitrify 100 nig Z liter of NH4-N at a seawater ratio of 100% in 4 hours. . In order to prevent the loss of nitrification activated sludge due to the shortage of inorganic carbon sources, pH adjustment using an inorganic carbon source combining NaHC03 and Na2C〇3 was adopted. As shown in Fig. 3, the MLSS concentration of AMNS could be doubled compared to that before acclimation.
AMN Sにおける硝化細菌の硝化速度を下記表に示す。  The nitrification rate of nitrifying bacteria in AMN S is shown in the table below.
[表 1 ]  [table 1 ]
Figure imgf000018_0001
Figure imgf000018_0001
※ 硝化速度の単位 : mg— NH4— NZg— MLSS · h r  * Unit of nitrification rate: mg—NH4—NZg—MLSS · hr
活性汚泥中の硝化細菌の存在率は約 0. 3 5 %であると報告されてい るが、 これから計算すると、 海水馴養硝化活性汚泥 (AMNS) 中の硝 化細菌が高い濃度 (約 3. 5 %) で存在しているものと推測される。 It is reported that the abundance of nitrifying bacteria in activated sludge is about 0.35%. From this calculation, it was found that nitrifying bacteria in seawater acclimated nitrifying activated sludge (AMNS) had a high concentration (about 3.5 %).
(菌体密度 : 1 09以上 ( c e 1 1 s /m 1 ) (Cell density: 1 09 or more (c e 1 1 s / m 1)
培養槽を静置させると、 細菌フロックが確認でき、 比重が海水より重 たいため大半の細菌フロックが沈澱する。 これは、 アンモニア酸化細菌 と亜硝酸酸化細菌の各菌それぞれの純粋培養では見られないが、 活性汚 泥を原料とした混合培養において現れるものである。 AMN Sのフロッ クを顕微鏡で観測した結果、 汚泥は直径 5 0〜 1 0 0 μ mのフロックか らなることが分かった。 また、 AMN Sを走査型電子顕微鏡 (S EM) で観測した結果、 汚泥フロック内部に 2 0〜 1 0 0 の糸状菌ゃ粘着 質物からなるグラニュールが含まれていることが分かった。 そして、 A MN Sの S V 3 0、 S V Iを求めたところ、 上記表 1に併記した通り、 9 %、 4 2. 6 となり、 沈降性に優れていることが分かった。 これによ り、 海水希釈のし尿処理場汚泥から、 海水中で (もちろん、 淡水中で も) 高い活性を持つ硝化活性汚泥を極めて短期間で大量生産できること が明らかとなった。 When the culture tank is allowed to stand, bacterial flocs can be confirmed, and most of the bacterial flocs precipitate because the specific gravity is heavier than seawater. This is not seen in the pure culture of each of the ammonia oxidizing bacteria and the nitrite oxidizing bacteria. It appears in mixed culture using mud as a raw material. Microscopic observation of the AMNS floc revealed that the sludge consisted of flocs of 50 to 100 µm in diameter. In addition, the observation of AMNS with a scanning electron microscope (SEM) revealed that the sludge floc contained granules consisting of 20 to 100 filamentous fungi-adhesives. Then, when SV30 and SVI of AMNS were determined, they were 9% and 42.6 as shown in Table 1 above, indicating that the sedimentation was excellent. From this, it was clarified that nitrification-activated sludge having high activity in seawater (and even in freshwater) can be mass-produced in a very short period of time from seawater-diluted human waste treatment plant sludge.
ァンモニァ酸化細菌と亜硝酸酸化細菌の個々の純粋培養と比較して、 活性汚泥を原料とした混合培養の長所は次のとおりである。  The advantages of mixed cultivation using activated sludge as compared with pure cultivation of individual ammonium oxidizing bacteria and nitrite oxidizing bacteria are as follows.
純粋培養系では、 エネルギー基質としてそれぞれアンモニア、 亜硝酸 が別個に必要であるが、 混合培養系ではエネルギー基質としてアンモニ ァだけ供給すれば済む。 また、 純粋培養系では、 菌体を高濃度に増殖す ることが極めて困難であるが、 混合培養系では培地を懸濁させる程度ま で増殖することが容易である。 これは、 アンモニア酸化細菌や亜硝酸酸 化細菌が同族内などではコロニーゃフロックを形成しないで、 浮遊生活 を送る生態に起因すると推察される。  In a pure culture system, ammonia and nitrite are separately required as energy substrates, but in a mixed culture system, only ammonia needs to be supplied as an energy substrate. In a pure culture system, it is extremely difficult to grow the cells at a high concentration, but in a mixed culture system, it is easy to grow to the extent that the medium is suspended. This is presumed to be due to the ecology of ammonia-oxidizing bacteria and nitrite-forming bacteria that do not form colonies and flocs within their cognate and live a floating life.
なお、 このようにして得た海洋性硝化細菌は独立行政法人産業技術総 合研究所に寄託されている (F ERM B P— 7 1 5 0, 日本国茨城県 つくば巿東 1丁目 1番地 1 中央第 6 [TE L : 0 2 9 8 - 6 1 - 6 0 2 9] 、 寄託日 : 2 0 00年 4月 2 7日、 識別表示: B I COM N i t r i f y i n g B a c t e r i a S WA Q S P— 7 8 ) 。  The marine nitrifying bacteria obtained in this way have been deposited at the National Institute of Advanced Industrial Science and Technology (FERM BP-7150, Tsukuba East 1-chome, Ibaraki, Japan 1-1-1 Central No. 6 [TEL: 0298-61-62029], Date of deposit: April 27, 2000, Identification: BI COM Nitrifying Bacteria S WA QSP—78).
実施例 2 (硫黄酸化細菌の培養)  Example 2 (Culture of sulfur oxidizing bacteria)
基本的には、 上記の硝化細菌の高濃度培養と同じ培養方法に従えばよ いので、 以下では簡単に述べる。 Basically, it is sufficient to follow the same culture method as for the high concentration culture of nitrifying bacteria described above. Therefore, a brief description is given below.
5リ ツ トルのビーカーに下水汚泥処理場返送汚泥を、 ML S S濃度が 1 3 0 0 m g ZLになるように入れ、 下記 [表 2] の硫黄酸化細菌培地 で 1 日サイクルの反復半回分制限操作法 (C F— ROM法) にて硫黄酸 化汚泥の馴養を行なった。 培養温度はヒーターとサーモスタツ トで 2 5 〜 2 7でに保温し、 p Hは、 N a HC O 3と N a 2 C O 3の混合液 (モ ル比で N a HC03 : N a 2 C03 = l . 0 : 0. 5) で 7. 0〜 7. 8の範囲内に調整した。  Put the sludge returned from the sewage sludge treatment plant in a 5-liter beaker so that the MLSS concentration becomes 1300 mg ZL, and use the sulfur-oxidizing bacterial medium shown in [Table 2] below to limit the amount of the repetitive half-day cycle. The oxidized sludge was acclimated by the operation method (CF-ROM method). The culture temperature was maintained at 25 to 27 with a heater and thermostat, and the pH was a mixture of NaHCO3 and Na2CO3 (NaHC03: Na2C03 = l. 0: 0.5) was adjusted within the range of 7.0 to 7.8.
その結果、 ML S S濃度を 6 0 0 0 m g ZLまで上昇させることがで きた。  As a result, the MLSS concentration could be increased to 600 mg ZL.
[表 2]  [Table 2]
Na2S203 - 5H20 1 g K2HP04 4 g ,Na2S203-5H20 1 g K2HP04 4 g,
KH2 Ρθ4 4 g NH4C 1 0. .5 gKH2 Ρθ4 4 g NH4C 10 .5 g
Mg S04 - 7Η2θ 0. 8 微量金属混合液 * 0 . 1ml 酵母エキス 300 m g 脱ィオン水 1 Vットル 微量金属混合液 * Mg S04-7Η2θ 0.8 trace metal mixture * 0.1 ml yeast extract 300 mg deionized water 1 V bottle trace metal mixture *
Z n S 04 70 Omg C o C.12 ·,6Η2θ 3 Om g Z n S 04 70 Omg C o C.12,6Η2θ 3 Om g
NaMo 2 - 2Η2θ 10 Omg KC 1 10 Om gNaMo 2-2Η2θ 10 Omg KC 1 10 Om g
Mn S 04 100 Omg KA1 (S04) 2 · 2H20 10 OingMn S 04 100 Omg KA1 (S04) 2 2H20 10 Oing
CuS04 - 7H20 5 Omg EDTA 975 mg 脱イオン水 1リットル CuS04-7H20 5 Omg EDTA 975 mg Deionized water 1 liter
得られた硫黄酸化細菌 (菌体密度 : 1 09以上 ( c e 1 1 s _ m 1 ) の硫黄酸化速度を測定した。 測定方法を以下に記載し、 結果を図 4に示 す。 The resulting sulfur-oxidizing bacteria (cell density:. 1 0 9 or more (measured sulfur oxidation rate of the ce 1 1 s _ m 1) The measurement method described below, shows the results in Figure 4.
方法:培地中の硫酸イオン濃度を経時的に測定し、 硫酸イオンが直線 的に変化する区間の傾きから、 硫酸イオンの変化速度を求め、 これを M L S S濃度で除した値を硫酸イオン生成速度とした (ML S S = 6 0 0 O m g/L) 。 その結果、 硫酸イオン生成速度 = 1 0 0m g/g · r 以上 (具体的には 1 6 0m gZ g ' h r ) という結果が得られた。 Method: Measure the sulfate ion concentration in the medium over time, and calculate the sulfate ion change rate from the slope of the section where the sulfate ion changes linearly. The value divided by the LSS concentration was defined as the sulfate ion generation rate (MLSS = 600 mg / L). As a result, a result was obtained in which the sulfate ion generation rate was 100 mg / g · r or more (specifically, 160 mgZg'hr).
なお、 このようにして得た硫黄酸化細菌を工業技術院生命工学工業技 術研究所の特許微生物寄託センターに寄託しようとしたところ、 受託拒 否された ( [微生物の識別表示: B I C OM S u l f u r B a c t e r i urn FWAQ] ) 。 ただし、 受託拒否された硫黄酸化細菌は、 下記の法人が保管しており、 第三者からの分譲申請を受ける体制をとつ ているが、 分譲請求に先立って、 微生物保管者との契約を締結する必要 がある。 微生物分讓契約書おょぴ微生物分譲申請書の請求も下記へ。 Attempts to deposit the sulfur-oxidizing bacteria obtained in this way at the Patented Microorganisms Depositary Center of the National Institute of Advanced Industrial Science and Technology were rejected ([Identification of microorganisms: BIC OM Sulfur B acteri urn FWAQ]). However, the sulfur-oxidizing bacteria that have been rejected are stored by the following corporations, and a system is in place to receive an application for sale from a third party. Must be concluded. The following is the request for the microbial distribution contract and the application for the microbial distribution application.
『株式会社パイコム、 大阪府豊中巿新千里東町 1丁目 4番 2号、 千里ラ ィフサイエンスセンター (〒 5 6 0— 0 0 8 2) 、 TE L : 0 6— 4 8 6 3— 7 5 0 0 (代) 』 。 “Pycom Co., Ltd., Toyonaka, Osaka Prefecture, 1-4-2, Shinsenri-Higashi-cho, Senri Life Science Center (〒 560-0-082), TEL: 06—4 8 6 3—75 0 0 (alternative)].
実施例 3  Example 3
(脱窒細菌の高濃度培養 (脱窒活性汚泥の製造) )  (High concentration culture of denitrifying bacteria (production of denitrification activated sludge))
図 5に示す f i l l a n d d r a w式培養槽で 2日サイクルの回 分培養を行った。  Batch culture was performed in a two-day cycle in a fililanddraw type culture tank shown in FIG.
すなわち、 脱窒槽に、 海水希釈を行なっているし尿処理場の活性汚泥 1 2リ ットノレを投入し、 のち海水で 2 0リッ トルに希釈した。 次いで、 硝化細菌の培養により発生した硝化馴養処理液 (NO 3— N含有液) 、 及ぴ NO 3— N濃度の 3倍濃度のメタノールを投入した。  In other words, 12 liters of activated sludge from a human wastewater treatment plant, which had been diluted with seawater, was placed in a denitrification tank, and then diluted with seawater to 20 liters. Next, a nitrification acclimation treatment solution (a solution containing NO 3 —N) generated by culturing nitrifying bacteria and methanol having a concentration three times the NO 3 —N concentration were added.
脱窒槽はサーモスタットとヒータで 2 7 °Cとなるように保温し、 かつ p Hコントローラーおよび塩酸あるいは硫酸により、 上昇する p Hが 7. 0〜 8. 5を保持するように設定した。 撹拌機によって 7 0 r p mの速 度で撹拌を行い、 2日目に 1時間汚泥を沈殿させ、 上澄液を除去した後- NO 3— N濃度の 3倍濃度のメタノールを含有する硝化馴養処理液を投 入し、 撹拌を再開した。 汚泥の元々の塩分濃度が海水比 7 5%にあるた め、 海水馴養は海水比 7 5 %から開始した。 The temperature of the denitrification tank was maintained at 27 ° C with a thermostat and a heater, and the rising pH was maintained at 7.0 to 8.5 with a pH controller and hydrochloric acid or sulfuric acid. Stir at 70 rpm with a stirrer, settle sludge for 1 hour on the second day, remove the supernatant, and then nitrate acclimation treatment containing methanol three times the concentration of -NO3-N Pour the liquid And stirring was resumed. Seawater acclimation started at a seawater ratio of 75% because the original salinity of the sludge was at a seawater ratio of 75%.
図 6に、 し尿処理場汚泥の海水馴養過程を示した。 図には、 初発 NO 3— N濃度、 培養 4時間後の残存 Νθ 3— N濃度、 海水比を示した。 N 03— N濃度 1 0 OmgZリツ トルが培養 1 日後に完全に脱窒されるよ うになった段階で海水比を 1 00 %に上げた。 馴養 1 0日後には、 1 0 Om g/リ ッ トルの Νθ 3— Nが培養 1 日後にほぼ脱窒除去されるよう になったので、 海水比を 1 00 %に上げ、 更に脱窒活性汚泥の活性と M L S S濃度を高めるため、 初発 NO 3— N濃度を 1 50 m g/リ ッ トル、 2 00 m g Zリツ トルに上げていった。  Fig. 6 shows the process of acclimating seawater to human waste treatment plant sludge. The figure shows the initial NO3-N concentration, the residual Νθ3-N concentration after 4 hours of culture, and the seawater ratio. The seawater ratio was increased to 100% when the N03-N concentration of 10 OmgZ liters was completely denitrified one day after culture. After 10 days of habituation, 10 Omg / liter of Νθ3-N was almost denitrified after 1 day of culture, so the seawater ratio was increased to 100% and the denitrification activity was further increased. To increase the sludge activity and MLSS concentration, the initial NO3-N concentration was increased to 150 mg / litre and 200 mg Z litre.
その結果、 海水馴養 2 5日以降には ( 1ヶ月以内で) 2 0 Om gノリ ッ トルの NO 3— Nを培養 4時間で脱窒除去できる海水馴養脱窒活性汚 泥 (AMD S) を調製することができた。 (菌体密度: 1 09以上 ( c e l l s /m 1 ) ) As a result, after 25 days of seawater acclimatization (within 1 month), seawater acclimated denitrification activated sludge (AMD S), which can denitrify and remove 20 Omg of NO3-N in 4 hours of culture, was developed. Could be prepared. (Cell density: 1 0 9 or (cells / m 1))
馴養前のし尿処理場汚泥の脱窒速度と AMD Sの脱窒速度を下記式に 基づいて算出し、 下記 [表 3] に示した。 撹拌開始数時間で NO 3—N が直線的に変化する区間の傾きから変化速度を求め、 それを汚泥濃度で 除した値を脱窒速度とした (下記式参照) 。  The denitrification rate of sludge from the night soil treatment plant and the denitrification rate of AMD S before habituation were calculated based on the following formula, and are shown in [Table 3] below. The rate of change was determined from the slope of the section where NO3-N changes linearly within a few hours after the start of stirring, and the value was divided by the sludge concentration to obtain the denitrification rate (see the following equation).
D H dN〇3— N D H dN〇3— N
N03-N =  N03-N =
d S h N03-N : Νθ3— N減少速度 (mg— Νθ3— NZg— MLSS · h r)  d S h N03-N: Νθ3— N decrease rate (mg— Νθ3— NZg— MLSS · hr)
S : 汚泥 MLS S濃度 (gZリツ卜ル) [表 3] S: Sludge MLS S concentration (gZ liter) [Table 3]
Figure imgf000023_0001
Figure imgf000023_0001
※ 脱窒速度の単位 : mg— N〇3— NZg— MLSS · h  * Unit of denitrification rate: mg—N〇3—NZg—MLSS · h
海水馴養 1ヶ月後には、 海水中で 1 6. 1 m g -NO 3 -N/ g一 M L S S · h rの脱窒活性を示す脱窒活性汚泥が調製できたことになる。 AMD Sの脱窒速度は下水処理などで報告されている比脱窒速度 (0. 04〜0. 0 8 g— N/ g— ML S S · d a y ) と比べると 1オーダー 高い値であり、 脱窒細菌が優占種になっていると考えられる。 One month after acclimation in seawater, a denitrification activated sludge having a denitrification activity of 16.1 mg-NO3-N / g-MLSS / hr in seawater was prepared. The denitrification rate of AMD S is one order of magnitude higher than the specific denitrification rate reported in sewage treatment (0.04 to 0.08 g—N / g—ML SS · day). It is thought that nitrifying bacteria have become the dominant species.
なお、 上記の脱窒活性は、 海水馴養 2ヶ月後には、 2 5111 £以上一 03— N/g— ML S S · h r となる。  The above-mentioned denitrification activity is more than 25 1111 £ -N-g-MLSS Shr after two months of acclimation in seawater.
AMD Sを走査型電子顕微鏡 (S EM) で観測したところ、 2 0〜 1 AMD S was observed with a scanning electron microscope (SEM).
0 0 μ mのグラニュールを形成していた。 また、 AMD Sのフロックを 光学顕微鏡で観測したところ、 汚泥中には直径 2 0〜 1 0 0 μ πιのフロ ックが多数存在していた。 AMD Sの S V I , SV 3 0は、 表 3に併記 した通り、 3 4. 4、 1 1 °/0で沈降特性も良好であった。 A granule of 00 μm was formed. When the flocs of AMDS were observed with an optical microscope, there were many flocs with a diameter of 20 to 100 μπι in the sludge. As shown in Table 3, SVI and SV30 of AMD S showed good sedimentation characteristics at 34.4 and 11 ° / 0 .
なお、 このようにして得た海洋性脱窒細菌を工業技術院生命工学工業 技術研究所の特許微生物寄託センターに寄託しようとしたところ、 受託 拒否された (受託拒否証明書入手済。 なお、 当該海洋性脱窒細菌 [微生 物の識別表示 : B I C OM D e n i t r i f y i n g B a c t e r An attempt was made to deposit the marine denitrifying bacteria obtained in this manner at the Patented Microorganisms Depositary Center of the National Institute of Advanced Industrial Science and Technology, and it was rejected (a rejection certificate was obtained. Marine denitrifying bacteria [Identification of microorganisms: BIC OM D enitrifying B acter
1 a S WAQ S P— 2 1 ] は、 下記の法人が保管しており、 第三者 からの分譲申請を受ける体制をとつているが、 分譲請求に先立って、 微 生物保管者との契約を締結する必要がある。 微生物分譲契約書おょぴ微 生物分譲申請書の請求も下記へ。 『株式会社バイコム、 大阪府豊中巿新 千里東町 1丁目 4番 2号、 千里ライフサイエンスセンター (〒 5 6 0— 00 8 2) 、 TE L : 06— 48 6 3— 7 5 0 0 (代) 』 。 1 a S WAQ SP— 2 1] is stored by the following corporation and The company has a system to receive an application for the sale of a microorganism, but it is necessary to conclude a contract with the microbiological custodian prior to the application for the sale. Microbial consignment contract request The request for microbial consignment application form is also below. "Bicom Co., Ltd., Toyonaka, Osaka Prefecture, Chisen Higashicho, 1-4-2, Senri Life Science Center (〒 560-00 82), TEL: 06-48 63-750 ].
実施例 4 ( a)  Example 4 (a)
(硝化細菌高密度吸着材の製造)  (Manufacture of high-density adsorbent for nitrifying bacteria)
不織布 (パイオフレックス (登録商標) 、 日本パイリーン社製、 サイ コロ状ろ材 1 L) を硝化細菌の培養槽 (ML S S= 6, 000 m g / L) に 24時間つけ (浸潤) 、 1分間水切り し、 これにより高濃度硝化 細菌が吸着基材に定着'してなる硝化細菌高密度吸着材を得た。  A non-woven fabric (Pyofrex (registered trademark), manufactured by Nippon Pyreen Co., Ltd., 1 L of dice-like filter medium) is placed in a nitrifying bacteria culture tank (ML SS = 6,000 mg / L) for 24 hours (infiltration), and drained for 1 minute. As a result, a high-density nitrifying bacteria adsorbent was obtained in which the high-concentration nitrifying bacteria were fixed on the adsorption substrate.
なお、 上記した不織布は、 4—ビニルピリジンとモノビュルモノマー とを共重合した後、 ハロゲン化物を作用させて得たビニル系共重合体を 基材に表面処理加工したものであり、 不織布を構成する繊維の種類は、 ポリエステル繊維であり、 繊度 22. 5デニール、 厚み 9mm、 目付 2 5 0 g /m 2である。  The nonwoven fabric described above is obtained by copolymerizing 4-vinylpyridine and a monobutyl monomer, and then subjecting a vinyl copolymer obtained by the action of a halide to a surface treatment on a base material. The type of fiber used is a polyester fiber with a fineness of 22.5 denier, a thickness of 9 mm, and a basis weight of 250 g / m 2.
実施例 4 ( b )  Example 4 (b)
' (脱窒細菌高密度吸着材、 硫黄酸化細菌高密度吸着材の製造)  '' (Manufacture of high-density adsorbent for denitrifying bacteria and sulfur-oxidizing bacteria)
なお、 説明は省略するが、 前述の如く人工培養した高濃度脱窒細菌お よび高密度硫黄酸化細菌に関しても、 硝化細菌と同様にして (実施例 4 (a) 参照) 、 不織布 (バイオフレックス (登録商標) 、 日本バイリー ン社製) の繊維表面に定着させ、 これにより脱窒細菌高密度吸着材、 及 ぴ硫黄酸化細菌高密度吸着材を得た。  Although the description is omitted, the high-density denitrifying bacteria and the high-density sulfur-oxidizing bacteria artificially cultured as described above are also treated in the same manner as the nitrifying bacteria (see Example 4 (a)), and the nonwoven fabric (Bioflex ( (Registered trademark) and Nippon Vilene Co., Ltd.) to obtain a high-density adsorbent for denitrifying bacteria and a high-density adsorbent for sulfur-oxidizing bacteria.
実施例 5  Example 5
各種吸着基材を使って、 微生物菌体の保持能力 (吸着量) を比較した, 測定条件は次の通りである。 すなわち、 使用した細菌は硝化細菌 (CGY培地で 1 0 Lジャーファ 一メ ンター培養液。 生菌数: 4. 1 X 1 09 ( c e l l sノ m 1 ) ) で あり、 生菌数測定の前処理に超音波処理装置 (カイジョー製、 CA— 4 4 8 8 Z、 3 8 KHZ) を使った。 The measurement conditions were as follows, comparing the retention capacity (adsorption amount) of microbial cells using various adsorption substrates. In other words, the bacteria used were nitrifying bacteria (a 10 L culture medium in CGY medium; viable cell count: 4.1 X 109 (cells no m 1)), which was used for pretreatment for viable cell count measurement. An ultrasonic treatment device (manufactured by Kaijo, CA—44488Z, 38KHZ) was used.
結果を下記 [表 4] に示す。  The results are shown in [Table 4] below.
[表 4]  [Table 4]
Figure imgf000025_0001
Figure imgf000025_0001
* 1 : (パイオフレックス (登録商標) 、 日本バイリーン社製)* 1: (Pioflex (registered trademark), manufactured by Japan Vilene Co., Ltd.)
* 2 : ビーズ (直径 3 mm) * 2: Beads (diameter 3 mm)
* 3 : ビーズ (直径 3 mm)  * 3: Beads (diameter 3 mm)
実施例 6  Example 6
(陸上閉鎖循環式養殖システム)  (Onshore closed circulation type aquaculture system)
本発明により得られた細菌高密度吸着材の利用例として、 陸上閉鎖循 環式養殖システムを図 7に基づいて説明する。 図に示すように、 人工海水 (飼育水) とともに魚介類、 例えばヒラメ. ォ-ォコゼ、 クルマエビなどの稚魚の多数を入れた飼育水槽 ( 1 ) から. 一定量の人工海水が沈殿槽 (2) に排出される。 この排出液にはアンモ ニァ性窒素 (NH4— N) が含まれる。 沈殿槽において、 固形分が沈殿 し、 上清み液がポンプによってマイクロスタリ一ユングフィルター (3) で濾され、 細かい固形物がここで取り除かれる。 As an example of using the bacterial high-density adsorbent obtained by the present invention, a land-based closed-circulation aquaculture system will be described with reference to FIG. As shown in the figure, from the breeding aquarium (1), which contains a large number of fish and shellfish, for example, larvae o-kokose and prawns, together with artificial seawater (breeding water). Is discharged. This effluent contains ammonia nitrogen (NH4-N). In the sedimentation tank, solids precipitate and the supernatant is filtered through a micro-staring filter (3) by a pump, where fine solids are removed.
前記フィルターを通過した人工海水は、 水位コントロール槽を兼ねた p Hコントロール槽 (4) に流れ、 ここで人工海水の p Hをおよそ 7. 7前後に保たれる。 この p H調整は、 p H薬液貯溜槽 ( 1 6) から薬液 がポンプによって pHコントロール槽 (4) に適宜流れる仕組みになつ ている。 なお、 この薬液の組成は、 本実施例では、 炭酸ナトリ ウムと炭 酸水素ナトリ ウムの混合物からなり、 そのモル比は、 例えば炭酸ナトリ ゥム :炭酸氷素ナトリウム = 0. 5 : 1. 0である。  The artificial seawater that has passed through the filter flows into a pH control tank (4) also serving as a water level control tank, where the pH of the artificial seawater is maintained at about 7.7. This pH adjustment has a mechanism in which a chemical solution flows from a pH chemical solution storage tank (16) to a pH control tank (4) by a pump as appropriate. In this example, the composition of this chemical solution is composed of a mixture of sodium carbonate and sodium hydrogen carbonate, and the molar ratio thereof is, for example, sodium carbonate: sodium hydrate carbonate = 0.5: 1.0. It is.
p H調整された人工海水は、 P Hコントロール槽 (4) から 2方向に 分かれて排出される。 そのうち一方は、 循環ポンプ (5) により、 冷房 暖房機 (8) と熱的に連結されたチタンチラ一 (7) 部を通って気液接 触槽 ( 9) .に流れ込む。 この気液接触槽 (9) には、 液体酸素槽 ( 1 4) からの液体酸素が供給され、 これにより人工海水中の溶存酸素量が 上昇する。 The artificial seawater whose pH has been adjusted is discharged in two directions from the PH control tank (4). One of them flows into the gas-liquid contact tank (9) through the titanium chiller (7), which is thermally connected to the air conditioner (8), by the circulation pump (5). The gas-liquid contact tank (9) is supplied with liquid oxygen from the liquid oxygen tank (14), which increases the amount of dissolved oxygen in the artificial seawater.
他方は、 循環ポンプ (6) により、 上記と同様、 冷房暖房機 (8) と 熱的に連結されたチタンチラ一 (7) 部を通ってオゾン 応槽 ( 1 0) に流れ込む。 このオゾン反応槽 (1 0) にはオゾンが供給され、 人工海 水が当該オゾンによって殺菌されるわけであるが、 このオゾンは、 酸素 発生器 ( 1 3) 由来の酸素をオゾン発生器 ( 1 2) によって変換された ものであるので、 ここでも溶存酸素量が若干ながら上昇する。 また、 こ のオゾン反応槽 ( 1 0) は、 泡抹分離機能を備えているので、 オゾン発 生の時に生じた泡を取り除くことができる。 泡沫分離機構は、 従来公知 の機構を採用することができる。 On the other hand, the water flows into the ozone tank (10) by the circulation pump (6) through the titanium chiller (7), which is thermally connected to the air conditioner (8), as described above. Ozone is supplied to the ozone reaction tank (10), and the artificial seawater is sterilized by the ozone. The ozone is supplied from the oxygen generator (13) by the ozone generator (1). Since it was converted by 2), the amount of dissolved oxygen also rises slightly here. The ozone reaction tank (10) has a foam separation function, so Bubbles generated when raw can be removed. As the foam separation mechanism, a conventionally known mechanism can be adopted.
気液接触槽 (9) およびオゾン反応槽 ( 1 0) を経由した人工海水は 各々、 微生物硝化反応槽 (1 1 ) に流れ込む。 なお、 本実施例では、 気 液接触槽 ( 9) を経由した人工海水が流れ込む微生物硝化反応槽 (1 1) と、 気液接触槽 (9) を経由した人工海水が流れ込む微生物硝化反 応槽 ( 1 1) の 2槽を設けたが、 これに限らず、 1槽の微生物硝化反応 槽 (1 1 ) でも構わない。  The artificial seawater via the gas-liquid contact tank (9) and the ozone reactor (10) flows into the microbial nitrification reactor (11), respectively. In this example, the microbial nitrification reaction tank (11) into which the artificial seawater flows through the gas-liquid contact tank (9) and the microbial nitrification reaction tank into which the artificial seawater flows through the gas-liquid contact tank (9) Although the two tanks (11) are provided, the present invention is not limited to this, and a single microbial nitrification reactor (11) may be used.
いずれにしろ、 この微生物硝化反応槽 (1 1 ) の内部には、 上記実施 例で得た硝化細菌高密度吸着材 (図示せず) の複数枚が積層状態で装着 されている。  In any case, inside the microbial nitrification reaction tank (11), a plurality of the nitrifying bacteria high-density adsorbents (not shown) obtained in the above example are mounted in a stacked state.
なお、 微生物硝化反応槽 ( 1 1 ) に向かう人工海水の一部が、 脱窒槽 ( 1 5) に流れるように配管されている。 脱窒槽 ( 1 5) の内部には、 微生物硝化反応槽 (1 1) と同様、 上記実施例で得た脱窒細菌高密度吸 着材 (図示せず) の複数枚が積層状態で装着されている。  A portion of the artificial seawater heading for the microbial nitrification reactor (11) is piped to flow to the denitrification tank (15). Inside the denitrification tank (15), similarly to the microbial nitrification reaction tank (11), a plurality of sheets of the high-density adsorbent for denitrifying bacteria (not shown) obtained in the above example are mounted in a stacked state. ing.
すなわち、 この閉鎖循環式養殖システムにおいて循環する人工海水を 一部取り出して脱窒槽 ( 1 5) に取り込み、 脱窒槽 ( 1 5) にて、 微生 物硝化反応槽 ( 1 1) によって生じた人工海水中の硝酸イオンを窒素ガ スに変換したのち、 当該人工海水を循環フローに戻すように構成されて いる。  In other words, part of the artificial seawater circulating in this closed-circulation type aquaculture system is taken out and taken into the denitrification tank (15), and the artificial seawater generated by the microbial nitrification reaction tank (11) is denitrated in the denitrification tank (15) After converting nitrate ions in the seawater to nitrogen gas, the artificial seawater is returned to the circulation flow.
要するに、 飼育水槽 (1 ) における魚介類の飼育 (養殖) によって発 生したアンモニア性窒素は、 硝化細菌高密度吸着材に定着した高濃度の 硝化細菌によって酸化されて硝酸性窒素に変わり、 硝酸性窒素は、 脱窒 細菌高密度吸着材に定着した高濃度に含まれる脱窒細菌によってさらに 酸化されて窒素ガスに変わる。 このように排水中の窒素化合物が窒素ガ スに変換された後、 再度、 飼育水槽 (1 ) に返送される。 なお、 脱窒槽 ( 1 5 ) に対し、 外部から水素供与体として、 また細胞 合成の炭素源として、 有機物を捕填しなければならない。 そのために、 本実施例にあっては、 図に示されているように、 メタノールを供給する ための貯留槽、 すなわちメタノール薬液貯留槽 (1 7 ) が設けられてい る。 メタノール薬液貯留槽 (1 7 ) から、 ポンプによって、 脱窒槽 (1 5 ) にメタノールが供給される。 そして、 当該脱窒槽 ( 1 5 ) は、 この 内部を撹拌するための、 脱窒槽撹拌ポンプ ( 1 8 ) を備えている。 In short, the ammoniacal nitrogen generated by breeding (farming) of fish and shellfish in the breeding aquarium (1) is oxidized by nitrifying bacteria at a high concentration fixed on the nitrifying bacteria high-density adsorbent to be converted to nitrate nitrogen, Nitrogen is further oxidized to nitrogen gas by the denitrifying bacteria contained in the high concentration of the denitrifying bacteria high-density adsorbent. After the nitrogen compounds in the wastewater have been converted to nitrogen gas in this way, they are returned to the rearing tank (1) again. The denitrification tank (15) must capture organic matter from the outside as a hydrogen donor and as a carbon source for cell synthesis. For this purpose, in the present embodiment, as shown in the figure, a storage tank for supplying methanol, that is, a methanol chemical storage tank (17) is provided. Methanol is supplied from the methanol chemical storage tank (17) to the denitrification tank (15) by a pump. The denitrification tank (15) is provided with a denitrification tank stirring pump (18) for stirring the inside.
本実施例における陸上閉鎖循環式養殖システムにあっては、 工場のよ. うな室内で、 飼育水の温度、 溶存酸素、 p H、 照度、 水流など、 あらゆ る環境条件をコンピュータによつて制御管理することができるので、 人 手がかからず、 飼育費.も安くなるため、 生産コス トを減少させることが できる。 それのみならず、 人工海水を海洋から継続的あるいは断続的に 飼育水槽に汲み上げる必要はないので、 ウィルス等の病原菌が侵入する といった心配が無く、 また、 飼育水を排出する必要がないので、 海洋汚 染をひき起こすといった心配も無い。 すなわち、 従来行なわれていた養 殖は、 海洋から海水を汲み上げて飼育水槽の中に投入しているので、 常 に養魚が海洋中のウィルスに感染するおそれがあった。 しかしながら、 本実施例の養殖システムにあっては、 飼育水を循環させて使っているの で、 ウィルスが侵入する心配はない。  In the closed land circulation type aquaculture system in this example, all environmental conditions such as breeding water temperature, dissolved oxygen, pH, illuminance, and water flow are controlled by a computer in a room such as a factory. Since it can be managed, labor is not required and breeding costs are low, so production costs can be reduced. In addition, there is no need to continuously or intermittently pump artificial seawater from the ocean into the breeding aquarium, so there is no need to worry about invasion of pathogens such as viruses, and there is no need to discharge breeding water. There is no need to worry about causing contamination. In other words, the conventional culture involves pumping seawater from the ocean and putting it into a breeding aquarium, so there was always a risk that the farmed fish would be infected by viruses in the ocean. However, in the aquaculture system of the present embodiment, since the breeding water is circulated and used, there is no fear of virus invasion.
従って、 本発明の陸上閉鎖循環式養殖システムによって得られた魚介 類は、 非常にピュア一であり、 いままで地球上には存在し得なかった安 全な魚介類であると言える。  Therefore, the seafood obtained by the on-shore closed circulation type aquaculture system of the present invention is very pure, and it can be said that it is a safe seafood that could not exist on the earth until now.
また、 本発明の陸上閉鎖循環式養殖システムは、 前述したように、 炭 酸ナトリゥムと炭酸水素ナトリゥ.ムの混合物からなる薬液を飼育水槽に 添加することができる p H薬液貯溜槽 ( 1 6 ) を備えている。 これによ つて、 循環水の p H調整が可能となるというのみならず、 当該薬液が硝 化細菌の炭素源となることから、 硝化細菌高密度吸着材における硝化細 菌を増殖させることができるという一石二鳥の効果を奏し、 例えば、 飼 育水槽内において魚介類の成長に伴ってアンモニア濃度が増加しても、 前記硝化細菌高密度吸着材の投入量を増やす必要はなく、 また一過性で アンモニア濃度が増加しても、 既に投入されている硝化細菌高密度吸着 材で充分対応することができる。 Further, as described above, the land-based closed-circulation aquaculture system of the present invention provides a pH chemical solution storage tank (16) capable of adding a chemical solution comprising a mixture of sodium carbonate and sodium hydrogencarbonate to a breeding aquarium. It has. This not only makes it possible to adjust the pH of the circulating water, but also makes the chemical Since it becomes a carbon source for nitrifying bacteria, it has the effect of two birds with one stone that nitrifying bacteria can grow on the high-density adsorbent for nitrifying bacteria.For example, in the breeding aquarium, the ammonia concentration increases with the growth of fish and shellfish. Even if it increases, it is not necessary to increase the amount of the nitrifying bacteria high-density adsorbent, and even if the ammonia concentration increases transiently, the already-supplied nitrifying bacteria high-density adsorbent should be sufficient. Can be.
実施例 7  Example 7
上記閉鎖循環式養殖システムにおける微生物硝化反応槽 ( 1 1 ) 内の 硝化細菌の温度の影饗による NH 4—H濃度の変化を測定した。  The change in NH4-H concentration due to the temperature of nitrifying bacteria in the microbial nitrification reactor (11) in the closed circulation type culture system was measured.
結果を下記 [表 5] に示す。  The results are shown in [Table 5] below.
C"5 ] (単位: mgZL) C " 5] (Unit: mgZL)
Figure imgf000029_0002
Figure imgf000029_0002
Figure imgf000029_0001
Figure imgf000029_0001
p Hを 8.0に保つように調節した c  adjusted to keep pH at 8.0 c
[表 5] から分かるように、 本発明の養殖システムに使われている硝 化細菌は 1 0°Cという低温でも、 l mg/g · h r以上という硝化速度 を達成でき、 菌体の特性として、 非常に能力に優れた菌であることがわ かる。 As can be seen from [Table 5], the nitrifying bacteria used in the culture system of the present invention can achieve a nitrification rate of lmg / g · hr or more even at a low temperature of 10 ° C. It is a very good fungus Call
実施例 8  Example 8
(陸上閉鎖循環式種苗生産システム)  (Onshore closed circulation seedling production system)
飼育水槽 ( 1) の中に稚魚を入れる代わりに、 ォニォコゼの受精卵 6 万粒を投入したこと、 及ぴ以下に述べること以外は、 実施例 6 と同様に して、 種苗生産 (受精卵から稚魚への育成) を行った。  Instead of putting fry in the breeding aquarium (1), 60,000 fermented eggs of Onyokoze were thrown in, and except as described below, seedling production (from fertilized eggs) Fry rearing).
すなわち、 飼育水温は、 受精卵収容時からふ化までは 2 3°C〜 2 3. 5°Cを保持し、 ふ化後は 24°C〜2 6 °Cの値を保持した。  That is, the breeding water temperature was maintained at 23 ° C to 23.5 ° C from fertilized egg storage to hatching, and was maintained at 24 ° C to 26 ° C after hatching.
ふ化仔魚は、 ふ化後 2日目に開口し、 摂餌が可能となった。 餌料は、 ヮムシ (濃縮ナンノクロロブシス [濃縮ナンノ] と P S B (宝酒造 k. k . 製) で 2 4時間培養したもの) 、 アルテミア幼生 (マリ ン α [日清 サイエンス k . k. 製] と P S B [宝酒造 k. k. 製] で 24時間培養 したもの) および配合飼料 (ヒラメ用配合飼料、 S— 1および S— 2 [ヒガシマル k. k. 製] ) を用いた。 また、 ヮムシ給餌期問中は飼育 水に濃縮ナンノを毎朝 250 m l添加した。 The hatched larva opened on the second day after hatching and was ready for feeding. The feeds were pemushi (concentrated nannochlorobsis [concentrated nanno] and cultured for 24 hours in PSB (manufactured by Takara Shuzo KK)), Artemia larvae (Marin α [manufactured by Nisshin Science KK]) and PSB [Takara Shuzo kk's cultured for 24 hours] and mixed feed (mixed feed for flounder, S-1 and S-2 [Higashimaru kk]) were used. In addition, during the feeding period of the deer, 250 ml of concentrated Nanno was added to the breeding water every morning.
1 0日目にはアルテミア幼生を給餌すると摂餌を確認することができ た。 ふ化後 1 6 日目には体表に黄色の色素が出現し始め、 1 8 日目には 着底する個体が認められた。 3 0日目には平均全長が 1 5 mmに成長し. この時点での取り揚げ尾数は 1 5 , 000尾、 ふ化仔魚からの生残率は 3 0. 0 %であった。  Feeding Artemia larvae on day 10 confirmed feeding. On the 16th day after hatching, yellow pigment began to appear on the body surface, and on the 18th day, some individuals settled. On day 30, the average total length grew to 15 mm. At this time, the number of picked fish was 15,000, and the survival rate from hatched larvae was 30.0%.
このようにして種苗生産して得たふ化仔魚を、 さらに本発明の養殖シ ステム (実施例 6参照) により成魚まで育成することにより、 1 00 % ピュアな (ウィルスなどの病原性微生物に全く感染していない) 極めて 安全な魚介類を得ることができる。 [寄託された生物材料への言及] The hatched larvae obtained by producing seeds and seedlings in this manner are further grown to adult fish by the aquaculture system of the present invention (see Example 6), so that they can be completely infected with 100% pure (pathogenic microorganisms such as viruses). No) Very safe seafood can be obtained. [Reference to deposited biological material]
① 寄託機関の名称: ① Name of the depositary institution:
独立行政法人産業技術総合研究所 特許生物寄託センター (旧寄託機関の名称:  National Institute of Advanced Industrial Science and Technology (AIST) Patent Organism Depositary Center (former depository name:
通商産業省工業技術院 生命工学工業技術研究所)  Ministry of International Trade and Industry, Institute of Industrial Technology, Institute of Biotechnology and Industrial Technology)
あて先:郵便番号 305— 8 5 6 6  Address: Postal code 305—8 5 6 6
日本国茨城県つくば市東 1丁目 1番地 1 中央第 6 ( 旧あて先: 日本茨城県つくば巿東 1丁目 1番地 3 ) TE L : 0 2 9 8 - 6 1 - 60 2 9  1-1-1, Higashi, Tsukuba, Ibaraki, Japan 1 Chuo No. 6 (former destination: 1-1-1, Tsukuba-Higashi, Ibaraki, Japan 3) TE L: 0 2 9 8-6 1-60 2 9
② 寄託日 : 2 0 00年 4月 2 7日  ② Deposit date: April 27, 2000
③ 受託番号: F ERM B P— 7 1 5 0  ③ Accession number: F ERM B P— 7 1 5 0

Claims

請求の 範囲 The scope of the claims
1. 吸着基材に多数の微生物菌体が定着されてなる細菌高密度吸着材で あって、 1. A high-density bacterial adsorbent in which a large number of microbial cells are established on an adsorbent substrate.
前記微生物菌体が、 各々高密度培養した硝化細菌あるいは硫黄酸化 細菌であることを特徴とする細菌高密度吸着材。  A high-density bacterial adsorbent, wherein the microbial cells are nitrifying bacteria or sulfur-oxidizing bacteria, each of which is cultured at high density.
2. 前記硝化細菌または硫黄酸化細菌が、 1 09 ( c e l l s /m l ) 以上の高密度細菌であることを特徴とする請求項 1記載の細菌高密度 吸着材。  2. The high-density bacterial adsorbent according to claim 1, wherein the nitrifying bacteria or sulfur-oxidizing bacteria are high-density bacteria of 109 (ceIls / ml) or more.
3. 前記硝化細菌の水温 1 0°Cにおける硝化速度が 1. O Om gZ g - h r以上であることを特徴とする請求項 1記載の細菌高密度吸着材。 3. The high-density bacterial adsorbent according to claim 1, wherein the nitrification rate of the nitrifying bacteria at a water temperature of 10 ° C. is not less than 1. O Om gZ g-hr.
4. 吸着基材に多数の微生物菌体が定着されてなる細菌高密度吸着材で あって、 4. A high-density bacterial adsorbent in which a large number of microbial cells are established on the adsorbent substrate.
前記微生物菌体が硝化細菌であり、  The microbial cells are nitrifying bacteria,
前記硝化細菌が、 下水汚泥やし尿汚泥等の活性汚泥を、 溶存酸素 2 m gZリ ッ トル以上、 p H 7. 0〜 9. 0、 温度 2 0〜40°Cの条 件下において所定期間、 NH4— N含有液により硝化馴養するととも に、 馴養過程において酸性側に傾く培地の p Hを、 炭酸ナトリウムと 炭酸水素ナトリゥムの混合物よりなる培養促進剤の投入によって前記 した範囲内に常時維持することにより当該活性汚泥に含まれる硝化細 菌を馴養集積せしめてなる高密度の硝化細菌であることを特徴とする 細菌高密度吸着材。  The nitrifying bacterium converts activated sludge such as sewage sludge and night soil sludge into dissolved oxygen for at least 2 mgZ liter, pH 7.0 to 9.0, and temperature of 20 to 40 ° C for a predetermined period. And nitrification with an NH4-N-containing solution, and the pH of the medium, which leans toward the acidic side during the acclimation process, is always maintained within the above range by introducing a culture promoter comprising a mixture of sodium carbonate and sodium hydrogen carbonate. A high-density bacterial adsorbent characterized by being a high-density nitrifying bacterium obtained by acclimatizing and accumulating nitrifying bacteria contained in the activated sludge.
5. バインダーを介して吸着基材に多数の微生物菌体が定着されてなり 前記バインダーが、 水に不溶か難溶で、 かつ有機溶媒に可溶である ポリ ビュルピリジユウムハライ ドであることを特徴とする請求項 1〜 4のいずれか 1項記載の細菌高密度吸着材。 5. A large number of microbial cells are fixed on the adsorption substrate via a binder, and the binder is a polybutylpyridinium halide that is insoluble or hardly soluble in water and soluble in an organic solvent. The high-density bacterial adsorbent according to any one of claims 1 to 4, characterized in that:
6. 前記吸着基材が不織布であることを特徴とする請求項 1〜 5のいず れか 1項に記載の細菌高密度吸着材。 6. The high-density bacterial adsorbent according to any one of claims 1 to 5, wherein the adsorption substrate is a nonwoven fabric.
7. 吸着基材に多数の微生物菌体が定着されてなる細菌高密度吸着材で あって、  7. A high-density bacterial adsorbent in which a large number of microbial cells are established on the adsorbent substrate.
前記微生物菌体が、 高密度培養した脱窒細菌であることを特徴とす る細菌高密度吸着材。  A high-density bacterial adsorbent, wherein the microbial cells are denitrified bacteria cultured at high density.
8. 前記脱窒細菌が、 1 0 9 ( c e l l s /m 1 ) 以上の高密度の脱窒 細菌であることを特徴とする請求項 7記載の細菌高密度吸着材。  8. The high-density bacterial adsorbent according to claim 7, wherein the denitrifying bacterium is a high-density denitrifying bacterium of not less than 109 (cells / m 1).
9. 吸着基材に多数の微生物菌体が定着されてなる細菌高密度吸着材で あって、  9. A high-density bacterial adsorbent in which a large number of microbial cells are established on the adsorbent substrate.
前記微生物菌体が脱窒細菌であり、  The microorganism cells are denitrifying bacteria,
前記脱窒細菌が、 下水汚泥やし尿汚泥等の活性汚泥を、 溶存酸素 2 m g Zリッ トル以下、 p H 6. 0〜 9. 0、 温度 1 0〜 4 0 °C、 外部炭素源として ROH (Rは、 CH 3—及び/又は C 2H 5— ) を 存在させた条件下において所定時間、 NO 3 _N含有液によって脱窒 馴養することにより当該活性汚泥に含まれる脱窒細菌を馴養集積せし めてなる高密度の脱窒細菌であることを特徴とする細菌高密度吸着材: The denitrifying bacteria convert activated sludge such as sewage sludge and night soil sludge into dissolved oxygen of 2 mg or less at Z liter, pH 6.0 to 9.0, temperature of 10 to 40 ° C, and ROH as an external carbon source. (R is CH 3− and / or C 2H 5−) in the presence of NO 3 _N-containing solution for a predetermined period of time under denitrification and acclimation to accumulate denitrification bacteria contained in the activated sludge. Bacterial high-density adsorbent characterized by being a high-density denitrifying bacterium:
1 0. バインダーを介して吸着基材に多数の微生物菌体が定着されてな りヽ 10. A large number of microbial cells have been established on the adsorption substrate via the binder.
前記バインダーが、 水に不溶か難溶で、 かつ有機溶媒に可溶である ポリビュルピリジニゥムハライ ドであることを特徴とする請求項 7〜 9のいずれか 1項記載の細菌高密度吸着材。  The high-density bacterial bacterium according to any one of claims 7 to 9, wherein the binder is a polybutylpyridinium halide that is insoluble or hardly soluble in water, and is soluble in an organic solvent. Adsorbent.
1 1. 前記吸着基材が不織布であることを特徴とする請求項 7〜 1 0の いずれか 1項記載の細菌高密度吸着材。  1 1. The high-density bacterial adsorbent according to any one of claims 7 to 10, wherein the adsorption substrate is a nonwoven fabric.
1 2. 飼育水槽部と、 p Hコントロール部と、 溶存酸素を高めるための 酸素供給部と、 硝化反応槽部とを少なく とも具備し、 前記飼育水槽か ら排出された飼育水が、 前記 p Hコン トロール部、 酸素供給部、 及び 硝化反応槽部を経由することによって浄化され、 再び飼育水槽に返送 されるように構成された閉鎖循環式養殖および種苗生産システムであ つて、 1 2. A breeding aquarium unit, a pH control unit, an oxygen supply unit for increasing dissolved oxygen, and a nitrification reaction tank unit are provided at least. Closed-circulation culture and seedling constructed so that the breeding water discharged from the breeding water is purified by passing through the pH control part, the oxygen supply part, and the nitrification reaction tank part, and is returned to the breeding water tank again. Production system
前記硝化反応槽部内には、 請求項 1〜 6のいずれか 1項に記載の細 菌高密度吸着材が装着されてなることを特徴とする閉鎖循環式養殖お よび種苗生産システム。  A closed-circulation aquaculture and seed production system, wherein the high-density bacterial adsorbent according to any one of claims 1 to 6 is mounted in the nitrification reaction tank section.
3 . 請求項 12記載の閉鎖循環式養殖および種苗生産システムにおいて、 前記 p Hコントロール部における飼育水の p H調整が、 炭酸ナトリ ゥムと炭酸水素ナトリ ゥムの混合物よりなる薬液によって行われるベ く、 前記 p Hコントロール部と直結した薬液貯溜槽が設けられ、 これにより、 前記薬液が硝化細菌の炭素源となることから、 細菌高 密度吸着材における硝化細菌を増殖せしめ、 飼育水槽内においてアン モ-ァ濃度が増加しても前記細菌高密度吸着材の増加が不要であるこ とを特徴とする閉鎖循環式養殖およぴ種苗生産システム。3. The closed-circulation type culture and seed production system according to claim 12, wherein the pH of the breeding water in the pH control unit is adjusted by a chemical solution comprising a mixture of sodium carbonate and sodium bicarbonate. In addition, a chemical solution storage tank directly connected to the pH control unit is provided, so that the chemical solution serves as a carbon source for nitrifying bacteria. A closed circulation type aquaculture and seed and seedling production system, characterized in that it is not necessary to increase the bacterial high-density adsorbent even when the molar concentration increases.
4 . 飼育水槽部と、 p Hコントロール部と、 溶存酸素を高めるための 酸素供給部と、 硝化反応槽部と、 脱窒槽部とを少なく とも具備し、 前 記飼育水槽から排出された飼育水が、 前記 p Hコン トロール部、 酸素 供給部、 硝化反応槽部、 及び脱窒槽部を経由することによって浄化さ れ、 再び飼育水槽に返送されるように構成された閉鎖循環式養殖およ ぴ種苗生産システムであって、 4. The breeding water discharged from the breeding aquarium is provided with at least a breeding aquarium, a pH control unit, an oxygen supply unit for increasing dissolved oxygen, a nitrification reaction tank, and a denitrification tank. Is purified by passing through the pH control unit, the oxygen supply unit, the nitrification reaction tank unit, and the denitrification tank unit, and is returned to the breeding aquarium again. A seedling production system,
前記脱窒槽部内には、 請求項 7〜 1 1のいずれか 1項に記載の細菌 高密度吸着材が装着されてなることを特徴とする閉鎖循環式養殖およ ぴ種苗生産システム。  12. A closed circulation type aquaculture and seed / seedling production system, wherein the denitrification tank is equipped with the high-density bacterial adsorbent according to any one of claims 7 to 11.
5 . 請求項 1 2〜 1 4のいずれか 1項記載の閉鎖循環式養殖および種 苗生産システムによって育成されたことを特徴とする魚介類。  5. A fish or shellfish that has been raised by the closed-circulation-type aquaculture and seedling production system according to any one of claims 12 to 14.
PCT/JP2001/010412 2000-12-08 2001-11-28 High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system WO2002046104A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002547848A JPWO2002046104A1 (en) 2000-12-08 2001-11-28 Bacterial high-density adsorbent, closed-circulation aquaculture and seedling production system incorporating the same, and fish and shellfish grown by the system
AU2002224123A AU2002224123A1 (en) 2000-12-08 2001-11-28 High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000375318 2000-12-08
JP2000-375318 2000-12-08

Publications (1)

Publication Number Publication Date
WO2002046104A1 true WO2002046104A1 (en) 2002-06-13

Family

ID=18844344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010412 WO2002046104A1 (en) 2000-12-08 2001-11-28 High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system

Country Status (3)

Country Link
JP (1) JPWO2002046104A1 (en)
AU (1) AU2002224123A1 (en)
WO (1) WO2002046104A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167471A (en) * 2002-11-05 2004-06-17 Nippon Steel Chem Co Ltd Water treatment material, nitrate nitrogen treating material, and its production method
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP2012206017A (en) * 2011-03-29 2012-10-25 Kubota Kankyo Service Kk Method and apparatus for treating wastewater
JP2016077267A (en) * 2014-10-22 2016-05-16 Jfeエンジニアリング株式会社 Land rearing device of tuna
JP2017108741A (en) * 2015-12-16 2017-06-22 アクアサービス株式会社 Microorganism powder preparations and production methods thereof, as well as liquid compositions containing microorganism powder preparation, soil improving methods and water quality improving methods
EP3366124A1 (en) * 2017-12-21 2018-08-29 Kitashin, Jurii Stabilization installation of the ph value of water of the ammonium nitrogen removal unit from the wash water of zeolite filters
JP2019180292A (en) * 2018-04-10 2019-10-24 株式会社環境技術研究所 Denitrification apparatus and denitrification method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181938A (en) * 1987-01-22 1988-07-27 株式会社イナックス Water recirculation type breeding method
JPH0440842A (en) * 1990-06-07 1992-02-12 Kenji Yoneda Filtration device
JPH05253588A (en) * 1992-03-16 1993-10-05 Japan Vilene Co Ltd Method and apparatus for purifying water
JPH06320182A (en) * 1993-03-18 1994-11-22 B Bai B:Kk Denitrification of hydrosphere
JPH07155593A (en) * 1993-12-03 1995-06-20 Japan Vilene Co Ltd Microorganism adsorbent and treatment of water using the same
JPH11123034A (en) * 1997-10-22 1999-05-11 Mitsubishi Heavy Ind Ltd Aquatic life-rearing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181938A (en) * 1987-01-22 1988-07-27 株式会社イナックス Water recirculation type breeding method
JPH0440842A (en) * 1990-06-07 1992-02-12 Kenji Yoneda Filtration device
JPH05253588A (en) * 1992-03-16 1993-10-05 Japan Vilene Co Ltd Method and apparatus for purifying water
JPH06320182A (en) * 1993-03-18 1994-11-22 B Bai B:Kk Denitrification of hydrosphere
JPH07155593A (en) * 1993-12-03 1995-06-20 Japan Vilene Co Ltd Microorganism adsorbent and treatment of water using the same
JPH11123034A (en) * 1997-10-22 1999-05-11 Mitsubishi Heavy Ind Ltd Aquatic life-rearing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167471A (en) * 2002-11-05 2004-06-17 Nippon Steel Chem Co Ltd Water treatment material, nitrate nitrogen treating material, and its production method
JP4545408B2 (en) * 2002-11-05 2010-09-15 新日鐵化学株式会社 Water treatment material, nitrate nitrogen treatment material and production method thereof
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP4493927B2 (en) * 2003-04-28 2010-06-30 新日鐵化学株式会社 Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP2012206017A (en) * 2011-03-29 2012-10-25 Kubota Kankyo Service Kk Method and apparatus for treating wastewater
JP2016077267A (en) * 2014-10-22 2016-05-16 Jfeエンジニアリング株式会社 Land rearing device of tuna
JP2017108741A (en) * 2015-12-16 2017-06-22 アクアサービス株式会社 Microorganism powder preparations and production methods thereof, as well as liquid compositions containing microorganism powder preparation, soil improving methods and water quality improving methods
EP3366124A1 (en) * 2017-12-21 2018-08-29 Kitashin, Jurii Stabilization installation of the ph value of water of the ammonium nitrogen removal unit from the wash water of zeolite filters
JP2019180292A (en) * 2018-04-10 2019-10-24 株式会社環境技術研究所 Denitrification apparatus and denitrification method
JP7036655B2 (en) 2018-04-10 2022-03-15 株式会社環境技術研究所 Denitrification device and denitrification method
JP2022066374A (en) * 2018-04-10 2022-04-28 株式会社環境技術研究所 Denitrification device, denitrification method, and water treatment system using denitrification device

Also Published As

Publication number Publication date
JPWO2002046104A1 (en) 2004-04-08
AU2002224123A1 (en) 2002-06-18

Similar Documents

Publication Publication Date Title
JP4602615B2 (en) High concentration culture method of nitrifying bacteria contained in activated sludge
Li et al. Hazardous substances and their removal in recirculating aquaculture systems: A review
KR0175229B1 (en) Apparatus and method for waste water treatment using granular sludge
CN109095710A (en) A kind of prawn culturing tail water ecological treatment system
JP4578278B2 (en) Sewage treatment apparatus and treatment method
JP2002176972A (en) High-concentration nitrite-oxidizing bacterium, and method for high-concentration culture of nitrite- oxidizing bacterium
CN103964644A (en) Advanced domestic wastewater treatment method
Hochheimer et al. Biological filters: trickling and RBC design
WO2002046104A1 (en) High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system
JP2002001389A (en) Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane
JP2008200637A (en) Water treatment plant, water treatment facility, and water treating method
CN116282543A (en) Composite biological directional conversion system and method for purifying inorganic nitrogen in mariculture tail water
CN106434424B (en) Vibrios and application thereof with dirty seawater denitrification ability
JPS6336898A (en) Immobilized bacteria capable of oxidizing nh4+ contained in sewage to nitrous acid and treatment using same
CN114590888A (en) Efficient biological nitrification method for source separation of urine sewage
JP2002177987A (en) Biological nitrification and denitrification integrated equipment
JP4596533B2 (en) Wastewater treatment method
JPH09192690A (en) Biological nitrating and denitrifying method
KR100817792B1 (en) Advanced swage and waste water treatment method and apparatus use of micro filter, and cultured bacillus species bacteria etc
KR100753993B1 (en) Advanced swage and waste water treatment method and apparatus use of selected and cultured bacillus species bacteria etc
WO2002046370A1 (en) Promoter for the culture of autrotrophic bacterium at high density
JPH11225616A (en) Circulating and filtering vessel for culturing fishes and shellfishes, and circulating and filtering device
CN208362134U (en) New Type of Sewage Treatment System
US20130334132A1 (en) Methods for Treatment of Waste Activated Sludge
JP2002011497A (en) Biological nitration device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002547848

Country of ref document: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69 (1) EPC (EPO FORM 1205A OF 14-08-2003)

122 Ep: pct application non-entry in european phase