JPH035879B2 - - Google Patents

Info

Publication number
JPH035879B2
JPH035879B2 JP32991887A JP32991887A JPH035879B2 JP H035879 B2 JPH035879 B2 JP H035879B2 JP 32991887 A JP32991887 A JP 32991887A JP 32991887 A JP32991887 A JP 32991887A JP H035879 B2 JPH035879 B2 JP H035879B2
Authority
JP
Japan
Prior art keywords
compost
wastewater
water
sludge
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32991887A
Other languages
Japanese (ja)
Other versions
JPH01104397A (en
Inventor
Tadayuki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKYO JUKI KK
Original Assignee
SANKYO JUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKYO JUKI KK filed Critical SANKYO JUKI KK
Priority to JP32991887A priority Critical patent/JPH01104397A/en
Publication of JPH01104397A publication Critical patent/JPH01104397A/en
Publication of JPH035879B2 publication Critical patent/JPH035879B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、汚水中の浮遊成分の沈降分離及び溶
存成分の除去に関する。 [従来の技術] 従来、汚水に凝集剤その他の薬剤を投入し、溶
存成分を固形化すると共に、浮遊成分を凝集させ
て沈降分離する沈降分離法が広く行われている。
また、汚水中に存在する微生物を床に付着繁殖
させ、この微生物の活動によつて汚水中の溶存成
分を分解除去する生物酸化法も、近年さかんに用
いられるようになつて来ている。 [発明が解決しようとする問題点] しかしながら、従来の沈降分離法には次のよう
な問題がある。 (1) 浮遊成分の沈降速度が遅いので、処理に長時
間を要し、処理効率が悪い。 (2) 沈降した汚泥が多量の水を含む膨潤状態で取
出されかつ脱水性が悪いので、汚泥の排出量が
多く、かつその取扱い性が悪い。 (3) ある程度の溶存成分の除去は図れるものの不
十分なものであり、特に最近問題となつている
アンモニア分の除去がほとんどできない。 (4) 多量の凝集剤その他の薬剤を使用するので、
経済的に不利であるばかりか、使用薬剤による
二次公害のおそれもある。 また、生物酸化法は、特別な薬剤を必要とせず
に溶存成分の除去が図れるが、次のような問題が
ある。 (1) 汚水中に自然に存在する微生物を付着繁殖さ
せるために、床と曝気が不可欠であり、汚染
された湖沼の浄化等には利用できない。 (2) かなりの溶存成分の分解除去が図れるが、分
解除去に長時間を要するばかりか、脱窒につい
てはまだまだ不十分である。 [問題点を解決するための手段] 上記問題点を解決するために本発明において講
じられた手段を説明すると、本発明では、汚水
と、好気的発酵処理によつて得られたコンポスト
とを接触させるという手段を講じているものであ
る。 本発明で処理できる汚水としては、多量の有機
性成分で汚染されている水で、例えば生活排水、
有機性産業排水、人畜し尿、湖沼水、水産養殖池
水等を挙げることができる。 好気的発酵処理によつて得られたコンポストと
しては、良好な発酵状態を経て得られたものであ
ればどのようなものでもよいが、特にアルカリサ
イドで発酵させて得られたものが好ましい。即
ち、原料のPHが9〜12程度となるよう、原料に消
石灰等のアルカリ物質を添加混合してから好気的
発酵処理を行うと、極めて良好な発酵状態が得ら
れ、本発明に有益な作用をもたらす微生物数も増
大すると考えられる。また、上記消石灰等を加え
た原料を発酵処理したカルシウム分の多いコンポ
ストと汚水を接触させるようにすると、汚水中の
リン成分をカルシウムに結び付けて除去しやすく
なるという利点もある。 本発明で汚水と接触させるコンポストの原料
は、好気的発酵に供し得るものであれば、例えば
下水汚泥、食品加工残渣、農業廃棄物、人畜糞尿
等、どのようなものでもよい。特に、本発明の方
法を実施したときに排出される沈降汚泥をコンポ
ストの原料として循環利用すれば、コンポストの
原料をことさら外部から収集する必要をなくすこ
ともできる。 コンポストと汚水の接触は、例えば次のように
して行うことができる。 コンポストをそのまま汚水に投入する方法。
最も簡便な方法である。 コンポストをあらかじめ適量の水に投入混合
し、このコンポスト水分解体を汚水に投入する
方法。汚水とコンポストの接触の均一化が図り
やすくなる。 上記コンポスト水分散体を静置し、上澄液の
みを汚水に投入する方法。この方法の場合、汚
水とコンポストは上澄液を介して間接的に接触
することになる。 例えば石膏等の吸水性材料でコンポストを適
宜の大きさに固め、これを網や布の袋又は多孔
板の容器等に充填したものを汚水に浸漬する方
法。この方法の場合、効果の持続性が得やす
い。 汚水と接触させるコンポスト量としては、上記
又はの方法によつて汚水とコンポストを接触
させる場合、通常、浄化すべき汚水に対して10〜
1000ppm程度、汚水の状態によつては10〜
100ppm程度でも十分である。また、汚水がバル
キング等の異常を伴うときには、1000〜7000ppm
程度、望ましくはMLSS(バクテリア菌体量)と
同程度、例えばMLSSが4000ppmの汚水であれ
ば、コンポストの量は当該汚水に対して4000ppm
程度とすることが好ましい。コンポストの量が少
な過ぎると本発明の利益が得にくくなる。 上述の値を越える量のコンポストを汚水と接触
させることは、コンポストの消費量増大を無視す
れば、一向にさしつかえない。特に前記及び
の方法でコンポストと汚水を接触させる場合、前
記及びの方法による場合に比して両者の接触
度合が低くなるので、前記及びの方法による
場合より多いコンポストを使用することが好まし
い。 汚水は、本発明による浄化処理中、できるだけ
10℃以上、特に20〜30℃の水温に保つことが好ま
しい。水温が下がり過ぎると微生物の活動が鈍く
なり、処理効率が低下しやすくなる。 コンポストと接触させた汚水はそのまま自然に
まかせて放置しておいてもよい。特に浄化対象が
湖沼等であつて、これに直接コンポストを投入し
て一気に浄化を行う場合には放置せざるを得ない
が、可能であれば曝気を行うことが好ましい。 上記曝気は、曝気槽を用いることで容易に行う
ことができる。曝気量は、曝気槽について定めら
れている基準量程度でよい。また、水産養殖池等
においては、養殖魚貝類への酸素供給のための曝
気を浄化のための曝気と兼務させることができ
る。 本発明においては、コンポストと共に、消石
灰、石膏、更には活性硅酸類で多孔質の吸着力が
強いものを添加することが好ましい。これらによ
つて、より多くの溶存成分の迅速な除去が可能と
なる。また、一般の凝集剤との併用を図ることも
できる。 [作用] 本発明者は、近年の湖沼や河川の汚染につい
て、排水流入等による富栄養化もさることなが
ら、農薬や殺虫剤の多量散布による微生物の死滅
化が大きな原因となつていると推測している。即
ち、自然界には、本来、汚染を浄化する能力が存
在し、その根本が微生物であるが、今日では、こ
の浄化作用を成す微生物の中で比較的弱体なもの
が激減し、十分な浄化能力が自然界から失われつ
つあることに湖沼や河川の根本的汚染原因がある
と考えられる。 上記本発明者の立場からすると、現在行われて
いる生物酸化法によつての十分な脱窒が図れない
のは、当該処理対象となつている河川や湖沼の水
中に、脱窒を行う微生物の存在が極めて希薄にな
つているためと考えられる。 ところで、多量の有機成分で汚染された汚水に
コンポストを加えることは、単に汚染有機分を増
大させるだけであるかのように一見考えられる。
しかし、コンポスト中には、極めて多種の微生物
が多量に存在し、これらの活動やその代謝産物で
ある酵素が、汚水中の浮遊成分の沈降促進、沈降
汚泥からの離水促進並びに残存有機成分の分解に
大きな役割を果すと考えられる。従つて、本発明
におけるコンポストの投入は、浄化に必要な微生
物の人為的補充として作用するものである。 上記のように、本発明では、コンポストを加え
ることによつて、欠落又は希薄化した微生物を補
填し、もつて本来自然が有する浄化能力を再現す
るもので、良好な沈降促進作用及び、溶存有機成
分除去特に高い脱窒作用が、特別な薬剤の添加な
く得られる。また、沈降汚泥の密度が高くかつ離
水性が向上されるので、その分汚泥の排出量を小
さくできかつ当該汚泥の取扱い性が向上するもの
である。 [実施例] 実施例 1 下水処理場から採取した活性汚泥(SS=
1500ppm)を試料とし、これにコンポスト水分散
体を注入して、汚泥の沈降性を調べた。 コンポストとしては、下水汚泥に、同様の発酵
処理で得たコンポストを投入して水分調整し、か
つ消石灰を投入してPH12に調整した原料を好気的
発酵処理して得られたものを使用した。 コンポスト水分散体は、コンポストをミキサー
で粉砕したものを水に入れてよく撹拌することに
よつて作成した。 前記試料に上記コンポスト水分散体を、試料に
対するコンポスト量が1000ppmとなるよう加えて
手早く撹拌した後、直に静置して沈降状態を観察
した結果を第1図に示す。 実施例 2 試料にコンポスト水分散体を、試料に対するコ
ンポスト量が2000ppmとなるよう加えた他は実施
例1と同様にして沈降状態を観察した。結果を第
1図に示す。 比較例 1 実施例1で用いたのと同じ試料を、コンポスト
水分散体を加えることなく手早く撹拌した後、直
に静置して沈降状態を観察した。結果を第1図に
示す。 実施例 3 実施例1で用いた活性汚泥の2倍濃縮液(SS
=3500ppm)を試料とし、これにコンポスト接触
水を注入して、汚泥の沈降性を調べた。 実施例1と同様のコンポストから直径2〜3mm
程度の粒状のものを篩別して容器につめ、これに
試料と同じ活性汚泥の2倍濃縮液を通過させてコ
ンポスト接触水を作成した。 前記試料450mlに上記コンポスト接触水を50ml
加え、手早く撹拌した後、直に静置して沈降状態
を観察した。結果を第2図に示す。 実施例 4 試料400mlにコンポスト接触水を100ml加えた他
は実施例3と同様にして沈降状態を観察した。結
果を第2図に示す。 比較例 2 実施例3で用いたのと同じ試料を、コンポスト
接触水を加えることなく手早く撹拌した後、直に
静置して沈降状態を観察した。結果を第2図に示
す。 実施例 5 実施例1と同じ試料内に、直径5cmの塩化ビニ
ル管内に実施例3で用いたものと同様の粒状コン
ポストを充填して両端を網で塞いだものを浸漬
し、曝気しながら、試料とコンポストの接触を1
時間継続した。その後上記塩化ビニル管を試料か
ら取り出し、手早く撹拌した後、直に静置して沈
降状態を観察した。結果を第3図に示す。 比較例 3 試料とコンポストを接触させなかつた他は実施
例5と同様にして沈降状態を観察した。結果を第
3図に示す。 実施例 6 し尿処理場の曝気槽に、実施例1で用いたもの
と同様のコンポストを投入し、コンポストの投入
による、余剰汚泥の脱水性と曝気槽水の色合いの
変化について調べた。 上記曝気槽は、容量1064m3で、その運転状況は
次の通りである。 MLSS:4000ppm 負荷:300ppm/日 返送汚泥:360m3/日 供給希釈水:560m3/日 コンポストは、実施例1で用いたものと同様の
ものを用い、返送汚泥中に40Kg/日(約40ppm/
日)の割合で投入することにより、曝気槽内へ供
給して汚水と接触させた。 曝気槽から取り出される余剰汚泥を、コンポス
トの投入開始後1日目、12日目、19日目27日目及
び31日目に各々2回採取し、遠心分離機によつて
脱水した後の汚泥の含水率を測定した。結果を第
1表に示す。 また、曝気槽水は、第19日目に採取したものま
では濃い茶褐色をしていたが、第27日目以降の採
取分については、淡褐色となつた。
[Industrial Field of Application] The present invention relates to sedimentation separation of suspended components and removal of dissolved components in wastewater. [Prior Art] Conventionally, a sedimentation separation method has been widely used in which flocculants and other chemicals are added to wastewater to solidify dissolved components, and floating components are flocculated and separated by sedimentation.
In addition, a biological oxidation method in which microorganisms present in wastewater are allowed to adhere to and propagate on the floor, and dissolved components in the wastewater are decomposed and removed by the activity of these microorganisms, has also been widely used in recent years. [Problems to be Solved by the Invention] However, the conventional sedimentation separation method has the following problems. (1) Since the sedimentation rate of suspended components is slow, treatment takes a long time and treatment efficiency is poor. (2) Since the settled sludge is taken out in a swollen state containing a large amount of water and has poor dewatering properties, a large amount of sludge is discharged and its handling is poor. (3) Although it is possible to remove some dissolved components, it is insufficient, and in particular, it is almost impossible to remove ammonia, which has recently become a problem. (4) Since large amounts of flocculants and other chemicals are used,
Not only is it economically disadvantageous, but there is also the risk of secondary pollution caused by the chemicals used. Furthermore, although the biological oxidation method can remove dissolved components without the need for special chemicals, it has the following problems. (1) Floors and aeration are essential for the adhesion and propagation of microorganisms that naturally exist in wastewater, and cannot be used to purify polluted lakes and marshes. (2) Although it is possible to decompose and remove a considerable amount of dissolved components, not only does it take a long time to decompose and remove, but denitrification is still insufficient. [Means for Solving the Problems] To explain the measures taken in the present invention to solve the above problems, the present invention uses wastewater and compost obtained by aerobic fermentation treatment. The method is to bring them into contact with each other. The wastewater that can be treated with the present invention is water that is contaminated with a large amount of organic components, such as domestic wastewater,
Examples include organic industrial wastewater, human animal human waste, lake water, and aquaculture pond water. Compost obtained by aerobic fermentation may be of any kind as long as it is obtained through good fermentation conditions, but compost obtained by fermentation with alkaline side is particularly preferred. That is, if an aerobic fermentation treatment is performed after adding and mixing an alkaline substance such as slaked lime to the raw material so that the pH of the raw material is about 9 to 12, an extremely good fermentation state can be obtained, which is useful for the present invention. It is also thought that the number of microorganisms that cause the effect will increase. In addition, when sewage is brought into contact with calcium-rich compost obtained by fermenting raw materials to which slaked lime and the like are added, there is an advantage that the phosphorus component in the sewage is bound to calcium and becomes easier to remove. The raw material for the compost to be brought into contact with sewage in the present invention may be any material that can be subjected to aerobic fermentation, such as sewage sludge, food processing residue, agricultural waste, human waste, etc. In particular, if the settled sludge discharged when carrying out the method of the present invention is recycled as a raw material for compost, it is possible to eliminate the need to collect the raw material for compost from outside. The contact between compost and wastewater can be carried out, for example, as follows. A method of directly throwing compost into wastewater.
This is the simplest method. A method in which compost is mixed in an appropriate amount of water in advance, and the compost is dissolved into waste water. This makes it easier to ensure uniform contact between wastewater and compost. A method in which the above compost water dispersion is allowed to stand still and only the supernatant liquid is poured into wastewater. In this method, wastewater and compost come into contact indirectly through the supernatant liquid. For example, a method in which compost is hardened to an appropriate size using a water-absorbing material such as gypsum, and the compost is filled into a net, cloth bag, or perforated container, and then immersed in waste water. With this method, it is easy to obtain long-lasting effects. The amount of compost to be brought into contact with wastewater is usually 10 to 10 times the amount of wastewater to be purified when bringing the wastewater and compost into contact by the above method or the method described above.
Approximately 1000ppm, depending on the condition of the wastewater 10~
Even around 100ppm is sufficient. In addition, when the wastewater is accompanied by abnormalities such as bulking, 1000 to 7000 ppm
If the MLSS is 4000ppm, the amount of compost should be 4000ppm relative to the wastewater.
It is preferable to set it as approximately. If the amount of compost is too small, it will be difficult to obtain the benefits of the present invention. It is perfectly acceptable to bring compost in an amount exceeding the above-mentioned value into contact with wastewater, if the increase in consumption of compost is ignored. In particular, when compost and sewage are brought into contact by the above method and, the degree of contact between the two is lower than in the case of the above method and, so it is preferable to use more compost than in the case of the above method and. During the purification process according to the present invention, wastewater is
It is preferable to maintain the water temperature at 10°C or higher, especially between 20 and 30°C. If the water temperature drops too low, microbial activity slows down and treatment efficiency tends to drop. The wastewater that has come into contact with the compost can be left alone to take its own course. In particular, if the object to be purified is a lake or marsh, and if you want to directly pour compost into it and purify it all at once, you have to leave it alone, but it is preferable to aerate it if possible. The above aeration can be easily performed using an aeration tank. The amount of aeration may be about the standard amount established for the aeration tank. Furthermore, in aquaculture ponds and the like, aeration for supplying oxygen to cultured fish and shellfish can also serve as aeration for purification. In the present invention, it is preferable to add slaked lime, gypsum, and even activated silicic acids that are porous and have strong adsorption power together with the compost. These enable rapid removal of more dissolved components. Moreover, it can also be used in combination with a general flocculant. [Effect] The present inventor speculates that the major cause of recent pollution of lakes and rivers is not only eutrophication due to inflow of wastewater, but also annihilation of microorganisms due to large amounts of pesticides and insecticides sprayed. are doing. In other words, the ability to purify pollution originally exists in the natural world, and the basis of this ability is microorganisms, but today, the number of relatively weak microorganisms that perform this purifying action has decreased dramatically, and the ability to purify pollution has decreased dramatically. It is thought that the fundamental cause of pollution of lakes and rivers is that these substances are disappearing from the natural world. From the standpoint of the inventor, the reason why the currently used biological oxidation method cannot achieve sufficient denitrification is because there are microorganisms that perform denitrification in the water of the rivers and lakes that are the target of the treatment. This is thought to be due to the fact that its existence is becoming extremely rare. By the way, at first glance, it may seem that adding compost to wastewater contaminated with a large amount of organic components merely increases the amount of contaminated organic components.
However, there are a large number of extremely diverse types of microorganisms in compost, and their activities and their metabolic products, enzymes, promote the settling of suspended components in wastewater, syneresis from settled sludge, and the decomposition of remaining organic components. is thought to play a major role in Therefore, the addition of compost in the present invention acts as an artificial replenishment of microorganisms necessary for purification. As mentioned above, in the present invention, by adding compost, missing or diluted microorganisms are replenished and nature's original purifying ability is reproduced. Component removal, especially high denitrification effect, can be obtained without the addition of special chemicals. Further, since the density of the settled sludge is high and the water repellency is improved, the amount of sludge discharged can be reduced accordingly, and the handling of the sludge can be improved. [Example] Example 1 Activated sludge (SS =
1500ppm) was used as a sample, and a compost water dispersion was injected into it to examine the sedimentation properties of the sludge. The compost used was obtained by adding compost obtained through a similar fermentation process to sewage sludge to adjust the moisture content, and then adding slaked lime to adjust the pH to 12.The material was then subjected to an aerobic fermentation process. . The compost water dispersion was prepared by pulverizing compost using a mixer and adding it to water and stirring well. The above-mentioned compost aqueous dispersion was added to the sample so that the amount of compost to the sample was 1000 ppm, and after stirring briefly, the sample was left to stand immediately and the state of sedimentation was observed. The results are shown in Fig. 1. Example 2 The sedimentation state was observed in the same manner as in Example 1, except that a compost water dispersion was added to the sample so that the amount of compost to the sample was 2000 ppm. The results are shown in Figure 1. Comparative Example 1 The same sample used in Example 1 was briefly stirred without adding the compost water dispersion, and then left to stand directly to observe the sedimentation state. The results are shown in Figure 1. Example 3 A double concentrated solution (SS) of the activated sludge used in Example 1
= 3500ppm) was used as a sample, and compost contact water was injected into it to examine the sedimentation properties of the sludge. A diameter of 2-3 mm from the same compost as in Example 1.
The granular materials were sieved and packed into a container, and a double concentrated solution of the same activated sludge as the sample was passed through this to create compost contact water. Add 50ml of the above compost contact water to 450ml of the sample.
After stirring briefly, the mixture was allowed to stand immediately and the state of sedimentation was observed. The results are shown in Figure 2. Example 4 The state of sedimentation was observed in the same manner as in Example 3, except that 100 ml of compost contact water was added to 400 ml of the sample. The results are shown in Figure 2. Comparative Example 2 The same sample used in Example 3 was briefly stirred without adding compost contact water, and then left to stand immediately to observe the sedimentation state. The results are shown in Figure 2. Example 5 In the same sample as in Example 1, a 5 cm diameter vinyl chloride pipe filled with granular compost similar to that used in Example 3 and having both ends closed with a net was immersed, and while being aerated, Contact between sample and compost
Lasted for an hour. Thereafter, the vinyl chloride tube was taken out from the sample, briefly stirred, and then left to stand immediately to observe the state of sedimentation. The results are shown in Figure 3. Comparative Example 3 The state of sedimentation was observed in the same manner as in Example 5, except that the sample and the compost were not brought into contact. The results are shown in Figure 3. Example 6 Compost similar to that used in Example 1 was put into an aeration tank of a human waste treatment plant, and the dehydration of excess sludge and changes in the color of the water in the aeration tank due to the addition of compost were investigated. The aeration tank has a capacity of 1064m 3 and its operating status is as follows. MLSS: 4000ppm Load: 300ppm/day Returned sludge: 360m3 /day Supply dilution water: 560m3 /day The same compost as that used in Example 1 was used, and 40Kg/day (approximately 40ppm) was added to the returned sludge. /
It was supplied into the aeration tank and brought into contact with wastewater. Excess sludge taken out from the aeration tank was collected twice each on the 1st, 12th, 19th, 27th, and 31st days after the start of composting, and the sludge was dehydrated using a centrifuge. The moisture content was measured. The results are shown in Table 1. In addition, the aeration tank water had a deep brown color until the 19th day, but the water sampled after the 27th day turned light brown.

【表】 実施例 7 実施例6で説明したし尿処理場の曝気槽の活性
汚泥を、コンポスト投入初日(0日目)から毎日
採取し、30分間における活性汚泥の沈降性(SV
−30)と、PHと、上澄液の透視度を測定した。 結果を第4図、第5図及び第6図に示す。 実施例 8 実施例6で説明したし尿処理場の曝気槽水を、
コンポスト投入初日(0日目)から連続5日間採
取し、NH4 +濃度と、NO3 -濃度を測定した。 結果を第7図に示す。 実施例 9 面積約1200m2、平均水深約0.5mの池に、実施
例1で用いたものと同様のコンポストを60Kg投入
した。 コンポスト投入前と投入1週間後について、池
の透視度、NH4 +濃度、NO3 -濃度及びPHを各々
測定した。 結果を第2表に示す。
[Table] Example 7 Activated sludge from the aeration tank of the human waste treatment plant explained in Example 6 was collected every day from the first day of composting (day 0), and the sedimentation property (SV) of the activated sludge in 30 minutes was measured.
-30), pH, and transparency of the supernatant were measured. The results are shown in FIGS. 4, 5, and 6. Example 8 The aeration tank water of the human waste treatment plant explained in Example 6 was
Samples were collected for 5 consecutive days from the first day of composting (day 0), and the NH 4 + concentration and NO 3 - concentration were measured. The results are shown in FIG. Example 9 60 kg of compost similar to that used in Example 1 was put into a pond with an area of about 1200 m 2 and an average depth of about 0.5 m. The transparency, NH 4 + concentration, NO 3 - concentration, and PH of the pond were measured before and one week after compost was added. The results are shown in Table 2.

【表】 実施例 10 蒸留水で希釈したアンモニア水(アンモニア濃
度200ppm、PH11.3)1に、実施例1で用いた
のと同様のコンポスト2.5gを投入し、室温にて
2日間曝気を行つた。その後アンモニア濃度を測
定したところ、100ppmであり、PHは8.2であつ
た。 [発明の効果] 本発明によれば、汚水の処理効率を大幅に向上
させることができるばかりか、従来浄化が困難で
あつた湖沼の浄化をも容易に行えるものである。
[Table] Example 10 2.5 g of the same compost as used in Example 1 was added to ammonia water diluted with distilled water (ammonia concentration 200 ppm, PH 11.3) 1, and aeration was carried out at room temperature for 2 days. Ivy. When the ammonia concentration was then measured, it was 100 ppm and the pH was 8.2. [Effects of the Invention] According to the present invention, not only can wastewater treatment efficiency be greatly improved, but also lakes and marshes, which have been difficult to purify in the past, can be easily purified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1、2及び比較例1で測定した
活性汚泥の沈降性を示すグラフ、第2図は実施例
3、4及び比較例2で測定した活性汚泥の沈降性
を示すグラフ、第3図は実施例5及び比較例3で
測定した活性汚泥の沈降性を示すグラフ、第4図
は実施例7で測定したSV−30の変化を示すグラ
フ、第5図は実施例7で測定したPHの変化を示す
グラフ、第6図は実施例7で測定した透視度の変
化を示すグラフ、第7図は実施例8で測定したイ
オン濃度の変化を示すグラフである。
Fig. 1 is a graph showing the settling properties of activated sludge measured in Examples 1 and 2 and Comparative Example 1, Fig. 2 is a graph showing the settling properties of activated sludge measured in Examples 3 and 4 and Comparative Example 2, Figure 3 is a graph showing the settling properties of activated sludge measured in Example 5 and Comparative Example 3, Figure 4 is a graph showing changes in SV-30 measured in Example 7, and Figure 5 is a graph showing the change in SV-30 measured in Example 7. FIG. 6 is a graph showing changes in the measured PH, FIG. 6 is a graph showing changes in transparency measured in Example 7, and FIG. 7 is a graph showing changes in ion concentration measured in Example 8.

Claims (1)

【特許請求の範囲】[Claims] 1 汚水と、好気的発酵処理によつて得られたコ
ンポストとを接触させることを特徴とする汚水の
浄化方法。
1. A method for purifying sewage, which comprises bringing sewage into contact with compost obtained through aerobic fermentation.
JP32991887A 1987-07-11 1987-12-28 Purifying process of polluted water Granted JPH01104397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32991887A JPH01104397A (en) 1987-07-11 1987-12-28 Purifying process of polluted water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-172095 1987-07-11
JP17209587 1987-07-11
JP32991887A JPH01104397A (en) 1987-07-11 1987-12-28 Purifying process of polluted water

Publications (2)

Publication Number Publication Date
JPH01104397A JPH01104397A (en) 1989-04-21
JPH035879B2 true JPH035879B2 (en) 1991-01-28

Family

ID=26494569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32991887A Granted JPH01104397A (en) 1987-07-11 1987-12-28 Purifying process of polluted water

Country Status (1)

Country Link
JP (1) JPH01104397A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN187416B (en) * 1992-09-14 2002-04-20 Dowmus Pty Ltd
JP2657763B2 (en) * 1993-09-07 1997-09-24 財団法人地球環境産業技術研究機構 Microbial hydrogen production
JP2007167391A (en) 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Drum-type washing machine

Also Published As

Publication number Publication date
JPH01104397A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
US5500131A (en) Compositions and methods for water treatment
US4246100A (en) Composition and method for the treatment of sewage
RU2628437C1 (en) Method of utilizing liquid fraction of manure drains from pig-breeding farms
JPH035879B2 (en)
JPS6352556B2 (en)
JPS6018565A (en) Preparation of erosion
JP3453129B2 (en) Water purification promoter and water purification method and purification system using this purification promoter
KR20020018926A (en) A treatment methods for organic sewage
WO1994002418A1 (en) A method of and an apparatus for purifying aqueous suspensions containing organic material and cations
JP2903359B2 (en) Water activator and its production method
KR960003922B1 (en) Waste water treatment by volcanic ashes
SU1386582A1 (en) Method of purifying waste waters of animal origin of suspended particles with production of organomineral fertilizer
JPH0751668A (en) Purification treatment of sewage
EA003870B1 (en) Method of sewage organic wastes treatment
JPH035880B2 (en)
JPH07222540A (en) Culture of fishes and shellfishes by utilization of purified stock raising waste water
JPS62152593A (en) Treatment of organic waste water
JPS6012194A (en) Treatment of waste water containing organic substance by biological reaction
CN115010206A (en) Composite mineral algae-inhibiting water purifying agent for river and lake ecological resuscitation
SU835972A1 (en) Method of biochemical purification of waste water from sulfates
JPS60110400A (en) Microbiological treatment of sludge due to wooden fine piece
JPH0662354B2 (en) Highly concentrated organic composting method
SU490420A1 (en) Purification method of slurry filtrate
JP2000128677A (en) Production of high-quality sludge compost
CN116514244A (en) Biological composite organic flocculant and preparation method and application thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term