JPH03114592A - Microorganism carrier - Google Patents

Microorganism carrier

Info

Publication number
JPH03114592A
JPH03114592A JP2133861A JP13386190A JPH03114592A JP H03114592 A JPH03114592 A JP H03114592A JP 2133861 A JP2133861 A JP 2133861A JP 13386190 A JP13386190 A JP 13386190A JP H03114592 A JPH03114592 A JP H03114592A
Authority
JP
Japan
Prior art keywords
tank
microorganism carrier
raw material
treatment
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2133861A
Other languages
Japanese (ja)
Other versions
JPH0683832B2 (en
Inventor
Yukio Fukaya
深谷 幸夫
Kazuyuki Hatano
羽田野 一幸
Kazuhiro Sainotaira
斉野平 一弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Original Assignee
Onoda ALC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda ALC Co Ltd filed Critical Onoda ALC Co Ltd
Priority to JP2133861A priority Critical patent/JPH0683832B2/en
Publication of JPH03114592A publication Critical patent/JPH03114592A/en
Publication of JPH0683832B2 publication Critical patent/JPH0683832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To form a microorganism carrier having a void ratio of 50 -90% by adding a foaming agent to a water slurry consisting of a siliceous raw material and a calcareous raw material to foam the water slurry and subsequently applying hydrothermal reaction treatment to the obtained foamed cured matter. CONSTITUTION:A water slurry compounded with a siliceous raw material and calcareous raw material is prepared and a foaming agent is added to the water slurry to foam said slurry and hydrothermal reaction treatment is applied to the obtained foamed cured matter to obtain a microorganism carrier based on a porous calcium silicate hydrate having a void ratio of 50-90%. As a pref. example of the porous calcium silicate hydrate, there are tobermorite, xonolite, a CSH gel or faujasite. When org. sewage is treated using the obtained microorganism carrier, the number of processes can be reduced to a large extent as compared with a conventional method and operation control becomes easy.

Description

【発明の詳細な説明】 〈産業上の利用分胃〉 本発明は、家畜尿汚水、生活雑廃水、下水等の有機性汚
水の生物膜法による処理などに用いて好適な微生物担持
体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Utilization Stomach> The present invention relates to a microbial carrier suitable for use in the treatment of organic wastewater such as livestock urine wastewater, miscellaneous wastewater, and sewage by the biofilm method.

〈従来の技術及びその課題〉 家畜尿汚水、生活雑廃水、下水等の有機性汚水は、湖沼
、内海での「あおこ」、「赤潮」を誘引する富栄養化の
原因となる。従来、このような有機性汚水の処理には活
性汚泥法、散水炉床法、回転円板接触法等種々あるが、
設置面積、処理効率、維持管理など多くの点から浸漬炉
床法が採用されることが多々ある。
<Prior art and its problems> Organic wastewater such as livestock urine wastewater, miscellaneous wastewater, and sewage causes eutrophication that induces "blue water" and "red tide" in lakes and inland seas. Conventionally, there are various methods for treating organic wastewater, such as activated sludge method, watering hearth method, and rotating disk contact method.
The immersion hearth method is often adopted due to many aspects such as installation space, processing efficiency, and maintenance management.

この浸漬が床法は好気性炉床槽に接触材を充填し、そこ
に汚水を流入して曝気する乙とで接触材表面に生物膜を
生じさせ、この生物膜の微生物の働きにより汚水を浄化
するというものである。そして、従来、この浸漬炉床法
に用いる微生物担持のための接触材としては砂利、プラ
スチック片、ハニカムチューブなどが用いられている。
In this immersion method, an aerobic hearth tank is filled with contact material, and sewage is poured into it and aerated to form a biofilm on the surface of the contact material. It is about purifying. Conventionally, gravel, plastic pieces, honeycomb tubes, and the like have been used as contact materials for supporting microorganisms in this immersion hearth method.

しかしながら、これら接触材は、微生物が生息するため
には必ずしも良好なものではなかった。
However, these contact materials were not necessarily suitable for microorganisms to inhabit.

また、上述した従来の浸漬炉床法では、有機物は除去で
きるが、窒素化合物及びリン酸及びリン酸塩(以下、リ
ンという)が十分には除去できないので、その処理水を
閉鎖系水域に放流した場合には富栄養化をもたらし、水
産漁業などに大きな被害を与えている。よって有機性汚
水を浸漬炉床法で処理する場合には別途、脱窒素及び説
リンを行う必要がある。
In addition, the conventional immersion hearth method described above can remove organic matter, but cannot sufficiently remove nitrogen compounds, phosphoric acid, and phosphates (hereinafter referred to as phosphorus), so the treated water is discharged into a closed water system. When this happens, it causes eutrophication, causing great damage to fisheries and other industries. Therefore, when organic wastewater is treated by the immersion hearth method, it is necessary to separately perform denitrification and phosphorus removal.

そこで、一般には浸漬炉床法とともに生物学的脱窒製法
が行われている。この生物学的脱窒製法は、浸漬炉床法
における好気性が原種の後に嫌気性炉床槽を設け、好気
性炉床槽にて亜硝酸菌、硝酸菌によって酸化されてNH
ニーNから変化したNO−−N、NO″3−Nを、嫌気
性炉床槽にて脱窒菌により無酸素条件下で還元してN2
ガスとするというものである。しかし、この脱窒素を十
分行うには、浸漬炉床法における好気性炉床槽にてNH
ニーNのNo2−N 。
Therefore, biological denitrification methods are generally used along with the immersion hearth method. In this biological denitrification method, an anaerobic hearth tank is installed after the aerobic seeds in the immersed hearth method, and NH is oxidized by nitrite bacteria and nitrate bacteria in the aerobic hearth tank.
NO--N and NO''3-N changed from Ni-N are reduced to N2 by denitrifying bacteria in an anaerobic hearth tank under anoxic conditions.
The idea is to use gas. However, in order to sufficiently perform this denitrification, NH
Knee N's No2-N.

No−−Nへの酸化、すなわち硝化を十分行わなければ
ならないが、硝化の進行とともにpHが低下してしまう
ので好気性炉床槽にてのアルカリ剤による中和処理が必
要となり、管理及び設備が複雑になるという問題がある
とともに薬品使用による経済的負担も大きい。
Oxidation to No--N, that is, nitrification, must be performed sufficiently, but as the nitrification progresses, the pH decreases, so neutralization treatment with an alkaline agent in an aerobic hearth tank is required, and management and equipment There is a problem that the process becomes complicated, and the economic burden of using chemicals is also large.

そして、従来においては、このような脱窒素の後脱リン
が行われている。脱リンの方法としてはカルシウム塩、
アルミ、鉄などの金属塩との反応によりリン酸塩として
沈澱除去する方法と、カルシウムの存在下のアルカリ領
域でヒドロキシアパタイトとして晶折脱リンする方法と
があるが、何れの方法においても脱リン装置あるいは脱
リン槽という設備が別途必要になる。また、前者の沈澱
除去法においては、汚泥発生が多く、シかも難脱水性で
あるので処理が大変であり、且つ薬品使用による経済的
負担が大きいという問題があり、後者の晶析脱リン法に
おいては汚泥の発生量及び薬品の使用量は小さいが、カ
ルシウム濃度調整、pH調整、脱炭酸など晶析を進行さ
せる条件を作り出す前処理工程の制御が難しく、管理及
び設備が複雑になるという問題がある。
Conventionally, such denitrification is followed by dephosphorization. As a method of dephosphorization, calcium salt,
There are two methods: one is to precipitate and remove phosphate as a phosphate by reaction with metal salts such as aluminum and iron, and the other is to remove phosphorus by crystallization as hydroxyapatite in an alkaline region in the presence of calcium. Separate equipment or a dephosphorization tank is required. In addition, the former sedimentation removal method generates a lot of sludge and is difficult to dewater, making treatment difficult, and the use of chemicals imposes a large economic burden. Although the amount of sludge generated and the amount of chemicals used is small, it is difficult to control the pretreatment process that creates conditions for crystallization, such as calcium concentration adjustment, pH adjustment, and decarboxylation, and the problem is that management and equipment become complicated. There is.

何れにしても有機性汚水を処理する場合には、現状では
有機物除去(浸漬が床法)、脱窒素及び脱リンという三
工程が必須となる。
In any case, when treating organic wastewater, three steps are currently required: organic matter removal (soaking is the bed method), denitrification, and dephosphorization.

ここで、このような有機性汚水の処理工程の一例を第8
図を参照しながら説明する。同図に示すように、有機性
汚水をスクリーン沈砂池l及び振動篩2によ秒−次処理
して浮遊物及び沈澱物を除去した後、希釈槽3にて水で
希釈し、次いで浸漬炉床法により好気槽4にて有機物除
去を行うとともにアルカリ剤によるpHを調整しながら
硝化を十分行う。次に、撹拌槽5にてメタノールを添加
して撹拌した後嫌気槽6にて脱窒素を行い、再び再好気
槽7にて有機物除去全行い、説リン工程へ送る。
Here, an example of such organic wastewater treatment process is shown in the eighth section.
This will be explained with reference to the figures. As shown in the figure, organic wastewater is subjected to second-order treatment in a screen settling tank 1 and a vibrating sieve 2 to remove floating matter and sediment, and then diluted with water in a dilution tank 3, and then in an immersion furnace. Organic matter is removed in the aerobic tank 4 using the bed method, and nitrification is sufficiently performed while adjusting the pH using an alkaline agent. Next, methanol is added and stirred in a stirring tank 5, and then denitrification is performed in an anaerobic tank 6, and all organic matter is removed again in a re-aerobic tank 7, and the mixture is sent to the phosphorus process.

脱リン工程は脱炭酸槽8にて硫酸を添加しての脱炭酸、
pH調整層9にて石膏及び消石灰を添加してのpH調整
、及びCa CO,などを沈澱槽10にて沈澱する工程
からなる前処理工程と脱リン槽11にてヒドロキシアパ
タイトとしてリンを除去する晶析脱リンとからなり、こ
の説リン工程を経た処理水は消毒槽12にて消毒された
後排水される。
The dephosphorization process includes decarboxylation by adding sulfuric acid in decarboxylation tank 8,
A pretreatment process consisting of adjusting the pH by adding gypsum and slaked lime in the pH adjustment layer 9 and precipitating CaCO, etc. in the precipitation tank 10, and removing phosphorus as hydroxyapatite in the dephosphorization tank 11. The treated water that has undergone this dephosphorization process is disinfected in a disinfection tank 12 and then drained.

このように、従来において有機性汚水を処理する場合に
は、多くの設備と高度な運転管理が必要であった。
As described above, conventional treatment of organic wastewater required a large number of facilities and sophisticated operational management.

本発明はこのような事情に鑑み、有機物を除去するため
の生物膜法等において微生物を生息させるのに好適であ
り、脱窒素及び脱リンを単純な工程で容易に且つ効率よ
く行うことができる微生物担持体を提供することを目的
とする。
In view of these circumstances, the present invention is suitable for inhabiting microorganisms in a biofilm method for removing organic matter, and can easily and efficiently perform denitrification and dephosphorization in a simple process. The purpose is to provide a microbial carrier.

く課題を解決するtコめの手段〉 本発明者らは、前記目的を達成するために種々検討を重
ねた結果、珪酸カルシウム水和物からなるある種の構成
物が、有機性汚水の生物膜法による処理において微生物
の生息に良好な環境を作り出すとともにリン酸イオンを
晶析除去し、且つ硝化に好適なpH8維持することを知
見し、本発明を完成させた。
As a result of various studies to achieve the above-mentioned object, the present inventors have discovered that a certain composition consisting of calcium silicate hydrate is effective against living organisms in organic sewage. The present invention was completed based on the finding that membrane method treatment creates a favorable environment for microorganisms to live in, crystallizes out phosphate ions, and maintains a pH of 8, which is suitable for nitrification.

かかる本発明の微生物担持体は、珪酸質原料と石灰質原
料とからなる水スラリーを気泡剤の存在下で発泡させる
と共に硬化させて得た発泡硬化物を水熱反応処理して得
られ且つ50〜90%の空隙率を有する多孔質珪酸カル
シウム水和物を主成分とすることを特徴とする。
The microorganism carrier of the present invention is obtained by hydrothermal reaction treatment of a foamed cured product obtained by foaming and curing an aqueous slurry consisting of a siliceous raw material and a calcareous raw material in the presence of a foaming agent, and It is characterized by containing porous calcium silicate hydrate as a main component with a porosity of 90%.

本発明の微生物担持体は、その表面に珪酸カルシウム水
和物の結晶もしくはゲル表面の微細な凹凸を有している
ので微生物が固定されやすく、生物膜の形成が容易であ
るとともに有機物の分解生成物(微生物代謝産物)であ
る乳酸、醋酸、酢酸などの低級脂肪酸類によるpH低下
を緩和して微生物の至適pHである弱アルカリ性のpH
8〜9の状態を安定に作り出すことができ、微生物を良
好に担持できる。また、この微生物担持体は、例えば汚
水中のリン酸イオンを晶析すると共にNHニーNを硝化
をする作用をも有する。
The microorganism carrier of the present invention has fine irregularities on the surface of calcium silicate hydrate crystal or gel surface, so microorganisms are easily immobilized, biofilm formation is facilitated, and organic matter is decomposed and produced. A slightly alkaline pH that is the optimum pH for microorganisms by alleviating the pH drop caused by lower fatty acids such as lactic acid, acetic acid, and acetic acid (microbial metabolites)
Conditions 8 to 9 can be stably created and microorganisms can be supported well. In addition, this microorganism carrier also has the function of crystallizing phosphate ions in wastewater and nitrifying NH-N, for example.

以下に本発明の構成を詳述する。The configuration of the present invention will be explained in detail below.

本発明に係る微生物担持体は、更に具体的に説明すると
、例えば、珪酸質原料と石灰質原料とを主原料とする水
スラリーにアルミニウム粉末などの起泡剤を添加して高
温高圧下で水熱反応処理して得られる珪酸カルシウム水
和物からなる成形物、あるい(よこの成形物を破砕して
得られる破砕物で空隙率が50〜90%のもの、又は珪
酸質原料と石灰質原料とを主原料とする水スラリーを高
温高圧下で水熱反応処理後粉砕して得られろ粉状物に気
泡を入れて造粒あるいは成形した珪酸カルシウム水和物
からなる造粒物あるいは成形物で空隙率が50〜90%
のものである。
More specifically, the microorganism carrier according to the present invention can be produced by adding a foaming agent such as aluminum powder to a water slurry mainly composed of silicic raw materials and calcareous raw materials, and then heating the slurry with water under high temperature and high pressure. A molded product made of calcium silicate hydrate obtained by reaction treatment, or a crushed product obtained by crushing a horizontal molded product with a porosity of 50 to 90%, or a silicic raw material and a calcareous raw material. It is a granulated or molded product made of calcium silicate hydrate, which is obtained by pulverizing a water slurry whose main raw material is aqueous slurry under high temperature and high pressure after hydrothermal reaction treatment, and then granulating or molding the filter powder by inserting air bubbles into it. Porosity is 50-90%
belongs to.

ここで、珪酸カルシウム水和物は珪酸質原料と石灰質原
料とを所定のCaO/SiO。モル比(0,5〜2.0
種度)で常法に従ってオートクレーブにて所要の圧力・
温度下で高温高圧養生することによって得られるもので
あり、珪酸質原料としては珪石、珪砂、クリストバライ
ト、無定形シリカ、珪藤土、フェロシリコンダスト、白
土などの粉末、石灰質原料としては生石灰、消石灰、セ
メントなどの粉末が挙げられる。このようにして得られ
る珪酸カルシウム水和物は、トバモライト、ゾノトライ
ト、C3l(ゲル、フォシャジャイト、ジャイロライト
、ヒレブランダイト等よりなる群より選ばれる1種また
は2種以上のものとなる。またこの中でもトバモライト
、ゾノトライト、CSHゲルはpH緩衝能が高く、比表
面積が20〜b 好ましい。
Here, the calcium silicate hydrate is prepared by mixing a silicate raw material and a calcareous raw material with a predetermined CaO/SiO. Molar ratio (0.5-2.0
The required pressure and
It is obtained by curing under high temperature and high pressure. Silica raw materials include powders such as silica stone, silica sand, cristobalite, amorphous silica, silica clay, ferrosilicon dust, and white clay, and calcareous raw materials include quicklime and slaked lime. , cement and other powders. The calcium silicate hydrate thus obtained is one or more selected from the group consisting of tobermorite, xonotlite, C3l (gel, foschagite, gyrolite, hillebrandite, etc.). Among these, tobermorite, xonotlite, and CSH gel are preferred because they have a high pH buffering ability and a specific surface area of 20 to 20 b.

本発明に係る微生物担持体は50〜90%の空隙率を有
するが、この空隙を珪酸カルシウム水和物の生成時に得
る場合には珪酸質物質と石灰質物質とを水スラリー状に
したものに泡剤としてアルミニウム粉末などの金属発泡
剤やAE剤などの起泡剤を添加した後高温高圧下で水熱
反応処理すればよい。ここで金属発泡剤は化学反応によ
ってガスを発生するもので、その使用割合はスラリー中
の巻き込み気泡や水の量によって変化するが化学反応式
から導くことができる。また起泡剤としては具体的には
樹脂せっけん類、サポニン、合成界面活性剤類、加水分
解たんばく質、高分子界面活性剤などがあり、主として
界面活性作用により物理的に気泡を導入するもので、単
に原料と混合して撹拌することにより泡を生じさせる場
合と、特殊な撹拌槽又は起泡装置を使用して安定した泡
をつくり、この泡を体積計量して原料に混合する場合と
がある。
The microorganism carrier according to the present invention has a porosity of 50 to 90%, but when this porosity is obtained during the production of calcium silicate hydrate, a water slurry of a silicic material and a calcareous material is foamed. After adding a metal foaming agent such as aluminum powder or a foaming agent such as an AE agent as an agent, a hydrothermal reaction treatment may be performed at high temperature and high pressure. Here, the metal foaming agent generates gas through a chemical reaction, and its usage ratio varies depending on the amount of bubbles and water entrained in the slurry, but can be derived from the chemical reaction equation. Specific examples of foaming agents include resin soaps, saponins, synthetic surfactants, hydrolyzed proteins, and polymeric surfactants, which mainly introduce air bubbles physically through surfactant action. There are cases in which foam is generated simply by mixing with raw materials and stirring, and cases in which stable foam is created using a special stirring tank or foaming device, and this foam is measured by volume and mixed with raw materials. There is.

このような起泡剤を用いる場合には泡の安定性を試験し
た上、その添加量を決定する必要がある。また、空隙率
の小さい珪酸カルシウム水和物を得た場合にはそれが成
形物であれば粉末化した後、造粒又は成形する過程で気
泡を入れてその空隙率を調整すればよい。つまり粉末状
の珪酸カルシウム水和物にアクリル樹脂エマルジョン等
の高分子樹脂の糊剤の水溶液を添加し、必要に応じて起
泡剤を加えた後混練りしたものをパンペレタイザーによ
り造粒したり型枠成形したりすればよい。ここでの乾燥
方法としては、自然乾燥、加熱乾燥のどちらを採用して
もよい。また、ここで、粉末状の珪酸カルシウム水和物
として(よ、上記のように空隙を入れて成形したものを
破砕したときに得られる粉末を用いてもよい。なお、空
隙率の高い微生物担持体とする場合には、型枠成形を採
用するのがよい。
When using such a foaming agent, it is necessary to test the stability of the foam and then determine the amount to be added. In addition, when a calcium silicate hydrate with a small porosity is obtained, if it is a molded product, the porosity can be adjusted by pulverizing it and then introducing air bubbles during the granulation or molding process. In other words, an aqueous solution of a polymer resin sizing agent such as an acrylic resin emulsion is added to powdered calcium silicate hydrate, a foaming agent is added if necessary, the mixture is kneaded, and the resulting mixture is granulated using a pan pelletizer. It can be molded into a mold. As the drying method here, either natural drying or heat drying may be employed. In addition, here, as a powdered calcium silicate hydrate, a powder obtained by crushing a molded product with voids as described above may be used. If it is to be made into a body, it is best to use mold molding.

次に、本発明にかかる微生物担持体を用いて有機性汚水
を処理方法について説明する。
Next, a method for treating organic wastewater using the microorganism carrier according to the present invention will be explained.

本発明の微生物担持体を充填した好気性炉床槽に一次処
理して浮遊物や沈澱物を除去した有機性汚水を曝気しな
がら希釈せずに通水することにより、生物膜法による有
機物の除去と、リンの除去と、NHニーNの硝化とをも
同時に行い、さらに、NT(ニーNが硝化されたNO″
2−N、No;−Nを含む処理水を嫌気性炉床槽に導入
し、メタノールなどの水素供与体を加えて通気性嫌気性
状態で脱窒菌によりNo;−N、 NoニーNをN2ガ
スに還元することにより、生物学的脱窒素を行うもので
ある。
By passing organic wastewater that has been subjected to primary treatment to remove floating matter and precipitates through an aerobic hearth tank filled with the microbial carrier of the present invention without dilution while aerating it, organic wastewater can be removed by the biofilm method. The removal of phosphorus, the nitrification of NH-N, and the nitrification of NH-N are performed simultaneously.
2-The treated water containing N, No;-N is introduced into an anaerobic hearth tank, a hydrogen donor such as methanol is added, and No;-N, Noney N is converted to N2 by denitrification bacteria in an aerated anaerobic state. Biological denitrification is performed by reducing nitrogen to gas.

ここで、好気性炉床槽に充填された微生物担持体は、上
述したようにその表面に珪酸カルシウム水和物の結晶も
しくはゲル表面の微細な凹凸を有しているので微生物が
固定されやすく、生物膜の形成が容易であるとともに有
機物の分解生成物(微生物代謝産物)である乳酸、酪酸
、酢酸などの低級脂肪酸類によるpH低下を緩和して微
生物の至適pHである弱アルカリ性のpH8〜9の状態
を安定に作り出すことができる。よって、本発明方法の
好気性炉床槽においては、有機物の分解に寄与する細菌
・原生動物及び硝化を行う亜硝酸菌・硝酸菌の活動が活
発となるので、高負荷での処理が可能となり、導入する
有機性汚水が一般的豚舎の尿汚水程度の高濃度であって
も希釈が不要となる。
Here, as mentioned above, the microorganism carrier filled in the aerobic hearth tank has fine irregularities on the surface of calcium silicate hydrate crystals or gel, so microorganisms are easily immobilized. A slightly alkaline pH of 8 to 8, which is the optimum pH for microorganisms, because it facilitates the formation of biofilms, and also alleviates the pH drop caused by lower fatty acids such as lactic acid, butyric acid, and acetic acid, which are decomposition products of organic matter (microbial metabolites). 9 can be stably created. Therefore, in the aerobic hearth tank of the method of the present invention, the activities of bacteria and protozoa that contribute to the decomposition of organic matter, as well as nitrite bacteria and nitrate bacteria that perform nitrification, become active, making it possible to process at high loads. Even if the organic sewage introduced has a high concentration similar to that of urine sewage from a typical pig farm, dilution is not required.

また、かかる好気性炉床槽での脱リンは次の作用による
Moreover, dephosphorization in such an aerobic hearth tank is due to the following action.

好気性炉床槽中の微生物担持体は、これを形成している
珪酸カルシウム水和物の結晶もしくはゲル表面からカル
シウムヒドロキシアパタイトの晶析に必要なCa  を
供給するとともに該接触材のpH緩衝能により、汚水の
pHが低くまたその値が変動しても常にほぼp)I8〜
9の安定した状態をつくり出しているので、汚水中のリ
ン酸イオンはCa  と反応してカルシウムヒドロキシ
アパタイトの形で該担持体表面に晶析されろ。このとき
、微生物担持体の空隙は、汚水の一方向の流れを乱す作
用をするとともに該担持体表面の流速を緩和するように
働くので、リン酸イオンとCa  とによるカルシウム
ヒドロキシアパタイトの析出あるいは成長が促進される
。また、この微生物担持体は、リン酸カルシウムあるい
はカルシウムヒドロキシアパタイトに類する「結晶種」
を含んでいないが、吸着能を有しているため、通水初期
においては生成したカルシウムヒドロキシアパタイトを
吸着し、またその後はその表面がカルシウムヒドロキシ
アパタイトの核形成に都合のよい構造になってその微細
空隙、細孔部分にカルシウムヒドロキシアパタイトの核
を形成するものである。
The microorganism support in the aerobic hearth tank supplies Ca necessary for crystallization of calcium hydroxyapatite from the crystal or gel surface of the calcium silicate hydrate forming the support, and also improves the pH buffering capacity of the contact material. Therefore, even if the pH of the wastewater is low and its value fluctuates, it will always be approximately p) I8 ~
9, the phosphate ions in the wastewater react with Ca and crystallize on the surface of the support in the form of calcium hydroxyapatite. At this time, the pores in the microorganism carrier act to disturb the unidirectional flow of wastewater and to moderate the flow velocity on the surface of the carrier, resulting in the precipitation or growth of calcium hydroxyapatite due to phosphate ions and Ca. is promoted. In addition, this microbial carrier is a "crystal species" similar to calcium phosphate or calcium hydroxyapatite.
Although it does not contain calcium hydroxyapatite, it has adsorption ability, so it adsorbs the generated calcium hydroxyapatite at the initial stage of water flow, and after that, its surface becomes structured to be suitable for nucleation of calcium hydroxyapatite. Calcium hydroxyapatite cores are formed in microscopic voids and pores.

汚水を処理した後の微生物担持体を走査電子顕微鏡で観
察するとその空隙内部及び結晶表面に微生物が多量に着
床・生息しているのが見られ、また不定形結晶も観察さ
れ、EPMA(X線マイクロアナライザー)によりカル
シウムヒドロキシアパタイトと同定された。
When microorganism carriers after treated sewage were observed using a scanning electron microscope, large amounts of microorganisms were seen to be attached and living inside the voids and on the crystal surfaces, and amorphous crystals were also observed. It was identified as calcium hydroxyapatite using a line microanalyzer).

このことからも明らかなように、微生物担持体の細孔・
空隙は微生物の着床及び脱リンに大きな効果を与えてお
り、本発明に係る微生物担持体は、空隙率が50〜90
%、好ましくは60〜80%のものが微生物の着床及び
脱リンに望ましい。この微生物担持体の空隙率が50%
未満では比表面積が小さく微生物の着床が悪く且つリン
除去率が小さく、方、空隙率が90%を超えると好気性
炉床槽内への汚水導入及び曝気により浮上りが生じると
ともに強度低下が著しく、またpH緩衝能力及びリン除
去効果の持続性も悪くなり、好ましくない。
As is clear from this, the pores and
Voids have a great effect on microbial implantation and dephosphorization, and the microorganism carrier according to the present invention has a porosity of 50 to 90.
%, preferably 60 to 80%, is desirable for microbial implantation and dephosphorization. The porosity of this microorganism carrier is 50%
If the porosity is less than 90%, the specific surface area is small, making it difficult for microorganisms to settle and the phosphorus removal rate is low. On the other hand, if the porosity exceeds 90%, sewage floats up due to introduction of sewage into the aerobic hearth tank and aeration, and the strength decreases. In addition, the pH buffering ability and the durability of the phosphorus removal effect deteriorate significantly, which is not preferable.

また、本発明に係る微生物担持体の大きさもリン除去性
能に大きく関与している。担持体の径が0.5mmより
小さいとSSならびに晶析結晶により目づまりしやすい
ので長期使用することができず、一方、径が大きすぎて
も接触面積の減少によリリンの除去率が低下するのでと
もに好ましくない。よって、このような目的のためには
微生物担持体は0.5〜10龍の大きさのものが望まし
い。
Further, the size of the microorganism carrier according to the present invention also greatly affects the phosphorus removal performance. If the diameter of the carrier is smaller than 0.5 mm, it will be easily clogged with SS and crystallized crystals, so it cannot be used for a long time.On the other hand, if the diameter is too large, the removal rate of Ririn will decrease due to the reduction of the contact area. Therefore, both are undesirable. Therefore, for this purpose, the microorganism carrier preferably has a size of 0.5 to 10 dragons.

ここで、本発明にかかる微生物担持体を使用した有機性
汚水の処理方法の例を第1図及び第2図に示す。
Here, an example of a method for treating organic wastewater using the microorganism carrier according to the present invention is shown in FIGS. 1 and 2.

第1図に示す例は好気性炉床槽の次に嫌気性炉床槽を配
置した例である。同図に示すようにスクリーン沈砂池1
及び振動篩2により一次処理された有機性汚水は、上記
微生物担持体が充填されている好気槽(好気性炉床槽)
3に導入されて有機物除去、脱リン及び硝化が行われろ
。次いで、撹拌槽4に導入されてメタノール又は有機性
汚水が添加された後嫌気槽(ts気性枦床原種5で脱窒
素され、再好気槽6及び消毒槽7を経て排水される。
The example shown in FIG. 1 is an example in which an anaerobic hearth tank is placed next to an aerobic hearth tank. As shown in the figure, screen settling basin 1
The organic sewage that has been primarily treated with the vibrating sieve 2 is sent to an aerobic tank (aerobic hearth tank) filled with the microorganism carriers mentioned above.
3 to perform organic matter removal, dephosphorization, and nitrification. Next, the water is introduced into a stirring tank 4 and methanol or organic wastewater is added thereto, and then denitrified in an anaerobic tank (ts air shimadoko original seed 5), and drained through a re-aerobic tank 6 and a disinfection tank 7.

第2図は循環式の処理工程の例である。同図に示すよう
にスクリーン沈砂池1及び振動11i2で一次処理され
た有機性汚水は撹拌槽13及び嫌気槽14を経て微生物
担持体が充填されている好気槽15へ導入され、さらに
は拌槽13へ循環され、る。これにより有機物処理、脱
リン及び脱窒素が行われる。この処理水は再嫌気槽16
及び消毒槽7を経て排水される。
FIG. 2 is an example of a circulating treatment process. As shown in the figure, organic sewage that has been primarily treated in the screen settling tank 1 and vibration 11i2 is introduced into the aerobic tank 15 filled with microbial carriers through the stirring tank 13 and anaerobic tank 14, and then stirred. It is circulated to tank 13. This performs organic matter treatment, dephosphorization, and denitrification. This treated water is re-anaerobic tank 16
The water is then drained through a disinfection tank 7.

これらからも明らかなように、本発明にかかる微生物担
持体を用いて有機性汚水の処理を行えば、従来に比べて
工程数が大幅に削減されるとともに運転管理も容易とな
る。
As is clear from the above, if organic wastewater is treated using the microorganism carrier according to the present invention, the number of steps can be significantly reduced compared to the conventional method, and operation management can also be facilitated.

さらに本発明に係る微生物担持体は重金属を吸着する作
用も有しているので、有機性汚水中に重金属が含まれて
いれば、有機物及びリンとともに除去されろ。
Furthermore, the microorganism carrier according to the present invention also has the function of adsorbing heavy metals, so if heavy metals are contained in organic wastewater, they will be removed together with organic matter and phosphorus.

なお、有機性汚水の処理で使用済となった微生物担持体
は、珪酸石灰質肥料ならびに土壌改良材として再利用で
きるので大変経済的である。
Furthermore, the microbial carrier used in the treatment of organic sewage can be reused as a silicate lime fertilizer and a soil improvement material, which is very economical.

息下に、微生物担持体の製造例、及び本発明の効果を示
す試験例を示す。
A manufacturing example of a microorganism carrier and a test example showing the effects of the present invention are shown below.

(微生物担持体の製造例) (IIcsHゲル担持体 珪石粉末4重量部、生石灰粉末2重量部、消石灰粉末1
重量部及び普通ポルトランドセメント3重量部(CaO
/S 1O2−E−ル比= 1.5)に金属アルミニウ
ム粉末0.008!量部を加えてなる混合物に水7重量
部を加えて水スラリーにした。次いで、この水スラリー
を型枠に注入して4時間静置後脱型したものを回転ブラ
シで粉砕し、パンペレタイザーで5〜10胴の粒径に造
粒後オートクレーブにて150℃5気圧下で10時間水
熱処理して微生物担持体とした。この担持体の空隙率は
70%であった。
(Production example of microorganism carrier) (IIcsH gel carrier silica powder 4 parts by weight, quicklime powder 2 parts by weight, slaked lime powder 1
parts by weight and 3 parts by weight of ordinary Portland cement (CaO
/S 1O2-E-Ratio = 1.5) and metallic aluminum powder 0.008! 7 parts by weight of water was added to the mixture to form a water slurry. Next, this water slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold, which was crushed with a rotating brush, granulated with a pan pelletizer to a particle size of 5 to 10 particles, and then placed in an autoclave at 150°C under 5 atmospheres. The microorganism carrier was prepared by hydrothermal treatment for 10 hours. The porosity of this carrier was 70%.

(2)トバモライト担持体 珪石粉末5重量部、生石灰粉末2重量部及び普通ポルト
ランドセメント3重量部(CaO/SiO2モル比=0
.8)に金属アルミニウム粉末0.008重量部を加え
てなる混合物に水7重皿部を加えて水スラリーにした。
(2) Tobermorite carrier: 5 parts by weight of silica powder, 2 parts by weight of quicklime powder, and 3 parts by weight of ordinary Portland cement (CaO/SiO2 molar ratio = 0
.. Seven parts of water were added to a mixture prepared by adding 0.008 parts by weight of metal aluminum powder to 8) to form a water slurry.

この水スラリーを型枠に注入して4時間静置後脱型した
ものをオートクレーブにて180℃10気圧下で10時
間水熱処理した。得られた成形物をクラッシャーで粗砕
して5〜10nwの粒径にふるいわけて微生物担持体と
した。このものの空隙率は75%であった。
This water slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold, which was then hydrothermally treated in an autoclave at 180° C. and under 10 atm for 10 hours. The obtained molded product was crushed using a crusher and sieved to a particle size of 5 to 10 nw to obtain a microorganism carrier. The porosity of this material was 75%.

(3)  ゾノトライト担持体 珪石粉末と生石灰粉末とをCaO/SiO□モル比1.
0となるように混合し、固体成分に対して10倍重量の
水に分散させて水スラリーを形成し、その後オートクレ
ーブ中に−(210℃、20気圧下で撹拌しながら10
時間水熱処理した。このようにして得られたゾノトライ
ト粉末の絶乾物に対してアクリル樹脂エマルジョン(固
形分10%)を4重量倍加え、混練後造粒成形して11
0℃で乾燥固化させ、5〜10mmの粒径にふるいわけ
て微生物担持体とした。このものの空隙率は73%であ
った。
(3) Zonotlite carrier silica powder and quicklime powder were mixed at a CaO/SiO□ molar ratio of 1.
0, and dispersed in water 10 times the weight of the solid component to form a water slurry, and then placed in an autoclave at 210°C and 20 atm with stirring.
Hydrothermally treated for hours. Acrylic resin emulsion (solid content 10%) was added 4 times by weight to the bone dry substance of the xonotlite powder obtained in this way, and after kneading, granulation molding was carried out.
The mixture was dried and solidified at 0° C. and sieved to particles with a particle size of 5 to 10 mm to obtain microorganism carriers. The porosity of this material was 73%.

(4)種々の空隙率を有するトバモライト担持体 上記(2)に示した製造方法において、金属アルミニウ
ム粉末及び水の添加割合を第1表に示すように変化させ
る乙とにより各種トバモライト担持体を得た。
(4) Tobermorite supports with various porosity In the production method shown in (2) above, various tobermorite supports are obtained by changing the addition ratio of metal aluminum powder and water as shown in Table 1. Ta.

第  1  表 (試験例1) 第3図に示すように、微生物担持体を充填した200X
150X310mmの第1の槽101及び200 X 
150 X 290 mmの第2の槽102に、固液分
離を行った後0.3mmφの錆の振動篩を通過させた膠
原汚水の一次処理水を上向き流で通水するとともに、各
種101.102の下方より500 mj! /分で曝
気を行うことにより、各種微生物担持体の性能を調べた
。ここで、上記製造例(1)。
Table 1 (Test Example 1) As shown in Figure 3, 200X packed with microorganism carrier
1st tank 101 and 200X of 150X310mm
A second tank 102 of 150 x 290 mm is supplied with the primary treated collagen wastewater, which has been subjected to solid-liquid separation and passed through a 0.3 mmφ rust vibrating sieve, in an upward flow. 500 mj from below! The performance of various microbial carriers was investigated by performing aeration at 1/min. Here, the above manufacturing example (1).

(21,(31で製造した各微生物担持体を上記第1及
び第2の槽101,102に充填して一次処理水を10
1/日の流速で通水したものをそれぞれ試験例A−1、
A−2、A−3とした。
(21, (Fill each microorganism carrier produced in 31 into the first and second tanks 101 and 102, and add 10% of the primary treated water.
Test examples A-1 and 1/day were respectively tested.
They were named A-2 and A-3.

比較のため、本発明の微生物担持体の代りに市販のバラ
ス、軽石2石灰石及びポリプロピレンで粒度5〜10面
のものを担持体として用いたものをそれぞれ比較例B〜
1゜B−2,B−3,B−4とした。
For comparison, commercially available ballast, pumice 2 limestone, and polypropylene with a particle size of 5 to 10 sides were used as carriers in place of the microorganism carrier of the present invention in Comparative Examples B to B, respectively.
1°B-2, B-3, and B-4.

これら試験例A−1〜A−3及び比較例B−1〜B−4
の2〜3ケ月経過時において、その処理水の透明度、p
H,BOD及びT−P(全リン) 、 NHニーN 、
 No;−N。
These Test Examples A-1 to A-3 and Comparative Examples B-1 to B-4
After 2 to 3 months, the clarity of the treated water, p
H, BOD and T-P (total phosphorus), NHney N,
No;-N.

N O−−Nの各濃度を各4回測定し、その平均を第2
表に示す。
Each concentration of N O--N was measured four times, and the average was calculated as the second
Shown in the table.

第  2  表 この結果に示すようにBOD容積負荷1.0kg/日・
イの高負荷の処理においてBOD除去率は比較例が77
〜87%であるのに対して本発明法では95%以上の高
い除去率を示した。またリンの除去率は比較例において
は25%以下でほとんど除去できていないが、本発明法
では90%以上の高す)除去率であった。さらに次工程
で脱窒素を行なうためには、有機態窒素及びNHニーN
をNo;−NあるいはNO−−Nに硝化させる必要があ
るが、本発明法によれば、NHニーN容積負荷が0.4
kg/日・櫂の高負荷処理でも完全に硝化が進行してお
り、次工程で脱窒素が完全に行える状態となっている。
Table 2 As shown in the results, BOD volumetric load 1.0 kg/day
The BOD removal rate of the comparative example was 77 in high-load processing.
While the removal rate was ~87%, the method of the present invention showed a high removal rate of over 95%. Further, the removal rate of phosphorus was 25% or less in the comparative example, which was hardly removed, but the method of the present invention had a high removal rate of 90% or more. Furthermore, in order to perform denitrification in the next step, organic nitrogen and NH-N
However, according to the method of the present invention, the NH-N volume load is 0.4.
Even under high load treatment of kg/day/paddle, nitrification has progressed completely, and complete denitrification is now possible in the next process.

これに対し比較例で;よ10〜30%のNHニーNが残
っているので、たとえその後生物学的膜窒素工程を付加
してもこの残存のNHニーNはそのまま流出されること
になる。
On the other hand, in the comparative example, 10 to 30% of NH-N remains, so even if a biological membrane nitrogen step is subsequently added, this remaining NH-N will flow out as is.

(試験例2) 試験例1と同様な実験装置を用い、製造例(4)に示す
各種担持体により豚尿−次処王水を処理して担持体の空
隙率の大小にょ;浄化の違いを試験した。なお他の条件
は;験例1と同様とした。この結果は試験例と同様2〜
3ケ月の間の4回の測定結果6平均を第3表に示す。
(Test Example 2) Using the same experimental equipment as in Test Example 1, pig urine and aqua regia were treated with the various carriers shown in Production Example (4) to determine the porosity of the carrier; differences in purification. was tested. The other conditions were the same as in Experimental Example 1. This result is similar to the test example 2~
Table 3 shows the six averages of the four measurement results over three months.

第  3  表 第3表に示すように、担持体の空隙率力50%以上の時
にBOD除去、リン除去C効果が大きくかつ硝化が充分
に進む。な表空隙率が90%を超又ると通水時の浮き上
り現象により槽より流出してしまうと同時に強度低下が
著しい。
Table 3 As shown in Table 3, when the porosity of the carrier is 50% or more, the BOD removal and phosphorus removal C effects are large and nitrification progresses sufficiently. If the surface porosity exceeds 90%, the material will flow out of the tank due to the floating phenomenon during water flow, and at the same time, the strength will decrease significantly.

この結果より担持体の空隙構造は、接触材と有機性汚水
との接触機会を高めろとともに細孔、空隙内に微生物を
着床のために極めて重要である。また、同時に晶析して
くるカルシウムヒドロキシアパタイトの結晶成長のため
にも極めて重要でリン除去効果に大きく寄与している。
From this result, the pore structure of the carrier is extremely important for increasing the contact opportunity between the contact material and organic wastewater and for allowing microorganisms to settle in the pores and voids. It is also extremely important for the crystal growth of calcium hydroxyapatite that crystallizes at the same time, and greatly contributes to the phosphorus removal effect.

く実 施 例〉 実施例1 本実施例には第4図(al 、 (b)に示すようなA
〜Fの6つ゛の処理室からなるコンクリート製の汚水処
理装置を用いた。ここで、A、B及びFは好気性炉床槽
であり、A及びBには上記製造例(2)と同様にして製
造した粒径5〜15胴のトバモライトを主たる構成物と
する微生物担持体がまた、Fには粒径5〜8mの同様な
トバモライト担持体が充填されており、それぞれの下方
に曝気を行うための散気筒110〜110Cが配設され
ている。これら散気筒110a〜110cはエアー配v
:111及びエアー調整バルブ112を介してエアーポ
ンプ113と接続されている。処理槽Cは度拌槽でメタ
ノールタンク114からメタノールが供給されるように
なっている。また、D及びEは嫌気性炉床槽でこの内部
には市販のアンスラサイトで粒径5〜10間のものが充
填されている。
Examples> Example 1 In this example, an A as shown in FIGS.
A concrete sewage treatment equipment consisting of 6 treatment chambers ~F was used. Here, A, B, and F are aerobic hearth tanks, and A and B carry microorganisms mainly composed of tobermorite with a particle size of 5 to 15 shells produced in the same manner as in Production Example (2) above. The bodies F are filled with similar tobermorite carriers having a particle size of 5 to 8 m, and aeration pipes 110 to 110C for aeration are arranged below each of them. These diffusion cylinders 110a to 110c are air distribution cylinders.
: 111 and an air pump 113 via an air adjustment valve 112. The processing tank C is a stirring tank, and methanol is supplied from the methanol tank 114. Further, D and E are anaerobic hearth tanks, the insides of which are filled with commercially available anthracite having a particle size of 5 to 10.

このような汚水処理装置において、豚舎汚水の一次処理
水を汚水導入管115より600I/日の流量で通水処
理して排出管116より処理液を排出した。なお、処理
室Cにおけるメタノールの添加流量は1.217日であ
るこのような条件で約6ケ月間処理し、このときの−次
処理水及び排出処理液のpHp透視度、BOD、33.
T−P及びT−N(全窒素)をそれぞれ測定した。この
結果は第5図に示す。同図より明らかなように、本実施
例によれば、豚舎汚水中−の有機物、リン及び窒素が長
期に亘って確実に除去されている。
In such a sewage treatment apparatus, the primary treated water of pigsty sewage was treated by flowing water through the sewage inlet pipe 115 at a flow rate of 600 I/day, and the treated liquid was discharged from the discharge pipe 116. Note that the methanol addition flow rate in the treatment chamber C was 1.217 days.The treatment was carried out for about 6 months under these conditions, and the pH, transparency, BOD, and BOD of the secondary treated water and discharged treated water at this time were 33.
TP and TN (total nitrogen) were measured respectively. The results are shown in FIG. As is clear from the figure, according to this example, organic matter, phosphorus, and nitrogen in the pigsty wastewater are reliably removed over a long period of time.

実施例2 本実施例には第6図に示すようなG−Lの6つの処理室
からなるコンクリート製の汚水処理装置を用いた。ここ
でT及びJは好気性炉床槽であり、これらの槽には上記
製造例(2)と同様にして製造した粒径5〜10胴のト
バモライトを主たる構造とする担持体が充填されている
とともにその下方には曝気を行うための散気筒120a
、120bが配設されている。これら散気筒120a、
120bはエアー配’1121及びエアー調整バルブ1
22を介してエアーポンプ123と接続されている。一
方、処理槽G及びHば嫌気性f原種で市販のアンスラサ
イトで粒径5〜15面のものが充填されており、汚水導
入管125より汚水が導入されるとともにメタノールタ
ンク124よりメタノールが供給されるようになってい
る。これらG、Hを通った汚水はI。
Example 2 In this example, a concrete sewage treatment apparatus consisting of six treatment chambers GL as shown in FIG. 6 was used. Here, T and J are aerobic hearth tanks, and these tanks are filled with a carrier whose main structure is tobermorite with a grain size of 5 to 10 shells, which was produced in the same manner as in Production Example (2) above. At the same time, there is an aeration pipe 120a below it for aeration.
, 120b are arranged. These diffuser cylinders 120a,
120b is air distribution '1121 and air adjustment valve 1
It is connected to the air pump 123 via 22. On the other hand, treatment tanks G and H are filled with commercially available anthracite, which is an anaerobic raw material, and has a particle size of 5 to 15 sides. Waste water is introduced from the waste water introduction pipe 125, and methanol is supplied from the methanol tank 124. It is now possible to do so. The wastewater that has passed through these G and H is I.

Jの好気槽で処理された後にの処理槽より循環水導入管
127及び流量ポンプ128を介してGの処理槽へ循環
されろようになっている。さらにKの後には再嫌気槽り
が設けており、ここにはG及びHと同様のアンスラサイ
トが充填されている。
After being treated in the aerobic tank J, the water is circulated from the treatment tank to the G treatment tank via a circulating water introduction pipe 127 and a flow pump 128. Furthermore, a re-anaerobic tank is provided after K, and this tank is filled with anthracite similar to G and H.

このような汚水処理装置において、汚水導入管125よ
す600 e/日の流量で、豚舎汚水の一次処理水を通
水するとともにKからGへの循燗を5400e/日とし
、さらに汚水中の窒素濃度が高いため汚水中のBOD源
だけでは脱窒前効果が不十分であるため、嫌気槽Gへ水
素供与体としてのメタノールを0.2j/日供給した。
In such a sewage treatment equipment, the sewage inlet pipe 125 passes the primary treated water of pigsty sewage at a flow rate of 600 e/day, and the circulation from K to G is 5400 e/day, and furthermore, the sewage in the sewage is Because the nitrogen concentration was high, the BOD source in the wastewater alone was insufficient to provide a pre-denitrification effect, so methanol as a hydrogen donor was supplied to the anaerobic tank G at a rate of 0.2J/day.

このようにして、約6ケ月間に亘って汚水を処理し、乙
のときの一次処理水及び処理排出管126からの排出処
理液のpHp透視度、BOD、33.T−P及びT−N
をそれぞれ測定した。この結果は第7図に示す。同図よ
り明らかなように、本実施例によれば、豚舎汚水中の有
機物、リン及び窒素が長期に亘って確実に除去されてい
る。
In this way, the wastewater was treated for about 6 months, and the pH, transparency, BOD, and BOD of the primary treated water and the treated liquid discharged from the treated discharge pipe 126 at the time of B were 33. T-P and T-N
were measured respectively. The results are shown in FIG. As is clear from the figure, according to this example, organic matter, phosphorus, and nitrogen in the pigsty wastewater are reliably removed over a long period of time.

ここで実施例1,2の結果をさらに詳しく検討しておく
Here, the results of Examples 1 and 2 will be considered in more detail.

第5図及び第7図に示すように、実施例1゜2では、汚
水を流入してから約4週目から浄化が進み、8週目から
の処理水は安定した水質となっている。ここで実施例1
,2の8週目以降の処理水の水質の測定結果を平均して
みると第4表のようになる。
As shown in FIGS. 5 and 7, in Example 1.2, purification progressed from about 4 weeks after the wastewater was introduced, and the quality of the treated water was stable from the 8th week onward. Here, Example 1
Table 4 shows the average of the water quality measurement results of the treated water after the 8th week of 2.

第  4  表 第4表に示すように、実施例1,2共に、BOD、SS
はもちろん、T−P、T−Hについても高い除去率を示
しており、非常に高度の処理結果となっている。
Table 4 As shown in Table 4, in both Examples 1 and 2, BOD, SS
Of course, high removal rates were also shown for TP and TH, resulting in extremely high-quality treatment results.

また、重金属については、実施例1における200週目
流入汚水と排出処理水とを測定し、その結果を第5表に
示す。
Regarding heavy metals, the inflow sewage and discharged treated water at the 200th week in Example 1 were measured, and the results are shown in Table 5.

第  5  表 同表に示す通り、豚舎汚水に含まれていた銅、亜鉛の重
金属は、本実施例の処理により90%以上除去されてい
た。
As shown in Table 5, more than 90% of the heavy metals copper and zinc contained in the pigsty wastewater were removed by the treatment of this example.

〈発明の効果〉 す上説明したように、本発明に係る微生物担持体は、有
機性汚水の生物膜法による処理等にわいて微生物を良好
に生息させるものであり、しかも、脱窒前及び脱リンを
単純な工程で容易且つ効率よく行うことができるという
効果を奏する。
<Effects of the Invention> As explained above, the microorganism carrier according to the present invention allows microorganisms to live well in the treatment of organic wastewater by the biofilm method, and moreover, This has the effect that dephosphorization can be easily and efficiently performed through a simple process.

したがって、微生物担持体を用いると、有機物、窒素及
びリンを効率よく除去でき、維持管理も容易であり、さ
らに家畜尿汚水処理や工場排水などの高濃度な汚水に対
しても高負荷で処理する乙とができるので、処理設備が
小型化できろとともに簡略化できるという効果を奏する
。また、この場合には、銅、亜鉛、鉛などの重金属も同
時に除去できる。さらに、このように長期に亘って使用
して処理能力の低下した微生物担持体は、珪酸石灰質肥
料ならびに土壌改質材として再利用できるのでEl、法
的である。
Therefore, by using a microbial carrier, organic matter, nitrogen, and phosphorus can be removed efficiently, maintenance is easy, and even high-concentration wastewater such as livestock urine wastewater treatment and industrial wastewater can be treated with high loads. This has the effect that the processing equipment can be downsized and simplified. Moreover, in this case, heavy metals such as copper, zinc, and lead can also be removed at the same time. Furthermore, microbial carriers whose treatment capacity has decreased due to long-term use can be reused as silicate lime fertilizer and soil improvement material, so it is legal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明にかかり、第1図及び第2図は
有機性汚水の処理方法の例を示す工程図、第3図は試験
例に用いた装置を示す説明図、第4図は第1実施例に用
いた汚水処理装置を示す説明図、第5図は第1実施例の
結果を示す説明図、第6図は第2実施例に用いた汚水処
理装置を示す説明図、第7図は第2実施例の結果を示す
説明図、第8図は従来技術にかかる有機性汚水の処理工
程を示す工程図である。 図面中、 3.15は好気性炉床槽、 5.14は好気性炉床槽である。 特  許  出  願  人 小野田ニー・エル・シー株式会社 代    理     人
Figures 1 to 7 are related to the present invention, Figures 1 and 2 are process diagrams showing an example of a method for treating organic wastewater, Figure 3 is an explanatory diagram showing the apparatus used in the test example, Figure 4 is an explanatory diagram showing the sewage treatment equipment used in the first example, Figure 5 is an explanatory diagram showing the results of the first example, and Figure 6 is an explanatory diagram showing the sewage treatment equipment used in the second example. FIG. 7 is an explanatory diagram showing the results of the second example, and FIG. 8 is a process chart showing the organic wastewater treatment process according to the prior art. In the drawing, 3.15 is an aerobic hearth tank, and 5.14 is an aerobic hearth tank. Patent applicant: Onoda NLC Co., Ltd. Agent

Claims (2)

【特許請求の範囲】[Claims] (1)珪酸質原料と石灰質原料とからなる水スラリーを
気泡剤の存在下で発泡させると共に硬化させて得た発泡
硬化物を水熱反応処理して得られ且つ50〜90%の空
隙率を有する多孔質珪酸カルシウム水和物を主成分とす
ることを特徴とする微生物担持体。
(1) Hydrothermal reaction treatment of a foamed cured product obtained by foaming and curing an aqueous slurry consisting of a siliceous raw material and a calcareous raw material in the presence of a foaming agent, and with a porosity of 50 to 90%. A microorganism carrier characterized in that the main component is porous calcium silicate hydrate.
(2)多孔質珪酸カルシウム水和物が、トバモライト、
ゾノトライト、CSHゲル、フォシャジャイト、ジャイ
ロライト、ヒレプランダイトの群から選ばれる1種ある
いは2種以上のものである請求項1記載の微生物担持体
(2) Porous calcium silicate hydrate is tobermorite,
The microorganism carrier according to claim 1, which is one or more selected from the group of xonotlite, CSH gel, fossagite, gyrolite, and hireplandite.
JP2133861A 1990-05-25 1990-05-25 Microorganism carrier Expired - Lifetime JPH0683832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133861A JPH0683832B2 (en) 1990-05-25 1990-05-25 Microorganism carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133861A JPH0683832B2 (en) 1990-05-25 1990-05-25 Microorganism carrier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61168031A Division JPS6328496A (en) 1986-02-10 1986-07-18 Treatment of organic sanitary sewage

Publications (2)

Publication Number Publication Date
JPH03114592A true JPH03114592A (en) 1991-05-15
JPH0683832B2 JPH0683832B2 (en) 1994-10-26

Family

ID=15114766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133861A Expired - Lifetime JPH0683832B2 (en) 1990-05-25 1990-05-25 Microorganism carrier

Country Status (1)

Country Link
JP (1) JPH0683832B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239536A (en) * 2005-03-02 2006-09-14 Clion Co Ltd Sewage treatment apparatus and method
JP2008272711A (en) * 2007-05-07 2008-11-13 Itsuo Morizaki Water clarification method and clarification apparatus
CN105293614A (en) * 2014-06-19 2016-02-03 南通醋酸纤维有限公司 Method for removing phosphorus from wastewater by utilizing coal ash
CN112759191A (en) * 2020-12-30 2021-05-07 浙江大学 Wastewater treatment facility and method using biological rotating barrel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239536A (en) * 2005-03-02 2006-09-14 Clion Co Ltd Sewage treatment apparatus and method
JP4578278B2 (en) * 2005-03-02 2010-11-10 クリオン株式会社 Sewage treatment apparatus and treatment method
JP2008272711A (en) * 2007-05-07 2008-11-13 Itsuo Morizaki Water clarification method and clarification apparatus
CN105293614A (en) * 2014-06-19 2016-02-03 南通醋酸纤维有限公司 Method for removing phosphorus from wastewater by utilizing coal ash
CN105293614B (en) * 2014-06-19 2018-02-13 南通醋酸纤维有限公司 A kind of method that Phosphorus From Wastewater is removed using flyash
CN112759191A (en) * 2020-12-30 2021-05-07 浙江大学 Wastewater treatment facility and method using biological rotating barrel

Also Published As

Publication number Publication date
JPH0683832B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US4917802A (en) Method for treating waste water
JP4032199B2 (en) Nitrate nitrogen denitrification substrate
EP1129996A1 (en) Denitrifying composition for removing nitrate nitrogen and process for producing the same
CN113860497B (en) Urban and municipal sewage denitrification and dephosphorization filler and preparation method thereof
Abou-Elela et al. Utilization of autoclaved aerated concrete solid waste as a bio-carrier in immobilized bioreactor for municipal wastewater treatment
CN101544421A (en) Method for treating coking wastewater
JPH0220315B2 (en)
JP2024052993A (en) Water treatment method and water treatment apparatus
KR102432539B1 (en) Media for Water Treatment Using Zeolite and Preparation Method thereof
JPH03114592A (en) Microorganism carrier
JPH0378157B2 (en)
JP3379924B2 (en) Adsorbent
JP2007054732A (en) Sewage treatment material and its production method
JPS6317513B2 (en)
JPS5851986A (en) Apparatus for biologically purifying waste water with aerobes
JPH10165985A (en) Method for treating nitrogen-containing organic waste water
JPH0478675B2 (en)
CN113024052A (en) Method for synchronously removing river sediment and ammonia nitrogen of overlying water body by using ammonia nitrogen release enhancer
JP3480668B2 (en) Porous concrete member for water purification for phosphorus removal
JPH02126997A (en) Method for purifying sewage
KR19980043133A (en) Oxidation spherical natural purification treatment method
JPH0231895A (en) Process and apparatus for treating filthy water
JPS59199098A (en) Treatment of organic filthy water
CN112919631B (en) Graded biofiltration medium, preparation method thereof and graded biofiltration system
JP2006136752A (en) Method for treating water containing suspended solid, inorganic-state nitrogen and phosphorus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term