JPS59199098A - Treatment of organic filthy water - Google Patents
Treatment of organic filthy waterInfo
- Publication number
- JPS59199098A JPS59199098A JP7305683A JP7305683A JPS59199098A JP S59199098 A JPS59199098 A JP S59199098A JP 7305683 A JP7305683 A JP 7305683A JP 7305683 A JP7305683 A JP 7305683A JP S59199098 A JPS59199098 A JP S59199098A
- Authority
- JP
- Japan
- Prior art keywords
- anaerobic
- tank
- aerobic
- sludge
- zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、下水、し尿等の有機性汚水中のBOD 、窒
素、リンを生物学的に除去する処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method for biologically removing BOD, nitrogen, and phosphorus from organic wastewater such as sewage and human waste.
この種の汚水中には、BODとして測定、表示されるこ
との多い有機性汚濁物質や、閉鎖性水域の富栄養化の原
因物質である窒素、リンが含まれている。生物学的処理
法はこれらの汚濁物質を除去処理するのに重要な位置を
占めている。This type of wastewater contains organic pollutants that are often measured and displayed as BOD, as well as nitrogen and phosphorus, which are substances that cause eutrophication of closed water bodies. Biological treatment methods play an important role in removing these pollutants.
例えばBODを除去する生物学的処理法として、活性汚
泥法、ラグーン法、散水炉床法2回転円板法などが広く
用いられて来た。For example, as biological treatment methods for removing BOD, activated sludge method, lagoon method, watering hearth method, two rotating disk method, etc. have been widely used.
また窒素を生物学的に処理する方法として次のものがあ
る。この方法は、まず第1段階において、
汚水中のアンモニア性窒素(NH4+−N)を好気的条
件下での硝化菌の作用によって、亜硝酸性窒素(NO2
−−N ) 、硝酸性窒素(NO3−−N)に酸化する
。この反応は、いわゆる硝化反応で、下記のように表わ
される。The following methods are also available for biologically processing nitrogen. In the first step, this method converts ammonia nitrogen (NH4+-N) in wastewater into nitrite nitrogen (NO2) by the action of nitrifying bacteria under aerobic conditions.
--N), oxidizes to nitrate nitrogen (NO3--N). This reaction is a so-called nitrification reaction and is expressed as follows.
NH4” +1.502→NO□−+ H2o + 2
H+・・・・・・・・・(1)No ”−+ 0.50
−+ NO3−・・・・・・・−・・・・(2)2
式(1) 、 (2)よシ
NH4−+202→No、 −+H20+ 2H+ ・
・・・・・・・・・・・(3)次いで第2段階で、No
−−N 、 NO3−−N を、2
嫌気的条件下での脱窒菌の作用によって、窒素力ス(N
2)に還元し、とのN2を大気中に放散させて汚水の脱
窒水処理を完結する。この反応は脱窒反応と呼ばれ、下
式のように示される。NH4" +1.502→NO□-+ H2o + 2
H+・・・・・・・・・(1) No ”-+ 0.50
−+ NO3−・・・・・・・−・・・・(2)2 Formula (1), (2) NH4−+202→No, −+H20+ 2H+ ・
・・・・・・・・・・・・(3) Next, in the second stage, No.
--N, NO3--N, by the action of denitrifying bacteria under anaerobic conditions, nitrogen power (N
2) and dissipate the N2 into the atmosphere to complete the denitrification treatment of wastewater. This reaction is called a denitrification reaction and is expressed by the equation below.
2NO2−l−6H−+N2↑+2H20+ 20H−
・・凹曲・・(4)2NO3’−+10H−+ N2↑
+4H20+ 20H−・曲・・曲(5)硝化反応に伴
って、式(1) 、 (3)に示したようにPllが低
下する。このだめ、硝化工程では、必要に応じてアルカ
リ剤を添加する。また脱窒反応においては、式(4)
、 (5)に示したように、環元剤が必要である。この
ため、メタノール等の有機炭素源を必要量添加する。そ
して脱窒工程では、PHが上昇する。2NO2-l-6H-+N2↑+2H20+ 20H-
... Concave curve ... (4) 2NO3'-+10H-+ N2↑
+4H20+ 20H-・Track...Track (5) With the nitrification reaction, Pll decreases as shown in equations (1) and (3). To prevent this, an alkaline agent is added as necessary in the nitrification step. In addition, in the denitrification reaction, formula (4)
, As shown in (5), a cyclic agent is required. For this purpose, a necessary amount of an organic carbon source such as methanol is added. In the denitrification process, the pH increases.
更にリンを生物学的に除去する方法も開発されている。Furthermore, methods for biologically removing phosphorus have also been developed.
との方法は、BODとリンとを含有す−る汚水を活性汚
泥処理する場合、汚泥を嫌気状態と好気状態とに、繰り
返してさら(・て汚泥中へのリンの取シ込みを強化し、
リン含有量の多い汚泥を余剰汚泥として系外へ取シ出し
、このことによって、汚水中のリンを除去するものであ
る。ただし、現在のところ、この生物学的リン除去メカ
ニズムの詳細については不明である。When treating sewage containing BOD and phosphorus with activated sludge, the method of death,
Sludge with a high phosphorus content is taken out of the system as surplus sludge, thereby removing phosphorus from the wastewater. However, the details of this biological phosphorus removal mechanism are currently unknown.
以上のように、生物作用を利用することによって各種の
汚濁物質を除去することが可能であシ、従来の処理フロ
ーには、さまさせなものがある。As described above, it is possible to remove various pollutants by utilizing biological effects, but the conventional treatment flow has some drawbacks.
第1図は、従来のBODおよび窒素を除去する生物学的
処理方法のフローシート図である。この方法は、1次処
理水1を、曝気槽2および沈殿槽3からなる活性汚泥装
置で処理し、まずBOD除去を行う。この処理水4を曝
気槽5および沈殿槽6から成る活性汚泥装置へ導き、硝
化処理を行った後、脱窒槽7.再曝気槽(脱気槽)8、
沈殿槽9から成る装置で脱室処理し、もって窒素除去処
理水10を得る。必要に応じて、硝化工程でアルカリ剤
1ノを、又脱窒工程でメタノールなどの有機炭素源1−
2を添加する。FIG. 1 is a flow sheet diagram of a conventional biological treatment method for removing BOD and nitrogen. In this method, primary treated water 1 is treated with an activated sludge device consisting of an aeration tank 2 and a settling tank 3, and BOD is first removed. This treated water 4 is led to an activated sludge system consisting of an aeration tank 5 and a settling tank 6, where it is subjected to nitrification treatment, and then to a denitrification tank 7. Re-aeration tank (deaeration tank) 8,
A device consisting of a settling tank 9 is used to remove the room, thereby obtaining nitrogen-removed treated water 10. If necessary, add 1 part of an alkali agent in the nitrification process and 1 part of an organic carbon source such as methanol in the denitrification process.
Add 2.
この方法によれば、汚泥が機能別に分れているので、返
送比、曝気風量、引き抜き汚泥量等の運転操作要因が多
く、その位置づけも明確である。このだめ、水温変動、
水質変動、水量変動々どが生じても、これに対する運転
対応が容易であシ、安定した処理水が得られる。According to this method, since the sludge is divided according to function, there are many operational factors such as return ratio, aeration air volume, and amount of sludge drawn out, and their positions are clear. This waste, water temperature fluctuation,
Even if changes in water quality or amount occur, operational responses to these changes are easy and stable treated water can be obtained.
しかしその反面、設備数が多いために、設備費が高くな
るとともに、脱窒工程でのメタノールの添、IJII量
が、脱窒処理するNo3−−Nの約2.5倍以上必要と
なシ、その費用が高いという欠点がある。However, on the other hand, the equipment cost is high due to the large number of equipment, and the amount of methanol added and IJII in the denitrification process is required to be approximately 2.5 times or more than No3--N to be denitrified. , has the disadvantage of high cost.
第2図は、BODと窒素とを除去するための従来法の他
の例である。この方法は、1次処理水2ノを第1脱窒槽
22に入れた後、硝化槽23に入れ、その汚泥混合液の
一部24を第1脱窒槽22に返送するとともに、汚泥混
合液を第2脱窒桶25に入れて、メタノール26を有機
炭素源として脱窒処理し、更に再曝気槽27を経て沈殿
池28に入れ、この汚泥の一部29を上記第1脱窒槽2
2に返送する方法である。すなわちこの方法は、第1脱
窒槽22と硝化槽23との間で汚泥混合液を循環させ、
第1脱窒槽22で1次処理水中のBODを利用して脱窒
を起こさせ、ここで脱窒処理し切れなかった分について
は、第2脱窒槽25でメタノールを補助的に添加して脱
窒を完了させる方法である。FIG. 2 is another example of a conventional method for removing BOD and nitrogen. In this method, two volumes of the primary treated water are put into the first denitrification tank 22 and then put into the nitrification tank 23, a part of the sludge mixture 24 is returned to the first denitrification tank 22, and the sludge mixture is The sludge is put into the second denitrification tank 25, subjected to denitrification treatment using methanol 26 as an organic carbon source, and further put into the sedimentation tank 28 via the re-aeration tank 27, and a part of this sludge 29 is transferred to the first denitrification tank 2.
2. This is the method of sending it back. That is, this method circulates the sludge mixture between the first denitrification tank 22 and the nitrification tank 23,
Denitrification is caused in the first denitrification tank 22 using BOD in the primary treated water, and for the water that cannot be completely denitrified here, methanol is supplementarily added in the second denitrification tank 25 for denitrification. This is a way to complete nitrogen.
この方法によれば、第1図に示す方法に比べてメタノー
ル費を軽減できるという長所があシ、また、設備数も低
減できるという利点がある。This method has the advantage that methanol costs can be reduced as compared to the method shown in FIG. 1, and the number of facilities can also be reduced.
しかし、増殖速度、作用等の全く異なる硝化菌と脱窒菌
とが全く同じ環境条件下で培養運転され、混合されるた
め、水温低下、原水水質変動等の外的条件に対応する運
転管理が技術的に困姐である。しかも汚泥が混合されて
相互に希釈し合う結果、単位混合汚泥量当シの硝化速度
、脱窒速度がともに小さくなシ、このため、硝化槽、脱
窒槽の容積をいずれも太きくしなければならないという
問題がある。However, since nitrifying bacteria and denitrifying bacteria, which have completely different growth rates and actions, are cultured and mixed under exactly the same environmental conditions, it is difficult to manage operations in response to external conditions such as drops in water temperature and fluctuations in raw water quality. This is a difficult situation. Moreover, as the sludge is mixed and diluted with each other, both the nitrification rate and denitrification rate per unit amount of mixed sludge are small.For this reason, the volumes of both the nitrification tank and denitrification tank must be increased. There is a problem.
第3図は、BODとリンとを除去するだめの従来法の1
例である。この方法は′、1次処理水31、と、返送汚
泥32とを、嫌気槽33で接触反応させ、BODの嫌気
的分解と汚泥からのりンの溶出をはかる。しかる後に、
その汚泥混合液を好気槽34に導き、BODの好気的分
解と汚泥へのリンの取シ込みをはかる。そして、汚泥混
合液を沈殿池35に導き固液分離を行って、BODおよ
びリンを除去して処理水36と分離汚泥37とを得るも
のである。Figure 3 shows one of the conventional methods for removing BOD and phosphorus.
This is an example. In this method, primary treated water 31 and returned sludge 32 are brought into a contact reaction in an anaerobic tank 33 to achieve anaerobic decomposition of BOD and elution of phosphorus from the sludge. After that,
The sludge mixture is led to the aerobic tank 34 to aerobically decompose BOD and incorporate phosphorus into the sludge. The sludge mixture is then led to a settling tank 35 for solid-liquid separation to remove BOD and phosphorus to obtain treated water 36 and separated sludge 37.
この方法は、凝集剤等の薬剤を用いることなく、比較的
簡単な装置でもって汚水中のBODおよびリンを除去し
得る。しかし、この方法では窒素除去機能は弱い。This method can remove BOD and phosphorus from wastewater using a relatively simple device without using any agents such as flocculants. However, this method has a weak nitrogen removal function.
第3図における処理方法を改良して、BOD1リンおよ
び屋素を除去することを目的としたのが、第4図におけ
る方法である。第4図における方法が第3図における方
法と異なる点は、好気相34から出だ汚泥混合液の一部
38を嫌気槽33へ返送することである。すなわち、こ
の返送によって、嫌気槽33、好気槽34の攪拌混合を
助け、短絡流を防止することおよび脱窒反応の結果化ず
るPHの上昇〔式(4) 、 (5)参照〕と硝化反応
の結果化ずる−の低下〔式(1) 、 (3)参照〕と
を平均化、中和化し、もって、嫌気的反応および好気的
反応の進行を助長することができる。The method shown in FIG. 4 is an improvement on the processing method shown in FIG. 3, and is intended to remove BOD1 phosphorus and nitrogen. The method shown in FIG. 4 differs from the method shown in FIG. 3 in that a portion 38 of the sludge mixture discharged from the aerobic phase 34 is returned to the anaerobic tank 33. That is, this return helps the stirring and mixing of the anaerobic tank 33 and the aerobic tank 34, prevents short-circuit flow, increases the pH resulting from the denitrification reaction [see equations (4) and (5)], and reduces nitrification. It is possible to average out and neutralize the decrease in shear as a result of the reaction [see formulas (1) and (3)], thereby promoting the progress of anaerobic and aerobic reactions.
この方法によれば、メタノール、凝集剤等の薬剤を用い
ることなく、比較的簡単な装置で汚水のBOD 、窒素
、リンの除去が可能となる。According to this method, BOD, nitrogen, and phosphorus can be removed from wastewater using a relatively simple device without using chemicals such as methanol or flocculants.
しかし、この方法においても、第2図、第3図の従来法
と同様に機能と性質の異なる菌が、全て浮遊混合状態で
使用されるだめ、運転操作が技術的に困難である。すな
わち、水温、水質。However, in this method as well, as in the conventional method shown in FIGS. 2 and 3, bacteria having different functions and properties are all used in a suspended mixed state, and therefore the operation is technically difficult. i.e. water temperature, water quality.
水量等が変動する場合、活性汚泥型の処理法においては
、汚泥に対する負荷量が汚泥の持つ処理能力の範囲に収
まるように、返送比を調TR’j して反応槽内の汚泥
濃度をコントロールするのが、運転対応の基本である。When the amount of water fluctuates, in the activated sludge treatment method, the return ratio is adjusted to control the sludge concentration in the reaction tank so that the load on the sludge falls within the processing capacity of the sludge. This is the basis of driving response.
この場合、返送ポンプの電力費節減の観点から、必要最
小の返送比とすることが望ましい。ところが、この方法
における汚泥には、BOD除去菌、硝化菌、脱窒菌、脱
リン菌が含まれておシ、それ゛らは増殖速度、反応速度
、生育条件等が異なるため、水温、水質、水量等が変化
すると、混合汚泥の中でのそれぞれの微生物の存在比も
変化する。しかるに、各種微生物の存在比と活性とを、
短時間のうちに把握することが困難であるため、従来の
活性汚泥法のように、汚泥混合液のSS濃度(MLSS
)あるいは、活性汚泥沈殿率(S■3o)といった指標
を、負荷量調節のだめの指標として適用することには問
題が残る。つ!、シ、混合汚泥の組成とその汚泥の持つ
処理能力が外的条件によって大きく変動するため、その
汚泥単位量当シの処理活性も変動し、処理運動対応のだ
めの汚泥量調節が技術的に困難であるという欠点を免れ
得ない。In this case, from the viewpoint of reducing the power cost of the return pump, it is desirable to set the necessary minimum return ratio. However, the sludge in this method contains BOD removing bacteria, nitrifying bacteria, denitrifying bacteria, and dephosphorizing bacteria, and since these bacteria have different growth rates, reaction rates, growth conditions, etc., water temperature, water quality, When the amount of water changes, the abundance ratio of each microorganism in the mixed sludge also changes. However, the abundance ratio and activity of various microorganisms,
Since it is difficult to grasp the SS concentration (MLSS) of the sludge mixture in a short time, as in the conventional activated sludge method,
) or the activated sludge sedimentation rate (S3o) as an indicator for adjusting the load amount remains problematic. One! Since the composition of mixed sludge and the treatment capacity of that sludge vary greatly depending on external conditions, the treatment activity per unit amount of sludge also varies, making it technically difficult to adjust the amount of sludge in the tank to accommodate treatment movements. There is no escaping the drawback of being.
本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、メタノールやp’(141n剤や凝集
剤等の薬剤を使用することなく、簡単な装置でもって、
汚水中のBOD 、窒累、リンを同時に除去することが
でき、しかも、運転管理の容易な有機性汚水の処理方法
を提供するものである。The present invention has been made in view of the above-mentioned circumstances, and its purpose is to use a simple device without using chemicals such as methanol, p'(141n agent, or flocculant).
The present invention provides a method for treating organic wastewater that can simultaneously remove BOD, nitrate, and phosphorus from wastewater and that is easy to operate and manage.
すなわち本発明は、嫌気性域と好気性域とを形成した反
応系の少なくとも1部の嫌気性域に生物固着戸材を設け
、有機性汚水を嫌気性域及び好気性域に繰シ返して導入
して、p材に固着した固着生物と嫌気性域及び好気性域
にさらされる浮遊生物とによシ脱窒、BOD除去及びリ
ン除去をおこない、しかる後固液分離して分離汚泥の一
部を嫌気性域へ返送することを特徴とする。That is, the present invention provides a bio-fixing door material in at least a part of the anaerobic region of a reaction system that has formed an anaerobic region and an aerobic region, and repeatedly passes organic wastewater to the anaerobic region and the aerobic region. Denitrification, BOD removal, and phosphorus removal are performed using the sessile organisms that adhere to the P material and the suspended organisms exposed to the anaerobic and aerobic areas, and then solid-liquid separation is performed to form the separated sludge. It is characterized by returning the sample to the anaerobic area.
以下本発明を図示する実施例を参照して説明する。The present invention will be described below with reference to illustrative embodiments.
第5図は、本発明方法に使用する有機性汚水の処理装置
の一例を示すフローシート図である。FIG. 5 is a flow sheet diagram showing an example of an organic wastewater treatment apparatus used in the method of the present invention.
この装置は、嫌気槽51と好気槽52と沈殿槽53とを
順に配設し、沈殿槽53の底部から嫌気槽51の入口に
返送管路54を、該好気槽52の出口から該嫌気槽51
の入口に返送管路55を接続している。この嫌気杷・5
1は、内部に生物固着炉材56を設けで゛いる。このp
材56は、汚水、および汚泥が、上下方向、水平方向も
しくはその両者の方向に流通自在になるように充填され
ている。この渥材56としては、ハニカムチー−ブの如
き筒状炉材、砕石、砂利、砂、ラシヒリングの如き粒状
、塊状炉材、あるいはプラスチック板の如き板状炉材等
を用いることができる。これらの炉材56は固定型もし
くは可動型に設置するとと−ができるが、運転動力費を
節減するという観点からは固定型が好ましく、又嫌気槽
51内の攪拌混合を強化し、反応の促進をはかるという
観点からは可動型とすることが好ましい。ただし、通水
処理運転中は、付着した生物膜が機械的に剥離してし甘
って、生物機能が発揮されないという事態を避けるため
に、炉材同志が過度にこすれ合うことを避けることが望
ましい。涙材上に生物膜が過度に発達し、汚水および汚
泥混合液の流通が妨げられる場合に備えて、空気あるい
は水あるいはその両者によって嫌気槽51の洗浄が可能
なように、ポンプ及び配管等を備えておくことが実際上
安全である。嫌気槽51内の攪拌混合を助けるだめに、
攪拌機あるいはポンプ等によって嫌気槽51内を攪拌す
る方式とすることもできる。This device has an anaerobic tank 51, an aerobic tank 52, and a sedimentation tank 53 arranged in this order, and a return pipe 54 is connected from the bottom of the sedimentation tank 53 to the inlet of the anaerobic tank 51, and from the outlet of the aerobic tank 52 to the sedimentation tank 53. Anaerobic tank 51
A return pipe line 55 is connected to the inlet of the pipe. This disgusting loquat・5
1 is provided with a biofixing reactor material 56 inside. This p
The material 56 is filled with wastewater and sludge so that they can freely flow in the vertical direction, horizontal direction, or both directions. As the cutting material 56, cylindrical furnace materials such as honeycomb chives, crushed stone, gravel, sand, granular or block materials such as Raschig rings, plate-shaped furnace materials such as plastic plates, etc. can be used. Although these furnace materials 56 can be installed in a fixed type or a movable type, a fixed type is preferable from the viewpoint of reducing operating power costs. It is preferable to use a movable type from the viewpoint of measuring. However, during water flow treatment operation, it is important to avoid excessive rubbing of the reactor materials against each other in order to prevent the attached biofilm from mechanically peeling off and failing to perform biological functions. desirable. In case a biological film develops excessively on the tear material and the flow of the sewage and sludge mixture is obstructed, pumps, piping, etc. are installed so that the anaerobic tank 51 can be cleaned with air, water, or both. It is practically safe to be prepared. In order to assist the stirring and mixing in the anaerobic tank 51,
It is also possible to use a method in which the inside of the anaerobic tank 51 is stirred using a stirrer, a pump, or the like.
しかして本発明方法は、有機性汚水57をまず嫌気性域
に維持された嫌気槽5ノに流入する。According to the method of the present invention, the organic wastewater 57 first flows into the anaerobic tank 5 maintained in an anaerobic region.
この嫌気槽51内の炉材56上には、生物が固着してい
る。この固着生物は、嫌気槽51内に固定され常に嫌気
的条件にさらされているだめ、優占種が通性嫌気性菌と
絶対嫌気性菌とに限定され、常時嫌気状態では生息でき
ない硝化菌のような好気性菌は含まれない。そしてこの
固着生物は、前述した式(4) (5)に示す脱窒反応
の主体となる。この場合脱窒反応におけるN02−−N
。Living organisms adhere to the furnace material 56 in the anaerobic tank 51. Since these sessile organisms are fixed in the anaerobic tank 51 and constantly exposed to anaerobic conditions, the dominant species are limited to facultative anaerobes and obligate anaerobes, and nitrifying bacteria cannot live under constant anaerobic conditions. It does not include aerobic bacteria such as This sessile organism becomes the main body of the denitrification reaction shown in equations (4) and (5) above. In this case, N02--N in the denitrification reaction
.
No3−Nは、好気槽52における硝化反応〔式(1)
、 (2) 、 (3) )によって生成せしめ、返
送管路54及び55を通じて嫌気槽51へ供給される。No. 3-N is the nitrification reaction in the aerobic tank 52 [formula (1)
, (2), (3)) and is supplied to the anaerobic tank 51 through return pipes 54 and 55.
また脱窒反応で使用する有機炭素源は、1次処理水57
に含まれるBODを利用する。なお固着生物は、BOD
の嫌気的除去反応の主体としても作用する。In addition, the organic carbon source used in the denitrification reaction is the primary treated water 57
Use the BOD included in. In addition, sessile organisms are BOD
It also acts as the main body of the anaerobic removal reaction.
嫌気槽51で処理された汚泥混合液は、好気性域に維持
された好気槽52で処理され、一部が返送管路54を通
って嫌気槽51に戻され、残部は沈殿槽53で固液分離
され、分離汚泥の一部が嫌気槽51に戻される。このよ
うに汚泥混合液が循環する嫌気槽51及び好気槽52に
は浮遊生物がいる。The sludge mixture treated in the anaerobic tank 51 is treated in the aerobic tank 52 maintained in an aerobic region, a part of which is returned to the anaerobic tank 51 through the return pipe 54, and the remainder is sent to the settling tank 53. Solid-liquid separation is performed, and a portion of the separated sludge is returned to the anaerobic tank 51. In this way, floating organisms are present in the anaerobic tank 51 and the aerobic tank 52 in which the sludge mixture circulates.
この浮遊生物は、数時間程度の比較的短時間の好気的状
態と嫌気的状態とに繰シ返しさらされるだめ、優占種と
して好気性菌と通性嫌気性菌とに限定され、酸素によっ
て死滅する絶対嫌気性菌は含まれない。なお好気性菌の
場合、好気的状態と嫌気的状態とに繰り返しさらすこと
は最適な生息条件とは言えない。しかし好気的条件にお
ける滞留時間を嫌気的条件における滞留時間よシ犬とす
ることによシ、かつ浮遊汚泥に対するBOD負荷とNI
(4+−N負荷とを適切に調整して好気性菌の増殖条件
を与えることによって、好気性菌を浮遊汚泥中の優占種
として維持することが可能である。These planktonic organisms are repeatedly exposed to aerobic and anaerobic conditions for a relatively short period of several hours, so the dominant species are limited to aerobic bacteria and facultative anaerobes. does not include obligate anaerobes that are killed by In the case of aerobic bacteria, repeated exposure to aerobic and anaerobic conditions is not the optimal habitat condition. However, by making the residence time under aerobic conditions equal to the residence time under anaerobic conditions, the BOD load on suspended sludge and NI
(By appropriately adjusting the 4+-N load to provide growth conditions for aerobic bacteria, it is possible to maintain aerobic bacteria as the dominant species in suspended sludge.
そしてこの浮遊生物は、嫌気槽51内において、その酸
素消費能力にもとづいて嫌気槽51内の嫌気状態を形成
、維持するとともに、BODを嫌気的に除去する反応及
び脱窒反応の主体となる。まだ好気槽52内においてB
ODの好気的除去反応及び硝化反応の主体となる。更に
嫌気槽51と好気槽52との間を循環することによシ、
嫌気状態と好気状態とに繰り返しさらし、もって汚水中
のリンを取シ込む作用をなす。The floating organisms form and maintain an anaerobic state in the anaerobic tank 51 based on their oxygen consumption ability, and become the main agents of the reaction that anaerobically removes BOD and the denitrification reaction. B is still in the aerobic tank 52.
Main body of aerobic OD removal reaction and nitrification reaction. Furthermore, by circulating between the anaerobic tank 51 and the aerobic tank 52,
Repeated exposure to anaerobic and aerobic conditions acts to absorb phosphorus from wastewater.
なお返送管路54および55を通じて汚泥混合液を循環
返送することによって、混合、攪拌を強化し、pl(の
均一化と嫌気反応および好気反応の促進化をはかる。By circulating and returning the sludge mixture through the return pipes 54 and 55, mixing and agitation are strengthened, and uniformity of PL (pl) and promotion of anaerobic and aerobic reactions are achieved.
そして、このように反応させた後、汚泥混合液全沈殿槽
53へ導入し、固液分離上澄水として、BOD 、窒素
およびリンを除去した処理水58を得ることができる。After reacting in this manner, the sludge mixture is introduced into the total settling tank 53, and treated water 58 from which BOD, nitrogen and phosphorus have been removed can be obtained as solid-liquid separated supernatant water.
分離汚泥の1部は返送管路54を通じて嫌気槽5〕へ返
送すると共に、分離汚泥の残部は、余剰汚泥59として
系外へ排出する。A part of the separated sludge is returned to the anaerobic tank 5 through the return pipe 54, and the remaining part of the separated sludge is discharged as surplus sludge 59 to the outside of the system.
しかしてこの方法において、BODは、嫌気的反応およ
び好気的反応の両者によって除去される。この場合BO
Dの好気的除去反応速度は嫌気的除去反応速度よシ犬で
あシ、シかも、この方法では、好気Fi52の滞留時間
を嫌気槽51の滞留時間よシ犬とするのが通常である。In this method, however, BOD is removed by both anaerobic and aerobic reactions. In this case B.O.
The aerobic removal reaction rate of D may be different from the anaerobic removal reaction rate, but in this method, the residence time of the aerobic Fi 52 is usually set to be the same as the residence time of the anaerobic tank 51. be.
このため、この方法におけるBOD除去の主役となるの
は、好気槽52における浮遊生物であシ、嫌気槽51に
おける固着生物と浮遊生物とは、その補完的役割をはた
す。Therefore, the floating organisms in the aerobic tank 52 play a leading role in BOD removal in this method, and the sessile organisms and floating organisms in the anaerobic tank 51 play complementary roles.
硝化反応は好気的反応であシ、好気槽52における浮遊
生物の作用によって行われる。The nitrification reaction is an aerobic reaction, and is carried out by the action of suspended organisms in the aerobic tank 52.
脱窒反応は、嫌気的反応であり、嫌気槽51における固
尤生物および浮遊生物の作用によって行われる。固着生
物は、生物量も安定しており、まだ、生物相も嫌気性菌
に限定されているため安定した脱窒機能をはたす。浮遊
生物中には通性嫌気性菌が含まれるため、その作用によ
って脱窒反応が行われるが、その浮遊生物相、すなわち
好気性菌と通性嫌気性菌との存在比は、原汚水の水質等
によって変化する。このため、浮遊生物単位量当シの脱
窒機能も変化する。ただし、浮遊生物量は、返送管路5
4を通じての返送比を操作することによって訓読し得る
という利点がある。すなわち、水温、水質、永世等の外
的条件が変動する中で、安定した脱窒処理水を得る上で
、固着生物と浮遊生物とは、相互補完的に作用する。The denitrification reaction is an anaerobic reaction, and is performed by the action of solid organisms and suspended organisms in the anaerobic tank 51. The biomass of sessile organisms is stable, and the biota is still limited to anaerobic bacteria, so they perform a stable denitrification function. Since suspended organisms contain facultative anaerobes, denitrification reactions occur due to their action, but the abundance ratio of the suspended biota, that is, aerobic bacteria and facultative anaerobes, is different from that of the raw wastewater. Varies depending on water quality, etc. For this reason, the denitrification function per unit amount of suspended organisms also changes. However, the amount of suspended biomass is
It has the advantage that it can be read out by manipulating the return ratio through 4. In other words, sessile organisms and planktonic organisms act in a mutually complementary manner to obtain stable denitrification-treated water while external conditions such as water temperature, water quality, and eternity fluctuate.
脱リン反応の主体となるのは浮遊生物であり、これが嫌
気槽51と好気槽52とを循環する間に、リンの取り込
み、増殖を行う。The main body of the dephosphorization reaction is floating organisms, which take in phosphorus and multiply while circulating between the anaerobic tank 51 and the aerobic tank 52.
以上のように、この方法は、固着生物と浮遊生物との機
能を有効に組み合わせることにより外的条件が変動する
中で、安定しだBOD 、窒素およびリン除去処理水を
得るものである。As described above, this method effectively combines the functions of sessile organisms and planktonic organisms to obtain treated water that is stable in BOD, nitrogen, and phosphorus removal even under fluctuating external conditions.
装置の設計に当っては、嫌気槽の炉材は、No−Nの表
面積負荷が0.1 g/m2・日取下となるよう充填す
ることが好ましく、炉材間の間隙は、汚泥混合液の流通
を容易ならしめるよう、10゜以上とすることが好まし
い。When designing the equipment, it is preferable to fill the furnace materials of the anaerobic tank so that the surface area load of No-N is 0.1 g/m2・day, and the gaps between the furnace materials should be filled with sludge mixture. The angle is preferably 10° or more to facilitate the flow of liquid.
好気槽52における汚泥負荷は、0.2に9・BOD/
ゆ・MLSS・日取下、o、1kg・NH4−N7kg
・MLSS・日取下とすることが好ましい。The sludge load in the aerobic tank 52 is 0.2 to 9 BOD/
Yu・MLSS・Nittori, o, 1kg・NH4-N7kg
・It is preferable to use MLSS/Nichido.
リン除去に関しては、流入1次処理水量に対する滞留時
間が、嫌気槽51で1.0時間以上、好気槽52で3.
0時間以上とすることが好ましい。この場合、リン除去
量は、余剰汚泥世に対して、40〜50 m9T−P/
g−MLSS を期待することができる。Regarding phosphorus removal, the residence time for the amount of inflow primary treated water is 1.0 hours or more in the anaerobic tank 51 and 3.0 hours or more in the aerobic tank 52.
It is preferable to set it as 0 hours or more. In this case, the amount of phosphorus removed is 40 to 50 m9T-P/
g-MLSS can be expected.
沈殿池の水面積負荷は、20〜30m3/m2°日とす
ることが好ましい○
原水の水質によっては、脱窒のだめの嫌気処理時間と、
脱リンのための嫌気処理時間とが一致しないことかりる
。脱窒時間がより多く必要な場合には、脱リンのだめの
処理時間に余裕をとって、嫌気槽51の全体容積を犬と
し、滞留時間を犬とすることによって解決できるが、脱
窒時間がよシ少くて済む場合には、第6図に示した如く
、嫌気槽を第1段511 、および第2段512とし、
いずれか1方に炉材56を充填することもできる。この
場合、返送管路54および55の出口は、嫌気槽第1段
511 、の入口もしくは嫌気槽第2段512の入口も
しくはその両者とすることができる。嫌気権第2段51
2は、汚水と汚泥の接触をはかり、汚泥の沈降を妨げる
ため、散気、71?ンプ、攪拌もしくは機械攪拌を行う
ことが好ましい。The water area load of the sedimentation tank is preferably 20 to 30 m3/m2°day. Depending on the quality of the raw water, the anaerobic treatment time of the denitrification tank and
The anaerobic treatment time for dephosphorization may not match. If more denitrification time is required, this can be solved by allowing more time for dephosphorization treatment, increasing the overall volume of the anaerobic tank 51, and increasing the residence time. If it is possible to use less water, as shown in FIG.
It is also possible to fill either one with the furnace material 56. In this case, the outlets of the return lines 54 and 55 can be the inlet of the first stage anaerobic tank 511 or the inlet of the second stage 512 of the anaerobic tank, or both. Anaerobic right second stage 51
2 is air diffusion to measure contact between sewage and sludge and prevent settling of sludge, 71? It is preferable to use pumping, stirring or mechanical stirring.
第5図に示した方法の変法として、第7図に示すように
、1次処理水を好気槽52へ分注する方法がある。また
第6図に示す方法の変法として、第8図に示すように、
1次処理水を嫌気槽第2段512、好気槽52もしくは
その両者に分注する方法も可能であシ、これらの変法は
、原水の組成上、BODが極めて高い場合等に有効であ
る。As a modification of the method shown in FIG. 5, there is a method in which the primary treated water is dispensed into an aerobic tank 52, as shown in FIG. Furthermore, as a modification of the method shown in Fig. 6, as shown in Fig. 8,
It is also possible to dispense the primary treated water into the second stage anaerobic tank 512, the aerobic tank 52, or both, and these modified methods are effective when the BOD is extremely high due to the composition of the raw water. be.
さらに、第5図および第9図の変法としてそれぞれ第9
図および第10図に示すように、処理水58の1部を嫌
気槽51に返送する方法および嫌気槽第1段5111嫌
気槽第2段512もしくはその両者に返送する方゛法も
可能である。Furthermore, as a modification of FIGS. 5 and 9,
As shown in the figure and FIG. 10, it is also possible to return part of the treated water 58 to the anaerobic tank 51, the first stage 5111 of the anaerobic tank, the second stage 512 of the anaerobic tank, or both. .
これによシ、系全体の攪拌混合が強化される。This intensifies the agitation and mixing of the entire system.
このため、各汚濁物質除去反応が徹底され、汚濁物質除
去率の向上する上で役立つと共に、負荷変動を水理的に
吸収する上でも役立つ。Therefore, each pollutant removal reaction is carried out thoroughly, which is useful for improving the pollutant removal rate, and also helps to hydraulically absorb load fluctuations.
次に、第5図および第9図に示したフローにもとづいて
、本発明の有機性汚水処理を行った実施例につき説明す
る。Next, an example in which organic sewage treatment of the present invention was carried out will be described based on the flows shown in FIGS. 5 and 9.
この実施例では、原汚水として給食センター排水を用い
た。その組成は、第1表に示す通りである。比較のため
の従来方法として第2図および第4図に示したフローを
用いた実験も併せて行った。In this example, school lunch center wastewater was used as raw wastewater. Its composition is shown in Table 1. As a conventional method for comparison, experiments using the flows shown in FIGS. 2 and 4 were also conducted.
第 1 表
その結果、得られた処理水の水質は、第1表から明らか
なようにBOD 、窒−億、およびリン濃度がきわめて
低いものとなシ、従来法により得た処理水に比して優れ
ていた。Table 1 As a result, as is clear from Table 1, the quality of the treated water obtained was extremely low in BOD, nitrogen, and phosphorus concentrations compared to treated water obtained by conventional methods. It was excellent.
以上の説明から明らかなように、本発明方法によれば、
メタノールやPH調整剤や凝集剤等の薬剤を使用するこ
となく、簡単な装置でもって汚水中のBOD 、窒素、
リンを同時に除去することができる。しかも、この方法
においては固着生物と浮遊生物とを機能別に組み合わせ
て併用し、しかもそれぞれの汚泥の組成と作用が明確で
あるために、水温、水質、負荷量等の変動に対して、容
易に運転管理対応することが可能である。As is clear from the above explanation, according to the method of the present invention,
BOD, nitrogen,
Phosphorus can be removed at the same time. Moreover, in this method, sessile organisms and planktonic organisms are used in combination according to their functions, and the composition and action of each sludge are clear, so it is easy to adapt to fluctuations in water temperature, water quality, load amount, etc. It is possible to handle operation management.
第1図ないし第4図は、それぞれ異なる従来の有機性汚
水の処理方法を示すフローシート図、第5図は、本発明
方法に用いる有機性汚水処理フローの1例を示す説明図
、第6図ないし第10図は、本発明方法に用いる有機性
汚水処理フローのそれぞれ異なる他の例を示す説明図で
ある。
51・・・嫌気槽、511・・・嫌気槽第1段、512
・・・嫌気槽第2段、52・・・好気槽、53・・・沈
殿槽、5″4・・・返送管路、55・・・返送管路、5
6・・・生物付着ν材、57・・・1次処理水、58・
・・BOD 、窒素、リン除去処理水、59・・・余剰
汚泥。1 to 4 are flow sheet diagrams showing different conventional methods for treating organic sewage, FIG. 5 is an explanatory diagram showing an example of the organic sewage treatment flow used in the method of the present invention, and FIG. 10 through 10 are explanatory diagrams showing other different examples of the organic wastewater treatment flow used in the method of the present invention. 51... Anaerobic tank, 511... Anaerobic tank first stage, 512
...Anaerobic tank second stage, 52...Aerobic tank, 53...Sedimentation tank, 5''4...Return pipe line, 55...Return pipe line, 5
6... Biofouling ν material, 57... Primary treated water, 58.
...BOD, nitrogen, phosphorus removed treated water, 59...excess sludge.
Claims (2)
とも1部の嫌気性域に生物固着炉材を設け、有機性汚水
を嫌気性域及び好気性域に繰シ返して導入して、炉材に
固着した固着生物と嫌気性域及び好気性域にさらされる
浮遊生物とによシ脱窒、BOD除去及びリン除去をおこ
ない、しかる後固液分離して分離汚泥の一部を嫌気性域
へ返送することを特徴とする有機性汚水の処理方法。(1) A biofixing reactor material is provided in at least part of the anaerobic zone of the reaction system that has formed an anaerobic zone and an aerobic zone, and organic wastewater is repeatedly introduced into the anaerobic zone and aerobic zone. Then, denitrification, BOD removal, and phosphorus removal are performed using sessile organisms fixed on the furnace material and floating organisms exposed to the anaerobic and aerobic areas. After that, solid-liquid separation is performed to separate a part of the separated sludge. A method for treating organic wastewater characterized by returning it to an anaerobic area.
ことを特徴とする特許請求の@門弟1項記載の有機性汚
水の処理方法。(2) A method for treating organic sewage according to claim 1, characterized in that a part of the solid-liquid separated water is returned to an anaerobic region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7305683A JPS59199098A (en) | 1983-04-27 | 1983-04-27 | Treatment of organic filthy water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7305683A JPS59199098A (en) | 1983-04-27 | 1983-04-27 | Treatment of organic filthy water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59199098A true JPS59199098A (en) | 1984-11-12 |
Family
ID=13507315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7305683A Pending JPS59199098A (en) | 1983-04-27 | 1983-04-27 | Treatment of organic filthy water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59199098A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5702604A (en) * | 1995-09-06 | 1997-12-30 | Sharp Kabushiki Kaisha | Apparatus and method for waste water treatment utilizing granular sludge |
CN100341803C (en) * | 2003-09-29 | 2007-10-10 | 张侯国 | Small-sized waste water circular processing device |
CN103922475A (en) * | 2014-05-04 | 2014-07-16 | 太原理工大学 | Biological degradation method of nitrogen-containing heterocyclic compound wastewater |
CN104150609A (en) * | 2014-08-12 | 2014-11-19 | 李娜 | Method for forcibly removing nitrogen and phosphorus by means of in-situ enrichment of nitrifying bacteria coupled with sludge hydrolysis |
CN106746186A (en) * | 2016-12-03 | 2017-05-31 | 福建众辉环保设备有限公司 | A kind of processing system for sanitary sewage |
-
1983
- 1983-04-27 JP JP7305683A patent/JPS59199098A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5702604A (en) * | 1995-09-06 | 1997-12-30 | Sharp Kabushiki Kaisha | Apparatus and method for waste water treatment utilizing granular sludge |
CN100341803C (en) * | 2003-09-29 | 2007-10-10 | 张侯国 | Small-sized waste water circular processing device |
CN103922475A (en) * | 2014-05-04 | 2014-07-16 | 太原理工大学 | Biological degradation method of nitrogen-containing heterocyclic compound wastewater |
CN104150609A (en) * | 2014-08-12 | 2014-11-19 | 李娜 | Method for forcibly removing nitrogen and phosphorus by means of in-situ enrichment of nitrifying bacteria coupled with sludge hydrolysis |
CN106746186A (en) * | 2016-12-03 | 2017-05-31 | 福建众辉环保设备有限公司 | A kind of processing system for sanitary sewage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Semmens et al. | COD and nitrogen removal by biofilms growing on gas permeable membranes | |
CN106565017A (en) | Bicirculating nitrogen and phosphorus removal wastewater treatment system and method | |
Corsino et al. | Achieving complete nitrification below the washout SRT with hybrid membrane aerated biofilm reactor (MABR) treating municipal wastewater | |
US11827550B2 (en) | Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications | |
Kshirsagar et al. | Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha | |
Lim et al. | Evaluation of pilot-scale modified A2O processes for the removal of nitrogen compounds from sewage | |
JP4915036B2 (en) | Denitrification method and denitrification apparatus | |
JP4409532B2 (en) | Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method | |
US20180273408A1 (en) | Wastewater denitrification method utilizing recycling of nitrified treated effluent | |
CN105984991B (en) | A kind of sewerage advanced treatment process | |
CN105016467B (en) | A kind of device for landfill leachate treatment | |
JPS59199098A (en) | Treatment of organic filthy water | |
JPS645958B2 (en) | ||
JP2004041981A (en) | Organic waste water treatment method and its system | |
JP3125628B2 (en) | Wastewater treatment method | |
Coskuner et al. | Performance assessment of a wastewater treatment plant treating weak campus wastewater | |
JPS6038094A (en) | Treatment of organic sewage | |
JP2000279993A (en) | Waste water treatment and apparatus therefor | |
JP2000279992A (en) | Waste water treatment and apparatus therefor | |
Tunc | Performance of Nitrogen and Phosphorus Removal of Moving Bed Biofilm Reactor Operated as Sequencing Batch | |
CN106650264A (en) | Dimension designing method for oxidation ditch biological reaction tank intensifying denitrification nitrogen and phosphorus removal | |
JPS62225296A (en) | Biological nitrification and denitrification device | |
Tutić | Biološko uklanjanje dušika iz komunalne otpadne vode grada Trondheima | |
CN117430266A (en) | Municipal wastewater treatment method and in-situ capacity expansion and yield increase method | |
JPS6311078B2 (en) |