JPS62225296A - Biological nitrification and denitrification device - Google Patents

Biological nitrification and denitrification device

Info

Publication number
JPS62225296A
JPS62225296A JP61067953A JP6795386A JPS62225296A JP S62225296 A JPS62225296 A JP S62225296A JP 61067953 A JP61067953 A JP 61067953A JP 6795386 A JP6795386 A JP 6795386A JP S62225296 A JPS62225296 A JP S62225296A
Authority
JP
Japan
Prior art keywords
denitrification
nitrification
tank
biological
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61067953A
Other languages
Japanese (ja)
Other versions
JPH0659479B2 (en
Inventor
Shoichi Sasaki
正一 佐々木
Haruki Akega
明賀 春樹
Shinji Ito
新治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP61067953A priority Critical patent/JPH0659479B2/en
Publication of JPS62225296A publication Critical patent/JPS62225296A/en
Publication of JPH0659479B2 publication Critical patent/JPH0659479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To efficiently realize a biological nitrification and denitrification method by combining a nitrification vessel of a fixed bed type and a denitrification vessel having a sludge be consisting of a granular material in which denitrifying bacteria are concentrated to a high concn. CONSTITUTION:The biological nitrification stage of a device which is designed to treat sewage 1 contg. ammonia nitrogen and is provided with the biological nitrification stage and biological denitrification stage is constituted of the vessel 20 of the fixed bed type packed therein with a microorganism carrier, and the biological denitrification stage is constituted of the vessel 71 having the sludge bed consisting of the granular material in which the denitrifying bacteria are concentrated to a high concn. As a result, the nitrifying and denitrifying bacteria are maintained at the high concn. in optimum environment, by which the exertion of high nitrogen load to both the nitrification vessel and the denitrification vessel is made possible and the device is made more compact than the device of the conventional method.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は汚水の生物学的硝化脱窒装置に係り、詳しくは
アンモニア性窒素、 NO,、NO8を含む汚水を生物
学的に処理する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a biological nitrification and denitrification device for wastewater, and more particularly to a device for biologically treating wastewater containing ammonia nitrogen, NO, and NO8. .

〔従来技術および背景〕[Prior art and background]

生物学的硝化脱窒法の原理は硝化菌とa童画の微生物作
用で汚水中の窒素化合物(アンモニア性窒素)をN2ガ
スに転換するもので、その処理工程は硝化工程と脱窒製
工程に分けられる。
The principle of the biological nitrification and denitrification method is to convert nitrogen compounds (ammonia nitrogen) in wastewater into N2 gas by the microbial action of nitrifying bacteria and A-Douga, and the treatment process is divided into a nitrification process and a denitrification process. It will be done.

硝化工程において、硝化菌(硝酸菌と亜硝酸菌)は好気
性条件下で汚水中のアンモニュウムイオン(NH4”)
を亜硝酸(NO2−)または硝酸(NO3−)に下記式
■、■のように酸化する。
In the nitrification process, nitrifying bacteria (nitrate bacteria and nitrite bacteria) extract ammonium ions (NH4) from wastewater under aerobic conditions.
is oxidized to nitrous acid (NO2-) or nitric acid (NO3-) as shown in the following formulas (1) and (2).

亜硝酸菌 硝酸菌 また脱窒素工程において、脱窒菌は汚水中のNO2−、
NO3−を嫌気性条件下で下記式■のように窒素ガス(
N2)にする。
Nitrite bacteria Nitrate bacteria Also, in the denitrification process, denitrifying bacteria remove NO2-,
Under anaerobic conditions, NO3- is converted to nitrogen gas (
N2).

6N03−”5G)1.OH→3N2”5C02+71
(20”60H−・・・・・■なお、メタノール(C1
hOH)は汚水中に予め存在しているか、別に添加され
るかすることで反応に寄与する。
6N03-”5G)1.OH→3N2”5C02+71
(20"60H-...■In addition, methanol (C1
hOH) contributes to the reaction either by being pre-existing in the wastewater or by being added separately.

以上の原理を応用した硝化脱窒装置の従来例を第3図、
第4図、第5図により説明する。
Figure 3 shows a conventional example of a nitrification-denitrification device that applies the above principle.
This will be explained with reference to FIGS. 4 and 5.

第3図の例は、浮遊式の生物学的硝化脱窒法のフロー概
要を示すものであり、まず硝化槽2でアンモニア性窒素
(NH4”)を硝酸性窒素又は亜硝酸性窒素(NO2−
、NOx−:以下硝酸性窒素と総称する)に変換する。
The example in Figure 3 shows the flow outline of the floating biological nitrification-denitrification method. First, ammonia nitrogen (NH4) is converted into nitrate nitrogen or nitrite nitrogen (NO2-
, NOx-: hereinafter collectively referred to as nitrate nitrogen).

硝化反応は酸生産反応であるため硝化菌の最適pHに保
つために中和用のアルカリ注入(アルカリ注入ラインを
符号12で示す)を行なう場合がある(以下の例におい
て同じ)。
Since the nitrification reaction is an acid production reaction, alkali injection for neutralization (the alkali injection line is indicated by reference numeral 12) may be performed in order to maintain the optimum pH for nitrifying bacteria (the same applies in the following examples).

次に脱窒槽4において有機物存在下で硝酸性窒素をN2
ガス化する。この際、必要に応じて有機物(通常メタノ
ール)が外部添加ライン13から添加されることもあり
(以下の例において同じ)、この有機物は通常必要量よ
りも過剰に添加されるため、残存するこの有機物を酸化
分解する目的で脱窒槽4の後に酸化槽6を設けて、通常
好気的に有機物を分解する場合もある(以下前記各槽2
,4.6を反応槽という)。
Next, in the denitrification tank 4, nitrate nitrogen is removed with N2 in the presence of organic matter.
Gasify. At this time, if necessary, an organic substance (usually methanol) may be added from the external addition line 13 (the same applies in the following examples), and since this organic substance is usually added in excess of the required amount, the remaining In some cases, an oxidation tank 6 is provided after the denitrification tank 4 for the purpose of oxidizing and decomposing organic matter, and the organic matter is usually decomposed aerobically (hereinafter referred to as each tank 2).
, 4.6 is called a reaction tank).

この方式は、前記各反応492,4.6内の硝化菌、脱
窒菌、有機物酸化菌が、各反応槽間に沈澱槽3,5.7
を設けることによって区別され、したがってそれぞれの
最適条件下で各画を培養できる利点があり、違った性質
をもった細菌の能力を最大限いかせる特徴を持っている
In this method, the nitrifying bacteria, denitrifying bacteria, and organic matter oxidizing bacteria in each reaction tank 492, 4.6 are placed in a settling tank 3, 5.7 between each reaction tank.
Therefore, it has the advantage of being able to culture each fraction under its own optimal conditions, and has the characteristic of maximizing the abilities of bacteria with different properties.

第4図の例は、第3図の各反応槽間の沈澱池を省略した
型の装置を示し、この場合装置全体の大きさは小さくで
きる。
The example in FIG. 4 shows an apparatus of the type shown in FIG. 3 in which the sedimentation tank between each reaction tank is omitted, and in this case, the size of the entire apparatus can be reduced.

第5図は、浮遊式でなく、反応槽2,4.6内に硝化菌
、脱窒菌、酸化菌が固着して生育できる微生物担体を入
れた固定床式(生物膜式)の槽とした装置例を示してい
る。この例の場合には、各画が反応槽内に固着できるた
め、第3図の例に示すような沈澱池を省略しても、各画
の独立性が保証されているので、第4図の例に示すよう
な問題点も解決される利点がある。
Figure 5 shows a fixed-bed type (biofilm type) tank in which microbial carriers that allow nitrifying bacteria, denitrifying bacteria, and oxidizing bacteria to adhere and grow are placed in reaction tanks 2 and 4.6, rather than a floating type. An example of the device is shown. In this example, each image can be fixed in the reaction tank, so even if the sedimentation tank shown in the example in Figure 3 is omitted, the independence of each image is guaranteed. This has the advantage of solving problems such as those shown in the example.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、前記第3図の浮遊式硝化脱窒装置においては、
各反応槽2,4.6が後段に沈澱池3,5.7を個別に
持っているため装置全体が大きくなる難点があり、また
アルカリ剤などの薬品添加を必要としランニングコスト
が高いなどの難もある。
However, in the floating nitrification and denitrification equipment shown in Fig. 3,
Since each reaction tank 2, 4.6 has an individual settling tank 3, 5.7 in the latter stage, there are disadvantages in that the entire device becomes large, and it also requires the addition of chemicals such as alkaline agents, resulting in high running costs. There are also difficulties.

また第4図の例においては、各反応槽2゜4.6の硝化
菌、脱窒菌、酸化菌が混合された単相汚泥となり易く、
各画の最適条件下で培養できない(例えば好気的条件下
で生育する硝化菌が一時脱窒工程で嫌気条件下にさらさ
れる)ため、処理の安定性が悪いといった難がある。
In addition, in the example shown in Fig. 4, the sludge tends to become a single-phase sludge in which nitrifying bacteria, denitrifying bacteria, and oxidizing bacteria in each reaction tank 2° 4.6 are mixed.
Since it is not possible to cultivate each fraction under the optimal conditions (for example, nitrifying bacteria that grow under aerobic conditions are temporarily exposed to anaerobic conditions during the denitrification process), there is a problem in that the stability of the treatment is poor.

更にまた第5図の固定床式の反応槽をもった装置におい
ては、菌の増殖量が大きい脱窒槽において、固定床が汚
泥、汚水中の浮遊物質等で閉塞する虞れもあり、工業的
規模の装置では安定操業管理上の注意を要する。
Furthermore, in the equipment shown in Figure 5, which has a fixed bed type reaction tank, there is a risk that the fixed bed in the denitrification tank, where the amount of bacterial growth is large, may become clogged with sludge, suspended solids in the sewage, etc. Large-scale equipment requires careful management to ensure stable operation.

〔問題点を解決するための手段) 本発明は以上のような従来の生物学的硝化脱窒装置の欠
点を解消し、より効率的に生物学的硝化脱窒法を実現で
きる装置を提供することを目的としてなされたものであ
る。而してかかる目的実現のためになされた本発明より
なる生物学的硝化脱窒装置の特徴は、アンモニア性窒素
を含む汚水を対象とし、生物学的硝化工程と、生物学的
脱窒工程とを備えた装置であって、前記生物学的硝化工
程は、微生物担持体を充填した固定床式の楢により構成
され、前記生物学的脱窒工程は、脱窒菌が高濃度に凝集
した粒状物の形成する汚泥床を有する槽により構成され
ているところにある。
[Means for Solving the Problems] The object of the present invention is to provide an apparatus that eliminates the drawbacks of the conventional biological nitrification-denitrification apparatus as described above and can realize the biological nitrification-denitrification method more efficiently. It was made for the purpose of The biological nitrification-denitrification device of the present invention, which has been made to achieve this purpose, is characterized by being targeted at wastewater containing ammonia nitrogen, and which includes a biological nitrification process and a biological denitrification process. The biological nitrification step is comprised of a fixed-bed oak filled with microbial carriers, and the biological denitrification step is comprised of a granular material in which denitrifying bacteria have aggregated at a high concentration. It consists of a tank with a sludge bed formed by.

前記構成において硝化工程を構成する固定床式の槽は、
内部に砂3石、カーボン、プラスチック、ハニカムチュ
ーブ等の微生物担持体8を固定的に設けた構造を有する
ものであり、微生物担持体は、硝化菌である微生物の保
持のためには出来るだけ大比表面積のものが好ましく、
浮遊式に比べて槽内の汚泥濃度(微生物濃度)を相当程
度高く出来る。なお、この固定床式硝化槽では、閉塞を
考慮することは実際上要しない。
In the above configuration, the fixed bed type tank that constitutes the nitrification process is
It has a structure in which a microorganism support 8 made of sand, carbon, plastic, honeycomb tube, etc. is fixedly installed inside, and the microorganism support is as large as possible in order to retain the microorganisms that are nitrifying bacteria. Those with a specific surface area are preferable,
Compared to the floating type, the sludge concentration (microbial concentration) in the tank can be considerably higher. In addition, in this fixed bed type nitrification tank, it is not actually necessary to consider clogging.

また前記脱窒工程を構成する槽は、内部に脱窒菌が高濃
度に凝集した粒状物(通称グラニユールと呼ばれる汚泥
粒)からなる汚泥床(以下グラニユール汚泥床という)
を形成させてなるものであり、このグラニユール汚泥床
に対して汚水は上向流で通される。
In addition, the tank constituting the denitrification process has a sludge bed (hereinafter referred to as granule sludge bed) consisting of granular materials (sludge grains commonly known as granules) in which denitrifying bacteria have aggregated at a high concentration.
The sewage is passed through this granule sludge bed in an upward flow.

前記グラニユール汚泥床の形成は、一般にいわゆる活性
汚泥を種汚泥として脱窒槽に入れ、硝酸性窒素を含む汚
水と有機物を適量通水させながら所定期間(通常1〜2
週間)馴養させて行なわれる。形成されたグラニユール
汚泥床は運転条件等によっても異なるが0.5〜1mm
程度の砂粒状になる。このグラニユール汚泥床Ct汚水
が脱窒槽の下部から流入して上向流で通水されても、汚
泥を洗い出す力(上昇LV)よりもグラニユール汚泥の
沈降LVが高いために該汚泥粒の流出は起こらない。
The formation of the granule sludge bed is generally carried out by placing so-called activated sludge as seed sludge in a denitrification tank for a predetermined period (usually 1 to 2 hours) while passing an appropriate amount of sewage containing nitrate nitrogen and organic matter.
(weeks) for acclimatization. The granule sludge bed formed is 0.5 to 1 mm, although it varies depending on operating conditions etc.
It becomes sand grain-like. Even if this granule sludge bed Ct sewage flows in from the lower part of the denitrification tank and is passed through in an upward flow, the sludge particles will not flow out because the settling LV of the granule sludge is higher than the force to wash out the sludge (rise LV). It won't happen.

このようなグラニユール汚泥床をもった脱窒槽における
汚泥濃度は、前記浮遊式脱窒槽におけるそれの10倍以
上である20000〜100000mg/Uにまで達し
、また微生物担持体を設けた固定床式脱窒装置における
閉塞の虞れも、グラニユール汚泥粒同士の結合はN、ガ
スの上昇流でほぐされるために、考慮する必要がないと
いう特徴もある。
The sludge concentration in a denitrification tank with such a granule sludge bed reaches 20,000 to 100,000 mg/U, which is more than 10 times that in the floating type denitrification tank. Another feature is that there is no need to consider the possibility of clogging in the device because the bonds between granule sludge particles are loosened by the upward flow of nitrogen and gas.

なお、このようなグラニユール汚泥床の形成、維持のた
めには、上向流で通す汚水中にCa”イオンを存在させ
る(通常濃度Lmg/l好ましくは10n+g/、Q以
上)、あるいはグラニユール汚泥床に対する汚水の通水
を、前記汚泥床の上下方向の最底部位置からと、その上
部側の汚泥床上下方向中間の少なくとも一箇所の位置か
らとより、汚水を分配通水する方式が好ましく採用され
る。
In order to form and maintain such a granule sludge bed, Ca'' ions must be present in the sewage flowing upward (normal concentration Lmg/l, preferably 10n+g/, Q or more), or the granule sludge bed Preferably, a system is adopted in which sewage is distributed and passed through the sludge bed from the bottom position in the vertical direction of the sludge bed and from at least one position in the middle of the sludge bed in the vertical direction on the upper side. Ru.

前記により最底部およびその上方の少なくとも他の一箇
所に接続された管からの汚水通水の分配の割合は、両者
において一定の定められた割合に固定してもよい他、例
えば最底部の管とその上方に位置する管との汚水送水の
時期を、所定期間(例えば−日)毎に交互に交代させる
、窒素負荷の変動(汚水の量の変動等の場合を含む)等
に対応して分配割合を変化させる、通常は最底部の管の
みから汚水を送水し、必要に応じて上方の管から一時的
に汚水を送水させる等々の種々の分配制御を行なうこと
も可能である。
According to the above, the ratio of distribution of sewage water from the pipes connected to the bottom and at least one other point above it may be fixed at a fixed ratio for both. The timing of sewage water conveyance between the pipe and the pipe located above it is alternated every predetermined period (for example, - days), in response to changes in nitrogen load (including changes in the amount of sewage, etc.), etc. It is also possible to perform various distribution controls such as changing the distribution ratio, normally sending wastewater only from the bottom pipe, and temporarily sending wastewater from the upper pipe as necessary.

本発明における硝化工程と脱窒工程を構成する槽は、こ
れらのいずれの工程を前段とし、他方を後段に配置して
もよく、循環水系によって後段の槽の処理水は前段の槽
に適宜循環される。この場合の循環率は処理量(通水量
)、アンモニア性窒素の負荷量、処理水の排出基準によ
って選択されるが、一般に100〜400%とするとよ
い。
In the tanks constituting the nitrification step and the denitrification step in the present invention, either of these steps may be placed in the front stage and the other in the rear stage, and the treated water in the latter tank is appropriately circulated to the front tank by the circulating water system. be done. The circulation rate in this case is selected depending on the amount of treatment (amount of water passed), the amount of ammonia nitrogen loaded, and the discharge standard of treated water, but is generally 100 to 400%.

本発明において、説、窒工程は通性嫌気性(溶存酸素0
2はないが、NO2−、No3−は存在する)条件下に
保持され、必要に応じて脱窒菌に対するエネルギー源と
して有機物(通常メタノール)の添加が行なわれる。
In the present invention, the nitrogen process is facultatively anaerobic (dissolved oxygen 0).
2 is absent, but NO2- and No3- are present), and if necessary, organic matter (usually methanol) is added as an energy source for denitrifying bacteria.

硝化工程は好気性条件下に保持され、一般的にはこのた
めに曝気される。また適宜pH調整剤の添加も行なうこ
とができる。
The nitrification process is kept under aerobic conditions and is generally aerated for this purpose. Further, a pH adjuster may be added as appropriate.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例をフロー概要を示す第1図、第2図
に基づき説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2 showing flow outlines.

実施例1 第1図に示される本実施例においては、アンモニア性窒
素を含む汚水1を固定床式の硝化槽20、グラニユール
汚泥床式の脱窒槽71、次いで固定床式の酸化槽60を
通して硝化脱窒処理し、その処理水8の一部は循環水ラ
イン72を介して硝化槽20に戻し、他は処理水として
、適宜後段の処理系に送水する。
Example 1 In this example shown in FIG. 1, wastewater 1 containing ammonia nitrogen is nitrified through a fixed bed nitrification tank 20, a granule sludge bed denitrification tank 71, and then a fixed bed oxidation tank 60. After denitrification treatment, a part of the treated water 8 is returned to the nitrification tank 20 via the circulating water line 72, and the rest is appropriately sent to a subsequent treatment system as treated water.

硝化槽20にはpH調整剤としてアルカリを適量添加し
、空気により曝気を行なった。また脱空槽71には有機
源としてメタノールを所定量添加した。
An appropriate amount of alkali was added as a pH adjuster to the nitrification tank 20, and aeration was performed with air. Further, a predetermined amount of methanol was added to the degassing tank 71 as an organic source.

以上のフローに示される装置を用いて下記条件で試験を
行ないその結果を表1に示した。
Tests were conducted under the following conditions using the apparatus shown in the flow above, and the results are shown in Table 1.

試験条件 硝化槽 微生物担持体ニブラスチック製担体脱窒槽 汚
泥床 酸化槽 微生物担持体ニブラスチック製担体循環率 3
00% 実施例2 第2図に示される実施例2においては、グラニユール汚
泥床を有する脱窒槽71、次いで固定床式の硝化槽20
を通して汚水を処理し、処理水8の一部は循環水ライン
72を介して脱窒槽71に戻すようにしている。
Test conditions Nitrification tank Niblastic microbial support Denitrification tank Sludge bed oxidation tank Niblastic microbial support Circulation rate 3
00% Example 2 In Example 2 shown in FIG. 2, a denitrification tank 71 having a granule sludge bed, followed by a fixed bed nitrification tank 20
A portion of the treated water 8 is returned to the denitrification tank 71 via a circulating water line 72.

この例では、脱窒槽の後段に硝化槽を設けることで、脱
窒の際に生成されるアルカリを硝化の時に生成される酸
の中和剤として利用し、硝化槽に添加するアルカリを削
減するようにしている。また、本例では脱窒槽の後に硝
化槽があるため、脱窒槽から流出する残存有機物を処理
するための酸化槽が不要とすることも場合によって可能
となる。
In this example, by installing a nitrification tank after the denitrification tank, the alkali produced during denitrification is used as a neutralizer for the acid produced during nitrification, reducing the amount of alkali added to the nitrification tank. That's what I do. Further, in this example, since the nitrification tank is provided after the denitrification tank, it is possible in some cases to eliminate the need for an oxidation tank for treating residual organic matter flowing out from the denitrification tank.

本例における処理を実施例1と同様の条件下で行ないそ
の結果を表2に示した。
The treatment in this example was carried out under the same conditions as in Example 1, and the results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明装置によれば、固定床式の硝化槽とグラニユール
汚泥床の脱窒槽を組み合わせることによって、硝化菌、
脱窒菌を別々の槽内に最適環境下でしかも高濃度に保持
することができ、これによって硝化槽、脱窒槽ともに高
窒素負荷をかけることが可能となるため、装置が従来法
に比ベコンパクトとなるという利点が得られる。しかも
固定床式脱窒装置において考えられた閉塞などが起こる
虞れがなく、安定した処理水を得ることができるため、
工業的規模での実施が好適に実現できる効果があり、そ
の専用性は極めて大なるものがある。
According to the device of the present invention, by combining a fixed bed type nitrification tank and a denitrification tank with a granule sludge bed, nitrifying bacteria,
Denitrifying bacteria can be maintained at a high concentration in separate tanks under optimal conditions, making it possible to apply a high nitrogen load to both the nitrification tank and denitrification tank, making the equipment more compact than conventional methods. The advantage is that In addition, there is no risk of blockages that occur in fixed bed denitrification equipment, and stable treated water can be obtained.
It has the advantage that it can be suitably implemented on an industrial scale, and its exclusive use is extremely great.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明の実施例1のフロー概要を示す図、
第2図は同実施例2のフロー概要を示す図、第3図〜第
5図は従来例のフロー概要を示す図である。 1・・・汚水       2・・・硝化槽3.5.7
・・・沈澱池  4・・・脱窒槽6・・・酸化槽   
   8・・・処理水9、10.11.14・・・返送
汚泥 12・・・アルカリ添加ライン 13・・・有機物添加ライン 20・・・固定床式硝化
槽40・・・固定床式脱窒槽  60・・・固定床式酸
化槽71・・・グラニユール汚泥床式の脱窒槽72・・
・循環水ライン 第1図 第2図 第3図 第4図 第5図
Figure 1 is a diagram showing an outline of the flow of Embodiment 1 of the present invention;
FIG. 2 is a diagram showing an outline of the flow of the second embodiment, and FIGS. 3 to 5 are diagrams showing an outline of the flow of the conventional example. 1... Sewage 2... Nitrification tank 3.5.7
... Sedimentation tank 4 ... Denitrification tank 6 ... Oxidation tank
8... Treated water 9, 10.11.14... Return sludge 12... Alkali addition line 13... Organic matter addition line 20... Fixed bed nitrification tank 40... Fixed bed denitrification tank 60... Fixed bed type oxidation tank 71... Granule sludge bed type denitrification tank 72...
・Circulating water line Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 アンモニア性窒素を含む汚水を対象とし、生物学的
硝化工程と、生物学的脱窒工程とを備えた装置であって
、前記生物学的硝化工程は、微生物担持体を充填した固
定床式の槽により構成され、前記生物学的脱窒工程は、
脱窒菌が高濃度に凝集した粒状物の形成する汚泥床を有
する槽により構成されていることを特徴とする生物学的
硝化脱窒装置 2 脱窒工程が硝化工程の前に配置されていて、硝化工
程の処理水の脱窒工程への循環系を有することを特徴と
する特許請求の範囲 第1項記載の生物学的硝化脱窒装置 3 脱窒工程が硝化工程の後に配置されていて、脱窒工
程の処理水の硝化工程への循環系を有することを特徴と
する特許請求の範囲 第1項記載の生物学的硝化脱窒装置
[Scope of Claims] 1. An apparatus intended for wastewater containing ammonia nitrogen and comprising a biological nitrification process and a biological denitrification process, wherein the biological nitrification process is performed using a microorganism carrier. The biological denitrification process consists of a fixed bed tank filled with
Biological nitrification-denitrification device 2, characterized in that it is constituted by a tank having a sludge bed in which granular substances in which denitrifying bacteria aggregate at a high concentration are formed.The denitrification step is arranged before the nitrification step, Biological nitrification-denitrification device 3 according to claim 1, characterized in that it has a circulation system for supplying the treated water from the nitrification process to the denitrification process.The denitrification process is arranged after the nitrification process, The biological nitrification-denitrification device according to claim 1, characterized in that it has a circulation system for supplying the treated water in the denitrification step to the nitrification step.
JP61067953A 1986-03-26 1986-03-26 Biological nitrification denitrification equipment Expired - Lifetime JPH0659479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067953A JPH0659479B2 (en) 1986-03-26 1986-03-26 Biological nitrification denitrification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067953A JPH0659479B2 (en) 1986-03-26 1986-03-26 Biological nitrification denitrification equipment

Publications (2)

Publication Number Publication Date
JPS62225296A true JPS62225296A (en) 1987-10-03
JPH0659479B2 JPH0659479B2 (en) 1994-08-10

Family

ID=13359826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067953A Expired - Lifetime JPH0659479B2 (en) 1986-03-26 1986-03-26 Biological nitrification denitrification equipment

Country Status (1)

Country Link
JP (1) JPH0659479B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214596A (en) * 1989-02-16 1990-08-27 Tokyo Metropolis Method and device for removing nitrogen from sewage
JP2001276851A (en) * 2000-03-29 2001-10-09 Japan Organo Co Ltd Drain treatment equipment
JP2003290790A (en) * 2002-04-03 2003-10-14 Kurita Water Ind Ltd Method of starting up denitrification apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104058505B (en) * 2014-07-04 2016-01-13 山东美泉环保科技有限公司 A kind of ammonia-nitrogen sewage treatment system and treatment process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149861A (en) * 1976-06-09 1977-12-13 Mitsubishi Heavy Ind Ltd Waste-water treating method
JPS6138696A (en) * 1984-07-12 1986-02-24 Ebara Infilco Co Ltd Biological nitration and denitrification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149861A (en) * 1976-06-09 1977-12-13 Mitsubishi Heavy Ind Ltd Waste-water treating method
JPS6138696A (en) * 1984-07-12 1986-02-24 Ebara Infilco Co Ltd Biological nitration and denitrification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214596A (en) * 1989-02-16 1990-08-27 Tokyo Metropolis Method and device for removing nitrogen from sewage
JP2001276851A (en) * 2000-03-29 2001-10-09 Japan Organo Co Ltd Drain treatment equipment
JP2003290790A (en) * 2002-04-03 2003-10-14 Kurita Water Ind Ltd Method of starting up denitrification apparatus

Also Published As

Publication number Publication date
JPH0659479B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
CN107108293A (en) The denitrogenation method and nitrogen rejection facility of nitrogenous effluent
JP4224951B2 (en) Denitrification method
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JP2011078938A (en) Waste water treatment method
CN109354169A (en) A kind of efficient autotrophic denitrification system and quick start method based on MBBR
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
JPH11156387A (en) Wastewater treatment apparatus
JP3089297B2 (en) Post-treatment equipment for anaerobic sewage treatment
NZ282330A (en) Wastewater treatment, use of sequencing batch reactor with means for supplying feed to the reactor bottom and evenly distributing it throughout settled sludge
JP7133339B2 (en) Nitrogen treatment method
JPH0125634B2 (en)
JPS62225296A (en) Biological nitrification and denitrification device
JPH07313992A (en) Treatment of sewage
JP2002172399A (en) Denitrification treatment method
JP2000061494A (en) Biological treatment of ammonia nitrogen
JPH07290088A (en) Method for biologically denitrifying organic waste water
JP2000024687A (en) Treatment of waste nitric acid
JPS645958B2 (en)
JP3125628B2 (en) Wastewater treatment method
JPH03232590A (en) Treatment of sewage
JP2540150B2 (en) Biological denitrification equipment
JP2947684B2 (en) Nitrogen removal equipment
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen