JP2024052993A - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP2024052993A
JP2024052993A JP2024033228A JP2024033228A JP2024052993A JP 2024052993 A JP2024052993 A JP 2024052993A JP 2024033228 A JP2024033228 A JP 2024033228A JP 2024033228 A JP2024033228 A JP 2024033228A JP 2024052993 A JP2024052993 A JP 2024052993A
Authority
JP
Japan
Prior art keywords
treatment
tank
aeration
nitrification
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024033228A
Other languages
Japanese (ja)
Inventor
惇太 高橋
豊 米山
秀人 金子
嘉行 唯木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2024033228A priority Critical patent/JP2024052993A/en
Publication of JP2024052993A publication Critical patent/JP2024052993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

【課題】浄化槽汚泥又はし尿系汚泥を含む処理水から下水排除基準を満足する水質の処理水をより小型な装置で効率良く得ることが可能な水処理方法及び水処理装置を提供する。【解決手段】浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して得られる分離液を、生物担体を収容した曝気処理槽2内に供給し、処理槽2において、硝化を促進する硝化促進処理と、脱窒を促進する脱窒促進処理とが行われるように、処理槽2内の曝気条件を、少なくとも硝化促進処理の曝気条件と、該硝化促進処理の曝気条件よりも曝気量の少ない脱窒促進処理の曝気条件の2条件以上設定し、硝化促進処理及び脱窒促進処理が処理槽内で交互に切り替わるように、曝気条件を切り替えて生物処理を行い、生物処理で得られる生物処理水を、下水排除基準を満たすように希釈する水処理方法である。【選択図】図1[Problem] To provide a water treatment method and water treatment device capable of efficiently obtaining treated water of a quality that satisfies the sewage discharge standards from treated water containing septic tank sludge or sewage sludge with a smaller device. [Solution] This water treatment method comprises the steps of: supplying a separated liquid obtained by solid-liquid separation of sludge containing at least one of septic tank sludge and sewage sludge into an aeration treatment tank 2 containing a biological carrier; setting at least two aeration conditions in the treatment tank 2, namely, an aeration condition for nitrification promotion treatment and an aeration condition for denitrification promotion treatment with a smaller aeration amount than the aeration condition for the nitrification promotion treatment, so that a nitrification promotion treatment that promotes nitrification and a denitrification promotion treatment that promotes denitrification are performed in the treatment tank 2; switching the aeration conditions to alternate between the nitrification promotion treatment and the denitrification promotion treatment in the treatment tank; and diluting the biologically treated water obtained by the biological treatment so as to satisfy the sewage discharge standards. [Selected Figure] Figure 1

Description

本発明は、水処理方法及び水処理装置に関し、特に、浄化槽汚泥及びし尿系汚泥を処理し、処理水を下水道放流する水処理への適用に好適な水処理方法及び水処理装置に関する。 The present invention relates to a water treatment method and a water treatment device, and in particular to a water treatment method and a water treatment device suitable for application to water treatment in which septic tank sludge and sewage sludge are treated and the treated water is discharged into a sewer system.

浄化槽汚泥及びし尿系汚泥を含む原水を処理して得られる処理水を下水道放流するためには、下水排除基準を満足すればよく、この下水排除基準は、一般的に、公共用水域への放流基準よりも基準が緩い。例えば、公共用水域への放流基準としては、BOD(生物化学的酸素要求量)10mg/L、T-N(全窒素)が10mg/L、SS(浮遊物質)が10mg/Lとされているのに対し、下水排除基準としては、BODが600mg/L、T-Nが240mg/L、SSが600mg/Lである。 In order to discharge treated water obtained by treating raw water containing septic tank sludge and human waste sludge into a sewer system, it is necessary to satisfy sewage discharge standards, which are generally more lenient than standards for discharge into public water bodies. For example, standards for discharge into public water bodies are BOD (biochemical oxygen demand) 10 mg/L, T-N (total nitrogen) 10 mg/L, and SS (suspended solids) 10 mg/L, while sewage discharge standards are BOD 600 mg/L, T-N 240 mg/L, and SS 600 mg/L.

従来の処理方法としては、例えば、し尿等に含まれるごみ(し渣)を取り除き、排除基準まで希釈して放流する方法が知られている。この場合、一般的に希釈倍率は10~20倍程度となり、希釈水量及び下水道放流量が過剰となる。 A conventional treatment method is, for example, to remove waste (sewage residue) from sewage and other waste, dilute it to the exclusion standard, and then discharge it. In this case, the dilution rate is generally about 10 to 20 times, which results in excessive amounts of dilution water and discharge into the sewer system.

別の処理方法として、し尿等を脱水機で固液分離し、脱水分離液を希釈して下水道放流する方式がある。この場合、脱水分離液は除渣し尿と比較してBOD、SS、窒素等の成分が大幅に低減されるため、希釈倍率は一般に4~8倍程度とすることができる。しかしながら、脱水分離液の水質には変動が見られるため、希釈水量も水によって大きく変動するという問題がある。 Another treatment method is to separate the sewage and other waste into solids and liquids using a dehydrator, dilute the dehydrated separated liquid, and then discharge it into the sewer system. In this case, the dehydrated separated liquid contains significantly less BOD, SS, nitrogen, and other components than the sludge-removed sewage, so the dilution rate can generally be about 4 to 8 times. However, there is a problem in that the water quality of the dehydrated separated liquid varies, and the amount of dilution water also varies greatly depending on the water.

また、し尿等を脱水機で固液分離する方法も、結局は、搬入量に対して6~9倍量を放流することとなるため、下水道放流量の低減効果は限定的である。さらに、固液分離では溶解性成分が除去されにくいため、し尿等に溶解性成分が多く含まれる場合には、脱水分離液の水質が悪化し、希釈水量を増加する必要性が生じる場合もある。放流水量の規制により放流基準を満足できない場合もある。 The method of separating sewage and other waste into solid and liquid form using a dehydrator ultimately results in discharging 6 to 9 times the amount brought in, so its effectiveness in reducing the amount discharged into the sewer system is limited. Furthermore, because soluble components are difficult to remove using solid-liquid separation, if the sewage and other waste contains a large amount of soluble components, the quality of the dehydrated separated liquid may deteriorate, making it necessary to increase the amount of dilution water. There are also cases where regulations on the amount of discharged water make it impossible to meet the discharge standards.

希釈水量及び放流水量をより確実に削減する別の方法として、固液分離と生物処理とを組み合わせる方法が考えられる。例えば、特開昭61-50691号公報(特許文献1)には、浄化槽汚泥を固液分離した固液分をし尿系汚水と混合し、混合液を凝集処理したのち、その分離液を生物処理する方法が記載されている。 As another method for more reliably reducing the amount of dilution water and discharge water, a method that combines solid-liquid separation and biological treatment can be considered. For example, Japanese Patent Laid-Open Publication No. 61-50691 (Patent Document 1) describes a method in which the solid-liquid fraction obtained by solid-liquid separation of septic tank sludge is mixed with night soil wastewater, the mixed liquid is subjected to coagulation treatment, and the separated liquid is then subjected to biological treatment.

特開昭61-50691号公報Japanese Patent Application Laid-Open No. 61-50691

特許文献1に記載される方法には、生物処理した水の放流先についての記載はないが、実施例1の処理液のBODが10mg/L以下まで処理可能であると記載されていることから公共用水域への放流を前提とした処理方式であるといえる。 The method described in Patent Document 1 does not state where the biologically treated water is discharged, but since it is described that the BOD of the treated liquid in Example 1 can be treated to 10 mg/L or less, it can be said that this treatment method is based on the premise that the water will be discharged into public water areas.

しかしながら、下水道放流する処理水に対しては、特許文献1で言及されるような公共用水域への放流用途の水質までは必要とされていない。一方、引用文献1に記載されるような固液分離と生物処理とを組み合わせる水処理においては、下水排除基準を満たす程度に中途半端な処理を行うことが難しいという問題がある。例えば、生物処理として硝化脱窒処理を行う場合、窒素を全量ではなく例えば6割程度処理する方法、或いは、脱水分離液中に含まれるアンモニア性窒素を全量硝化した後にその6割だけ脱窒処理する方法等が考えられる。 However, treated water discharged into a sewer system is not required to have the same water quality as that for discharge into a public water body as mentioned in Patent Document 1. On the other hand, in water treatment that combines solid-liquid separation and biological treatment as described in Patent Document 1, there is a problem that it is difficult to perform partial treatment to a level that meets the sewage removal standards. For example, when performing nitrification-denitrification treatment as biological treatment, possible methods include treating about 60% of the nitrogen rather than the entire amount, or nitrifying all of the ammoniacal nitrogen contained in the dehydrated separation liquid and then denitrifying only 60% of it.

しかしながら、窒素を6割程度処理する場合は、4割程度の硝酸性窒素が残留することになるため、後段の沈殿槽において嫌気状態となったところで再度脱窒が起こり、発生した窒素ガスによって汚泥が浮上し、沈殿槽で固液分離が十分に行えない場合がある。沈殿槽で固液分離ができない場合は、硝化脱窒槽のMLSS(活性汚泥濃度)が維持できず、処理そのものが悪化する。 However, when treating about 60% of the nitrogen, about 40% of the nitrate nitrogen remains, and denitrification occurs again in the downstream settling tank where the anaerobic conditions are created, and the nitrogen gas generated causes the sludge to float, which may prevent sufficient solid-liquid separation in the settling tank. If solid-liquid separation cannot be achieved in the settling tank, the MLSS (activated sludge concentration) of the nitrification/denitrification tank cannot be maintained, and the treatment itself will deteriorate.

脱水分離液中に含まれるアンモニア性窒素を全量硝化する場合は、水槽容量が過大となること、硝化に必要な曝気風量が過大となること、脱窒に必要なメタノールやエタノール等の水素供与体の添加が必要となること等があり、求められる処理水質に対して設備及び運用コストが過大となる。 If all of the ammonia nitrogen contained in the dehydration separation liquid is nitrified, the tank capacity will be too large, the aeration air volume required for nitrification will be too large, and hydrogen donors such as methanol and ethanol, which are necessary for denitrification, will need to be added, resulting in excessive equipment and operating costs compared to the required treated water quality.

浄化槽汚泥及びし尿系汚泥を効率良く処理する別の手法として、活性汚泥法を用いた生物処理によって、処理水の水質が下水排除基準未満となるまで粗処理を行い、希釈して下水道放流する方法も考えられる。しかしながら、活性汚泥法を用いた生物処理のために大型の水槽容量が必要となり、更に高BOD負荷に対応するための曝気風量も過大となるため、処理効率的に良好な手段であるとはいえない。 Another method for efficiently treating septic tank sludge and sewage sludge is to use biological treatment using the activated sludge method to roughly treat the treated water until the water quality falls below the sewage discharge standard, and then dilute the water before discharging it into the sewer. However, biological treatment using the activated sludge method requires a large tank capacity, and the aeration air volume required to deal with the high BOD load is also excessive, so this is not an efficient method.

上記課題を鑑み、本発明は、浄化槽汚泥又はし尿系汚泥を含む処理水から下水排除基準を満足する水質の処理水をより小型な装置で効率良く得ることが可能な水処理方法及び水処理装置を提供する。 In consideration of the above problems, the present invention provides a water treatment method and water treatment device that can efficiently obtain treated water with a quality that meets sewage discharge standards from treated water containing septic tank sludge or sewage sludge using a smaller device.

上記課題を解決するために本発明者らが鋭意検討した結果、浄化槽汚泥又はし尿系汚泥を含む汚泥の固液分離して得られる分離液を、生物膜を備える処理槽内へ供給し、処理槽内の曝気条件を2条件以上設定して処理することが有効であるとの知見を得た。 As a result of intensive research by the present inventors to solve the above problems, it was discovered that it is effective to supply the separated liquid obtained by solid-liquid separation of sludge, including septic tank sludge or sewage sludge, to a treatment tank equipped with a biofilm and to treat the sludge by setting two or more aeration conditions in the treatment tank.

以上の知見を基礎として完成した本発明の実施の形態に係る水処理方法は一側面において、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して得られる分離液を、生物担体を収容した曝気処理槽内に供給し、処理槽において、硝化を促進する硝化促進処理と、脱窒を促進する脱窒促進処理とが行われるように、処理槽内の曝気条件を、少なくとも硝化促進処理の曝気条件と、硝化促進処理の曝気条件よりも曝気量の少ない脱窒促進処理の曝気条件の2条件以上設定し、硝化促進処理及び脱窒促進処理が処理槽内で交互に切り替わるように、曝気条件を切り替えて生物処理を行い、生物処理で得られる生物処理水を、下水排除基準を満たすように希釈することを有する水処理方法である。 In one aspect, the water treatment method according to the embodiment of the present invention, which was completed based on the above findings, is a water treatment method comprising: supplying the separated liquid obtained by solid-liquid separation of sludge containing at least one of septic tank sludge and sewage sludge into an aeration tank containing a biological carrier; setting at least two aeration conditions in the treatment tank, namely, aeration conditions for nitrification promotion treatment and aeration conditions for denitrification promotion treatment with a lower aeration volume than the aeration conditions for nitrification promotion treatment, so that a nitrification promotion treatment that promotes nitrification and a denitrification promotion treatment that promotes denitrification are performed in the treatment tank; switching the aeration conditions to perform biological treatment so that the nitrification promotion treatment and the denitrification promotion treatment are alternately switched in the treatment tank; and diluting the biologically treated water obtained by the biological treatment so as to meet the sewage discharge standards.

本発明の実施の形態に係る水処理方法は一実施態様において、分離液の処理槽への供給を間欠的に行う。 In one embodiment of the water treatment method according to the present invention, the separated liquid is intermittently supplied to the treatment tank.

本発明の実施の形態に係る水処理方法は別の一実施態様において、脱窒促進処理において、分離液を処理槽の下部から流入させるか、撹拌機による撹拌を行うか、又は曝気を行うか、の少なくともいずれかを実施することにより、処理槽内に収容された分離液を流動させる。 In another embodiment of the water treatment method according to the present invention, in the denitrification promotion treatment, the separated liquid contained in the treatment tank is caused to flow by at least one of the following: flowing the separated liquid from the bottom of the treatment tank, stirring with a stirrer, or aeration.

本発明の実施の形態に係る水処理装置は一側面において、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して分離汚泥と分離液とに分離する固液分離装置と、分離液を生物処理する生物膜を内部に収容し、分離液に対して、硝化を促進する硝化促進処理と、脱窒を促進する脱窒促進処理とを行う処理槽と、硝化促進処理と脱窒促進処理が、処理槽内で交互に行われるように、処理槽の曝気条件を、硝化促進処理の曝気条件と脱窒促進処理の曝気条件の少なくとも2条件以上に設定して制御する制御手段と、処理槽で処理された生物処理水を下水排除基準を満たすように希釈する希釈槽とを備える水処理装置である。 In one aspect, the water treatment device according to the embodiment of the present invention is a water treatment device that includes a solid-liquid separation device that separates sludge, including at least one of septic tank sludge and sewage sludge, into separated sludge and separated liquid by solid-liquid separation, a treatment tank that contains a biofilm that biologically treats the separated liquid and performs a nitrification promotion treatment that promotes nitrification and a denitrification promotion treatment that promotes denitrification on the separated liquid, a control means that sets and controls the aeration conditions of the treatment tank to at least two conditions, the aeration conditions for the nitrification promotion treatment and the aeration conditions for the denitrification promotion treatment, so that the nitrification promotion treatment and the denitrification promotion treatment are performed alternately in the treatment tank, and a dilution tank that dilutes the biologically treated water treated in the treatment tank so that it meets the sewage discharge standards.

本発明の実施の形態に係る水処理装置は別の一実施態様において、処理槽の下部に接続され、処理槽内で液流を生じさせるように、分離液を処理槽内へ供給可能な分離液供給管を備える。 In another embodiment of the water treatment device according to the present invention, the water treatment device is provided with a separation liquid supply pipe that is connected to the bottom of the treatment tank and can supply separation liquid into the treatment tank so as to generate a liquid flow within the treatment tank.

本発明によれば、浄化槽汚泥又はし尿系汚泥を含む処理水から下水排除基準を満足する水質の処理水を、より小型な装置で、効率良く得ることが可能な水処理方法及び水処理装置が提供できる。 The present invention provides a water treatment method and a water treatment device that can efficiently produce treated water with a quality that meets sewage discharge standards from treated water containing septic tank sludge or sewage sludge using a smaller device.

本発明の実施の形態に係る水処理装置を表す概略図である。1 is a schematic diagram illustrating a water treatment device according to an embodiment of the present invention. ラボ試験における処理フローを表す概略図である。FIG. 1 is a schematic diagram showing a process flow in a laboratory test.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。 The following describes an embodiment of the present invention with reference to the drawings. The embodiment described below is an example of an apparatus and method for embodying the technical concept of the present invention, and the technical concept of the present invention does not limit the structure, arrangement, etc. of the components to those described below.

<水処理方法>
本発明の実施の形態に係る水処理方法は、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して得られる分離液に対して生物膜(生物担体)を用いた生物処理を行い、生物処理で得られる生物処理水を、下水排除基準を満たすように希釈することを含む。
<Water treatment method>
A water treatment method according to an embodiment of the present invention includes subjecting a separated liquid obtained by solid-liquid separation of sludge containing at least one of septic tank sludge and sewage sludge to biological treatment using a biofilm (biological carrier), and diluting the biologically treated water obtained by the biological treatment so as to satisfy sewage discharge standards.

原水としては、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して得られる分離液が利用できる。典型的には、浄化槽汚泥、し尿系汚泥、又はこれら混合物の脱水分離液が好適に利用できる。浄化槽汚泥とし尿系汚泥とを混合する場合には、浄化槽汚泥とし尿系汚泥とを混合した混合液を固液分離してもよいが、浄化槽汚泥とし尿系汚泥とに対して、それぞれ別々に固液分離を行い、固液分離で得られる各分離液を混合することが好ましい。 As the raw water, a separated liquid obtained by solid-liquid separation of sludge containing at least one of septic tank sludge and night soil sludge can be used. Typically, dehydrated separated liquid of septic tank sludge, night soil sludge, or a mixture of these can be suitably used. When mixing septic tank sludge and night soil sludge, the mixed liquid of the septic tank sludge and night soil sludge may be subjected to solid-liquid separation, but it is preferable to perform solid-liquid separation separately for the septic tank sludge and night soil sludge and mix the separated liquids obtained by the solid-liquid separation.

固液分離処理には、種々の固液分離装置を用いることができる。中でも、脱水機を用いて原水を分離汚泥と分離液とに固液分離することが設備及び運用コスト面から好ましい。固液分離処理前の原水に対して濃縮処理を行うことも好ましい。濃縮方式としては、重力濃縮、機械濃縮の何れも有効な濃縮方式である。 Various solid-liquid separation devices can be used for solid-liquid separation treatment. Among them, it is preferable to separate raw water into separated sludge and separated liquid using a dehydrator in terms of equipment and operating costs. It is also preferable to perform a concentration treatment on the raw water before the solid-liquid separation treatment. Both gravity concentration and mechanical concentration are effective concentration methods.

固液分離処理前に高分子凝集剤を添加した濃縮処理を行うことにより、濃縮汚泥の汚泥濃度(TS)を最大10~12質量%程度にまで濃縮することができ、これにより処理装置のコンパクト化を図ることができる。高濃度に濃縮された濃縮汚泥に対し、更に脱水機を用いて脱水処理を行えば、含水率70%以下の低含水率の脱水汚泥(分離汚泥)が得られるため、より顕著な汚泥減容効果が得られる。この低含水率の脱水汚泥のカロリーは高いため、焼却処理において補助燃料無しでの自燃が可能であり、省エネ、低コストとなる。 By performing a concentration process in which a polymer flocculant is added before solid-liquid separation, the sludge concentration (TS) of the concentrated sludge can be concentrated to a maximum of approximately 10-12% by mass, which allows for a more compact treatment device. If the highly concentrated concentrated sludge is further dehydrated using a dehydrator, dehydrated sludge (separated sludge) with a moisture content of 70% or less can be obtained, resulting in a more significant sludge volume reduction effect. As this dehydrated sludge with a low moisture content has a high calorie content, it can be spontaneously combusted without auxiliary fuel during incineration, resulting in energy savings and low costs.

代表的な原水の水質としては、以下に限定されるものではないが、例えばBODが600~2000mg/L、T-Nが240~1000mg/L、より典型的にはT-Nが240~700mg/Lである。後述する生物処理により得られる希釈前の生物処理水の処理水質としては、BODが200~1500mg/L、T-Nが240~600mg/Lである。 Typical raw water qualities include, but are not limited to, a BOD of 600-2000 mg/L, a T-N of 240-1000 mg/L, and more typically a T-N of 240-700 mg/L. The quality of the biologically treated water before dilution obtained by the biological treatment described below is a BOD of 200-1500 mg/L, and a T-N of 240-600 mg/L.

分離液は、担体の表面に微生物を付着させた生物膜を備える処理槽内へ供給され、処理槽内において生物膜法を用いた生物処理が行われる。本実施形態に係る生物膜法としては、大きく分けて担体の定期的な洗浄工程を必要とするものと、生物膜量が処理の中で自律的にコントロールされるものとに分けることができる。前者には、生物膜ろ過法等が該当する。後者には、散水ろ床法、流動担体法、回転円盤法、固定床法(接触酸化法)が該当する。中でも、本発明の実施の形態に係る生物処理としては、生物膜量が処理の中で自律的にコントロールされるタイプの生物膜法を利用することが好ましく、これを本明細書において「無閉塞型の生物膜法」と定義する。 The separated liquid is supplied to a treatment tank equipped with a biofilm in which microorganisms are attached to the surface of a carrier, and biological treatment using the biofilm method is carried out in the treatment tank. The biofilm method according to this embodiment can be broadly divided into those that require a periodic cleaning process for the carrier, and those in which the amount of biofilm is autonomously controlled during treatment. The former includes biofilm filtration methods, etc. The latter include trickling filter methods, fluidized carrier methods, rotating disk methods, and fixed bed methods (contact oxidation methods). Of these, it is preferable to use a type of biofilm method in which the amount of biofilm is autonomously controlled during treatment as the biological treatment according to the embodiment of the present invention, and this is defined in this specification as a "non-blocking biofilm method."

中でも、本実施形態では、生物担体を収容した曝気処理槽(以下「処理槽」ともいう)内で、固定床担体を用いた接触酸化法(固定床法)、又は流動担体を用いた流動担体法を含む生物処理を行う曝気式生物膜法が好適に用いられる。「曝気式生物膜法」とは、曝気手段を用いて処理槽内を散気しながら処理槽内に収容された生物担体を流動させて処理する生物処理を意味する。本実施形態に好適な曝気式生物膜法の例を以下に示す。 In particular, in this embodiment, an aerated biofilm method is preferably used in which biological treatment is performed in an aeration treatment tank (hereinafter also referred to as the "treatment tank") that contains biological carriers, including a contact oxidation method (fixed bed method) using a fixed bed carrier, or a fluidized carrier method using a fluidized carrier. The "aerated biofilm method" refers to biological treatment in which the biological carriers contained in the treatment tank are fluidized while aeration is used to diffuse the air in the treatment tank using an aeration means. An example of an aerated biofilm method suitable for this embodiment is shown below.

-接触酸化法(固定床法)-
接触酸化法は、固定床担体を処理槽内に収容された液中に浸漬させ、分離液を通水させながら曝気を行うことによって、担体表面に生物膜を形成させながら分離液中の有機物を分解させて生物処理水を得る方法である。担体に付着した生物膜によって処理を行うため、活性汚泥法等と比べて返送による汚泥量のコントロールが不要であり、維持管理が容易となる。BOD容積負荷としては、0.1~1.0kg-BOD/m3/dが好ましく、高負荷で運転すると生物膜が肥大して接触材が目詰まりすることがある。また、T-N負荷としては、0.06~0.3kg-N/m3/dが好ましい。
- Contact oxidation method (fixed bed method) -
In the contact oxidation method, a fixed bed carrier is immersed in the liquid contained in a treatment tank, and the separated liquid is passed through while aeration is performed, thereby forming a biofilm on the surface of the carrier and decomposing the organic matter in the separated liquid to obtain biologically treated water. Since treatment is performed using a biofilm attached to the carrier, there is no need to control the amount of sludge by returning it, as compared with the activated sludge method, and maintenance and management are easy. The BOD volume load is preferably 0.1 to 1.0 kg-BOD/m 3 /d, and operation at a high load may cause the biofilm to swell and clog the contact material. The T-N load is preferably 0.06 to 0.3 kg-N/m 3 /d.

接触酸化法の担体の材質及び具体的形状に特に制限は無く、任意の装置を用いることができる。担体の材質としては、ポリエチレン、プラスチック等が利用でき、形状としてはチューブ型、ひも状、網状、平板状、ボール状等の任意の形状とすることができる。 There are no particular restrictions on the material or specific shape of the carrier for the contact oxidation method, and any device can be used. The carrier can be made of polyethylene, plastic, etc., and can be in any shape, such as a tube, string, net, plate, or ball.

接触酸化法の担体の比表面積は、微生物の付着の面で50~200m2/m3、望ましくは70~150m2/m3が好ましい。担体の空隙率は、閉塞防止と前記の比表面積の両立の観点から97~99.5%、望ましくは97.5~99%が好ましい。 The specific surface area of the carrier in the contact oxidation method is preferably 50 to 200 m2 / m3 , more preferably 70 to 150 m2 / m3 , from the viewpoint of adhesion of microorganisms. The porosity of the carrier is preferably 97 to 99.5%, more preferably 97.5 to 99%, from the viewpoint of achieving both prevention of clogging and the specific surface area.

一般的に、接触酸化法にて処理を行う場合は、連続曝気が基本であり、低曝気風量への切り替え運転は行わない。これは、低曝気風量の際には槽内の攪拌が弱まり、原水がショートパスして未処理の排水が流出する可能性があるためである。これに対し、本発明の実施の形態に係る水処理方法では、汚泥を固液分離して生物処理の負荷を下げた分離液を下水道放流向けに粗処理する方法として接触酸化法を利用する。そのため、低曝気風量や無曝気の時間帯に槽内の水の混合が不十分となっても目的とする処理は十分に達成できる。さらに、槽内の混合をより向上するために、原水を処理槽の下部から流入させるか、撹拌機による撹拌を行うか、又は曝気を行うか、の少なくともいずれかを実施することにより、処理槽内に収容された分離液の槽内流動を促すこともできるため、さらに安定した処理も実現可能となる。 In general, when treatment is performed using the contact oxidation method, continuous aeration is the basis, and switching to low aeration air volume is not performed. This is because when the aeration air volume is low, the agitation in the tank weakens, and the raw water may short-pass and cause untreated wastewater to flow out. In contrast, in the water treatment method according to the embodiment of the present invention, the contact oxidation method is used as a method of roughly treating the separated liquid, which is obtained by separating sludge into solids and liquids to reduce the load on biological treatment, for discharge into a sewerage system. Therefore, even if the mixing of the water in the tank becomes insufficient during times of low aeration air volume or no aeration, the intended treatment can be sufficiently achieved. Furthermore, in order to further improve the mixing in the tank, at least one of the following can be implemented: flowing raw water in from the bottom of the treatment tank, stirring with a stirrer, or aeration, which can promote the flow of the separated liquid contained in the treatment tank in the tank, making it possible to achieve even more stable treatment.

-流動担体法-
流動担体法は、処理槽内に担体を収容し、処理槽内の液中で担体が流動することにより、微生物を被処理水中の有機物や酸素などと接触させて生物処理水を得る方法である。流動担体法を利用する処理槽は新設してもよいし、既存の貯留槽に、担体及び散気装置等を導入してもよい。流動担体に使用される担体には特に制限はないが、代表的なものとして以下のものが挙げられる。
- Fluid carrier method -
The floating carrier method is a method in which carriers are placed in a treatment tank and allowed to flow in the liquid in the treatment tank, thereby bringing microorganisms into contact with organic matter and oxygen in the water to be treated, thereby obtaining biologically treated water. A treatment tank using the floating carrier method may be newly constructed, or carriers and an aeration device may be installed in an existing storage tank. There are no particular limitations on the carriers used as floating carriers, but the following are some typical examples:

使用する担体は、微生物が付着し、かつ曝気により流動する担体であればどのような担体でも良い。担体の素材としては、曝気により流動すればどのような担体でも良く、例えば、プラスチック(ポリウレタン(PU)、ポリエチレン(PE)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA))、木製チップ、砂等が利用される。担体の性状は、スポンジ状、ゲル状、固形状等であり得る。 The carrier used may be any carrier to which microorganisms can adhere and which can flow due to aeration. Any carrier material may be used as long as it can flow due to aeration, and examples of the carrier material include plastics (polyurethane (PU), polyethylene (PE), polyethylene glycol (PEG), polyvinyl alcohol (PVA)), wood chips, sand, etc. The carrier may be in the form of a sponge, gel, solid, etc.

担体の形状は、球状、立方体状、円筒状、ハニカム状等の任意の形状とすることができる。中でも担体の外表面に微生物を付着させる結合固定化担体を利用することにより、処理槽内の環境に適した微生物を担体に付着させることができ、流入水の性状変動の影響を受けにくくより安定した生物処理を行うことができる。 The carriers can be of any shape, including spherical, cubic, cylindrical, honeycomb, etc. In particular, by using a bonded immobilization carrier that attaches microorganisms to the outer surface of the carrier, microorganisms suited to the environment in the treatment tank can be attached to the carrier, making it less susceptible to fluctuations in the properties of the inflow water and enabling more stable biological treatment.

担体の構造は、処理槽において、硝化を促進する硝化促進処理と、脱窒を促進する脱窒促進処理との双方における担体と原水との接触効率を考慮した構造を有することが好ましい。例えば、硝化促進処理を効率良く進めるためには、硝化菌と酸素との接触効率を高めるために、比表面積が大きい担体を利用することが好ましい。一方、脱窒処理は酸素との接触の必要がないため、脱窒促進処理を進めるためには、担体内部の空隙に微生物が充填される担体構造を有することが好ましい。 It is preferable that the carrier has a structure that takes into consideration the contact efficiency between the carrier and the raw water in both the nitrification promotion process that promotes nitrification and the denitrification promotion process that promotes denitrification in the treatment tank. For example, in order to efficiently promote nitrification promotion, it is preferable to use a carrier with a large specific surface area in order to increase the contact efficiency between nitrifying bacteria and oxygen. On the other hand, since denitrification does not require contact with oxygen, it is preferable to have a carrier structure in which microorganisms are filled into the voids inside the carrier in order to promote denitrification promotion.

そのため、硝化促進処理と脱窒促進処理とに適した担体の比表面積としては、50~5000m2/m3、望ましくは100~3000m2/m3とすることが好ましく、担体の空隙部に汚泥が充填された後でも50m2/m3以上の比表面積を維持できる構造とすることが好ましい。担体の空隙率(即ち、担体の空隙部の体積÷担体の外寸から計算された体積)は、50~99%、望ましくは70~99%とすることが好ましい。担体の有効径は、担体を分離するためのスクリーンによって安定的に分離できる3~10mmとすることが好ましい。 Therefore, the specific surface area of the carrier suitable for nitrification promotion treatment and denitrification promotion treatment is preferably 50 to 5000 m2 / m3 , and more preferably 100 to 3000 m2 / m3 , and it is preferable that the carrier has a structure capable of maintaining a specific surface area of 50 m2 /m3 or more even after sludge is filled in the voids of the carrier. The porosity of the carrier (i.e., the volume calculated from the volume of the voids of the carrier divided by the external dimensions of the carrier) is preferably 50 to 99%, and more preferably 70 to 99%. The effective diameter of the carrier is preferably 3 to 10 mm, which allows stable separation by a screen for separating the carriers.

担体の比重は、処理槽内で間欠曝気又は微曝気等を行った場合においても、処理槽内で担体を素早く均一に流動させることが可能となる1.00~1.10g/cm3とすることが好ましく、更には1.01~1.05g/cm3とすることが好ましい。 The specific gravity of the carrier is preferably 1.00 to 1.10 g/ cm3 , which allows the carrier to flow quickly and uniformly in the treatment tank even when intermittent aeration or micro-aeration is performed in the treatment tank, and more preferably 1.01 to 1.05 g/ cm3 .

担体の充填率は、担体が均一に混合流動可能となる10~50容量%(V%)とすることが好ましく、更には、20~40容量%(V%)とすることが好ましい。充填率を20容量%以上とすることで槽内に多量の微生物を保持することができ、40容量%以下として適切な空隙をつくることで流動性を良好に保つことができる。 The carrier filling rate is preferably 10 to 50% by volume (V%), which allows the carrier to flow uniformly while being mixed, and more preferably 20 to 40% by volume (V%). A filling rate of 20% by volume or more allows a large amount of microorganisms to be retained in the tank, and a filling rate of 40% by volume or less allows for adequate voids to be created, allowing good fluidity to be maintained.

処理槽内に、硝化促進処理用と脱窒促進処理用のために2種類の担体を充填することも可能である。その場合、硝化促進処理用の担体としては、比表面積が比較的大きい担体を充填し、脱窒促進処理用の担体としては空隙率と充填率が比較的高い担体を充填することが好ましい。以下に限定されるものではないが、硝化促進処理用の担体として例えば比表面積100m2/m3以上、望ましくは300m2/m3以上の担体を槽容量に対し20~35容量%充填し、脱窒促進処理用の担体として例えば空隙率70%以上、望ましくは85%以上の担体を槽容量に対し5~20容量%充填することが好ましい。このような担体を用いることで、微曝気、間欠曝気又は分離液の処理槽内への供給によっても担体を処理槽内で流動させて脱窒処理を好適に進めることができる。 It is also possible to fill two types of carriers in the treatment tank, one for nitrification promotion treatment and the other for denitrification promotion treatment. In that case, it is preferable to fill a carrier with a relatively large specific surface area for the nitrification promotion treatment, and a carrier with a relatively high porosity and packing rate for the denitrification promotion treatment. Although not limited to the following, it is preferable to fill a carrier with a specific surface area of 100 m 2 /m 3 or more, preferably 300 m 2 /m 3 or more, at 20 to 35% by volume of the tank volume for the nitrification promotion treatment, and a carrier with a porosity of 70% or more, preferably 85% or more, at 5 to 20% by volume of the tank volume for the denitrification promotion treatment. By using such a carrier, the carrier can be made to flow in the treatment tank even by micro-aeration, intermittent aeration, or supplying a separated liquid into the treatment tank, and the denitrification treatment can be suitably carried out.

BOD容積負荷としては、0.1~2.0kg-BOD/m3/d、望ましくは0.2~1.0kg-BOD/m3/dが好ましい。また、T-N負荷としては、0.03~0.7kg-N/m3/d、望ましくは0.06~0.3kg-N/m3/dが好ましい。流動担体法は、接触酸化法に比べて高負荷で閉塞の恐れは少ない。処理槽内には、流動担体の他に活性汚泥を更に加えてもよい。処理槽内に活性汚泥を加えることにより、原水の性状変動に起因する生物処理水の性状変動を抑制でき、より安定的な処理を行うことができる。 The BOD volume load is preferably 0.1 to 2.0 kg-BOD/m 3 /d, and more preferably 0.2 to 1.0 kg-BOD/m 3 /d. The T-N load is preferably 0.03 to 0.7 kg-N/m 3 /d, and more preferably 0.06 to 0.3 kg-N/m 3 /d. The fluidized carrier method is less likely to cause blockage under higher loads than the contact oxidation method. Activated sludge may be added to the treatment tank in addition to the fluidized carrier. By adding activated sludge to the treatment tank, it is possible to suppress changes in the properties of the biologically treated water caused by changes in the properties of the raw water, and more stable treatment can be achieved.

上述の接触酸化法と同様に、一般的に、流動担体法にて処理を行う場合も、連続曝気が基本であり、低曝気風量への切り替え運転は行わないのが原則である。これは、低曝気風量の際には槽内の攪拌が弱まり、原水がショートパスして未処理の排水が流出する可能性があるためである。一方、本発明の実施の形態に係る水処理方法は、汚泥を固液分離して生物処理の負荷を下げた分離液を下水道放流向けに粗処理する方法として流動担体法を利用する。そのため、低曝気風量や無曝気の時間帯に槽内の水の混合が不十分となり、担体の沈降が生じても本法で目的とする処理は十分に達成できる。さらに、槽内の混合をより向上するために、原水を処理槽の下部から流入させるか、撹拌機による撹拌を行うか、又は曝気を行うか、の少なくともいずれかを実施することにより、処理槽内に収容された分離液の槽内流動を促すこともできるため、さらに安定した処理も実現可能となる。 As with the contact oxidation method described above, in general, when treatment is performed using the fluidized carrier method, continuous aeration is the basis, and switching to low aeration air volume is not performed as a rule. This is because when the aeration air volume is low, the agitation in the tank weakens, and the raw water may short-pass and cause untreated wastewater to flow out. On the other hand, the water treatment method according to the embodiment of the present invention uses the fluidized carrier method as a method for roughly treating the separated liquid, which is obtained by separating sludge into solid and liquid and reducing the load on biological treatment, for discharge into a sewerage. Therefore, even if the mixing of the water in the tank becomes insufficient during times of low aeration air volume or no aeration, and the carrier settles, the treatment aimed for by this method can be sufficiently achieved. Furthermore, in order to further improve mixing in the tank, at least one of the following can be performed: raw water is introduced from the bottom of the treatment tank, agitation is performed with an agitator, or aeration is performed, which can promote the flow of the separated liquid contained in the treatment tank in the tank, making it possible to achieve even more stable treatment.

さらに、一般的に、流動担体を用いる処理においては、硝化槽、脱窒槽を分割し、硝化槽担体には硝化菌を、脱窒槽担体には脱窒菌を優占させた方が、一つの担体に硝化菌と脱窒菌の両方が付着した場合よりも処理速度を上げることができるため、一槽式はほとんど採用されていない。これに対し、本発明の実施の形態に係る水処理では、浄化槽汚泥又はし尿系汚泥を含む処理水から下水排除基準を満足する水質となるように粗処理することを目的としているため、一槽式で硝化工程、脱窒工程を切り替える方式を採用することにより、より小型な装置で、処理水を効率良く得ることが可能な水処理方法及び水処理装置が提供できる。 Furthermore, in general, in treatments using flow carriers, the single-tank system is rarely used because the treatment speed can be increased by dividing the nitrification tank and denitrification tank into separate tanks and placing nitrifying bacteria predominantly in the nitrification tank carrier and denitrifying bacteria predominantly in the denitrification tank carrier, compared to when both nitrifying and denitrifying bacteria are attached to a single carrier. In contrast, the water treatment according to the embodiment of the present invention aims to roughly treat treated water containing septic tank sludge or sewage sludge so that the water quality satisfies the sewage discharge standards, so by adopting a system of switching between the nitrification process and the denitrification process in a single tank system, a water treatment method and water treatment device that can efficiently obtain treated water can be provided using a smaller device.

本発明の実施の形態に係る水処理方法によれば、処理槽内に固定床担体又は流動担体を収容した曝気式生物膜法を用いることにより、生物処理の後段に設定される沈殿槽を省略或いは小型化できるため、処理装置全体の小型化を図ることができる。沈殿槽を省略する場合には、生物処理水のBOD成分、或いはT-N成分の一部が沈殿槽内に残留することによる汚泥の沈降不良の問題を考慮しなくても済むため、処理を効率化することができる。処理槽の後段に沈殿槽を設ける場合も、沈殿槽は補助的なものを設置すれば済むため、コンパクトな沈殿槽で良い。沈降不良によって活性汚泥の一部が流出したとしても、処理槽内には担体が十分に保持されているため、常時安定的な処理が可能となる。さらに、一般的な回分活性汚泥法では、MLSSを沈降させて微生物を維持し清澄な処理水を得るための静置時間が一定時間必要となるが、本法では生物担体を用いるため静置時間が不要、もしくは短時間で済むため、活性汚泥を用いて処理する場合よりも処理可能な負荷量を上げることができる。 According to the water treatment method according to the embodiment of the present invention, by using an aeration biofilm method in which a fixed bed carrier or a fluidized carrier is contained in the treatment tank, the settling tank set in the downstream of the biological treatment can be omitted or made smaller, so that the overall treatment device can be made smaller. When the settling tank is omitted, there is no need to consider the problem of poor settling of sludge caused by a portion of the BOD components or T-N components of the biological treatment water remaining in the settling tank, so the treatment can be made more efficient. Even when a settling tank is provided in the downstream of the treatment tank, a compact settling tank is sufficient because only an auxiliary settling tank is required. Even if a portion of the activated sludge flows out due to poor settling, the carrier is sufficiently held in the treatment tank, so stable treatment can be performed at all times. Furthermore, in the general batch activated sludge method, a certain amount of settling time is required to settle the MLSS, maintain the microorganisms, and obtain clear treated water, but in this method, since a biological carrier is used, a settling time is not required or can be shortened, so the load that can be treated can be increased compared to the case of treatment using activated sludge.

処理槽内に固定床担体又は流動担体を収容して生物処理を行う生物膜法では、担体の流動性または原水と担体との接触効率等を確保する観点から、槽内撹拌機能を併せ持つ曝気による酸素供給が行われる。しかしながら、硝化脱窒を同一槽で行う場合、一般的には、脱窒処理における曝気量を脱窒処理に適した低量に抑えることが困難である。本実施形態では、生物処理において、BOD成分やT-N成分の一部が残留するような処理水が得られればよいため、処理槽内の曝気量の簡単な操作を行うだけで、原水のBOD除去と窒素除去とを単一槽で簡易的且つ効率的に行うことができる。これにより、目標とする処理水質(下水道放流用途)の処理水を小型な設備で効率良く得ることができる。 In the biofilm method, in which biological treatment is carried out by placing fixed bed carriers or fluidized carriers in a treatment tank, oxygen is supplied by aeration, which also has a tank stirring function, in order to ensure the fluidity of the carriers or the contact efficiency between the raw water and the carriers. However, when nitrification and denitrification are carried out in the same tank, it is generally difficult to keep the aeration volume in the denitrification treatment to a low level suitable for denitrification. In this embodiment, since it is sufficient to obtain treated water in which some of the BOD components and T-N components remain in the biological treatment, BOD removal and nitrogen removal from the raw water can be carried out simply and efficiently in a single tank by simply manipulating the aeration volume in the treatment tank. This makes it possible to efficiently obtain treated water of the desired quality (for sewage discharge) using small equipment.

本実施形態における生物処理では、処理槽において、硝化を促進する硝化促進処理と、脱窒を促進する脱窒促進処理とが交互に繰り返して行われるように、処理槽内の曝気条件を2条件以上設定して生物処理を行う。処理槽内の曝気条件を2条件以上設定して硝化促進処理と脱窒促進処理とを一の処理槽内で行うことにより、既存の設備の改造等で処理槽が一槽しか利用できない場合でも、本実施形態に係る水処理方法を適用できるため、改造のための経済的負担が少なくて済み、下水道放流に適した処理水をより効率良く安定的に得ることができる。 In the biological treatment of this embodiment, two or more aeration conditions are set in the treatment tank so that nitrification promotion treatment, which promotes nitrification, and denitrification promotion treatment, which promotes denitrification, are alternately performed in the treatment tank. By setting two or more aeration conditions in the treatment tank and performing nitrification promotion treatment and denitrification promotion treatment in one treatment tank, the water treatment method of this embodiment can be applied even when only one treatment tank is available due to modifications to existing facilities, etc., so the economic burden for modifications can be reduced and treated water suitable for discharge into a sewerage system can be obtained more efficiently and stably.

なお、処理槽内の曝気条件は、硝化促進処理及び脱窒促進処理に対してそれぞれ1条件ずつ、硝化促進処理の曝気条件と、硝化促進処理の曝気条件よりも曝気量の少ない脱窒促進処理の曝気条件の少なくとも2条件を設定すればよいが、必要に応じて、3条件以上又は4条件以上設定してもよいことは勿論である。 The aeration conditions in the treatment tank should be at least two, one for each of the nitrification promotion treatment and the denitrification promotion treatment, i.e., one aeration condition for the nitrification promotion treatment and one for the denitrification promotion treatment with a lower aeration volume than the aeration condition for the nitrification promotion treatment. Of course, three or more conditions or four or more conditions may be set as necessary.

-硝化促進処理-
硝化促進処理では、槽内の溶存酸素(DO)が1.0~5.0mg/L、望ましくは2.5~4.0mg/Lとなるように曝気条件を設定することが好ましい。これにより、原水に含まれるアンモニア性窒素(NH4-N)を硝酸性窒素(NOx-N)に酸化させる硝化反応を促進させることができる。
- Nitrification promotion treatment -
In the nitrification promotion treatment, it is preferable to set the aeration conditions so that the dissolved oxygen (DO) in the tank is 1.0 to 5.0 mg/L, and more preferably 2.5 to 4.0 mg/L. This can promote the nitrification reaction that oxidizes ammonia nitrogen (NH 4 -N) contained in the raw water to nitrate nitrogen (NO x -N).

曝気風量としては、担体が槽全体を流動するためには0.2~0.6m3/m2/分、望ましくは0.3~0.5m3/m2/分が好ましい。これにより、担体が槽全体を流動し、反応効率が高くなる。好ましくは、上述の曝気風量で担体が槽全体を流動することを確認しながら、設定DOが上記範囲に達成できるように、曝気風量へ微調整を行うことで、本発明に係る硝化促進処理をより効率的に行うことができる。 The aeration air volume is preferably 0.2 to 0.6 m3 / m2 /min, more preferably 0.3 to 0.5 m3 / m2 /min, in order to cause the carriers to flow throughout the entire tank. This allows the carriers to flow throughout the entire tank, increasing the reaction efficiency. Preferably, the aeration air volume is fine-tuned so that the set DO is achieved within the above range while confirming that the carriers flow throughout the entire tank at the above-mentioned aeration air volume, thereby making it possible to more efficiently carry out the nitrification promotion treatment according to the present invention.

生物膜法として流動担体法を採用した場合、硝化促進処理では、曝気により担体が槽全体で流動することで、原水との接触効率が上がり、硝化能力を上げることができる。なお、本実施形態における硝化促進処理の目的は、BOD、T-Nの粗取りであるため、全量を硝化させる必要はなく、目的濃度まで硝化が完了すればよい。 When the fluidized carrier method is used as the biofilm method, in the nitrification promotion treatment, the carriers are fluidized throughout the tank by aeration, which increases the contact efficiency with the raw water and increases the nitrification capacity. Note that since the purpose of the nitrification promotion treatment in this embodiment is to roughly remove BOD and T-N, it is not necessary to nitrify the entire amount, and it is sufficient that nitrification is completed to the target concentration.

本発明者らの検討によれば、槽内のアンモニア性窒素含有排水の遊離アンモニア濃度を1.0~10mg/L、より好ましくは2.0~10mg/Lに維持するようにpHを調整することが好ましい。これにより、亜硝酸化菌の増殖を抑制しながら、アンモニア酸化菌を担体に優先的に付着させることができ、これにより安定した亜硝酸化処理が得られる。 According to the inventors' investigations, it is preferable to adjust the pH so that the free ammonia concentration of the ammonia nitrogen-containing wastewater in the tank is maintained at 1.0 to 10 mg/L, more preferably 2.0 to 10 mg/L. This allows the ammonia oxidizing bacteria to preferentially attach to the carrier while suppressing the growth of nitritizing bacteria, thereby achieving a stable nitritation treatment.

亜硝酸化処理では、通常NH4-NをNO3-Nまで硝化させるところを、NO2-Nで反応を止めることができるため、酸素の利用効率を上げ、酸素供給量を抑制することができる。さらに、後段の脱窒条件では、原水中のBOD等を電子供与体とした従属脱窒に加え、NO2-NとNH4-Nによる嫌気性アンモニア酸化反応による脱窒も一部進行し、窒素除去効率を上げることができる。遊離アンモニア濃度は、(1)式に従って計算することができる。 In nitritation treatment, NH 4 -N is normally nitrified to NO 3 -N, but the reaction can be stopped at NO 2 -N, which increases the efficiency of oxygen use and reduces the amount of oxygen supplied. Furthermore, under the latter denitrification conditions, in addition to dependent denitrification using the BOD in the raw water as an electron donor, denitrification by anaerobic ammonia oxidation reaction of NO 2 -N and NH 4 -N also progresses in part, thereby increasing the efficiency of nitrogen removal. The free ammonia concentration can be calculated according to formula (1).

(1)式からわかるように、遊離アンモニア濃度は、pH、NH4-N濃度、水温の変化の影響を受ける。処理槽内の分離液のpH、NH4-N濃度、水温の変化を測定し、測定結果に基づいて遊離アンモニア濃度が1.0~10mg/LとなるようにpHを調整することにより、安定した亜硝酸化処理を行うことができる。 As can be seen from formula (1), the free ammonia concentration is affected by changes in pH, NH4 -N concentration, and water temperature. A stable nitritation treatment can be carried out by measuring changes in the pH, NH4 -N concentration, and water temperature of the separated liquid in the treatment tank and adjusting the pH based on the measurement results so that the free ammonia concentration is 1.0 to 10 mg/L.

-脱窒促進処理-
脱窒促進処理では、処理槽内のDOが1.0mg/L未満、望ましくは0.5mg/L以下となるように曝気条件を設定し、脱窒反応を促進させることが好ましい。脱窒条件では、曝気を完全に停止して機械撹拌による流動を行っても良いし、DOが1.0mg/L未満となる範囲で微曝気を行ってもよいし、機械撹拌と微曝気の組み合わせでも良い。このような曝気条件とすることで、硝化条件と比べて硝化速度は落ちるものの、硝化と脱窒が同時に進行することが期待される。
- Denitrification promotion treatment -
In the denitrification promotion treatment, it is preferable to set the aeration conditions so that the DO in the treatment tank is less than 1.0 mg/L, preferably 0.5 mg/L or less, to promote the denitrification reaction. Under the denitrification conditions, aeration may be completely stopped and fluidization may be performed by mechanical agitation, or micro-aeration may be performed in a range where the DO is less than 1.0 mg/L, or a combination of mechanical agitation and micro-aeration may be used. By setting such aeration conditions, the nitrification rate is lower than that under the nitrification conditions, but it is expected that nitrification and denitrification will proceed simultaneously.

本発明の実施の形態における生物処理において流動担体を採用する場合、脱窒条件の攪拌は、担体を槽全体で流動させるというよりもむしろ槽内の水の流れを作り担体と被処理水の接触効率を上げる程度でも問題がなく、一部流動担体が沈んだままであっても良い。なお、従来の一般的な流動担体法の場合は、処理を適切に進めるために、流動担体を槽全体に均一に流動させることが理想となる。一方、本実施形態に係る水処理方法では、浄化槽汚泥又はし尿系汚泥の粗処理を目的とするため、流動担体法で一般的に求められる流動担体の槽内流動の程度よりも、目標とする反応が進めばよい。反応が進行していることの確認は、後述のORP計やNOx-N計等のセンサで確認できる。運転管理の容易化やランニングコストの低減から、メタノール等の電子供与体は外部から添加しないことが望ましいが、目標の処理水質によってはメタノール等の添加を行ってもよい。 When a fluidized carrier is used in the biological treatment according to the embodiment of the present invention, the agitation of the denitrification conditions is not necessarily required to flow the carrier throughout the entire tank, but rather to create a flow of water in the tank to increase the contact efficiency between the carrier and the water to be treated. Some of the fluidized carrier may remain submerged. In the case of a conventional general fluidized carrier method, it is ideal to flow the fluidized carrier uniformly throughout the tank in order to proceed with the treatment appropriately. On the other hand, in the water treatment method according to the present embodiment, since the purpose is the rough treatment of septic tank sludge or sewage sludge, it is sufficient that the target reaction proceeds rather than the degree of flow of the fluidized carrier in the tank that is generally required in the fluidized carrier method. The progress of the reaction can be confirmed by a sensor such as an ORP meter or a NO x -N meter described later. In order to facilitate operation management and reduce running costs, it is desirable not to add an electron donor such as methanol from the outside, but depending on the target quality of the treated water, methanol or the like may be added.

曝気による攪拌を行う際の曝気風量は、上述の理由で生物担体を流動をさせる必要がないため、例えば、0.2m3/m2/分以下であってもよい。 The aeration air volume when stirring by aeration may be, for example, 0.2 m 3 /m 2 /min or less, since there is no need to fluidize the biological carriers for the reasons mentioned above.

微曝気条件のため曝気風量制御を行う場合、インバータを用いた制御では、吐出圧の関係から制御下限値に限界があり、精密な制御が行えない場合がある。よって、曝気ブロワのタイマにより間欠曝気を行うことが好ましく、これにより風量のより細かい調整が可能となる。 When controlling the aeration air volume due to micro-aeration conditions, control using an inverter may not be able to achieve precise control because there is a limit to the lower control value due to the discharge pressure. Therefore, it is preferable to perform intermittent aeration using the aeration blower timer, which allows for more precise adjustment of the air volume.

タイマを用いて運転時間比率を調整する場合、オン(曝気運転)時間、オフ(曝気停止)時間ともに1分未満での設定では、ブロワに負担がかかり、長期間の安定した運転を行うことが難しい場合がある。ブロワの負担を小さくし、且つ、脱窒に好適な状態となるように安定して処理を行うためには、オフ時間を5分以上とすることが好ましい。 When using a timer to adjust the operating time ratio, setting the on (aeration operation) time and off (aeration stop) time to less than one minute can place a strain on the blower, making it difficult to operate stably for long periods of time. In order to reduce the strain on the blower and perform stable processing that creates conditions suitable for denitrification, it is preferable to set the off time to five minutes or more.

オフ時間は、槽内のDOを0.5mg/L以下となるように調整することで、硝化の進行をより確実に停止できるような条件とすることが好ましい。例えば、ブロワの能力や槽の大きさにもよるが、オフ時間をより好ましくは5分以上、更に好ましくは10分以上とすることで、槽内のDOを0.5mg/L以下とし、脱窒に好適な期間を設けることが可能になる。 It is preferable to adjust the off-time so that the DO in the tank is 0.5 mg/L or less, thereby ensuring that the progress of nitrification can be stopped. For example, although this depends on the blower capacity and the size of the tank, it is more preferable to set the off-time to 5 minutes or more, and even more preferably 10 minutes or more, so that the DO in the tank is 0.5 mg/L or less, and a period suitable for denitrification can be provided.

一方、オフ時間を長く設定しすぎると、機械撹拌を行わない場合、曝気停止期間中に槽内の散気装置、担体等にスケールが付着したりしやすくなる。亜硝酸化処理における曝気停止時間は、60分以下、より好ましくは45分以下、更に好ましくは30分以下である。
オン時間は1分以上であれば特に制限はない。オン時間においては、DOを1mg/L以上とすることが好ましく、流動担体を使用する場合にはDOを2.5mg/L以上とすることが更に好ましい。また、休日に脱水機を運転せず、原水の流入がない場合は、微曝気条件で曝気停止時間の比率を長めにとることで、内生脱窒を促進させることが可能となる。
On the other hand, if the off time is set too long, scale is likely to adhere to the aeration device, carrier, etc. in the tank during the aeration stop period if mechanical stirring is not performed. The aeration stop time in the nitritation treatment is 60 minutes or less, more preferably 45 minutes or less, and even more preferably 30 minutes or less.
There is no particular restriction on the ON time as long as it is 1 minute or more. During the ON time, it is preferable to set the DO to 1 mg/L or more, and when a flow carrier is used, it is even more preferable to set the DO to 2.5 mg/L or more. In addition, when the dehydrator is not operated on holidays and there is no inflow of raw water, it is possible to promote endogenous denitrification by extending the ratio of aeration stop time under micro-aeration conditions.

脱窒促進処理においては、原水を処理槽の下部から流入させるか、撹拌機による撹拌を行うか、又は曝気を行うか、の少なくともいずれかを実施することにより、処理槽内に収容された原水に液流を生じさせて処理槽内の担体を流動させることが好ましい。これにより、流動担体と原水との接触効率を高めて窒素除去処理を促進することができる。 In the denitrification promotion process, it is preferable to at least one of the following: introduce raw water from the bottom of the treatment tank, stir with an agitator, or aerate, to generate a liquid flow in the raw water contained in the treatment tank and move the carriers in the treatment tank. This increases the contact efficiency between the flowing carriers and the raw water, promoting the nitrogen removal process.

原水の処理槽への供給は、所定の供給休止期間を設けて間欠的に行うことが好ましい。「間欠的に」とは、例えば、数時間(例えば1~20時間)もの供給休止期間を設ける場合もあれば、数日間(例えば1~7日間)もの供給休止期間を設ける場合もある。例えば、浄化槽汚泥及びし尿系汚泥を処理対象とする場合、処理施設の運転事情等により、平日の9時~17時には原水流入があり、平日夜間早朝、休日及び祝祭日には、原水が流入してこない期間がある。このような処理施設の原水流入時間等の運転事情に合わせて、原水を処理槽へ間欠的に供給することで、原水を貯留するための貯留槽を省略することができ、装置全体の小型化に寄与できる。また、この原水流入のタイミングに合わせて処理槽内の曝気条件を、硝化促進処理のための曝気条件と脱窒促進処理のための曝気条件に切り替えるように制御することで、一の処理槽で、原水の硝化脱窒をより効率的に行うことができる。例えば、脱窒促進条件の際に原水を投入させ、後述する設定時間、ORP等のセンサ等を用いて脱窒が完了したことを確認したのちに原水の投入を停止し、硝化促進条件に切り替えることで、原水中のBOD成分を有効に脱窒に供することができ、BOD酸化に使用される酸素量も削減することができる。 It is preferable to supply raw water to the treatment tank intermittently with a predetermined supply suspension period. "Intermittently" may mean, for example, a supply suspension period of several hours (e.g., 1 to 20 hours) or a supply suspension period of several days (e.g., 1 to 7 days). For example, when septic tank sludge and sewage sludge are to be treated, raw water flows in from 9:00 to 17:00 on weekdays, and there are periods during the early morning hours of weekday nights, holidays, and public holidays when raw water does not flow in, depending on the operating conditions of the treatment facility. By supplying raw water to the treatment tank intermittently in accordance with the operating conditions of the treatment facility, such as the raw water inflow time, a storage tank for storing raw water can be omitted, which contributes to the miniaturization of the entire device. In addition, by controlling the aeration conditions in the treatment tank to switch between aeration conditions for nitrification promotion treatment and aeration conditions for denitrification promotion treatment in accordance with the timing of the raw water inflow, nitrification and denitrification of raw water can be performed more efficiently in a single treatment tank. For example, raw water is fed under denitrification-promoting conditions, and after it has been confirmed that denitrification has been completed using a set time, ORP sensor, etc., as described below, the feed of raw water is stopped and the conditions are switched to nitrification-promoting conditions, allowing the BOD components in the raw water to be effectively denitrified and reducing the amount of oxygen used for BOD oxidation.

生物処理では、一の処理槽内で行われる硝化促進処理及び脱窒促進処理が交互に切り替わるように、曝気条件を切り替えることが好ましい。曝気条件を切り替えて硝化促進処理及び脱窒促進処理を交互に繰り返し行うことにより、原水のBOD及びT-Nの粗取りを一の処理槽で効率良く行うことができる。 In biological treatment, it is preferable to switch aeration conditions so that nitrification promotion treatment and denitrification promotion treatment are alternately performed in one treatment tank. By repeatedly switching aeration conditions and alternately performing nitrification promotion treatment and denitrification promotion treatment, it is possible to efficiently roughly remove BOD and T-N from raw water in one treatment tank.

曝気条件の切り替えは、操作者が手動で行ってもよいし、タイマやセンサ等を用いて自動制御してもよい。切替方法としては、例えば以下の方法が採用できる。 The aeration conditions can be switched manually by an operator, or automatically controlled using a timer, sensor, etc. The following methods can be used to switch the conditions:

-時間による切り替え-
硝化速度と脱窒速度の比は、1:1~1:5程度であるため、硝化促進処理-脱窒促進処理の時間の比率についても、1:1~5:1、好ましくは2:1~4:1とすることで、適切な硝化時間と脱窒時間を維持することが可能になる。生物処理において流動担体を使用する場合は、馴致した担体を採取し、例えば以下のような回分試験により硝化速度、脱窒速度を求めることで、微生物の付着状況に応じた最適な硝化時間、脱窒時間の比を手動又は自動で設定することが可能になる。
-Time-based switching-
Since the ratio of the nitrification rate to the denitrification rate is about 1:1 to 1:5, it is possible to maintain appropriate nitrification and denitrification times by setting the time ratio of the nitrification promotion treatment to the denitrification promotion treatment to be 1:1 to 5:1, preferably 2:1 to 4:1. When using a flowing carrier in biological treatment, it is possible to manually or automatically set the optimal ratio of the nitrification time and the denitrification time according to the adhesion state of the microorganisms by sampling the acclimatized carrier and determining the nitrification rate and the denitrification rate by, for example, a batch test such as the one described below.

(硝化回分試験)
例えば、1Lのメスシリンダーに処理槽から採取した担体を20vol%投入し、原水を全容1Lとなるようにメスアップする。そして、アルカリ度(mg-CaCO3/L)が原水のアンモニア濃度(mg-N/L)の7倍となるように炭酸ナトリウムを添加する。その後、曝気を開始し、一定時間(例えば0、30、60、90、120分)ごとにサンプリングを行い、水質分析を行う。NOx-N濃度の変化量から、担体容積あたりの硝化速度(mg-N/L-担体/h)を計算する。
(Nitrification batch test)
For example, 20 vol% of the carrier collected from the treatment tank is placed in a 1 L graduated cylinder, and the raw water is diluted to a total volume of 1 L. Sodium carbonate is then added so that the alkalinity (mg-CaCO 3 /L) is 7 times the ammonia concentration (mg-N/L) of the raw water. Aeration is then started, and samples are taken at regular intervals (for example, 0, 30, 60, 90, and 120 minutes) and water quality is analyzed. The nitrification rate per carrier volume (mg-N/L-carrier/h) is calculated from the change in NO x -N concentration.

(脱窒回分試験)
例えば、1Lの密閉可能な容器に処理槽から採取した担体を20vol%投入し、原水を全容1Lとなるようにメスアップする。そしてNO3-Nが50~100mg/LとなるようにNaNO3を添加する。容器内のガスを窒素ガスで置換した後、撹拌を開始し、一定時間(例えば0、30、60、90、120分)ごとにサンプリングを行い、水質分析を行う。NOx-N濃度の変化量から、担体容積あたりの脱窒速度(mg-N/L-担体/h)を計算する。
(Denitrification batch test)
For example, 20 vol% of the carrier collected from the treatment tank is placed in a 1 L sealable container, and the raw water is diluted to a total volume of 1 L. NaNO 3 is then added so that the NO 3 -N concentration is 50-100 mg/L. After the gas in the container is replaced with nitrogen gas, stirring is started and samples are taken at regular intervals (for example, 0, 30, 60, 90, and 120 minutes) and water quality is analyzed. The denitrification rate per carrier volume (mg-N/L-carrier/h) is calculated from the change in NO x -N concentration.

-センサによる制御1(フィードバック制御)-
センサによる制御方法としては、pH制御、アルカリ度制御、ORP制御、DO制御、NH4-N制御、NOx-N制御等、及びその組み合わせが挙げられる。以下に述べる理由により、中でも特にORP制御、NOx-N制御が好適である。
-Sensor-based control 1 (feedback control)-
Control methods using sensors include pH control, alkalinity control, ORP control, DO control, NH 4 —N control, NO x —N control, etc., and combinations thereof. Of these, ORP control and NO x —N control are particularly suitable for the reasons described below.

(pH、アルカリ度制御)
硝化促進処理では、硝化反応に伴ってアルカリ度が減少し、pHが低下する。アルカリの添加を行わず原水中のアルカリ度のみで硝化を行う場合、アルカリ度が一定値以下になると硝化の進行が停止し、pHの低下も停止する。このため、pH、もしくはアルカリ度の経時変化を確認し、時間あたりの変化量が一定値以下となった時点を硝化が完了した時点とみなし、脱窒促進処理に切り替えることができる。
(pH, alkalinity control)
In the nitrification promotion process, alkalinity decreases and pH drops as the nitrification reaction proceeds. If nitrification is performed using only the alkalinity in the raw water without adding alkali, the nitrification process stops and the pH drop also stops when the alkalinity falls below a certain value. For this reason, the change in pH or alkalinity over time can be confirmed, and the point at which the change per hour falls below a certain value can be regarded as the point at which nitrification is completed, and the denitrification promotion process can be switched to.

脱窒促進処理では、脱窒反応に伴ってアルカリ度が増加し、pHが上昇する。このため、pH、もしくはアルカリ度の経時変化を確認し、時間あたりの変化量が一定値以下となった時点を脱窒が完了した時点とみなし、硝化促進処理に切り替えることができる。 In denitrification promotion treatment, alkalinity increases with the denitrification reaction, and so does the pH. For this reason, by checking the change in pH or alkalinity over time and determining when the rate of change per hour falls below a certain value, denitrification is considered complete and the treatment can be switched to nitrification promotion treatment.

(ORP制御)
硝化促進処理では、有機物の酸化、アンモニアの硝化に伴いORPが増加する。有機物の酸化と硝化が同時に進行している期間、有機物の酸化が完了し硝化のみが進行している期間、硝化が完了した後、でそれぞれORPの経時変化の傾きが異なるため、その変化量を確認し、時間あたりの変化量が一定値以下となった時点を硝化が完了した時点とみなし、脱窒促進処理に切り替えることができる。
(ORP Control)
In the nitrification promotion treatment, the ORP increases with the oxidation of organic matter and the nitrification of ammonia. The slope of the change in ORP over time differs during the period when the oxidation of organic matter and nitrification are proceeding simultaneously, during the period when the oxidation of organic matter is completed and only nitrification is proceeding, and after nitrification is completed. Therefore, the amount of change is confirmed, and the point at which the amount of change per hour falls below a certain value is regarded as the point at which nitrification is completed, and the treatment can be switched to the denitrification promotion treatment.

脱窒促進処理では、原水の流入、及びNOx-Nの脱窒に伴いORPが低下し、脱窒が完了するとその変化量は小さくなる。このため、時間あたりの変化量が一定値以下となった時点を硝化が完了した時点とみなし、硝化促進処理に切り替えることができる。ORP制御は、pHやDOに比べ、取りうる数値の幅が大きく、解像度が高い(一般に-400mV~+400mV)ため、より正確な制御が可能である。また、NH4-NやNOx-Nのように単一物質の濃度ではなく、系内の有機物、窒素化合物等の状態を総合的に評価できる指標であるため、今回のようにBOD、窒素を粗取りが目的であり、槽内にBOD、窒素が残留する場合には、槽内の状態を評価する上で好適な指標である。 In the denitrification promotion process, ORP decreases with the inflow of raw water and the denitrification of NO x -N, and the change in ORP decreases when denitrification is completed. Therefore, the time when the change in the amount per hour is below a certain value is considered to be the time when nitrification is completed, and the nitrification promotion process can be switched to. Compared with pH and DO, ORP control has a wider range of possible values and a higher resolution (generally -400mV to +400mV), allowing for more accurate control. In addition, unlike NH 4 -N and NO x -N, ORP is not the concentration of a single substance, but is an index that can comprehensively evaluate the state of organic matter, nitrogen compounds, etc. in the system. Therefore, when the purpose is to roughly remove BOD and nitrogen as in this case and BOD and nitrogen remain in the tank, ORP is a suitable index for evaluating the state in the tank.

(DO制御)
硝化促進処理において、同一空気量で吹込みを行った場合、槽内の有機物の酸化や硝化が完了した後は、反応の進行中に比べてDOが高くなる。DOの経時変化を確認し、DOが増加した時点で硝化が完了したとみなし、脱窒促進処理に移行することができる。
(DO control)
In the nitrification promotion treatment, if the same amount of air is blown in, after the oxidation and nitrification of the organic matter in the tank is completed, the DO will be higher than when the reaction is in progress. By checking the change in DO over time, it is possible to consider the nitrification to be complete when the DO increases and to move on to the denitrification promotion treatment.

(NH4-N制御)
硝化促進処理において、NH4-N濃度の時間変化は、硝化が完了している期間、有機物の酸化と硝化が同時に進行している期間、有機物の酸化が完了し硝化が進行している期間、の順に大きくなる。この経時変化を確認し、NH4-Nの変化量が小さくなった時点で硝化が完了したとみなし、脱窒促進処理に移行することができる。
( NH4 -N control)
In nitrification promotion treatment, the change in NH4 -N concentration over time increases in the following order: the period when nitrification is complete, the period when oxidation of organic matter and nitrification are proceeding simultaneously, and the period when oxidation of organic matter is completed and nitrification is proceeding. By checking this change over time, and when the amount of change in NH4 -N becomes small, it is possible to consider that nitrification is complete and to move on to denitrification promotion treatment.

(NOx-N)
硝化促進処理において、NOx-N濃度の時間変化は、硝化が完了している期間、有機物の酸化と硝化が同時に進行している期間、有機物の酸化が完了し硝化が進行している期間、の順に大きくなる。この経時変化を確認し、NOx-Nの変化量が小さくなった時点で硝化が完了したとみなし、脱窒促進処理に移行することができる。
( NOx -N)
In nitrification promotion treatment, the change in NO x -N concentration over time increases in the following order: the period when nitrification is complete, the period when oxidation of organic matter and nitrification are proceeding simultaneously, and the period when oxidation of organic matter is completed and nitrification is proceeding. By checking this change over time, and when the amount of change in NO x -N becomes small, nitrification can be considered to be complete and denitrification promotion treatment can be started.

脱窒促進処理においては、脱窒が進行している期間は変化量が大きく、脱窒が完了すると変化量が小さくなる。この経時変化を確認し、NOx-Nの変化量が小さくなった時点で脱窒が完了したとみなし、硝化促進処理に移行することができる。NOx-N濃度に基づく制御は、DO制御やNH4-N制御に比べ、脱窒促進処理の完了時点を一つのセンサで確認できる点で、本実施形態に好適である。 In the denitrification promotion process, the amount of change is large while denitrification is progressing, and decreases when denitrification is complete. This change over time is confirmed, and when the amount of change in NO x -N becomes small, denitrification is deemed to be complete, and the process can be switched to nitrification promotion. Compared to DO control and NH 4 -N control, control based on the NO x -N concentration is preferable for this embodiment in that the completion time of the denitrification promotion process can be confirmed with a single sensor.

-センサによる制御2(フィードフォワードとの組み合わせ)-
原水中の窒素成分のほとんどはNH4-Nであることから、原水の窒素濃度はNH4-N計で測定することが可能である。従って、処理水の窒素濃度の目標値を定めれば、原水NH4-N濃度と処理水T-N目標濃度との関係により、必要な硝化-脱窒量を計算することが可能である。時間当たりの硝化速度及び脱窒速度は処理槽のNH4-N濃度、もしくはNOx-N濃度より計算可能なため、目標濃度に達するために必要な硝化条件、脱窒条件の時間を演算装置で計算し、ブロワを制御することができる。これにより、硝化時間を必要最低限に抑えることができ、曝気風量を削減することが可能となる。
-Sensor-based control 2 (combined with feedforward)-
Since most of the nitrogen components in the raw water are NH 4 -N, the nitrogen concentration of the raw water can be measured with an NH 4 -N meter. Therefore, if a target value for the nitrogen concentration of the treated water is set, it is possible to calculate the required amount of nitrification-denitrification from the relationship between the raw water NH 4 -N concentration and the target T-N concentration of the treated water. Since the nitrification rate and denitrification rate per hour can be calculated from the NH 4 -N concentration or NO x -N concentration in the treatment tank, the time required for the nitrification and denitrification conditions to reach the target concentration can be calculated by a calculation device and the blower can be controlled. This makes it possible to keep the nitrification time to a minimum and reduce the aeration air volume.

-栄養塩(リン)の添加-
本発明の実施の形態に係る水処理方法では、原水である分離液の処理に生物処理を採用しているため、生物の生育に必要なだけのリンを供給する必要がある場合がある。一般的に、生物処理においては、BOD100mg/Lに対し、1mg/L程度のリンが必要とされており、原水BODに対し、この比を満足するようにリンを供給することが望ましい。処理が良好であれば、リンの濃度は1mg/L以下、好ましくは0.7mg/L以下、より好ましくは0.5mg/L以下に減らして供給しても良い。
-Addition of nutrients (phosphorus)-
In the water treatment method according to the embodiment of the present invention, since biological treatment is used to treat the separated liquid, which is raw water, it may be necessary to supply phosphorus in an amount necessary for the growth of organisms. Generally, in biological treatment, about 1 mg/L of phosphorus is required for a BOD of 100 mg/L, and it is desirable to supply phosphorus so as to satisfy this ratio with respect to the raw water BOD. If the treatment is good, the phosphorus concentration may be reduced to 1 mg/L or less, preferably 0.7 mg/L or less, and more preferably 0.5 mg/L or less before supplying it.

特に、浄化槽汚泥及びし尿系汚泥の固液分離処理として脱水処理を行う場合に、鉄系、アルミ系の凝集剤を使用すると、リンが汚泥に取り込まれるため、分離液に含まれるリン濃度が低下し、リンの添加が必要となる場合がある。BOD及びT-N除去の粗処理では、リンのような栄養塩類の供給が軽視されがちであるが、リンが欠乏するとBODがほとんど除去できなくなることもあるため、粗処理であっても、リンを供給することが好ましい。添加するリンの形態としては特に制限はないが、リン酸、リン酸二水素カリウム、等の薬品、し尿系汚泥の一部を投入する等の方法がある。 In particular, when performing dehydration treatment as a solid-liquid separation process for septic tank sludge and sewage sludge, if iron- or aluminum-based coagulants are used, phosphorus is absorbed into the sludge, reducing the phosphorus concentration in the separated liquid, and phosphorus may need to be added. In rough treatment for removing BOD and T-N, the supply of nutrients such as phosphorus tends to be overlooked, but a phosphorus deficiency can make it almost impossible to remove BOD, so it is preferable to supply phosphorus even in rough treatment. There are no particular restrictions on the form of phosphorus to be added, but methods include adding chemicals such as phosphoric acid and potassium dihydrogen phosphate, or adding a portion of sewage sludge.

(希釈倍率)
上記の生物処理によって得られた生物処理水は希釈槽に送られ、希釈水と混合して下水排除基準を満たすように希釈される。生物処理水の希釈倍率を典型的には1~4倍、より典型的には1~3倍、更には1~2倍、更には1~1.5倍とすることにより、下水排除基準を満たす量とすることができる。希釈は常時行っても良いし、下水排除基準を満たすために必要な場合にのみ行っても良い。これにより、従来の手法に比べてより少ない希釈水量で、下水道放流のための水質基準に応じたより効率的且つ適切な処理が行える。
(Dilution ratio)
The biologically treated water obtained by the above biological treatment is sent to a dilution tank and mixed with dilution water to be diluted to meet the sewage discharge standards. The biologically treated water can be diluted to a volume that meets the sewage discharge standards by typically setting the dilution ratio at 1 to 4 times, more typically at 1 to 3 times, further at 1 to 2 times, or even at 1 to 1.5 times. Dilution may be performed continuously or only when necessary to meet the sewage discharge standards. This allows more efficient and appropriate treatment in accordance with the water quality standards for sewage discharge with a smaller amount of dilution water than in conventional methods.

本実施形態によれば、上述の生物処理を行うことにより、生物処理水の希釈を行わなくてもよい程度にまで生物処理水が処理される場合もある。その場合は、生物膜法を用いた生物処理を行った後の生物処理水に対し、希釈を行うことなくそのまま下水道放流を行ってもよいことは勿論である。 According to this embodiment, by carrying out the above-mentioned biological treatment, the biologically treated water may be treated to such an extent that dilution of the biologically treated water is not necessary. In such a case, it goes without saying that the biologically treated water after biological treatment using the biofilm method may be discharged directly into the sewerage without dilution.

本発明の実施の形態に係る水処理方法によれば、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して得られる分離液に対して、硝化促進処理と、脱窒を促進する脱窒促進処理とが行われるように、処理槽内の曝気条件を2条件以上設定してBOD及び窒素の粗取りを行った後に希釈することで、下水道放流可能な処理水を、少ない希釈水量で、小型且つ簡易な装置で、より効率良く安定して得ることが可能となる。 According to the water treatment method of the embodiment of the present invention, the separated liquid obtained by solid-liquid separation of sludge containing at least one of septic tank sludge and sewage sludge is subjected to a nitrification promotion process and a denitrification promotion process to promote denitrification. By setting two or more aeration conditions in the treatment tank and roughly removing BOD and nitrogen, and then diluting the separated liquid, it is possible to more efficiently and stably obtain treated water suitable for discharge into the sewerage system using a small amount of dilution water and a small and simple device.

<水処理装置>
本発明の実施の形態に係る水処理装置は、図1に示すように、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して分離汚泥と分離液とに分離する固液分離装置1と、分離液を生物処理する生物膜を内部に収容し、分離液に対して、硝化を促進する硝化促進処理と、脱窒を促進する脱窒促進処理とを行う処理槽(曝気処理槽)2と、硝化促進処理と脱窒促進処理が、処理槽2内で交互に行われるように、処理槽2の曝気条件を少なくとも2条件以上に設定して制御する制御手段4と、処理槽2で処理された生物処理水を下水排除基準を満たすように希釈する希釈槽3とを備える。
<Water Treatment Device>
As shown in FIG. 1, a water treatment device according to an embodiment of the present invention includes a solid-liquid separation device 1 that performs solid-liquid separation of sludge, which includes at least one of septic tank sludge and sewage sludge, into separated sludge and separated liquid, a treatment tank (aeration treatment tank) 2 that contains a biofilm that biologically treats the separated liquid and performs a nitrification promotion treatment that promotes nitrification and a denitrification promotion treatment that promotes denitrification on the separated liquid, a control means 4 that sets and controls the aeration conditions of the treatment tank 2 to at least two conditions so that the nitrification promotion treatment and the denitrification promotion treatment are performed alternately in the treatment tank 2, and a dilution tank 3 that dilutes the biologically treated water treated in the treatment tank 2 so as to meet the sewage discharge standards.

固液分離装置1には、種々の装置を用いることができ、中でも、固液分離装置1として脱水機を用いることが設備及び運用コスト面から好ましい。固液分離装置1の前段に濃縮機械(図示省略)固液分離前の原水に対して濃縮処理を行うことも好ましい。 Various devices can be used for the solid-liquid separation device 1, and among them, it is preferable to use a dehydrator as the solid-liquid separation device 1 in terms of equipment and operating costs. It is also preferable to use a concentration machine (not shown) upstream of the solid-liquid separation device 1 to perform concentration treatment on the raw water before solid-liquid separation.

処理槽2としては、担体の表面に微生物を付着させた生物膜が収容される。典型的には、内部に固定床担体を収容した接触酸化槽又は内部に流動担体を収容した流動担体槽が、本実施形態に係る処理槽2として好適に利用できる。処理槽2には、処理槽2内に供給された分離液を撹拌するための撹拌機21が設けられていてもよい。撹拌機21は省略してもよい。処理槽2下部には、処理槽2内を曝気する曝気手段22が接続されている。曝気手段22は、処理槽2内に気体を送り込むためのポンプと散気管(図示省略)等で構成することができる。曝気手段22による曝気により処理槽2内の分離液に液流を生じさせ、これにより処理槽内の生物膜(流動担体又は固定床担体)を流動させることができる。 The treatment tank 2 contains a biofilm with microorganisms attached to the surface of the carrier. Typically, a contact oxidation tank containing a fixed bed carrier inside or a fluidized carrier tank containing a fluidized carrier inside can be suitably used as the treatment tank 2 according to this embodiment. The treatment tank 2 may be provided with an agitator 21 for agitating the separated liquid supplied to the treatment tank 2. The agitator 21 may be omitted. An aeration means 22 for aerating the treatment tank 2 is connected to the lower part of the treatment tank 2. The aeration means 22 can be composed of a pump for sending gas into the treatment tank 2 and an aeration pipe (not shown), etc. Aeration by the aeration means 22 generates a liquid flow in the separated liquid in the treatment tank 2, which causes the biofilm (fluidized carrier or fixed bed carrier) in the treatment tank to flow.

処理槽2内には、処理槽2内の分離液の水質を測定するための計測手段23が配置されていてもよい。計測手段23としては、例えば、pH計、ORP計、DO計、NH4-N濃度計、NOx-N濃度計及びこれらの組み合わせが利用できる。処理槽2内へ流入する分離液の水質を測定するための計測手段24が配置されていてもよい。計測手段24としては、例えば、pH計、ORP計、DO計、NH4-N濃度計、NOx-N濃度計及びこれらの組み合わせが利用できる。 A measuring means 23 may be disposed in the treatment tank 2 for measuring the water quality of the separated liquid in the treatment tank 2. For example, a pH meter, an ORP meter, a DO meter, an NH 4 —N concentration meter, a NO x —N concentration meter, or a combination of these may be used as the measuring means 23. A measuring means 24 may be disposed in the treatment tank 2 for measuring the water quality of the separated liquid flowing into the treatment tank 2. For example, a pH meter, an ORP meter, a DO meter, an NH 4 —N concentration meter, a NO x —N concentration meter, or a combination of these may be used as the measuring means 24.

例えば、計測手段24により分離液のNH4-N濃度を測定し、計測手段23によりNH4-N濃度又はNOx-N濃度を測定し、生物処理水の窒素濃度の目標値を定めれば、分離液と生物処理水のNH4-N濃度の関係から、必要な硝化脱窒量を計算できる。この計算結果に基づいて、硝化促進処理時間及び脱窒促進処理時間を定め、各処理の曝気条件を定めることにより、分離液からのBOD除去及びT-N除去を効率良く粗取りすることができる。 For example, by measuring the NH 4 —N concentration in the separated liquid with measuring means 24 and measuring the NH 4 —N concentration or NO x —N concentration with measuring means 23 and determining a target value for the nitrogen concentration in the biological treatment water, the required amount of nitrification and denitrification can be calculated from the relationship between the NH 4 —N concentrations in the separated liquid and the biological treatment water. By determining the nitrification promotion treatment time and denitrification promotion treatment time based on the calculation results and determining the aeration conditions for each treatment, it is possible to efficiently roughly remove BOD and T-N from the separated liquid.

処理槽2には、処理槽2の下部に接続され、処理槽2内で液流を生じさせるように、分離液を処理槽2内へ供給可能な分離液供給管11を備えることが好ましい。分離液供給管11が処理槽2の下部へ接続されて、分離液が処理槽2の下方から上方へと供給されるように構成されることで、処理槽2内に収容される流動担体又は固定床担体の処理槽2底部への沈降を抑制して、担体の流動性を高めて、担体と分離液との接触効率を高めることができる。分離液供給管11は、処理槽2の高さを1とした場合に、相対的に0(槽底部)~0.5、より好ましくは0~0.3となる高さに接続されることで、分離液の供給による槽内の液流の発生効率を向上させることができる。 The treatment tank 2 is preferably provided with a separation liquid supply pipe 11 that is connected to the lower part of the treatment tank 2 and can supply the separation liquid into the treatment tank 2 so as to generate a liquid flow in the treatment tank 2. By connecting the separation liquid supply pipe 11 to the lower part of the treatment tank 2 and configuring it so that the separation liquid is supplied from the lower part to the upper part of the treatment tank 2, it is possible to suppress the settling of the fluidized carrier or fixed bed carrier contained in the treatment tank 2 to the bottom of the treatment tank 2, increase the fluidity of the carrier, and increase the contact efficiency between the carrier and the separation liquid. By connecting the separation liquid supply pipe 11 at a height that is relatively 0 (tank bottom) to 0.5, more preferably 0 to 0.3, when the height of the treatment tank 2 is 1, it is possible to improve the efficiency of generating a liquid flow in the tank by supplying the separation liquid.

制御手段4は、汎用の計算機等で構成され、曝気手段22に接続されている。制御手段4は、処理槽2内で硝化促進処理と脱窒促進処理が交互に行われるように、曝気条件を制御する。制御手段4は、撹拌機21に接続されていてもよく、撹拌機21の撹拌条件を制御することもできる。さらに制御手段4は、計測手段23、24に接続されていてもよく、計測手段23、24の水質(pH、ORP、DO、NH4-N濃度、NOx-N濃度等)の測定結果に基づいて、曝気手段22による曝気を制御してもよい。制御手段4が、計測手段23、24の水質の測定結果に基づいて、曝気手段22による処理槽2内の曝気を制御することにより、原水の水質変動の発生に追従可能なより安定的な生物処理を行える。処理槽2で処理された生物処理水は、希釈槽3に収容され、希釈槽3において希釈水で希釈されて、処理水が得られる。 The control means 4 is composed of a general-purpose computer or the like, and is connected to the aeration means 22. The control means 4 controls the aeration conditions so that the nitrification promotion treatment and the denitrification promotion treatment are alternately performed in the treatment tank 2. The control means 4 may be connected to the agitator 21, and may also control the agitation conditions of the agitator 21. Furthermore, the control means 4 may be connected to the measurement means 23, 24, and may control the aeration by the aeration means 22 based on the measurement results of the water quality (pH, ORP, DO, NH 4 -N concentration, NO x -N concentration, etc.) by the measurement means 23, 24. The control means 4 controls the aeration in the treatment tank 2 by the aeration means 22 based on the measurement results of the water quality by the measurement means 23, 24, thereby performing a more stable biological treatment that can follow the occurrence of fluctuations in the water quality of the raw water. The biologically treated water treated in the treatment tank 2 is stored in the dilution tank 3, and is diluted with dilution water in the dilution tank 3 to obtain treated water.

本発明の実施の形態に係る水処理装置によれば、硝化促進処理と脱窒促進処理が、処理槽2内で交互に行われるように、処理槽2の曝気条件を少なくとも2条件以上に設定して制御する制御手段4を備えることにより、一の処理槽2内で浄化槽汚泥又はし尿系汚泥を含む汚泥の固液分離液中のBOD及びT-Nの粗取りを行うことができるため、浄化槽汚泥又はし尿系汚泥を含む汚泥から下水排除基準を満足する水質の処理水を、小型な装置で効率良く得ることができる。 According to the water treatment device of the embodiment of the present invention, a control means 4 is provided for setting and controlling the aeration conditions of the treatment tank 2 to at least two conditions so that nitrification promotion treatment and denitrification promotion treatment are alternately performed in the treatment tank 2. This allows rough removal of BOD and T-N from the solid-liquid separation liquid of sludge containing septic tank sludge or sewage sludge in one treatment tank 2, so that treated water with a quality that meets the sewage discharge standards can be efficiently obtained from sludge containing septic tank sludge or sewage sludge using a small device.

以下に本発明の実施例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 The following examples of the present invention are provided to aid in the understanding of the present invention and its advantages, and are not intended to limit the invention.

図2に示すフローに従って、実施例に係る水処理(実験系)と、実施例に係る水処理と、実施例に係る水処理の効果を対照するための参考例(対照系)に係る水処理を行った。原水は、実機し尿等処理施設の脱水分離液を使用した。原水には、適宜栄養塩(リン酸一カリウム(KH2PO4))を添加した。実験期間中の原水性状の代表例を表1に示す。 According to the flow chart shown in Figure 2, water treatment according to the Example (experimental system), water treatment according to the Example, and water treatment according to a Reference Example (control system) for comparing the effects of the water treatment according to the Example were carried out. The raw water used was dehydrated separated liquid from an actual sewage treatment facility. Nutrients ( monopotassium phosphate ( KH2PO4 )) were added to the raw water as appropriate. A representative example of the state of the raw water during the experiment is shown in Table 1.

原水を、BOD容積負荷0.6kg-BOD/m3/d、T-N負荷0.23kg-N/m3/dとなるよう各試験系に通水させた。図2にラボ試験の処理フローを示す。また、対照系として、常時曝気を行う系との比較を行った。担体はポリエチレン製のハニカム状担体(φ25mm、厚さ4mm、比表面積800m2/m3)を各槽容量に対し30容量%充填した。 Raw water was passed through each test system so that the BOD volumetric loading was 0.6 kg-BOD/ m3 /d and the TN loading was 0.23 kg-N/ m3 /d. Figure 2 shows the treatment flow of the laboratory test. In addition, a control system was used for comparison with a system in which constant aeration was performed. The carriers were polyethylene honeycomb carriers (φ25 mm, thickness 4 mm, specific surface area 800 m2 / m3 ), which were filled at 30% by volume of each tank.

原水の流入条件と曝気条件を平日(月~金)、休日(土・日)のそれぞれに対して表2に示すように設定した。なお、表2中「硝化条件」は、処理槽内の設定DOが4.0mg/Lとなるように曝気量を設定し、機械撹拌を行わず、「脱窒(微曝気)条件」は、処理槽内の設定DOが0.2mg/Lとなるように曝気量を設定し、機械撹拌を行った。 The raw water inflow conditions and aeration conditions were set for weekdays (Monday to Friday) and holidays (Saturday and Sunday) as shown in Table 2. Note that for "nitrification conditions" in Table 2, the aeration volume was set so that the set DO in the treatment tank was 4.0 mg/L, and mechanical mixing was not performed, and for "denitrification (micro-aeration) conditions," the aeration volume was set so that the set DO in the treatment tank was 0.2 mg/L, and mechanical mixing was performed.

表3に実験結果を示す。処理水は1日分の処理水を混合した試料を分析した。必要希釈倍率は、放流基準をBOD:600mg/L、T-N:240mg/Lとして計算した。曝気条件の切り替えを行った実験系では、対照系に比べて若干BOD濃度は高くなるものの、T-N濃度は平均320mg-N/Lとなり、窒素除去率は52.2%となった。曝気条件の切り替えを行わない対照系では、処理水のT-N濃度は平均648mg/Lと窒素はほとんど除去されなかった。下水道放流のために用いられた希釈水の希釈倍率も実験系は1.3倍と少なくなった。 The experimental results are shown in Table 3. A sample of treated water mixed with one day's worth of treated water was analyzed. The necessary dilution ratio was calculated based on discharge standards of BOD: 600 mg/L and T-N: 240 mg/L. In the experimental system in which the aeration conditions were switched, the BOD concentration was slightly higher than in the control system, but the T-N concentration was 320 mg-N/L on average, and the nitrogen removal rate was 52.2%. In the control system in which the aeration conditions were not switched, the T-N concentration of the treated water was 648 mg/L on average, and almost no nitrogen was removed. The dilution ratio of the dilution water used for discharge into the sewerage system was also reduced to 1.3 times in the experimental system.

以上の結果より、硝化と脱窒を交互に繰り返すように曝気条件を少なくとも2条件以上設定して切り替えを行うことにより、安定した窒素除去、及び希釈倍率の低減効果が確認された。 These results demonstrate that stable nitrogen removal and reduced dilution rates can be achieved by setting and switching between at least two aeration conditions to alternate between nitrification and denitrification.

1…固液分離装置
2…処理槽(曝気処理槽)
3…希釈槽
4…制御手段
11…分離液供給管
21…撹拌機
22…曝気手段
23…計測手段
24…計測手段
1... solid-liquid separation device 2... treatment tank (aeration treatment tank)
3...Dilution tank 4...Control means 11...Separated liquid supply pipe 21...Agitator 22...Aeration means 23...Measuring means 24...Measuring means

Claims (5)

浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して得られる分離液を、生物担体を収容した曝気処理槽内に供給し、
前記処理槽において、硝化を促進する硝化促進処理と、脱窒を促進する脱窒促進処理とが行われるように、前記処理槽内の曝気条件を、少なくとも前記硝化促進処理の曝気条件と、該硝化促進処理の曝気条件よりも曝気量の少ない前記脱窒促進処理の曝気条件の2条件以上設定し、
前記硝化促進処理及び前記脱窒促進処理が前記処理槽内で交互に切り替わるように、前記曝気条件を切り替えて生物処理を行い、
前記生物処理で得られる生物処理水を、下水排除基準を満たすように希釈すること
を有することを特徴とする水処理方法。
A separated liquid obtained by solid-liquid separation of sludge containing at least one of septic tank sludge and sewage sludge is supplied into an aeration treatment tank containing a biological carrier;
In the treatment tank, aeration conditions in the treatment tank are set to at least two conditions, namely, aeration conditions for the nitrification promotion treatment and aeration conditions for the denitrification promotion treatment having an aeration amount less than that of the aeration conditions for the nitrification promotion treatment, so that a nitrification promotion treatment for promoting nitrification and a denitrification promotion treatment for promoting denitrification are performed in the treatment tank;
The aeration conditions are switched to perform biological treatment so that the nitrification promotion treatment and the denitrification promotion treatment are alternately switched in the treatment tank;
The water treatment method further comprises diluting the biologically treated water obtained by the biological treatment so that the water meets sewage discharge standards.
前記分離液の前記処理槽への供給を間欠的に行うことを特徴とする請求項1に記載の水処理方法。 The water treatment method according to claim 1, characterized in that the separated liquid is intermittently supplied to the treatment tank. 前記脱窒促進処理において、前記分離液を前記処理槽の下部から流入させるか、撹拌機による撹拌を行うか、又は曝気を行うか、の少なくともいずれかを実施することにより、前記処理槽内に収容された前記分離液を流動させることを特徴とする請求項1又は2に記載の水処理方法。 The water treatment method according to claim 1 or 2, characterized in that in the denitrification promotion treatment, the separated liquid contained in the treatment tank is caused to flow by at least one of the following: flowing the separated liquid from the bottom of the treatment tank, stirring the separated liquid with a stirrer, or aeration. 浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む汚泥を固液分離して分離汚泥と分離液とに分離する固液分離装置と、
前記分離液を生物処理する生物膜を内部に収容し、前記分離液に対して、硝化を促進する硝化促進処理と、脱窒を促進する脱窒促進処理とを行う処理槽と、
前記硝化促進処理と前記脱窒促進処理が、前記処理槽内で交互に行われるように、前記処理槽の曝気条件を、前記硝化促進処理の曝気条件と前記脱窒促進処理の曝気条件の少なくとも2条件以上設定して制御する制御手段と、
前記処理槽で処理された生物処理水を下水排除基準を満たすように希釈する希釈槽と
を備えることを特徴とする水処理装置。
a solid-liquid separation device that separates sludge, including at least one of septic tank sludge and sewage sludge, into separated sludge and separated liquid;
a treatment tank that accommodates a biofilm that biologically treats the separated liquid and performs a nitrification promotion treatment that promotes nitrification and a denitrification promotion treatment that promotes denitrification on the separated liquid;
A control means for controlling the aeration conditions of the treatment tank by setting at least two conditions, that is, aeration conditions for the nitrification promotion treatment and aeration conditions for the denitrification promotion treatment, so that the nitrification promotion treatment and the denitrification promotion treatment are alternately performed in the treatment tank;
A water treatment device comprising: a dilution tank for diluting the biologically treated water treated in the treatment tank so that the water meets sewage removal standards.
前記処理槽の下部に接続され、前記処理槽内で液流を生じさせるように、前記分離液を前記処理槽内へ供給可能な分離液供給管を備えることを特徴とする請求項4に記載の水処理装置。 The water treatment device according to claim 4, further comprising a separated liquid supply pipe connected to the lower part of the treatment tank and capable of supplying the separated liquid into the treatment tank so as to generate a liquid flow within the treatment tank.
JP2024033228A 2020-09-09 2024-03-05 Water treatment method and water treatment device Pending JP2024052993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024033228A JP2024052993A (en) 2020-09-09 2024-03-05 Water treatment method and water treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151639A JP2022045829A (en) 2020-09-09 2020-09-09 Water treatment method and water treatment apparatus
JP2024033228A JP2024052993A (en) 2020-09-09 2024-03-05 Water treatment method and water treatment device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020151639A Division JP2022045829A (en) 2020-09-09 2020-09-09 Water treatment method and water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2024052993A true JP2024052993A (en) 2024-04-12

Family

ID=80774307

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020151639A Pending JP2022045829A (en) 2020-09-09 2020-09-09 Water treatment method and water treatment apparatus
JP2024033228A Pending JP2024052993A (en) 2020-09-09 2024-03-05 Water treatment method and water treatment device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020151639A Pending JP2022045829A (en) 2020-09-09 2020-09-09 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (2) JP2022045829A (en)

Also Published As

Publication number Publication date
JP2022045829A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
JP4714399B2 (en) Waste treatment with control of biological solids
CN102264651B (en) Method and device for removing biological nitrogen and carrier therefor
CN107108293B (en) Method and apparatus for removing nitrogen from nitrogen-containing wastewater
US6387254B1 (en) Apparatus for wastewater treatment
HU224163B1 (en) Wastewater treatment by monitoring oxygen utilisation rates and installation for it
JP2008284427A (en) Apparatus and method for treating waste water
Wilderer et al. Application of gas permeable membranes for auxiliary oxygenation of sequencing batch reactors
JP4915036B2 (en) Denitrification method and denitrification apparatus
KR101537755B1 (en) Apparatus for treating landfill leachate using aerobic granular sludge and treatment method using thereof
JP2006247624A (en) Ammonia-containing water treatment method
KR20140063454A (en) Apparatus and method for treatment wastewater
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
JP5186429B2 (en) Method and apparatus for denitrification treatment of digested sludge separation liquid
KR101023479B1 (en) A aerobic deammonification method of SBR type sewage, waste, livestock waste water treatment plant by use of micro sand bio mass, chemical and apparatus therof
JP3136902B2 (en) Wastewater treatment method
KR100403864B1 (en) A wastewater treatment methods
JP2024052993A (en) Water treatment method and water treatment device
KR20040018605A (en) Apparatus for Treatment of Domestic Wastewater Combining Continuous SBR and Contact Aeration Tank and Method Therefor Using the Apparatus
RU2751356C1 (en) Method for removing nitrogen-containing compounds from wastewater
JP2004041981A (en) Organic waste water treatment method and its system
JP2023121014A (en) Water treatment method and water treatment apparatus
CN106795021A (en) Method of wastewater treatment and wastewater treatment equipment
KR101023478B1 (en) A sewage, waste, livestock waste water treatment method of SBR by use of micro sand bio mass and apparatus therof.
KR100983829B1 (en) Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240305