JPH10165985A - Method for treating nitrogen-containing organic waste water - Google Patents

Method for treating nitrogen-containing organic waste water

Info

Publication number
JPH10165985A
JPH10165985A JP8339128A JP33912896A JPH10165985A JP H10165985 A JPH10165985 A JP H10165985A JP 8339128 A JP8339128 A JP 8339128A JP 33912896 A JP33912896 A JP 33912896A JP H10165985 A JPH10165985 A JP H10165985A
Authority
JP
Japan
Prior art keywords
carrier
nitrification
activated sludge
denitrification
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8339128A
Other languages
Japanese (ja)
Other versions
JP3933230B2 (en
Inventor
Toru Aoi
透 青井
Takeshi Koyano
猛 小谷野
Takehiko Takano
剛彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASANO KOJI KK
Original Assignee
ASANO KOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASANO KOJI KK filed Critical ASANO KOJI KK
Priority to JP33912896A priority Critical patent/JP3933230B2/en
Publication of JPH10165985A publication Critical patent/JPH10165985A/en
Application granted granted Critical
Publication of JP3933230B2 publication Critical patent/JP3933230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat nitrogen-contg. org. waste water in a short time by means of a compact apparatus by a method wherein nitrogen-contg. org. waste water is treated by using activated sludge-immobilized carrier prepd. by a method wherein the carrier is stuck with activated sludge and then, after it is treated with paste, it is cured. SOLUTION: In nitrification and denitrification treatment, a fluidized bed of activated sludge-immobilized carrier prepd. by artificial granulation is utilized and the activated sludge-immobilized carrier is prepd. by a method wherein at first, the carrier is stuck with activated sludge and then, after it is treated with a paste, it is cured. As this carrier, a carrier with a large specific gravity, e.g. sand, clay mineral, etc., and/or porous glass, etc., are used so as to settle in waste water and the size and the shape of the carrier to be used is appropriately selected in accordance with necessity. In addition, on putting it in practice, both nitrification and denitrification can be performed in one bio-treatment tank by storing the activated sludge-immobilized carrier in the bio-treatment tank and performing nitrification reaction of the waste water in the lower part and denitrification reaction in the upper part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工造粒した活性
汚泥固定化担体を使用する硝化脱窒処理に関するもので
あり、本発明は、例えば、下水などの窒素を含有する有
機性廃水の効率的処理に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrification and denitrification treatment using an artificially granulated activated sludge-immobilized carrier. The present invention relates to the efficiency of organic wastewater containing nitrogen such as sewage. Useful for strategic processing.

【0002】[0002]

【従来の技術】従来、生物学的な硝化脱窒法としては、
浮遊性活性汚泥を用いる循環式硝化脱窒法が知られてい
る。そのフローシートは図1に示すとおりであって、先
ず、原水は、前段にて固液分離した後、生物反応タンク
に入る。生物反応タンクは、硝化槽(好気タンク)と脱
窒槽(無酸素タンク)から構成される。硝化槽では、汚
泥中の硝化菌により、原水中のアンモニア性窒素等が酸
化態窒素に酸化される。硝化液は、硝化槽出口部より、
脱窒槽に循環される。脱窒槽内では、下水中のBOD
と、循環液中の酸化態窒素が、無酸素状態で反応し、窒
素ガスとなり窒素の除去が行われる。生物反応タンクを
出た混合液は、最終沈殿槽で固液分離され、処理水が得
られる。反応に要する汚泥濃度は、最終沈殿槽よりの返
送汚泥により確保される。
2. Description of the Related Art Conventionally, as biological nitrification denitrification method,
A circulation type nitrification denitrification method using floating activated sludge is known. The flow sheet is as shown in FIG. 1. First, raw water is separated into solid and liquid in a previous stage, and then enters a biological reaction tank. The biological reaction tank is composed of a nitrification tank (aerobic tank) and a denitrification tank (oxygen-free tank). In the nitrification tank, the nitrifying bacteria in the sludge oxidize ammonia nitrogen and the like in the raw water to oxidized nitrogen. Nitrification liquid is supplied from the nitrification tank outlet.
Circulated to the denitrification tank. In the denitrification tank, BOD in sewage
Then, the oxidized nitrogen in the circulating liquid reacts in an oxygen-free state to form nitrogen gas, and nitrogen is removed. The mixed solution that has exited the biological reaction tank is subjected to solid-liquid separation in a final sedimentation tank to obtain treated water. The sludge concentration required for the reaction is ensured by the sludge returned from the final settling tank.

【0003】たしかに従来法は硝化脱窒法としてすぐれ
たものではあるが、実際の廃水を処理するに当っては、
未だ充分なものとはいえず、改良の余地が残されてい
る。
[0003] Although the conventional method is excellent as a nitrification denitrification method, it is difficult to treat actual wastewater.
It is still not enough, and there is room for improvement.

【0004】すなわち、従来法では、反応槽の活性汚泥
濃度を高くすることができないため、処理に長時間を要
し、処理槽の容量を大きくせざるを得ない。また、固液
分離は、別途、沈殿槽を設けてこれを実施しなければな
らない、しかもその際、反応槽の運転状態により分離性
能が悪化する場合があり、維持管理が容易ではない。
That is, in the conventional method, the activated sludge concentration in the reaction tank cannot be increased, so that a long time is required for the treatment and the capacity of the treatment tank must be increased. In addition, the solid-liquid separation must be performed by separately providing a sedimentation tank, and at that time, the separation performance may be deteriorated depending on the operation state of the reaction tank, and maintenance is not easy.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記した従
来法の不充分な点を改良して、新規にして有用な硝化脱
窒方法を開発し、もって窒素を含む有機性廃水を効率よ
く処理するシステムを新たに確立する目的でなされたも
のである。
SUMMARY OF THE INVENTION The present invention has been developed to improve the above-mentioned inadequacy of the conventional method and to develop a new and useful nitrification and denitrification method, whereby the organic wastewater containing nitrogen can be efficiently removed. This was done to establish a new processing system.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであって、各方面から検討の
結果、人工造粒による活性汚泥固定化担体流動床が高い
汚泥濃度を維持し、きわめて効率よく硝化脱窒を行うだ
けでなく、固液分離装置を別途設ける必要がないため、
コンパクトな装置でしかも短時間に窒素含有有機性廃水
を処理できることを発見し、この有用な新知見に基づ
き、更に研究した結果、遂に完成されたものである。以
下、本発明について詳述する。
DISCLOSURE OF THE INVENTION The present invention has been made to achieve the above-mentioned object, and as a result of examination from various fields, it has been found that the activated sludge-immobilized carrier fluidized bed by artificial granulation has a high sludge concentration. Not only does it maintain and very efficiently perform nitrification and denitrification, but there is no need to separately install a solid-liquid separator,
It has been found that a compact apparatus can treat nitrogen-containing organic wastewater in a short period of time, and based on this useful new finding, further research has been completed. Hereinafter, the present invention will be described in detail.

【0007】[0007]

【発明の実施の形態】本発明に係る硝化脱窒法において
は、人工造粒による活性汚泥固定化担体流動床を利用す
るが、該活性汚泥固定化担体は、先ずはじめに、担体に
活性汚泥を付着させ、次にこれを糊料で処理した後、硬
化させて製造するものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the nitrification denitrification method according to the present invention, an activated sludge-immobilized carrier fluidized bed by artificial granulation is used. First, the activated sludge-immobilized carrier adheres activated sludge to the carrier. Then, this is treated with a paste, and then cured to produce the product.

【0008】活性汚泥固定化担体を製造するにあたり、
担体としては、廃水中に沈降可能となるよう比重の大き
い担体を使用し、例えば砂、珪砂、貝化石、クリストバ
ライト、粘土鉱物(モンモリロナイト、ベントナイト、
酸性白土、カオリナイト等)、鉄粉、及び/又は多孔性
ガラス等が挙げられる。使用する担体の大きさ、形状は
必要に応じて適宜選択するものであり、球状、棒状、角
状、中空状、膜状、筒状、ホローファイバー状等に成形
できる。その表面は滑面としてもよいし、付着性を向上
させるために粗面としたり、また、多孔質にしたりして
もよい。小球状の場合、その粒径は0.001〜10mm
程度(好ましくは0.05〜0.3mm程度)とするのが
よい。
In producing the activated sludge-immobilized carrier,
As the carrier, a carrier having a large specific gravity is used so as to be able to settle in wastewater. For example, sand, quartz sand, shell fossil, cristobalite, clay mineral (montmorillonite, bentonite,
Acid clay, kaolinite, etc.), iron powder, and / or porous glass. The size and shape of the carrier to be used are appropriately selected as necessary, and can be formed into a sphere, a rod, a square, a hollow, a film, a tube, a hollow fiber, or the like. The surface may be a smooth surface, a rough surface for improving adhesion, or a porous surface. In the case of small sphere, its particle size is 0.001-10mm
(Preferably about 0.05 to 0.3 mm).

【0009】また、本発明においては、担体をカチオン
又はアニオンに帯電せしめると、汚泥の付着が改良され
るので、帯電処理する方法は推奨される方法である。例
えば担体をカチオンに帯電させる場合は、担体を分子量
500〜1500万(好適には1000〜1000万)
のカチオン性高分子凝集剤(例えば、ポリジアルキルア
ミノアルキル(メタ)アクリレート、ポリジアルキルア
ミノアルキル(メタ)アクリレート−ポリアクリルアミ
ド共重合体、ポリエチレンイミン、キトサン、ポリビニ
ルピリジン塩酸塩、ビニルピリジン共重合物塩等)で処
理すればよい。
In the present invention, when the carrier is charged with a cation or an anion, the adhesion of sludge is improved. Therefore, the charging method is a recommended method. For example, when the carrier is charged with a cation, the carrier has a molecular weight of 5 to 15,000,000 (preferably 1000 to 10,000,000).
Cationic polymer flocculants (eg, polydialkylaminoalkyl (meth) acrylate, polydialkylaminoalkyl (meth) acrylate-polyacrylamide copolymer, polyethyleneimine, chitosan, polyvinylpyridine hydrochloride, vinylpyridine copolymer salt) Etc.).

【0010】上記のように担体をカチオン性高分子凝集
剤で処理すれば、担体が直接カチオン化される。しかし
ながら、カチオン処理した担体を乾燥し又は乾燥するこ
となくアニオン性高分子凝集剤で処理すると、カチオン
化されるだけでなく、両者が反応して水不溶性の繊維状
析出物が担体表面に生成するので、このような処理も利
用できる。このようにして、必要あれば、カチオン性及
びアニオン性高分子凝集剤処理を多数回くり返して、全
体として担体をカチオン性に帯電させることもでき、し
かも生成した繊維状物によって活性汚泥を更に強固に結
合固定することもできる。
When the carrier is treated with the cationic polymer flocculant as described above, the carrier is directly cationized. However, when the cation-treated carrier is dried or treated without drying with an anionic polymer flocculant, not only is it cationized, but also both react to form a water-insoluble fibrous precipitate on the carrier surface. Therefore, such processing can also be used. In this way, if necessary, the carrier can be charged cationically as a whole by repeating the treatment of the cationic and anionic polymer flocculants a number of times, and the activated sludge is further strengthened by the fibrous matter produced. It can also be fixed and fixed.

【0011】これらの高分子凝集剤は、上記したように
交互に層状に処理してもよいし、これらで担体を同時に
処理して、担体表面上にカチオンとアニオンとを混在せ
しめるようにしてもよい。ただ、カチオン性高分子凝集
剤とアニオン性高分子凝集剤とを併用する場合には、併
用した後、全体として帯電性がカチオンとなるようにそ
の使用比率を調整しなければならない。
These polymer flocculants may be treated alternately in layers as described above, or the carrier may be treated simultaneously with them to mix cations and anions on the surface of the carrier. Good. However, when a cationic polymer flocculant and an anionic polymer flocculant are used in combination, the ratio of use must be adjusted so that the chargeability becomes cation as a whole after the combined use.

【0012】陰イオン性高分子凝集剤としては、分子量
500〜1500万(好適には1000〜1500万)
のアニオン性高分子凝集剤(例えば、ポリアクリル酸
塩、ポリ(アクリルアミド−アクリル酸塩)共重合体、
アルギン酸ナトリウム、マレイン酸共重合物塩等)が使
用される。
As the anionic polymer coagulant, a molecular weight of 5 to 15,000,000 (preferably 1,000 to 15,000,000)
Anionic polymer coagulant (e.g., polyacrylate, poly (acrylamide-acrylate) copolymer,
Sodium alginate, maleic acid copolymer salt, etc.) are used.

【0013】このようにしてカチオン処理した担体は、
活性汚泥と接触せしめて、担体上に汚泥を付着凝集せし
める。この場合、担体はカチオン処理されているので、
無処理の場合よりも汚泥の付着凝集が促進強化される。
The carrier thus treated with cations is
By contacting with activated sludge, the sludge adheres and aggregates on the carrier. In this case, since the carrier is treated with cation,
Adhesion and aggregation of sludge are promoted and strengthened as compared with the case of no treatment.

【0014】カチオン処理した担体に汚泥を付着せしめ
る際、上記のように無処理の汚泥を該担体と接触せしめ
てもよいが、活性汚泥を予じめアニオン処理しておき、
しかる後にカチオン処理した担体と接触せしめると非常
に良い結果が得られる(担体を帯電させる際、上記とは
逆にアニオン処理した場合には、汚泥をカチオン処理す
ることは当然のことである。)。
When the sludge is attached to the cation-treated carrier, the untreated sludge may be brought into contact with the carrier as described above.
Very good results can be obtained by contacting the carrier with a cation-treated carrier thereafter. (When charging the carrier, conversely, when the anion treatment is performed, the sludge is subjected to the cation treatment.) .

【0015】本発明においては、担体と活性汚泥との結
合をより有利に行うために、担体のカチオン化のみでな
く、活性汚泥の方はアニオン化するという全く新規な技
術を採用し且つこれらの技術を併用するものである。活
性汚泥のアニオン化は、アニオン源を汚泥と混合接触せ
しめたり、イオン交換樹脂で処理したり、また、前記し
たアニオン性高分子凝集剤と接触せしめたりして行う
が、他のアニオン化処理も適宜必要に応じて行うことが
できる。
In the present invention, in order to more effectively combine the carrier and the activated sludge, not only the cationization of the carrier but also an entirely new technique of anionizing the activated sludge is employed. Technology is used together. The anionization of activated sludge is carried out by mixing and contacting an anion source with sludge, treating with an ion-exchange resin, or contacting with the above-described anionic polymer flocculant. It can be carried out as needed.

【0016】これらの高分子凝集剤は、これを水溶液
(0.05〜5、好ましくは0.1〜1.0w/v%)
又はペースト状又は粉末とし、担体と接触せしめること
により(混合攪拌、スプレー処理等)、担体をカチオン
化することができる。担体とカチオン(アニオン)高分
子凝集剤の割合は、乾物量換算で100:0.2〜10
0:2程度とするのがよい。
These polymer coagulants are used as aqueous solutions (0.05 to 5, preferably 0.1 to 1.0 w / v%).
Alternatively, the carrier can be cationized by making it into a paste or powder and bringing it into contact with the carrier (mixing stirring, spraying, etc.). The ratio of the carrier and the cationic (anionic) polymer flocculant is 100: 0.2 to 10 in terms of dry matter.
It is better to be about 0: 2.

【0017】このようにしてカチオンに帯電した担体を
アニオン化した活性汚泥中に投入したりこれとは逆に該
担体にアニオン化した活性汚泥を加えて、両者を接触さ
せれば活性汚泥の処理が完了し、担体に活性汚泥が付着
する。
The carrier charged with cations is charged into an anionized activated sludge as described above, or conversely, an anionized activated sludge is added to the carrier and the two are brought into contact with each other to treat the activated sludge. Is completed, and the activated sludge adheres to the carrier.

【0018】活性汚泥のアニオン化は前記した方法によ
って行うのであるが、例えばアニオン性高分子凝集剤を
使用してアニオン化する場合には、アニオン性高分子凝
集剤の0.01〜10%程度の水溶液を調整しておき、
これと活性汚泥とを混合させれば容易にアニオン化が完
了する。
The anionization of the activated sludge is carried out by the above-mentioned method. For example, when the anionization is performed using an anionic polymer flocculant, about 0.01 to 10% of the anionic polymer flocculant is used. Adjust the aqueous solution of
If this is mixed with the activated sludge, the anionization is easily completed.

【0019】このようにして汚泥を付着せしめた担体
は、直ちに、後記する糊料処理に付することができる。
しかしながら、糊料処理に先立ち、更に次に述べるよう
な帯電処理を行うと、その効果が更に高められる。つま
り、上記によって得た活性汚泥付着担体は、アニオン処
理して更に汚泥の付着を強化補強した後、カチオン処理
するのである。あるいは、わずかにカチオン化するよ
う、カチオンとアニオン処理を同時に行うことも可能で
ある。いずれの場合においても、これらの処理は、先に
述べたと同様の方法で実施することができる。
The carrier to which the sludge has been attached in this manner can be immediately subjected to a paste treatment described later.
However, if the following charging treatment is performed before the paste treatment, the effect is further enhanced. That is, the activated sludge-adhering carrier obtained as described above is anion-treated to further reinforce and reinforce the adhesion of sludge, and then subjected to cation-treatment. Alternatively, the cation and anion treatments can be performed simultaneously to slightly cationize. In any case, these processes can be performed in the same manner as described above.

【0020】しかる後に、次のようにして糊料処理を行
うのである。糊料としては、例えば、アルギン酸プロピ
レングリコールエステル、繊維素グリコール酸カルシウ
ム、同ナトリウム、澱粉グリコール酸ナトリウム、澱粉
リン酸エステルナトリウム、メチルセルロース、ポリア
クリル酸ナトリウム、ゼラチン、カゼインナトリウム、
寒天等のように特別の処理をしないでもそれ単独で増
粘、硬化、凝固するタイプのもののほか、金属イオンそ
の他の硬化剤により酸化ないしゲル化するタイプのいず
れもが適宜使用できる。
Thereafter, the paste treatment is performed as follows. As the paste, for example, propylene glycol alginate, calcium cellulose glycolate, sodium, sodium starch glycolate, sodium starch phosphate, methylcellulose, sodium polyacrylate, gelatin, sodium caseinate,
Any type such as agar which can thicken, harden, and solidify alone without special treatment, or a type which is oxidized or gelled by metal ions or other hardeners can be used as appropriate.

【0021】後者のタイプとしては次のものが例示され
る(カッコ内は硬化剤の例):アルギン酸ナトリウム
(金属イオン):カゼイン(酸化カルシウム、水酸化カ
ルシウム、水酸化ナトリウム、フッ化ナトリウム、水ガ
ラス);ポリビニルアルコール(硫安、硫酸ソーダ+硫
酸亜鉛)その他。
Examples of the latter type are as follows (in parentheses, examples of curing agents): sodium alginate (metal ion): casein (calcium oxide, calcium hydroxide, sodium hydroxide, sodium fluoride, water) Glass); polyvinyl alcohol (ammonium sulfate, sodium sulfate + zinc sulfate) and others.

【0022】糊料処理は、糊料の水溶液を加えて攪拌し
たり、スプレーしたりして汚泥付着担体と糊料と接触せ
しめたり、硬化剤を添加するタイプのものにあっては、
更に硬化剤水溶液を添加したり、その他適宜常法にした
がって処理すればよい。糊料の添加量は、一応の目安と
しては、珪砂担体1kg当り、アルギン酸ソーダを例にと
れば1%水溶液として0.5〜50L程度である。
The sizing treatment is performed by adding an aqueous solution of the sizing agent and stirring or spraying the mixture to bring the sludge-adhering carrier into contact with the sizing agent, or adding a hardening agent.
Further, an aqueous solution of a curing agent may be added, or the treatment may be appropriately performed according to a conventional method. As a rough guide, the amount of the paste added is about 0.5 to 50 L as a 1% aqueous solution in the case of sodium alginate per 1 kg of the silica sand carrier.

【0023】本発明は、このようにして製造した活性汚
泥固定化担体を用いて窒素含有有機性廃水を処理するこ
とにより、該廃水の硝化及び/又は脱窒を行うものであ
る。該活性汚泥固定化担体を該廃水と接触、処理すれ
ば、本発明に係る硝化及び/又は脱窒を行うことがで
き、各種の実施態様が可能である。
According to the present invention, nitrification and / or denitrification of the wastewater is carried out by treating the nitrogen-containing organic wastewater using the activated sludge-immobilized carrier thus produced. By contacting and treating the activated sludge immobilization carrier with the wastewater, nitrification and / or denitrification according to the present invention can be performed, and various embodiments are possible.

【0024】例えばそのひとつとして、硝化部において
硝化菌を用いて硝化反応を行い、その結果生成した処理
水を脱窒部において該活性汚泥固定化担体を用いて脱窒
素反応を行う方法が挙げられる。なお、以下において、
担体として砂を用いた場合を代表例として本発明を説明
する。
For example, there is a method in which a nitrification reaction is carried out using a nitrifying bacterium in a nitrification section, and the resulting treated water is subjected to a denitrification reaction in a denitrification section using the activated sludge-immobilized carrier. . In the following,
The present invention will be described with reference to a case where sand is used as a carrier.

【0025】本発明の実施態様のひとつは、一槽の反応
槽の中に流動床式脱窒槽と、硝化槽を配し、脱窒槽に固
液分離効果を持たせたものである。脱窒槽には、砂を担
体とした微生物固定化担体を用いて、微生物の濃度を高
めて反応速度を上昇させ、また上向流式の流動床式とし
て、嫌気的な反応条件を保持するとともに、発生するS
Sの捕捉機能を持たせ、固液分離効果を具備するように
した。SSの捕捉による流動床の目ずまりは発生しな
い。硝化槽には、硝化速度を速めるために担体を用い、
脱窒槽に固液分離機能を持たせて沈殿槽を廃し、コンパ
クトな、一槽式の生物硝化脱窒処理方式を提供すること
ができる。
One embodiment of the present invention is one in which a fluidized bed type denitrification tank and a nitrification tank are arranged in a single reaction tank, and the denitrification tank has a solid-liquid separation effect. In the denitrification tank, using a microorganism-immobilized carrier using sand as the carrier, the concentration of microorganisms is increased to increase the reaction rate, and as an upward flow type fluidized bed, anaerobic reaction conditions are maintained. , Occurs S
It has a function of capturing S and has a solid-liquid separation effect. No clogging of the fluidized bed due to the capture of SS occurs. The nitrification tank uses a carrier to increase the nitrification rate,
The denitrification tank is provided with a solid-liquid separation function and the sedimentation tank is eliminated, so that a compact, single-tank type biological nitrification denitrification treatment system can be provided.

【0026】この方法は、例えば図2に示した装置によ
って実施することができる。生物処理槽1は、斜めに設
置された隔壁2により脱窒槽3と硝化槽4に分かれてい
る。硝化槽4では、硝化菌を保持した固定化担体が、曝
気により流動しBOD酸化、硝化反応が進行している。
下部に設置したストレーナ5により担体を分離した硝化
処理水は、循環ポンプ6で脱窒槽3に循環される。脱窒
槽3は、砂を担体とする流動床で、窒素を含む有機性廃
水Aと硝化部からの循環液が下部から流入し、流動状態
が保持される。流動床内では脱窒素反応が進行するとと
もに、流動床内に排水中の固形物が捕捉され、清澄とな
った処理水Bが上部より硝化槽に流入する。硝化槽上部
より担体分離後処理水Cが流出する。窒素含有有機性廃
水Aは、原水槽8に貯留しておき、必要あればクーラー
9等を用いて温度コントロールを行う。10は、ベロー
ズポンプ等原水供給用のポンプである。
This method can be carried out, for example, by the apparatus shown in FIG. The biological treatment tank 1 is divided into a denitrification tank 3 and a nitrification tank 4 by a partition 2 installed diagonally. In the nitrification tank 4, the immobilized carrier holding the nitrifying bacteria flows by aeration, and the BOD oxidation and nitrification reaction are progressing.
The nitrification-treated water from which the carrier has been separated by the strainer 5 installed at the bottom is circulated to the denitrification tank 3 by the circulation pump 6. The denitrification tank 3 is a fluidized bed using sand as a carrier, and the organic wastewater A containing nitrogen and the circulating liquid from the nitrification section flow in from below, and the fluidized state is maintained. As the denitrification reaction proceeds in the fluidized bed, solids in the wastewater are captured in the fluidized bed, and the clarified treated water B flows into the nitrification tank from above. The treated water C after carrier separation flows out from the upper part of the nitrification tank. The nitrogen-containing organic wastewater A is stored in a raw water tank 8, and the temperature is controlled using a cooler 9 or the like if necessary. Reference numeral 10 is a pump for supplying raw water, such as a bellows pump.

【0027】窒素を含む有機性廃水Aは、硝化槽4にお
いてゲル化担体に包括固定化された硝化菌等により、曝
気条件下の好気性状態で窒素が酸化され、酸化態窒素に
なる。BODの酸化も同時に進行する。担体を分離した
硝化液の一部は、循環ポンプ6により、排水とともに脱
窒槽3下部に流入し、酸化態窒素が排水中のBODを還
元剤としてN2ガスとなる脱窒素反応が起こる。脱窒槽
3には、砂を担体として人工造粒汚泥により高濃度の微
生物が保持されていて、高い速度で脱窒素反応が進行す
る。硝化槽からの循環液による上向流により流動層の浮
遊・流動状態が保持されるとともに流動層と処理水の界
面が形成される。流動層には固形分が抑留されるため、
界面上の処理水は清澄となり、つぎの硝化槽を経て処理
水(流出液)として排出される(B→C)。
Nitrogen-containing organic wastewater A is oxidized in an aerobic state under aeration conditions by nitrifying bacteria or the like immobilized in a gelling carrier in a nitrification tank 4 to become oxidized nitrogen. The oxidation of BOD also proceeds at the same time. A part of the nitrification liquid from which the carrier has been separated flows into the lower part of the denitrification tank 3 together with the wastewater by the circulation pump 6, and a denitrification reaction occurs in which oxidized nitrogen becomes N 2 gas using BOD in the wastewater as a reducing agent. The denitrification tank 3 holds a high concentration of microorganisms by artificial granulated sludge using sand as a carrier, and the denitrification reaction proceeds at a high speed. Due to the upward flow of the circulating liquid from the nitrification tank, the floating / fluid state of the fluidized bed is maintained, and an interface between the fluidized bed and the treated water is formed. Since solids are retained in the fluidized bed,
The treated water on the interface becomes clear and is discharged as treated water (effluent) through the next nitrification tank (B → C).

【0028】硝化槽4には、硝化菌を収容するが、硝化
菌としては、アンモニウムイオンを亜硝酸イオンに酸化
する亜硝酸菌、亜硝酸イオンを硝酸イオンに酸化する硝
酸菌を広く包含するものであって、Nitrosomonas、Nitr
osococcus属菌やNitrobacter属菌が例示される。硝化菌
は、単離菌を使用してもよいが、当技術分野の常法にし
たがって、混合菌としたり、含有物を使用したりしても
よく、市販品も使用可能である。また、例えば活性汚泥
には各種硝化菌が包含されているので、硝化菌として活
性汚泥を使用してもよいし、硝化槽から分離した菌体混
合物を使用してもよい。
The nitrification tank 4 accommodates nitrifying bacteria. Nitrifying bacteria widely include nitrites that oxidize ammonium ions to nitrite ions and nitrite bacteria that oxidize nitrite ions to nitrate ions. And Nitrosomonas, Nitr
Osococcus spp. and Nitrobacter spp. are exemplified. As the nitrifying bacteria, isolated bacteria may be used, but according to a conventional method in the art, mixed bacteria may be used, or a contained substance may be used, and a commercially available product may also be used. Further, for example, activated sludge contains various nitrifying bacteria. Therefore, activated sludge may be used as the nitrifying bacteria, or a cell mixture separated from the nitrification tank may be used.

【0029】硝化菌は、そのまま硝化槽で使用してもよ
いが、流亡防止、濃密化等の目的から、各種担体に固定
して使用すると好適である。担体に固定化した硝化菌
は、既に各種市販されており、自由に入手可能であっ
て、例えばゲル化担体に包括固定化された硝化菌(商品
名 バイオエヌキューブ :日立プラント建設株式会社
製)は、好適例のひとつである。
The nitrifying bacteria may be used as they are in a nitrification tank, but it is preferable to use them by fixing them to various carriers for the purpose of preventing run-off and densification. Various types of nitrifying bacteria immobilized on a carrier are already commercially available and are freely available. For example, nitrifying bacteria immobilized on a gelling carrier (trade name: Bio-N Cube: manufactured by Hitachi Plant Construction Co., Ltd.) Is one of preferred examples.

【0030】また、本発明の別の実施態様としては、生
物処理槽に該活性汚泥固定化担体を収容し、その下部で
該廃水の硝化反応を行い、その上部で脱窒素反応を行う
こと、を特徴とする内部に両反応を区画する隔壁を設け
ることなくひとつの生物処理槽内で硝化と同時に脱窒を
行う該廃水の硝化脱窒方法(以下、流動床砂担体硝化脱
窒法ないし流動床砂担体法ということもある)が挙げら
れる。
In another embodiment of the present invention, the activated sludge-immobilized carrier is accommodated in a biological treatment tank, a nitrification reaction of the wastewater is performed at a lower portion thereof, and a denitrification reaction is performed at an upper portion thereof. A nitrification and denitrification method of the wastewater (hereinafter referred to as a fluidized bed sand carrier nitrification denitrification method or a fluidized bed wherein nitrification and denitrification are carried out simultaneously with nitrification in one biological treatment tank without providing a partition for partitioning both reactions in the inside thereof. Sand carrier method).

【0031】流動床砂担体法は、硝化及び脱窒処理をひ
とつの生物処理槽で行うものであり、しかも活性汚泥固
定化担体を使用することとも相まって、固液分離槽とし
ても作用するものである。したがって、この生物処理槽
は、流動床硝化脱窒・固液分離槽ということができる。
In the fluidized bed sand carrier method, the nitrification and denitrification treatments are performed in one biological treatment tank, and in addition to the use of the activated sludge fixed carrier, it also functions as a solid-liquid separation tank. is there. Therefore, this biological treatment tank can be said to be a fluidized bed nitrification denitrification / solid-liquid separation tank.

【0032】活性汚泥固定化担体は、既述した方法によ
って製造すればよく、砂担体汚泥は、例えば、0.1mm
径の珪砂を核として自己造粒した0.3〜0.8mm径の
生物膜粒子で、活性汚泥フロックと異なり沈降速度が著
しく速いために汚泥濃度を高く(MLVSS1.5〜3
%)維持できる。
The activated sludge-immobilized carrier may be produced by the above-described method.
Biofilm particles having a diameter of 0.3 to 0.8 mm self-granulated with silica sand of a diameter as the nucleus. Unlike activated sludge floc, the sedimentation speed is remarkably fast, so the sludge concentration is high (MLVSS 1.5 to 3).
%) Can be maintained.

【0033】この方法は、例えば図3に示した装置によ
って実施することができる。1は、生物処理槽を示す。
生物処理槽は、上述のように、流動床硝化脱窒・固液分
離槽をなすものである。本実施例においては、生物処理
槽1は、2槽並列に設けたが、1槽のみでもあるいは多
数並設してもよい。また必要あれば、直列に設けて更に
廃水処理を高度に行ってもよい。
This method can be carried out, for example, by the apparatus shown in FIG. Reference numeral 1 denotes a biological treatment tank.
The biological treatment tank forms a fluidized bed nitrification denitrification / solid-liquid separation tank as described above. In the present embodiment, two biological treatment tanks 1 are provided in parallel, but only one tank or a number of them may be arranged in parallel. Further, if necessary, the wastewater treatment may be performed at a higher level by being provided in series.

【0034】生物処理槽1には、その中央部が好適であ
るが、適宜個所にドラフトチューブ2を設け、空気パイ
プ3から空気を供給する。窒素を含む有機性廃水Aは、
最初沈殿池6に送られ、沈殿した汚泥は底部からポンプ
によって取り出し、汚泥脱水工程へと移送する。なお、
最初沈殿池6は、図示した沈殿池方式のほか、ろ材を用
いたろ過方式でもよい。一方、流入原水(初沈処理水)
Bは、下降流ドラフトチューブ2内で酸素を充分溶解し
た低いSS濃度の循環水と混合された後、下部に設置さ
れている下降流軸流ポンプ4とディストリビュータ5に
よって底部に均等に送り込まれる。
The biological treatment tank 1 preferably has a central portion, but a draft tube 2 is provided at an appropriate position, and air is supplied from an air pipe 3. Organic wastewater A containing nitrogen is
First, the sludge sent to the sedimentation basin 6 and settled out is taken out from the bottom by a pump and transferred to the sludge dewatering step. In addition,
The first sedimentation basin 6 may be a filtration system using a filter medium, in addition to the illustrated sedimentation basin system. On the other hand, inflow raw water (first settling water)
B is mixed with circulating water having a low SS concentration in which oxygen is sufficiently dissolved in the downdraft tube 2, and is then uniformly fed to the bottom by the downflow axial pump 4 and the distributor 5 installed at the lower part.

【0035】生物処理槽1内には活性汚泥固定化担体を
収容しておき、原水とともに流動床を形成せしめる。流
動床担体汚泥は、下部では送り込まれた溶存酸素(D
O)を用いてNH4−Nを硝化すると共に原水中の有機
物(BOD,COD等)を吸着する。循環水は上昇にと
もない溶存酸素を消費するので、上部の流動床汚泥は酸
化態窒素の結合酸素を用いて吸着した有機物を分解する
ことにより脱窒素を行なう。このように、生物処理槽に
おいては、下部の好気性領域内では活性汚泥中に含有さ
れている硝化菌が働き、上部の嫌気性領域内では活性汚
泥中に含有されている脱窒菌が働き、本発明によれば、
ひとつの生物処理槽、ひとつの微生物源(活性汚泥)
で、硝化と脱窒素の2つの処理が同時にできるという著
効が奏される。
The activated sludge carrier is accommodated in the biological treatment tank 1, and a fluidized bed is formed together with the raw water. The fluidized bed carrier sludge is supplied with dissolved oxygen (D
O) is used to nitrify NH 4 —N and adsorb organic substances (BOD, COD, etc.) in raw water. Since the circulating water consumes dissolved oxygen as it rises, the upper fluidized bed sludge performs denitrification by decomposing the adsorbed organic matter using the bound oxygen of oxidized nitrogen. Thus, in the biological treatment tank, the nitrifying bacteria contained in the activated sludge work in the lower aerobic region, and the denitrifying bacteria contained in the activated sludge work in the upper anaerobic region, According to the present invention,
One biological treatment tank, one microorganism source (activated sludge)
Thus, a remarkable effect is achieved in that two processes, nitrification and denitrification, can be performed simultaneously.

【0036】原水中の浮遊物質(SS)は流動床上昇中
に生物膜粒子に付着及び吸着除去されるために生物ろ過
作用が働き、流動床を通過して上昇した循環水中のSS
は10mg/L以下でほぼ透明となり固液分離が完全に行な
われるので、流出水Cはそのまま凝集沈殿処理すること
が出来る。したがって本発明によれば、上記したひとつ
の生物処理槽において硝化と脱窒素の2つの処理が同時
にできるだけでなく、そのうえ更に、固液分離も同時に
行うことができるという従来未知の新規にしてきわめて
有用な著効が奏される。
The suspended solids (SS) in the raw water adhere to and are adsorbed and removed from the biofilm particles during the ascent of the fluidized bed, so that a biological filtration action works.
Is almost transparent at 10 mg / L or less and solid-liquid separation is completely performed, so that the effluent C can be subjected to coagulation sedimentation as it is. Therefore, according to the present invention, not only the two treatments of nitrification and denitrification can be performed simultaneously in one biological treatment tank, but also the solid-liquid separation can be performed simultaneously. It has a remarkable effect.

【0037】このようにして処理された流出水Cは、必
要ある場合には、凝集沈殿池7に送り、凝集剤タンク8
から無機凝集剤を添加して、凝集沈殿せしめ、上澄を放
流水Dとして取り出し、河川等へ放流する。一方、沈殿
した汚泥は、凝集沈殿池7の底部から余剰汚泥として取
り出し、汚泥脱水工程へ移送する。
The effluent C treated in this way is sent to the coagulation sedimentation tank 7 if necessary, and the coagulant tank 8
, An inorganic coagulant is added thereto to cause coagulation and sedimentation, and the supernatant is taken out as discharge water D and discharged into a river or the like. On the other hand, the settled sludge is taken out as excess sludge from the bottom of the coagulation sedimentation basin 7 and transferred to the sludge dewatering step.

【0038】凝集沈殿池7は、既設の最終沈殿池を若干
改造すれば充分に流用することができ、SS、色度及び
リンを除去することができる。これに対して、活性汚泥
を収容、浮遊せしめた曝気槽で廃水を処理する方法(標
準活性汚泥法)が従来より行われているが、この標準活
性汚泥法では窒素除去は殆どできないが、本流動床砂担
体法は返送汚泥が不要であり汚泥濃度を高く維持できる
ために既設曝気槽の改造により同じ滞留時間で窒素除去
及び固液分離までが達成できる。また不要となった最終
沈殿池を凝集沈殿池に改造し用途変更することにより、
敷地面積及び水槽容量を増加することなしに二次処理施
設が窒素・リン除去も含めた高度処理施設に改造するこ
とができる。
The coagulation sedimentation basin 7 can be sufficiently used by slightly modifying the existing final sedimentation basin, and can remove SS, chromaticity and phosphorus. On the other hand, a method of treating wastewater in an aeration tank that contains and floats activated sludge (standard activated sludge method) has been conventionally performed. However, this standard activated sludge method can hardly remove nitrogen. Since the fluidized bed sand carrier method does not require returned sludge and can maintain a high sludge concentration, the existing aeration tank can be modified to achieve nitrogen removal and solid-liquid separation with the same residence time. In addition, by changing the unnecessary final sedimentation tank to a coagulation sedimentation tank and changing the application,
The secondary treatment facility can be converted to an advanced treatment facility including nitrogen and phosphorus removal without increasing the site area and tank capacity.

【0039】[0039]

【実施例1】珪砂(0.074〜0.149mm)50g
に下記化1に示される強カチオン性高分子凝集剤1%水
溶液80ccを加え、90℃で4時間乾燥させ、水分を蒸
発させた。次いでこれを室温に冷却し、カチオン化した
担体を得た。
[Example 1] 50 g of silica sand (0.074 to 0.149 mm)
Then, 80 cc of a 1% aqueous solution of a strong cationic polymer flocculant represented by the following chemical formula 1 was added, and dried at 90 ° C. for 4 hours to evaporate water. Then, this was cooled to room temperature to obtain a cationized carrier.

【0040】[0040]

【化1】 Embedded image

【0041】一方、下水処理場から採取した活性汚泥
(MLSS5000mg/l)3L中に上記処理した珪砂を
添加し、ジャーテスターにて150rpmで数分間攪拌す
ると、珪砂の表面に活性汚泥が凝集付着した。これに下
記化2に示す中アニオン性高分子凝集剤0.1%水溶液
500mlを加えて混合し、150rpmにて数分間攪拌し
た。
On the other hand, the above treated silica sand was added to 3 L of activated sludge (MLSS 5000 mg / l) collected from a sewage treatment plant, and the mixture was stirred for several minutes at 150 rpm with a jar tester. . To this was added 500 ml of a 0.1% aqueous solution of a medium anionic polymer flocculant shown in Chemical Formula 2 below, mixed and stirred at 150 rpm for several minutes.

【0042】[0042]

【化2】 Embedded image

【0043】更に、上記と同じ強カチオン性高分子凝集
剤0.1%水溶液300mlを加えて混合すると、粒径5
mm〜1cm位のやや大きな凝集体が生成した。これを更
に、150rpmで10分程攪拌すると2mm以下の大きさ
に均一化できた。これに、アルギン酸ナトリウム1%水
溶液400ccを加えて混合し、150rpmで数分攪拌し
た。150rpmにて攪拌を続けながらこれに0.2M塩
化カルシウム水溶液600ccを徐々に加えてゆくと、前
記凝集体に浸透付着したアルギン酸ナトリウムは、アル
ギン酸カルシウムのゲルに変化してゆき、前記凝集体が
硬いゲルでおおわれた。塩化カルシウム水溶液を全量投
入して、更に150rpmで30分程攪拌すると、2mm位
の大きさに均一化できた。活性はほぼ100%残存して
いた。
Further, 300 ml of a 0.1% aqueous solution of the same strong cationic polymer flocculant as above was added and mixed to obtain a particle size of 5%.
A somewhat large aggregate of about mm to 1 cm was formed. When this was further stirred at 150 rpm for about 10 minutes, it could be homogenized to a size of 2 mm or less. To this was added 400 cc of a 1% aqueous solution of sodium alginate, mixed and stirred at 150 rpm for several minutes. When stirring continuously at 150 rpm, 600 cc of a 0.2 M calcium chloride aqueous solution was gradually added thereto, and the sodium alginate permeated and adhered to the aggregate changed into a gel of calcium alginate, and the aggregate was hard. Covered with gel. The whole amount of the aqueous calcium chloride solution was charged, and the mixture was further stirred at 150 rpm for about 30 minutes, so that the size was uniformed to about 2 mm. Almost 100% of the activity remained.

【0044】[0044]

【実施例2】実施例1にしたがい、径0.1mmの珪砂を
担体として用い、当初珪砂にカチオンポリマーを加えて
攪拌した後、蒸発乾固させてポリマーをコーティング
し、この乾燥珪砂と活性汚泥を混合攪拌したのちアルギ
ン酸・カチオンポリマー・塩化カルシウムを順次加えジ
ャーテスターで攪拌すると人工的なバイオペレットがで
きた。この砂担体汚泥の製造時平均径は、概ね0.2mm
であった。
Example 2 According to Example 1, a silica sand having a diameter of 0.1 mm was used as a carrier, and a cationic polymer was initially added to silica sand, followed by stirring and evaporation to dryness to coat a polymer. After mixing and stirring, alginic acid, cationic polymer and calcium chloride were sequentially added, and the mixture was stirred with a jar tester to produce artificial biopellets. The average diameter of this sand carrier sludge during manufacture is approximately 0.2 mm
Met.

【0045】[0045]

【実施例3】実施例2において、糊料及び硬化剤として
カゼイン及び水酸化ナトリウムを使用した以外は同様に
処理して、活性汚泥をその表面に強固に凝集付着せしめ
た砂担体を得た。この場合の活性残存率を測定したとこ
ろ、約100%であった。
Example 3 A sand carrier was obtained in the same manner as in Example 2 except that casein and sodium hydroxide were used as a paste and a curing agent, and activated sludge was firmly coagulated and adhered to the surface thereof. When the residual activity ratio in this case was measured, it was about 100%.

【0046】[0046]

【実施例4】図2に示した装置を用い、下記する人工下
水を処理した。
Example 4 The following artificial sewage was treated using the apparatus shown in FIG.

【0047】(1)使用装置 生物反応槽は、上向流の砂担体流動床脱窒素カラムと硝
化細菌包括固定化ペレットの硝化カラムから構成されて
おり、循環ポンプにより硝化液の循環を行なっている。
槽容量は硝化槽15L、脱窒槽15Lであり、寸法は
1.0mH×0.15mW×0.3mLである。両槽の仕切は
上向流カラムで汚泥界面を形成するように斜に配置され
ている。循環ポンプにはマグネットポンプ(1−10L/
min)を用いローターメータとバルブで循環流量をコン
トロールした。硝化カラムでは包括固定化担体の攪拌と
DO供給が必要なため粗泡曝気の散気としてエアポンプ
から常時送気を行なった(空気量2−6L/min)。包括
固定化ペレットが循環液に混入することを防ぐために硝
化カラム下部には目巾1.5mmのウェッジワイヤストレ
ーナが設置されている。反応槽の水温はサーモスタット
・ヒータにより22℃に保温した。原水はベローズポン
プで脱窒素カラム下部に供給されるが、流量は連続で5
L/Hr(滞留時間6時間)に設定し、滞留時間の変更はタ
イマーによるポンプの稼働時間調節により行なった。
(1) Apparatus used The biological reaction tank is composed of an upward-flowing sand carrier fluidized bed denitrification column and a nitrification column containing nitrifying bacteria-encapsulated pellets. The nitrification liquid is circulated by a circulation pump. I have.
The tank capacity is 15 L for the nitrification tank and 15 L for the denitrification tank, and the dimensions are 1.0 mH × 0.15 mW × 0.3 mL. The partitions of both tanks are arranged obliquely so as to form a sludge interface in an upflow column. The circulation pump is a magnet pump (1-10L /
min), the circulation flow rate was controlled with a rotor meter and a valve. In the nitrification column, stirring of the entrapping immobilization carrier and supply of DO were necessary, so air was constantly supplied from an air pump as air diffused for coarse foam aeration (air volume 2-6 L / min). In order to prevent the entrapping immobilized pellets from being mixed into the circulating liquid, a wedge wire strainer having a mesh width of 1.5 mm is provided below the nitrification column. The water temperature in the reaction tank was maintained at 22 ° C. by a thermostat heater. Raw water is supplied to the lower part of the denitrification column by a bellows pump.
L / Hr (residence time 6 hours) was set, and the residence time was changed by adjusting the operation time of the pump using a timer.

【0048】砂担体汚泥としては、実施例2で製造した
ものを使用し、硝化細菌包括固定化ペレットは、市販品
(商品名 バイオエヌキューブ:日立プラント建設株式
会社製)を使用した。
As the sand carrier sludge, the one produced in Example 2 was used, and as the pellet for encapsulating nitrifying bacteria, a commercially available product (trade name: Bio-N Cube: manufactured by Hitachi Plant Construction Co., Ltd.) was used.

【0049】(2)人工下水の組成 人工下水の濃度は、一般的な流入下水濃度を想定しグル
コース250mg/L、NH4−N 40mg/Lに設定した。
栄養塩及び緩衝液としてBOD試験のA、B、C、D液
(下水試験方法)をそれぞれ人工下水1Lに対してA液
5mL、B、C、Dは1mLづつ添加した。人工下水の使用
量は、当初30L/日(滞留時間24時間)から開始
し、60L/日(同12時間)120L/日(同6時
間)と増大させた。人工下水の腐敗防止のため4〜6度
に冷却した。
(2) Composition of artificial sewage The concentration of artificial sewage was set to 250 mg / L for glucose and 40 mg / L for NH 4 -N, assuming a general concentration of inflow sewage.
Solutions A, B, C, and D in the BOD test (sewage test method) were added as nutrients and buffers to 1 L of artificial sewage, and 5 mL of Solution A, and 1 mL of B, C, and D, respectively. The amount of artificial sewage used was initially started from 30 L / day (residence time: 24 hours) and increased to 60 L / day (12 hours) and 120 L / day (6 hours). The sewage was cooled to 4 to 6 ° C to prevent spoilage.

【0050】(3)運転条件 運転条件を下記表1に示す。(3) Operating conditions The operating conditions are shown in Table 1 below.

【0051】[0051]

【表1】 [Table 1]

【0052】(4)測定 次の各項目について、それぞれの測定法により測定を行
った。 NH4−N:蒸留滴定法 酸化態窒素:UV吸光度法 グルコース:フェノール硫酸法 MLSS:遠心分離乾燥法 MLVSS:600℃、1時間加熱法 DO及びpH:電極法 単粒子沈降速度:100cm透視度計
(4) Measurement The following items were measured by the respective measurement methods. NH 4 -N: Distillation titration method Oxidized nitrogen: UV absorbance method Glucose: Phenol sulfate method MLSS: Centrifugal drying method MLVSS: 600 ° C., 1 hour heating method DO and pH: Electrode method Single particle sedimentation rate: 100 cm fluorometer

【0053】(5)運転結果 先の条件で連続運転開始1カ月後の汚泥濃度及び沈降速
度の測定結果を下記表2に示す。
(5) Operation Results Table 2 below shows the measurement results of the sludge concentration and the sedimentation velocity one month after the start of continuous operation under the above conditions.

【0054】[0054]

【表2】 [Table 2]

【0055】上記結果から明らかなように、MLVSS
濃度は下部で高く、(30,000mg/L)上部では低め
であるが、活性汚泥法に比べれば数段高い値(8,70
0mg/L)を示した。担体汚泥の粒径は、上部で0.2mm
〜0.4mmで、下部に行くほど大きく(0.6mm〜2m
m)となっている。この汚泥層を通過した循環液中のS
S濃度はきわめて低く、2〜10mg/L程度であった。
As is apparent from the above results, MLVSS
The concentration is higher at the lower part and lower at (30,000 mg / L), but is several steps higher than the activated sludge method (8,70 mg / L).
0 mg / L). Particle size of carrier sludge is 0.2mm at the top
~ 0.4mm, the bigger it goes down (0.6mm ~ 2m
m). S in the circulating liquid passed through this sludge layer
The S concentration was extremely low, about 2 to 10 mg / L.

【0056】また、上記結果から明らかなように、この
流動床汚泥を100cm透視度計ガラス管を用いて単粒子
沈降させたときの沈降速度は、上部の小さい粒子で33
cm/min(20m/Hr)、下部の大きな粒子では163cm/min(9
8m/Hr)と著しく高いことがわかる。循環水中のSS濃度
は極めて低く2mg/Lから10mg/L程度であった。
As is apparent from the above results, when the fluidized bed sludge was subjected to single particle sedimentation using a 100 cm transparence meter glass tube, the sedimentation velocity was 33% for the small particles in the upper part.
cm / min (20 m / Hr), 163 cm / min (9
8m / Hr). The SS concentration in the circulating water was extremely low, about 2 mg / L to 10 mg / L.

【0057】更に、運転開始からの窒素負荷の変化と窒
素除去能の変化を図4に示した。その結果から明らかな
ように、負荷の上昇に伴い処理水中の窒素濃度は低下し
ていったが、これは時間経過とともに、硝化ゾーンの包
括固定化担体中の硝化菌と、脱窒素ゾーンの砂担体汚泥
の増殖がともに進行したためと考えられる。
FIG. 4 shows a change in the nitrogen load and a change in the nitrogen removing ability from the start of the operation. As is evident from the results, the nitrogen concentration in the treated water decreased as the load increased.However, over time, the nitrifying bacteria in the entrapping immobilization carrier in the nitrification zone and the sand in the denitrification zone It is considered that the propagation of the carrier sludge progressed together.

【0058】すなわち、基質濃度は変更せず、滞留時間
を短縮させて負荷を上昇させたが、負荷の上昇に伴い窒
素除去率が向上し、6時間滞留時の処理水中窒素濃度は
NH4−N2−5mg/L、NOx−N2−5mg/Lであり除
去率は75−90%の高い値を示した。この理由は包括
固定化硝化細菌の馴養と、砂担体汚泥量の増加である。
汚泥の引き抜きをおこなわないで運転したため砂担体汚
泥は増加を続けて循環流量が低い場合には硫化水素臭が
観察された。このときにはNH4−Nも高めの値を示し
ているのは嫌気分解による溶出と思われる。汚泥濃度が
高くなりすぎると全体的な流動化が行なわれず短絡現象
と嫌気化が発生するので処理性能が低下するようであ
る。
That is, the load was increased by shortening the residence time without changing the substrate concentration. However, the nitrogen removal rate was improved with the increase in the load, and the nitrogen concentration in the treated water at the time of residence for 6 hours was NH 4 − N2-5 mg / L and NOx-N2-5 mg / L, and the removal rate showed a high value of 75-90%. The reason for this is the acclimation of the entrapping immobilized nitrifying bacteria and the increase in the amount of sand carrier sludge.
Since the operation was performed without removing the sludge, the amount of the sand carrier sludge continued to increase, and when the circulation flow rate was low, the smell of hydrogen sulfide was observed. At this time, the reason why NH 4 —N also shows a higher value seems to be elution due to anaerobic decomposition. If the sludge concentration becomes too high, the fluidization is not performed as a whole, and a short circuit phenomenon and anaerobic phenomenon occur, so that the treatment performance seems to be reduced.

【0059】[0059]

【実施例5】図3に示した装置を用い、流動床砂担体法
によって下水を処理した。なお対照として、標準活性汚
泥法によって下水を処理した。
Example 5 Sewage was treated by the fluidized bed sand carrier method using the apparatus shown in FIG. As a control, sewage was treated by a standard activated sludge method.

【0060】その結果、滞留時間=6時間でMLVSS
値が標準活性汚泥法の場合は2000mg/Lであるのに対
し、流動床砂担体法の場合は15,000mg/Lであっ
た。また、放流水の水質についても、両者間には下記表
3に示すような顕著な相違が認められ、本法の著効が確
認された。
As a result, the residence time = 6 hours and the MLVSS
The value was 2000 mg / L in the case of the standard activated sludge method, while it was 15,000 mg / L in the case of the fluidized bed sand carrier method. Also, regarding the water quality of the effluent, a remarkable difference was observed between the two, as shown in Table 3 below, confirming the remarkable effect of the present method.

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【発明の効果】下水処理に際して、人工造粒した砂担体
は、壊れることなく順調に成長し、ほとんどSSを含ま
ない循環水が得られた。また、固定化した硝化細菌処理
と組合わせることにより、標準活性汚泥法の滞留時間で
硝化脱窒を行うことが可能となった。更に本法によれ
ば、砂担体汚泥の沈降速度が著しく速いために硝化脱窒
と固液分離を同時に行うことができるので、最終沈殿池
を凝集沈殿池に切換えることが可能となり、狭い敷地面
積、小容量のタンクで迅速に硝化脱窒が行われるだけで
なく、色度除去とリンの除去も達成でき、しかも汚泥濃
度を高レベルに維持できるので、汚泥を返送する必要が
ない。
In the sewage treatment, the artificially granulated sand carrier grew smoothly without breakage, and circulating water containing almost no SS was obtained. In addition, by combining with the immobilized nitrifying bacteria treatment, it became possible to perform nitrification denitrification with the residence time of the standard activated sludge method. Furthermore, according to the present method, the sedimentation speed of the sand carrier sludge is remarkably fast, so that nitrification denitrification and solid-liquid separation can be performed simultaneously. In addition to the rapid nitrification and denitrification in a small-capacity tank, chromaticity and phosphorus can be removed, and the sludge concentration can be maintained at a high level, so that there is no need to return the sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】循環式硝化脱窒法のフローシートを示す。FIG. 1 shows a flow sheet of a circulation type nitrification and denitrification method.

【図2】本発明に係る硝化脱窒法を実施するための装置
を示す。
FIG. 2 shows an apparatus for performing a nitrification denitrification method according to the present invention.

【図3】本発明に係る硝化脱窒法(流動床砂担体硝化脱
窒法)を実施するための装置を示す。
FIG. 3 shows an apparatus for carrying out the nitrification denitrification method (fluidized bed sand carrier nitrification denitrification method) according to the present invention.

【図4】窒素負荷と処理水窒素濃度の経日変化を示す。FIG. 4 shows the daily change of nitrogen load and nitrogen concentration of treated water.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 担体に活性汚泥を付着させ、次にこれを
糊料で処理した後、硬化させてなる活性汚泥固定化担体
を用いて窒素含有有機性廃水を処理すること、を特徴と
する該廃水の硝化脱窒方法。
An activated sludge is adhered to a carrier, and then the treated sludge is treated with a paste, and then the nitrogen-containing organic wastewater is treated using an activated sludge-immobilized carrier obtained by curing. A method for nitrifying and denitrifying the wastewater.
【請求項2】 硝化部において硝化菌を用いて硝化反応
を行い、その結果得られた処理水を脱窒部において該活
性汚泥固定化担体を用いて脱窒素反応を行うこと、を特
徴とする請求項1に記載の方法。
2. A nitrification reaction is performed in a nitrification section using a nitrifying bacterium, and the resulting treated water is subjected to a denitrification reaction in a denitrification section using the activated sludge-immobilized carrier. The method of claim 1.
【請求項3】 生物処理槽に該活性汚泥固定化担体を収
容し、その下部で該廃水の硝化反応を行い、その上部で
脱窒素反応を行うこと、を特徴とする内部に両反応を区
画する隔壁を設けることなくひとつの生物処理槽内で硝
化と同時に脱窒を行う請求項1に記載の方法。
3. The activated sludge immobilization carrier is accommodated in a biological treatment tank, a nitrification reaction of the wastewater is performed at a lower portion thereof, and a denitrification reaction is performed at an upper portion thereof, and the two reactions are defined inside. The method according to claim 1, wherein denitrification is performed simultaneously with nitrification in one biological treatment tank without providing a partition wall.
【請求項4】 窒素含有有機性廃水を請求項1〜3のい
ずれか1項に記載の方法で硝化脱窒するとともに固液分
離を行うこと、を特徴とする短時間に且つ小規模装置を
用いて該廃水を処理する方法。
4. A short-time and small-scale apparatus characterized in that nitrogen-containing organic wastewater is subjected to nitrification denitrification and solid-liquid separation by the method according to any one of claims 1 to 3. A method for treating the wastewater using the same.
【請求項5】 担体として、砂、珪砂、貝化石、クリス
トバライト、粘土鉱物、鉄粉、及び/又は多孔性ガラス
を使用してなること、を特徴とする請求項1〜4のいず
れか1項に記載の方法。
5. The method according to claim 1, wherein the carrier comprises sand, quartz sand, shell fossil, cristobalite, clay mineral, iron powder, and / or porous glass. The method described in.
JP33912896A 1996-12-05 1996-12-05 Nitrogen-containing organic wastewater treatment method Expired - Lifetime JP3933230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33912896A JP3933230B2 (en) 1996-12-05 1996-12-05 Nitrogen-containing organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33912896A JP3933230B2 (en) 1996-12-05 1996-12-05 Nitrogen-containing organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH10165985A true JPH10165985A (en) 1998-06-23
JP3933230B2 JP3933230B2 (en) 2007-06-20

Family

ID=18324517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33912896A Expired - Lifetime JP3933230B2 (en) 1996-12-05 1996-12-05 Nitrogen-containing organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3933230B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015311A (en) * 2004-07-05 2006-01-19 Nippon Steel Chem Co Ltd Denitrifying bacteria-containing nitrate nitrogen treatment material and production method therefor
CN108751399A (en) * 2018-06-08 2018-11-06 常州大学 A kind of preparation method of suspension step biomembrane
WO2019026780A1 (en) * 2017-07-31 2019-02-07 学校法人長崎総合科学大学 Biofilter device and sewage sludge residue dehydrated filtrate treatment system using same
JP2019025435A (en) * 2017-07-31 2019-02-21 学校法人長崎総合科学大学 Biofilter device and sewage sludge residue dehydration filtrate treatment system using the same
JP2019202920A (en) * 2018-05-25 2019-11-28 学校法人長崎総合科学大学 Method of producing liquid fertilizer
CN112174294A (en) * 2020-08-28 2021-01-05 江苏河清海晏环境有限公司 Preparation method of composite filler for advanced sewage treatment
CN114684924A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Denitrification treatment method for salt-containing wastewater
CN114684916A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Sewage nitrogen and phosphorus removal method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015311A (en) * 2004-07-05 2006-01-19 Nippon Steel Chem Co Ltd Denitrifying bacteria-containing nitrate nitrogen treatment material and production method therefor
JP4593183B2 (en) * 2004-07-05 2010-12-08 新日鐵化学株式会社 Nitrate-containing nitrogen-treated material containing denitrifying bacteria and method for producing the same
WO2019026780A1 (en) * 2017-07-31 2019-02-07 学校法人長崎総合科学大学 Biofilter device and sewage sludge residue dehydrated filtrate treatment system using same
JP2019025435A (en) * 2017-07-31 2019-02-21 学校法人長崎総合科学大学 Biofilter device and sewage sludge residue dehydration filtrate treatment system using the same
JP2019202920A (en) * 2018-05-25 2019-11-28 学校法人長崎総合科学大学 Method of producing liquid fertilizer
CN108751399A (en) * 2018-06-08 2018-11-06 常州大学 A kind of preparation method of suspension step biomembrane
CN112174294A (en) * 2020-08-28 2021-01-05 江苏河清海晏环境有限公司 Preparation method of composite filler for advanced sewage treatment
CN114684924A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Denitrification treatment method for salt-containing wastewater
CN114684916A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Sewage nitrogen and phosphorus removal method
CN114684916B (en) * 2020-12-30 2023-07-04 中国石油化工股份有限公司 Sewage denitrification and dephosphorization method

Also Published As

Publication number Publication date
JP3933230B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
CN101519265B (en) Sewage treatment process and system
JP4297615B2 (en) High-speed coagulating sedimentation wastewater treatment method
US4029575A (en) Phosphorus removal from waste water
JPH0154119B2 (en)
CN103402926A (en) Methods and systems for treating wastewater
CN106396247A (en) A gelatin waste water treating method
TWI429600B (en) A denitrification treatment method and a denitrification treatment apparatus
CN106986442B (en) Method for treating ammonia nitrogen sewage by combining microorganism carrier and fluidized bed
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
JPH06226292A (en) Biological sewage treating device
CN1277942A (en) System for treatment of water or wastewater, and method using such system
JP2001276851A (en) Drain treatment equipment
JP2716348B2 (en) Sewage return water treatment method
JPS6317513B2 (en)
CN108862563A (en) A kind of MBBR technique for nanometer water process
CN1309096A (en) Method and device for treating high concentration waste water
JPH07222994A (en) Organic waste water treatment method
JP3239306B2 (en) Wastewater treatment method
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP3019127B2 (en) Nitrogen removal equipment
JP3065868B2 (en) Filter media using inorganic fibers and method for producing the same
JPH0975987A (en) Method for removing nitrogen in high level from organic sewage
KR100416693B1 (en) Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor
JPH0576897A (en) Water purifying treatment method and apparatus
JPS6344040B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term