JPS6233593A - Biological treatment of waste water - Google Patents

Biological treatment of waste water

Info

Publication number
JPS6233593A
JPS6233593A JP60172768A JP17276885A JPS6233593A JP S6233593 A JPS6233593 A JP S6233593A JP 60172768 A JP60172768 A JP 60172768A JP 17276885 A JP17276885 A JP 17276885A JP S6233593 A JPS6233593 A JP S6233593A
Authority
JP
Japan
Prior art keywords
tank
nitrogen
water
org
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60172768A
Other languages
Japanese (ja)
Inventor
Koji Ishizaki
石崎 晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60172768A priority Critical patent/JPS6233593A/en
Publication of JPS6233593A publication Critical patent/JPS6233593A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To efficiently remove nitrogen and org. matter in org. waste water by adding grains deposited with microbes and having >=1 sp.gr. into a treating vessel, charging org. waste water contg. ammoniacal nitrogen into the treating vessel, and intermittently aerating the water. CONSTITUTION:In the biological treatment of org. waste water contg. ammoniacal nitrogen, grains 12 deposited with microbes and having >=1 sp.gr. are added into the treating vessel 11 and org. waste water contg. ammoniacal nitrogen is charged into the treating vessel 11 through a line 14. Then the water is intermittently aerated through an air inlet pipe 15 to remove the nitrogen and org. matter in the org. waste water. Since such constitution is adopted, sewage can be biologically treated with high efficiency in removing nitrogen even with such compact equipment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアンモニア性窒素を含む有機性汚水の処理方法
に関し、詳細には設備がコンパクトであるにもかかわら
ず窒素除去効率の高い生物学的汚水処理方法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating organic wastewater containing ammonia nitrogen. This relates to sewage treatment methods.

[従来の技術] 有機性汚水中に含まれるアンモニア性窒素を除去するに
当たっては生物学的脱窒法が広く利用されている。生物
学的脱窒法とは、アンモニア性窒素(NHa  N)を
硝化菌の働きによって好気性雰囲気中で硝酸性窒素(N
Ox−N)へ酸化すると共に生成した上記硝酸性窒素を
次の脱窒槽へ移し脱窒菌の働きによって嫌気性雰囲気中
でN2ガスに還元するものであり、前者は有機性汚水を
曝気することにより進行し、−劣後者の反応を進行させ
るに当たっては様気性雰囲気で水素供!F体(メタノー
ル等)を加える必要がある。そこでこの様な不経済性を
解消し生物学的脱窒法を経済的に実施するシステムとし
て有機性汚水(原水ということもある)中のBOD成分
を水素供与体として利用する方式が提案され実用化され
ている。第2図はこの様な汚水処理システムの一例を示
すフロー説明図で、該システムは上流側に脱窒槽1゜下
流側に硝化槽2を設け、両者を順流ライン3及び返送ラ
イン4によって接続することにより窒素除去を行なうも
のである。このフローにおける物流を説明すると、脱窒
槽Iへの有機性汚水りの流入量をQとした場合、もっと
も効果的な処理効率(処理総拭と詐化率のかね合い)を
あげようとすれば、その4倍量(4Q)程度の汚水が脱
窒槽1から硝化槽2へ順流ライン3を通して送られ、一
方硝化槽2から脱窒槽lへは3倍量(3Q)程度の汚水
が返送ライン4を通して戻されると共に流入量と等量(
Q)の処理水を硝化槽2から排出して沈降分離槽6に導
入し、ここで汚泥Mと上澄液Wに分離し前者の一部を脱
窒槽lへ返送し残部を焼却等の処理に付すと共に後者を
放流している。
[Prior Art] Biological denitrification methods are widely used to remove ammonia nitrogen contained in organic wastewater. Biological denitrification method converts ammonia nitrogen (NHaN) into nitrate nitrogen (NHaN) in an aerobic atmosphere by the action of nitrifying bacteria.
The nitrate nitrogen generated at the same time as being oxidized to Ox-N) is transferred to the next denitrification tank and reduced to N2 gas in an anaerobic atmosphere by the action of denitrifying bacteria. - To allow the inferior reaction to proceed, hydrogen is supplied in an amorous atmosphere! It is necessary to add F-form (methanol, etc.). Therefore, as a system to solve this uneconomical problem and economically implement the biological denitrification method, a method using the BOD component in organic wastewater (sometimes called raw water) as a hydrogen donor was proposed and put into practical use. has been done. Figure 2 is a flow explanatory diagram showing an example of such a sewage treatment system, in which a denitrification tank 1° is provided on the upstream side and a nitrification tank 2 is provided on the downstream side, and both are connected by a downflow line 3 and a return line 4. This removes nitrogen. To explain the logistics in this flow, if the amount of organic wastewater flowing into denitrification tank I is Q, then if we want to increase the most effective treatment efficiency (balance between total treatment and fraud rate), , about four times the amount (4Q) of wastewater is sent from the denitrification tank 1 to the nitrification tank 2 through the downflow line 3, while about three times the amount (3Q) of wastewater is sent from the nitrification tank 2 to the denitrification tank l via the return line 4. equal to the inflow amount (
The treated water in Q) is discharged from the nitrification tank 2 and introduced into the sedimentation separation tank 6, where it is separated into sludge M and supernatant liquid W. A part of the former is returned to the denitrification tank 1, and the remaining part is treated by incineration, etc. At the same time, the latter is released.

即ち有機性汚水りは硝化槽2と脱窒槽1の間を循環する
間に硝化槽2において硝化され、これが脱窒槽lに返送
されて有機性汚水り中のBOD成分を水素源とする脱窒
反応を受け、更に順流ライン3を経て硝化槽2に戻り処
理水として排出されるものである。
That is, organic wastewater is nitrified in nitrification tank 2 while circulating between nitrification tank 2 and denitrification tank 1, and is returned to denitrification tank 1 where it is denitrified using the BOD component in the organic wastewater as a hydrogen source. After undergoing the reaction, the water is further returned to the nitrification tank 2 via the downstream line 3 and discharged as treated water.

[発明が解決しようとする問題点] しかるに上記システムにおいては硝化槽2における硝化
反応を進行させるために槽内の溶存酸素(DO)を2 
mg/ n以上に維持する必要があり、硝化槽2からの
循環液中にはDOが必然的に存在することとなる。従っ
て循環比を多くして窒素除去率を高めようとすれば脱窒
槽1内に多量のり。
[Problems to be solved by the invention] However, in the above system, in order to advance the nitrification reaction in the nitrification tank 2, dissolved oxygen (DO) in the tank is
It is necessary to maintain the concentration above mg/n, and DO is inevitably present in the circulating liquid from the nitrification tank 2. Therefore, if you try to increase the nitrogen removal rate by increasing the circulation ratio, a large amount of nitrogen will accumulate in the denitrification tank 1.

が流入することになり、これが水素供与体として利用さ
れるべき有機物の一部を消費してしまうのでそれだけ脱
窒槽1における反応速度を低下させ、更にはDOの存在
が嫌気性の機能を損なうことになるので、循環比を増す
ことには制約がある。そして通常の循環比は3程度であ
り、このような場合の窒素除去率はせいぜい75〜80
%11〕りであり、改善の余地が多いものと言わざるを
得なかった。
This will consume part of the organic matter that should be used as a hydrogen donor, which will reduce the reaction rate in the denitrification tank 1, and furthermore, the presence of DO will impair the anaerobic function. Therefore, there are restrictions on increasing the circulation ratio. The normal circulation ratio is about 3, and the nitrogen removal rate in such cases is at most 75 to 80.
%11], and it must be said that there is a lot of room for improvement.

一方本発明者らは、廃水処理施設のコンパクト化を目的
として、粒径0.2〜0.5mmの微細な固体粒子を処
理槽内に添加し、適当な攪拌操作によって固体粒子を槽
内に分散させ、固体粒子表面に付着生育した微生物膜の
作用を利用して好気性処理あるいは一気性処理を行なう
ことについての研究を多年にわたり行なった。この方法
の原理は、廃水の流動床による処理と同じであるが、活
性汚泥方式に比べ少なくとも5倍程度の容積負荷で廃水
の処理が可能であるので、装置がきわめてコンパクトに
なるという特徴を持っている。
On the other hand, the present inventors added fine solid particles with a particle size of 0.2 to 0.5 mm into a treatment tank, and introduced the solid particles into the tank by an appropriate stirring operation, with the aim of making wastewater treatment facilities more compact. For many years, we have conducted research on aerobic treatment or aerobic treatment using the action of microbial films that are dispersed and grown on the surface of solid particles. The principle of this method is the same as that used for fluidized bed treatment of wastewater, but since it is possible to treat wastewater with at least five times the volume load compared to the activated sludge method, it has the characteristic that the equipment is extremely compact. ing.

流動床方式にあっては、生物膜が過大に生育した一部の
固体粒子は見かけ比重が少なくなるため流動床上部に移
行し、さらにこれがしばしば槽外へ流出して安定な運転
ができないという欠点を持っている。
The disadvantage of the fluidized bed method is that some solid particles with excessive growth of biofilm migrate to the upper part of the fluidized bed due to their apparent specific gravity, and this often flows out of the tank, making stable operation impossible. have.

本発明者らは、機械的攪拌あるいは曝気用空気によるガ
ス攪拌操作による方法を研究し、生物膜粒子の槽内への
流出を防止して流動床方法の問題点を克服した。
The present inventors have studied methods using mechanical stirring or gas stirring operations using aeration air, and have overcome the problems of the fluidized bed method by preventing biofilm particles from flowing into the tank.

これらの研究の一部として、前記活性汚泥法による窒素
除去方法と同じく硝化処理水の脱窒槽への循環によって
窒素除去を行なう実験を行ない、高い容積負荷で窒素除
去が可能であることを明らかにした(第16回下水道研
究発表会講演集P320〜322. ’79 ) 。
As part of these studies, we conducted experiments to remove nitrogen by circulating nitrified water to a denitrification tank, similar to the activated sludge method described above, and demonstrated that nitrogen removal is possible with a high volumetric load. (16th Sewerage Research Conference Lectures P320-322.'79).

この方法によって下水などのアンモニア性窒素を含む有
機性廃水の窒素除去装置としては第3図を示すことがで
きる。この装置では反応槽内の生物膜粒子の槽外への流
出を防止するため、生物膜粒子と処理水との沈降分離部
を形成しておりその水面積負荷は通常120 ta3/
s2.da7で設計する。
By this method, a nitrogen removal apparatus for organic wastewater containing ammonia nitrogen such as sewage can be shown as shown in FIG. In this equipment, in order to prevent the biofilm particles in the reaction tank from flowing out of the tank, a sedimentation separation section is formed between the biofilm particles and the treated water, and the water area load is usually 120 ta3/
s2. Design with da7.

例えば流入水量(Q)の3倍の硝化処理水を循環すれば
きわめて効率よく75〜80%の窒素除去ができる。し
かしこの時脱窒φ硝化槽の水量は4Qとなりそれに相当
する沈降分離部とするためには、循環を行なわない場合
の4倍の面積が必要となる。このような槽構造上の制約
から1系列あたりの処理水量には限界があり通常の下水
を処理する場合の最大処理水量は約800 m3/da
yであることがこの装置の欠点となっている。又前記活
性汚泥による従来法と同様に、通常は75〜80%程度
の窒素除去率である。さらに高効率の窒素除去がのぞま
れる場合には、硝化槽の後にメタノールを添加する第2
脱窒槽、これに次いで第2脱窒槽処理水中に残留するメ
タノールを除去するための再曝気槽を設置する必要があ
ることも第2図に示した従来法と同様である。
For example, if nitrified water is circulated in an amount three times the amount of inflow water (Q), 75 to 80% of nitrogen can be removed very efficiently. However, at this time, the amount of water in the denitrification φ nitrification tank becomes 4Q, and in order to create a sedimentation separation section corresponding to that amount, an area four times as large as that in the case where no circulation is performed is required. Due to these tank structure constraints, there is a limit to the amount of water that can be processed per line, and the maximum amount of water that can be processed when treating normal sewage is approximately 800 m3/da.
y is a drawback of this device. Also, like the conventional method using activated sludge, the nitrogen removal rate is usually about 75 to 80%. If even more efficient nitrogen removal is desired, a second tank where methanol is added after the nitrification tank is used.
Similar to the conventional method shown in FIG. 2, it is necessary to install a denitrification tank and then a reaeration tank for removing methanol remaining in the treated water in the second denitrification tank.

本発明はこうした事情に着目してなされたものであり、
設備を更にコンパクトにすると共に、メタノールなどの
有機薬品を加えることなしに窒素除去率を向上させうる
生物学的廃水処理法を提供しようとするものである。
The present invention has been made focusing on these circumstances,
The present invention aims to provide a biological wastewater treatment method that can make the equipment more compact and improve the nitrogen removal rate without adding organic chemicals such as methanol.

[問題点を解決するための手段] しかして上記目的を達成した本発明の方法とは、微生物
の付着した比重が1より大きな粒子を処理槽内に添加し
、アンモニア性窒素を含む有機性廃水を該処理槽内に装
入し、間欠的に曝気を行なうことによって有機性廃水の
窒素と有機物を除去する点に要旨を有するものである。
[Means for Solving the Problems] The method of the present invention that achieves the above object is to add particles with a specific gravity greater than 1 to which microorganisms are attached into a treatment tank, and to treat organic wastewater containing ammonia nitrogen. The gist of this method is to remove nitrogen and organic matter from organic wastewater by charging the organic wastewater into the treatment tank and performing aeration intermittently.

[作用] 生物膜粒子はその表面に微生物が付着生育するものの中
から適宜選択すればよく、砂、活性炭。
[Operation] The biofilm particles may be appropriately selected from those on which microorganisms can grow attached to their surfaces, such as sand and activated carbon.

コークス、ゼオライト、シャモット、軽量骨材。Coke, zeolite, chamotte, lightweight aggregates.

塩化ビニル樹脂などを例示できる0粒径はその材質によ
って異なり、比較的比重の大きな砂は0.1〜0.5m
s、比較的比重の小さい塩化ビニル樹脂では0.5〜2
■のちのを使用する。添加量は5〜20%で好ましくは
10〜20%である。曝気時間は2〜10分、曝気停止
り時間は5〜10分である。廃水の滞留時間は下水の場
合1〜2時間   ′である。曝気時間を5分、曝気停
止時間を5分とすれば硝化および脱窒反応の1サイクル
時間は10分である。今滞留時間を80分とすればこの
間に硝化参脱窒のサイクル数は8回となる。これは前記
硝化処理水の循環量を°流入水量の8倍とした場合に相
わし1通常行なわれる3倍の循環水量の場合に比べては
るかに大きなfI環効果が発揮され、無薬注でも窒素除
去率を90%以上に向上させ、しかも単一槽内でこれを
行なうので前記のような沈降分離槽から生ずる構造上の
制約を解消できる。
The zero particle size, which can be exemplified by vinyl chloride resin, varies depending on the material, and sand with a relatively large specific gravity has a diameter of 0.1 to 0.5 m.
s, 0.5 to 2 for vinyl chloride resin with relatively low specific gravity.
■Use later. The amount added is 5 to 20%, preferably 10 to 20%. The aeration time is 2 to 10 minutes, and the aeration stop time is 5 to 10 minutes. The residence time of wastewater is 1 to 2 hours' in the case of sewage. If the aeration time is 5 minutes and the aeration stop time is 5 minutes, one cycle time of the nitrification and denitrification reactions is 10 minutes. If the residence time is now 80 minutes, the number of cycles of nitrification and denitrification will be eight times during this time. This corresponds to the case where the circulation rate of the nitrification treated water is 8 times the inflow water rate, and a much larger fI ring effect is achieved compared to the usual case where the circulation rate is 3 times the inflow water rate, and even chemical-free injection is possible. Since the nitrogen removal rate is improved to over 90% and this is carried out in a single tank, the structural constraints caused by the sedimentation and separation tank described above can be eliminated.

このように本発明によって、従来法の問題点を一挙に解
決し、さらによりいっそうのコンパクト化を可能とする
ばかりでなく装置書きわめて単純で運転管理も容易にす
ることが可能となった。
As described above, the present invention solves the problems of the conventional method at once, and not only makes it possible to make the device even more compact, but also makes it possible to make the device extremely simple and easy to manage.

[実施例] 本発明の実施IE様を第1図を参照しながら説明する。[Example] An implementation IE of the present invention will be explained with reference to FIG.

第1図は本発明が適用される処理槽11の概略説明図で
ある。廃水は廃水ポンプPtにより廃水導入ライン14
を介して処理槽ll内の底部に送入される。該処理槽1
1へはブロワ−18により空気導入管15を経て処理槽
11内に空気が送り込まれ、タイマー19によって設定
された時間だけ曝気される。曝気停止後1〜5分の休止
時間(タイマー19の設定による)を経て、循環ポンプ
P2がタイマー19の設定時間だけ作動し、循環ライン
16を通り槽上部より槽底部に水が循禮され、処理11
内に生物膜粒子の嫌気性流動床を形成する0次いで再び
タイマー19によりブロワ−18が作動し、空気導入管
15から処理槽11の底部に空気が送り込まれて曝気さ
れ、以下同様に自動的にこのサイクル操作が繰り返され
る。処理水は沈降分離部13で生物膜粒子と分離され、
処理水排出ライン20から排出される。
FIG. 1 is a schematic explanatory diagram of a processing tank 11 to which the present invention is applied. Wastewater is introduced into the wastewater introduction line 14 by the wastewater pump Pt.
The water is sent to the bottom of the processing tank 11 through the tank 11. The processing tank 1
Air is fed into the processing tank 11 by a blower 18 through an air introduction pipe 15, and is aerated for a time set by a timer 19. After a pause of 1 to 5 minutes after the aeration stops (depending on the setting of the timer 19), the circulation pump P2 operates for the time set on the timer 19, and water is circulated from the top of the tank to the bottom of the tank through the circulation line 16. Processing 11
Then, the blower 18 is operated again by the timer 19, and air is sent from the air introduction pipe 15 to the bottom of the treatment tank 11 for aeration, and the same process is performed automatically. This cycle is repeated. The treated water is separated from biofilm particles in the sedimentation separation section 13,
The treated water is discharged from the discharge line 20.

空気攪拌用ドラフト管17は、曝気時にこの内側を空気
が上昇しエヤリフト効果によって管内にL向流が生じ、
空気攪拌用エヤリフト管17の外側は下向流が生じるた
め、処理槽11全体にわたって生物膜粒子と処理槽ll
内の廃水がよく混合されるためのものである。尚ドラフ
ト管17の代りに処理槽ll内が好気的雰囲気(溶存酸
素濃度2〜3 mgl交)になるための他の攪拌手段を
用いてもよく、また空気攪拌用ドラフト管17を除去し
て単に曝気するだけでも目的を達成することができる。
In the draft pipe 17 for air agitation, air rises inside the pipe during aeration, and an L countercurrent is generated inside the pipe due to the air lift effect.
Since a downward flow occurs on the outside of the air lift pipe 17 for air agitation, biofilm particles and the treatment tank ll are generated throughout the treatment tank 11.
This is to ensure that the wastewater inside is well mixed. Note that, instead of the draft pipe 17, other stirring means may be used to create an aerobic atmosphere (dissolved oxygen concentration of 2 to 3 mg/l) in the processing tank 11, or the draft pipe 17 for air stirring may be removed. Simply aerating can accomplish this goal.

曝気停止後の休止時間中に入ると、曝気時に処理槽11
内の水面まで(沈降分離部13を除く全域にわたって)
分散している生物膜粒子が界面沈降を開始する。即ち、
該休止時1mは生物膜粒子界面12が循環水導入ライン
16の上部の吸い込み口21の高さ以下の位置まで下降
するための待ち時間である。
During the downtime after the aeration stops, the treatment tank 11
up to the water surface (over the entire area except for the settling section 13)
Dispersed biofilm particles begin interfacial sedimentation. That is,
The period of 1 m during the pause is a waiting time for the biofilm particle interface 12 to descend to a position below the height of the suction port 21 above the circulating water introduction line 16.

循環ポンプP2の作動は、比較的比重の大きい砂などを
生物膜粒子として用いた場合に有効であるが、塩化ビニ
ル樹脂粒子のように比較的比重の小さいものを用いた場
合は必ずしも必要ではない、その理由は粒子沈降速度が
比較的おそいために曝気停止時間中に生物膜粒子界面1
2下の容積が反応槽容積の雅程度にとどまり生物膜粒子
による生物学的反応がト分に進行するためである。要約
すれば、曝気停止後の休止時間、それ以後の循環ポンプ
P2の作動および設置の要否は生物膜粒子の界面沈降速
度と曝気停+h時間によって決定すれば良い。
The operation of the circulation pump P2 is effective when sand or the like with a relatively high specific gravity is used as the biofilm particles, but it is not necessarily necessary when using something with a relatively low specific gravity such as vinyl chloride resin particles. The reason for this is that the particle sedimentation rate is relatively slow and the biofilm particle interface 1 during the aeration stop time.
This is because the volume under 2 remains at the same level as the reaction tank volume, and the biological reaction by biofilm particles proceeds smoothly. In summary, the downtime after the aeration stops, and whether or not the circulation pump P2 needs to be operated and installed after that, may be determined based on the interfacial sedimentation velocity of the biofilm particles and the aeration stop+h time.

廃水の導入は上記の様に連続的に行なうのが効率的であ
るが、廃水の導入時間に変動が大きい場合には回分式操
作による処理や間欠的廃水の導入によっても良く、この
場合には沈降分離部13は不要である。また比較的少量
の廃水の処理をする場合においては、攪拌機による連続
機械攪拌槽に生物膜粒子を存在させ、これに廃水を流入
せしめ、間欠曝気を行ない処理水は連続機械攪拌槽に設
置された沈降分離槽を経て流出するという方式によって
も良い、また必要に応じて多段槽とすることも可能であ
る。
It is efficient to introduce wastewater continuously as described above, but if there are large fluctuations in the introduction time of wastewater, it is also possible to treat it in batches or introduce wastewater intermittently. The sedimentation separation section 13 is not necessary. In addition, when treating a relatively small amount of wastewater, biofilm particles are present in a continuous mechanical stirring tank using an agitator, the wastewater is allowed to flow into this, intermittent aeration is performed, and the treated water is placed in a continuous mechanical stirring tank. A system in which the water flows out through a sedimentation separation tank may be used, and if necessary, it is also possible to use a multi-stage tank.

本発明者らは第1図に示した様な処理装置において、下
記の様に実験を行なった。
The present inventors conducted experiments as described below using a processing apparatus as shown in FIG.

BOD : 198■g/l 、 T−N :31.5
sg/u 。
BOD: 198 g/l, T-N: 31.5
sg/u.

NH4−N : 26mg/i 、 T−P :3.5
驕g/交の下水処理場にて最初沈殿池溢流水28.41
 / hを容積27見の処JIIIl槽(沈降分離槽の
容積を除く)に注入した。BOD容植負荷は5.0 k
g−BOD/m3 会dayである。槽内には粒径0.
2〜0.5+emの軽量骨材粉を見かけ容積5.4文添
加した。
NH4-N: 26mg/i, T-P: 3.5
First sedimentation pond overflow water at the sewage treatment plant in Kog/Ko 28.41
/h was injected into a JIII tank with a volume of 27 mm (excluding the volume of the sedimentation tank). BOD transplantation load is 5.0 k
It is g-BOD/m3 meeting day. The particle size is 0.
A light aggregate powder of 2 to 0.5+em was added with an apparent volume of 5.4 grams.

曝気時間5分、休止時間1分、循環ポンプP2作動時間
4分の緑り返し運転を20日間連続的に行なって生物膜
粒子に微生物を十分担持させた。
A greening operation was performed continuously for 20 days with an aeration time of 5 minutes, a rest time of 1 minute, and a circulation pump P2 operation time of 4 minutes to ensure that the biofilm particles were sufficiently loaded with microorganisms.

空気量は曝気5分後に溶存1g素濃度(D O)が2〜
3 tag/交となるように調節した。曝気停止F後D
oは急激に低下し、1.5分でほとんど0になった。水
温は20℃に調節した。循環ポンプ水量は槽内の水上昇
速度15m/hとなるように設定した。処理水はSS分
離後分析した6分析値はBOD:3.0  層g/見 
、NH4−N:0.8 1g/文 。
The amount of air is such that after 5 minutes of aeration, the dissolved element concentration (DO) is 2~2.
Adjustment was made so that there were 3 tags/intersection. D after aeration stop F
o decreased rapidly and reached almost 0 in 1.5 minutes. The water temperature was adjusted to 20°C. The circulation pump water amount was set so that the water rising speed in the tank was 15 m/h. The treated water was analyzed after SS separation, and the analysis value was BOD: 3.0 layer g/view.
, NH4-N: 0.8 1g/statement.

T−N:’1.5鵬g/文、T−P:1.8腸g/文と
なった。BOD、T−N、T−Pの除去率は、それぞれ
θ8.5%、 35.2%、 54.2%であった。
T-N: 1.5 g/b, T-P: 1.8 g/b. The removal rates of BOD, TN, and TP were θ8.5%, 35.2%, and 54.2%, respectively.

本発明の実施例を上記に対比した活性汚泥による実験値
と比較すると、それぞれの処理能力を示す容積負荷は本
発明では5.[ζ’g/l13・da7 、対比実験値
は0.47kg/腸3  ・dayで実に10倍以上の
処理能力を示している。これだけ装置がコンパクト化が
可能となったことを意味している。さらに窒素除去率は
それぞれ95.2%、79.1%で大いに向上している
Comparing the examples of the present invention with the experimental values using activated sludge compared to the above, the volume load indicating each treatment capacity is 5.5% in the present invention. [ζ'g/l13・da7, the comparative experimental value is 0.47 kg/intestine 3・day, which shows a processing capacity of more than 10 times. This means that the device can be made more compact. Furthermore, the nitrogen removal rates were greatly improved to 95.2% and 79.1%, respectively.

本発明の方法においてこのように大きな処理能力が達成
できるのは、MLSSがより槽内に高濃度に保持できる
という理由の他に生物膜中により高濃度に硝化菌や脱窒
菌が存在しているためと考えられる。この他、装置が単
純であること、単一槽であるために第3図における硝化
処理水の循環が不要となったために槽構造上の制約を解
消したこと、更に必要水量の変動によっては回分式など
多様な方式で対処できること等も本発明の利点として挙
げられる。
The reason why such a large processing capacity can be achieved in the method of the present invention is not only because MLSS can be maintained at a higher concentration in the tank, but also because nitrifying bacteria and denitrifying bacteria are present at a higher concentration in the biofilm. It is thought that this is because of this. In addition, the equipment is simple, the single tank eliminates the need for circulation of nitrified water as shown in Figure 3, which eliminates the tank structure constraints, and it can also be used in batches depending on changes in the amount of water required. Another advantage of the present invention is that it can be handled using various methods such as formulas.

[比較例] 本実施例に対比し、第3図と同様のシステムでの実験結
果を以下に示す。
[Comparative Example] In comparison to this example, experimental results using a system similar to that shown in FIG. 3 are shown below.

脱窒槽(容積5交)、硝化槽(容if1.5立)及び沈
殿槽で構成された実験装置に、先の実施例と同−水質の
最初沈殿池溢流下水を1.14立/hで脱窒槽に注入し
た。硝化槽からの循環量はこれの4倍即ち4.58Li
/ hとした。MLSSはこの時3800〜4000m
g/文となるように沈降分離槽より活性汚泥を毎日定期
的に引き抜いた。水温は20℃に調節した。脱窒槽と硝
化槽の合計容積11.5文から計算した容積負荷は0.
47kg・日00/諺3・dayである。その結果、T
−N除去率は79.1%であった。
The overflow sewage from the primary sedimentation tank with the same water quality as in the previous example was added to an experimental apparatus consisting of a denitrification tank (volume 5 cubic meters), a nitrification tank (volume if 1.5 cubic meters), and a settling tank at 1.14 cubic meters/h. was injected into the denitrification tank. The amount of circulation from the nitrification tank is four times this, or 4.58 Li.
/h. MLSS is 3800-4000m at this time
Activated sludge was regularly withdrawn from the sedimentation tank every day so that the amount of activated sludge was 1.5 g/min. The water temperature was adjusted to 20°C. The volumetric load calculated from the total volume of the denitrification tank and nitrification tank of 11.5 cm is 0.
It is 47 kg・day 00/proverb 3・day. As a result, T
-N removal rate was 79.1%.

〔発Illの効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによって、設備がコンパクトであるにもかかわらず
窒素除去効率の高い生物学的汚水処理方法が実現できた
[Effects of generation] As described above, according to the present invention, by adopting the above-described configuration, a biological wastewater treatment method with high nitrogen removal efficiency was realized despite the compact equipment. .

【図面の簡単な説明】 第1図は本発明が適用される処理槽11の概略説明図、
第2図及び第3図は従来の典型的な汚水処理システムを
示すフロー説明図である。 1101.処理槽     12・・・生物膜粒子界面
13・・・沈降分離部   14・・・廃水導入ライン
15・・・空気導入管   16・・・循環ライン18
・・・タイマー Pl・・・廃水ポンプ  P2・・・循環ポンプ第1図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic explanatory diagram of a treatment tank 11 to which the present invention is applied;
FIGS. 2 and 3 are flow explanatory diagrams showing a typical conventional sewage treatment system. 1101. Treatment tank 12... Biofilm particle interface 13... Sedimentation separation section 14... Wastewater introduction line 15... Air introduction pipe 16... Circulation line 18
...Timer Pl...Waste water pump P2...Circulation pump Figure 1

Claims (1)

【特許請求の範囲】[Claims] アンモニア性窒素を含む有機性廃水を生物学的に処理す
る方法において、微生物の付着した比重が1より大きな
粒子を処理槽内に添加し、前記アンモニア性窒素を含む
有機性廃水を該処理槽内に装入し、間欠的に曝気を行な
うことによって有機性廃水の窒素と有機物を除去するこ
とを特徴とする廃水の生物学的処理方法。
In a method of biologically treating organic wastewater containing ammonia nitrogen, particles with a specific gravity greater than 1 to which microorganisms are attached are added into a treatment tank, and the organic wastewater containing ammonia nitrogen is transferred into the treatment tank. 1. A biological treatment method for wastewater, characterized in that nitrogen and organic matter are removed from organic wastewater by charging the organic wastewater into water and performing intermittent aeration.
JP60172768A 1985-08-05 1985-08-05 Biological treatment of waste water Pending JPS6233593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172768A JPS6233593A (en) 1985-08-05 1985-08-05 Biological treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172768A JPS6233593A (en) 1985-08-05 1985-08-05 Biological treatment of waste water

Publications (1)

Publication Number Publication Date
JPS6233593A true JPS6233593A (en) 1987-02-13

Family

ID=15947974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172768A Pending JPS6233593A (en) 1985-08-05 1985-08-05 Biological treatment of waste water

Country Status (1)

Country Link
JP (1) JPS6233593A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218691A (en) * 1988-02-29 1989-08-31 Onoda Autoclaved Light Weight Concrete Co Ltd Method for purifying treatment of organic waste water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109292A (en) * 1982-12-15 1984-06-23 Sanki Eng Co Ltd Treatment of waste liquid by fluidized bed
JPS59142897A (en) * 1983-02-01 1984-08-16 Ataka Kogyo Kk Nitrification and denitrification process
JPS6082191A (en) * 1983-10-14 1985-05-10 Suido Kiko Kk Method and device for treating sewage by microorganism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109292A (en) * 1982-12-15 1984-06-23 Sanki Eng Co Ltd Treatment of waste liquid by fluidized bed
JPS59142897A (en) * 1983-02-01 1984-08-16 Ataka Kogyo Kk Nitrification and denitrification process
JPS6082191A (en) * 1983-10-14 1985-05-10 Suido Kiko Kk Method and device for treating sewage by microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218691A (en) * 1988-02-29 1989-08-31 Onoda Autoclaved Light Weight Concrete Co Ltd Method for purifying treatment of organic waste water

Similar Documents

Publication Publication Date Title
US4415454A (en) Nitrification treatment of wastewater
JP2003126890A (en) Wastewater treatment apparatus and wastewater treatment method using the same
JPH0592197A (en) Method for biological purification of water by nitrification and denitrification
JPH07313992A (en) Treatment of sewage
KR100435107B1 (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
JPH05337492A (en) Biological treatment of sewage
Martienssen et al. Capacities and limits of three different technologies for the biological treatment of leachate from solid waste landfill sites
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JP2841131B2 (en) Activated sludge treatment method for sewage
JPS6233593A (en) Biological treatment of waste water
JPS61287498A (en) Biological treatment of organic sewage
CS275878B6 (en) Process and plant for waste-water treatment
Fujiwara et al. Effect of draft tube diameter on nitrogen removal from domestic sewage in a draft tube type reactor
JP2673488B2 (en) Method and apparatus for treating organic wastewater
KR100304068B1 (en) Biological Water Treatment Apparatus Using Biological Membrane Filtration and Process thereof(SBF)
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
KR101743346B1 (en) Apparatus and method for treating wastewater
JP2540150B2 (en) Biological denitrification equipment
JPS59199098A (en) Treatment of organic filthy water
KR0140421B1 (en) Organic sewage and waste water treatment equipment
JPH0659479B2 (en) Biological nitrification denitrification equipment
KR20160140552A (en) Method for treating wastewater
KR20160141383A (en) Apparatus for treating wastewater
KR20160140553A (en) Method for treating wastewater