JP2022042384A - Method for treating organic wastewater and apparatus for treating organic wastewater - Google Patents

Method for treating organic wastewater and apparatus for treating organic wastewater Download PDF

Info

Publication number
JP2022042384A
JP2022042384A JP2020147799A JP2020147799A JP2022042384A JP 2022042384 A JP2022042384 A JP 2022042384A JP 2020147799 A JP2020147799 A JP 2020147799A JP 2020147799 A JP2020147799 A JP 2020147799A JP 2022042384 A JP2022042384 A JP 2022042384A
Authority
JP
Japan
Prior art keywords
concentration
organic wastewater
reaction tank
nitrogen
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020147799A
Other languages
Japanese (ja)
Inventor
太一 山本
Taichi Yamamoto
啓徳 油井
Yoshinori Yui
吉昭 長谷部
Yoshiaki Hasebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2020147799A priority Critical patent/JP2022042384A/en
Priority to CN202180053088.1A priority patent/CN115968357A/en
Priority to PCT/JP2021/029766 priority patent/WO2022050025A1/en
Priority to TW110131395A priority patent/TW202218999A/en
Publication of JP2022042384A publication Critical patent/JP2022042384A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide a method for treating organic wastewater by biologically treating organic wastewater using a carrier, in which the amount of excess sludge generated is suppressed and the significant decrease in BOD removal rate is suppressed.SOLUTION: The present disclosure is a method for treating organic wastewater by biologically treating organic wastewater under aerobic condition using a reaction vessel 12 provided with a carrier 44, in which the biological treatment is performed while maintaining the concentration of soluble phosphorus in the reaction vessel 12 at 0.5 mg/L or less and maintaining the concentration of soluble nitrogen in the reaction vessel 12 at 3 mg/L or more.SELECTED DRAWING: Figure 1

Description

本開示は、有機性排水の処理方法及び有機性排水の処理装置に関する。 The present disclosure relates to a method for treating organic wastewater and an apparatus for treating organic wastewater.

有機性排水の処理には一般的に活性汚泥法が用いられているが、BOD容積負荷は0.5~1.0kg/m/day程度であるため、広い敷地面積が必要である。一方、担体を用いた生物処理法は、BOD容積負荷1.5kg/m/day以上の高負荷化が可能で、敷地面積を削減することが出来る。 The activated sludge method is generally used for the treatment of organic wastewater, but since the BOD volume load is about 0.5 to 1.0 kg / m 3 / day, a large site area is required. On the other hand, the biological treatment method using a carrier can increase the load by BOD volume load of 1.5 kg / m 3 / day or more, and can reduce the site area.

例えば、特許文献1には、BODに対する窒素およびリンの量が、BOD:窒素:リンの重量比で100:5:1よりも少ない有機性排水を処理する担体を用いた生物処理法において、原水中の窒素およびリンの量が、重量比でBOD:窒素:リンが100:5:1以上になるように、不足する窒素および/またはリンを原水に添加する一方で、担体の容積負荷に対する菌体数を計測し、担体の菌体数がほぼ一定値になった後、原水に添加される窒素および/またはリンの量を、BOD:窒素:リンの重量比で100:2.5:0.5以下に減少させる処理方法が開示されている。 For example, Patent Document 1 describes the source in a biological treatment method using a carrier for treating organic wastewater in which the amount of nitrogen and phosphorus with respect to BOD is less than 100: 5: 1 in the weight ratio of BOD: nitrogen: phosphorus. Bacteria to the volume load of the carrier while adding the deficient nitrogen and / or phosphorus to the raw water so that the amount of nitrogen and phosphorus in the water is BOD: nitrogen: phosphorus 100: 5: 1 or more by weight. After the number of cells is measured and the number of cells of the carrier becomes almost constant, the amount of nitrogen and / or phosphorus added to the raw water is 100: 2.5: 0 in the weight ratio of BOD: nitrogen: phosphorus. A treatment method for reducing the amount to 5.5 or less is disclosed.

特開2001-149974号公報Japanese Unexamined Patent Publication No. 2001-149974

ところで、担体を用いた生物処理法では、余剰汚泥の発生量が多いことが問題となっている。また、余剰汚泥の発生量を抑えようとすると、BOD除去速度が大幅に低下することも問題となっている。 By the way, in the biological treatment method using a carrier, there is a problem that a large amount of excess sludge is generated. Another problem is that the BOD removal rate is significantly reduced when trying to suppress the amount of excess sludge generated.

そこで、本開示の目的は、担体を用いて有機性排水を生物処理する有機性排水の処理方法及び処理装置において、余剰汚泥の発生量を抑え、且つBOD除去速度の大幅な低下を抑制することを目的とする。 Therefore, an object of the present disclosure is to suppress the amount of excess sludge generated and to suppress a significant decrease in the BOD removal rate in an organic wastewater treatment method and a treatment apparatus for biologically treating organic wastewater using a carrier. With the goal.

本開示は、担体を備える反応槽により、好気条件で有機性排水を生物処理する有機性排水の処理方法であって、前記反応槽内の溶解性リン濃度を0.5mg/L以下に維持し、且つ前記反応槽内の溶解性窒素濃度を3mg/L以上に維持して、前記生物処理を行うことを特徴とする。 The present disclosure is a method for treating organic wastewater by biologically treating organic wastewater under aerobic conditions using a reaction vessel provided with a carrier, in which the concentration of soluble phosphorus in the reaction vessel is maintained at 0.5 mg / L or less. Moreover, the biological treatment is carried out while maintaining the concentration of soluble nitrogen in the reaction vessel at 3 mg / L or more.

また、前記有機性排水の処理方法において、前記反応槽は、直列2段以上の反応槽から構成され、直列2段以上の反応槽のうちの少なくとも1つの反応槽において、溶解性リン濃度を0.5mg/L以下に維持し、且つ溶解性窒素濃度を3mg/L以上に維持して、前記生物処理を行うことが好ましい。 Further, in the method for treating organic wastewater, the reaction vessel is composed of a reaction vessel having two or more stages in series, and the soluble phosphorus concentration is set to 0 in at least one of the reaction tanks having two or more stages in series. It is preferable to carry out the biological treatment while maintaining the concentration at 1.5 mg / L or less and the soluble nitrogen concentration at 3 mg / L or more.

また、前記有機性排水の処理方法において、前記反応槽は流動床式反応槽であり、前記反応槽のBOD容積負荷は1.5kg/m/day以上であることが好ましい。 Further, in the method for treating organic wastewater, it is preferable that the reaction tank is a fluidized bed type reaction tank, and the BOD volume load of the reaction tank is 1.5 kg / m 3 / day or more.

また、本開示は、担体を備える反応槽により、好気条件で有機性排水を生物処理する有機性排水の処理装置であって、前記反応槽内の溶解性リン濃度を0.5mg/L以下に維持し、且つ前記反応槽内の溶解性窒素濃度を3mg/L以上に維持して、前記生物処理を行うことを特徴とする。 Further, the present disclosure is a device for treating organic wastewater by biologically treating organic wastewater under aerobic conditions using a reaction tank provided with a carrier, and the concentration of soluble phosphorus in the reaction tank is 0.5 mg / L or less. It is characterized in that the biological treatment is carried out while maintaining the concentration at 3 mg / L or more in the reaction vessel.

また、前記有機性排水の処理装置において、前記反応槽は、直列2段以上の反応槽から構成され、直列2段以上の反応槽のうちの少なくとも1つの反応槽において、溶解性リン濃度を0.5mg/L以下に維持し、且つ溶解性窒素濃度を3mg/L以上に維持して、前記生物処理を行うことが好ましい。 Further, in the organic wastewater treatment apparatus, the reaction tank is composed of reaction tanks having two or more stages in series, and the soluble phosphorus concentration is set to 0 in at least one reaction tank among the reaction tanks having two or more stages in series. It is preferable to carry out the biological treatment while maintaining the concentration at 1.5 mg / L or less and the soluble nitrogen concentration at 3 mg / L or more.

また、前記有機性排水の処理装置において、前記反応槽は流動床式反応槽であり、前記反応槽のBOD容積負荷は1.5kg/m/day以上であることが好ましい。 Further, in the organic wastewater treatment apparatus, the reaction tank is preferably a fluidized bed type reaction tank, and the BOD volume load of the reaction tank is preferably 1.5 kg / m 3 / day or more.

本開示によれば、担体を用いて有機性排水を生物処理する有機性排水の処理方法及び処理装置において、余剰汚泥の発生量を抑え、且つBOD除去速度の大幅な低下を抑制することができる。 According to the present disclosure, in an organic wastewater treatment method and a treatment apparatus for biologically treating organic wastewater using a carrier, it is possible to suppress the amount of excess sludge generated and to suppress a significant decrease in the BOD removal rate. ..

本実施形態に係る有機性排水の処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the organic wastewater treatment apparatus which concerns on this embodiment. 本実施形態に係る有機性排水の処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of the structure of the organic wastewater treatment apparatus which concerns on this embodiment.

本開示の実施の形態について以下説明する。本実施形態は本開示を実施する一例であって、本開示は本実施形態に限定されるものではない。 Embodiments of the present disclosure will be described below. The present embodiment is an example of carrying out the present disclosure, and the present disclosure is not limited to the present embodiment.

図1は、本実施形態に係る有機性排水の処理装置の構成の一例を示す模式図である。図1に示す処理装置1は、原水槽10、反応槽12、処理水槽14、制御装置16、原水ポンプ18、検出器20a,20b、流入ライン22、処理水ライン24を備える。また、図1に示す処理装置1は、反応槽12に窒素源を供給する窒素源供給装置、反応槽12にリン源を供給するリン源供給装置、原水槽10に凝集剤を供給する凝集剤供給装置を備える。図1に示す窒素源供給装置は、塩化アンモニウム等の窒素源を収容する窒素源タンク26、窒素源添加ライン28、及び窒素源添加ライン28に設置される窒素源添加ポンプ30を備える。図1に示すリン源供給装置は、リン酸等のリン源を収容するリン源タンク32、リン源添加ライン34、及びリン源添加ライン34に設置されるリン源添加ポンプ36を備える。図1に示す凝集剤供給装置は、PACや塩化鉄等の凝集剤を収容する凝集剤タンク38、凝集剤添加ライン40、および凝集剤添加ライン40に設置される凝集剤添加ポンプ42を備える。 FIG. 1 is a schematic diagram showing an example of the configuration of the organic wastewater treatment apparatus according to the present embodiment. The treatment device 1 shown in FIG. 1 includes a raw water tank 10, a reaction tank 12, a treated water tank 14, a control device 16, a raw water pump 18, detectors 20a and 20b, an inflow line 22, and a treated water line 24. Further, the processing device 1 shown in FIG. 1 is a nitrogen source supply device that supplies a nitrogen source to the reaction tank 12, a phosphorus source supply device that supplies a phosphorus source to the reaction tank 12, and a flocculant that supplies a flocculant to the raw water tank 10. Equipped with a supply device. The nitrogen source supply device shown in FIG. 1 includes a nitrogen source tank 26 for accommodating a nitrogen source such as ammonium chloride, a nitrogen source addition line 28, and a nitrogen source addition pump 30 installed in the nitrogen source addition line 28. The phosphorus source supply device shown in FIG. 1 includes a phosphorus source tank 32 for accommodating a phosphorus source such as phosphoric acid, a phosphorus source addition line 34, and a phosphorus source addition pump 36 installed in the phosphorus source addition line 34. The coagulant supply device shown in FIG. 1 includes a coagulant tank 38 for accommodating a coagulant such as PAC and iron chloride, a coagulant addition line 40, and a coagulant addition pump 42 installed in the coagulant addition line 40.

原水槽10には凝集剤添加ライン40の一端が接続され、凝集剤タンク38には凝集剤添加ライン40の他端が接続されている。原水槽10の原水出口には流入ライン22の一端が接続され、反応槽12の入口には流入ライン22の他端が接続されている。流入ライン22には原水ポンプ18が設置されている。また、流入ライン22には窒素源添加ライン28の一端が接続され、窒素源タンク26には窒素源添加ライン28の他端が接続されている。また、流入ライン22には、リン源添加ライン34の一端が接続され、リン源タンク32にはリン源添加ライン34の他端が接続されている。反応槽12の出口には処理水ライン24の一端が接続され、処理水槽14の入口には処理水ライン24の他端が接続されている。制御装置16と、各ポンプ及び各検出器とはそれぞれ、例えば電気的に接続されている。 One end of the coagulant addition line 40 is connected to the raw water tank 10, and the other end of the coagulant addition line 40 is connected to the coagulant tank 38. One end of the inflow line 22 is connected to the raw water outlet of the raw water tank 10, and the other end of the inflow line 22 is connected to the inlet of the reaction tank 12. A raw water pump 18 is installed in the inflow line 22. Further, one end of the nitrogen source addition line 28 is connected to the inflow line 22, and the other end of the nitrogen source addition line 28 is connected to the nitrogen source tank 26. Further, one end of the phosphorus source addition line 34 is connected to the inflow line 22, and the other end of the phosphorus source addition line 34 is connected to the phosphorus source tank 32. One end of the treated water line 24 is connected to the outlet of the reaction tank 12, and the other end of the treated water line 24 is connected to the inlet of the treated water tank 14. The control device 16 and each pump and each detector are, for example, electrically connected to each other.

反応槽12内には、微生物を保持した担体44が充填されている。担体44は、特に限定されるものではないが、例えば、プラスチック製担体、スポンジ状担体、ゲル状担体等が挙げられる。 The reaction tank 12 is filled with a carrier 44 containing microorganisms. The carrier 44 is not particularly limited, and examples thereof include a plastic carrier, a sponge-like carrier, and a gel-like carrier.

反応槽12内の底部には、曝気装置46が設置されている。曝気装置46には、例えば、不図示のブロアが接続され、ブロアから供給される空気が、曝気装置46から反応槽12内に供給される。 An aeration device 46 is installed at the bottom of the reaction vessel 12. For example, a blower (not shown) is connected to the aeration device 46, and the air supplied from the blower is supplied from the aeration device 46 into the reaction tank 12.

反応槽12には、検出器20a,20bが設置されている。検出器20aは、反応槽12内の溶解性窒素濃度を検出する装置である。また、検出器20bは、反応槽12内の溶解性リン濃度を検出する装置である。検出器20a,20bは、処理水槽14又は処理水ライン24に設置されてもよい。そして、検出器20a,20bにより測定された処理水の溶解性窒素濃度や溶解性リン濃度を反応槽12内の溶解性窒素濃度や溶解性リン濃度としてもよい。なお、溶解性窒素は、例えば、窒素源供給装置から供給された窒素源由来の窒素、排水中に当初から含まれていたアンモニア態窒素、硝酸態窒素、亜硝酸態窒素等である。また、溶解性リンは、例えば、リン源供給装置から供給されたリン源由来のリン、排水中に当初から含まれていたリン化合物等である。 Detectors 20a and 20b are installed in the reaction tank 12. The detector 20a is a device for detecting the concentration of soluble nitrogen in the reaction vessel 12. Further, the detector 20b is a device for detecting the concentration of soluble phosphorus in the reaction vessel 12. The detectors 20a and 20b may be installed in the treated water tank 14 or the treated water line 24. Then, the soluble nitrogen concentration and the soluble phosphorus concentration of the treated water measured by the detectors 20a and 20b may be used as the soluble nitrogen concentration and the soluble phosphorus concentration in the reaction vessel 12. The soluble nitrogen is, for example, nitrogen derived from a nitrogen source supplied from a nitrogen source supply device, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, etc. contained in the wastewater from the beginning. Further, the soluble phosphorus is, for example, phosphorus derived from a phosphorus source supplied from a phosphorus source supply device, a phosphorus compound contained in wastewater from the beginning, and the like.

制御装置16は、例えば、プログラムを演算するCPU、プログラムや演算結果を記憶するROMおよびRAMから構成されるマイクロコンピュータと電子回路等で構成され、ROM等に記憶された所定のプログラムを読み出し、当該プログラムを実行して、処理装置1の動作を制御する。例えば、制御装置16は、原水ポンプ18の稼働・停止を制御する。また、例えば、検出器20aにより検出された溶解性窒素濃度等に基づいて、窒素源添加ポンプ30の稼働・停止を制御する。また、例えば、制御装置16は、検出器20bにより検出された溶解性リン濃度等に基づいて、リン源添加ポンプ36や凝集剤添加ポンプ42の稼働・停止を制御する。 The control device 16 is composed of, for example, a CPU for calculating a program, a microcomputer composed of a ROM and a RAM for storing the program and the calculation result, an electronic circuit, and the like, and reads out a predetermined program stored in the ROM or the like. The program is executed to control the operation of the processing device 1. For example, the control device 16 controls the operation / stop of the raw water pump 18. Further, for example, the operation / stop of the nitrogen source addition pump 30 is controlled based on the soluble nitrogen concentration or the like detected by the detector 20a. Further, for example, the control device 16 controls the operation / stop of the phosphorus source addition pump 36 and the flocculant addition pump 42 based on the soluble phosphorus concentration or the like detected by the detector 20b.

次に、図1に示す処理装置1の動作について説明する。 Next, the operation of the processing device 1 shown in FIG. 1 will be described.

制御装置16により、原水ポンプ18が稼働されると、原水槽10内の有機性排水が流入ライン22を通り、反応槽12に供給される。そして、曝気装置46から空気が反応槽12に供給され、好気条件で、反応槽12内で有機性排水中の有機物が、担体44に付着した微生物等により生物処理される(生物処理工程)。反応槽12で処理された処理水は、処理水ライン24を通り処理水槽14に供給される。 When the raw water pump 18 is operated by the control device 16, the organic wastewater in the raw water tank 10 passes through the inflow line 22 and is supplied to the reaction tank 12. Then, air is supplied to the reaction tank 12 from the aeration device 46, and the organic matter in the organic waste water in the reaction tank 12 is biologically treated by microorganisms and the like attached to the carrier 44 under aerobic conditions (biological treatment step). .. The treated water treated in the reaction tank 12 is supplied to the treated water tank 14 through the treated water line 24.

ところで、有機性排水中のリンや窒素は、反応槽12内の微生物の栄養源として、微生物の細胞内に取り込まれる。したがって、反応槽12内の微生物の増殖、ひいては有機物の分解を促進する等の点で、有機性排水にリン源や窒素源を添加することが好ましい。ただし、本発明者らが鋭意検討したところ、反応槽12内の溶解性リン濃度が高い状態であると、有機物の分解に伴う余剰汚泥の発生量が増加することを見出した。そこで、更なる検討を重ねたところ、反応槽12内の溶解性リン濃度を枯渇状態、具体的には0.5mg/L以下に維持すること、好ましくは0.1mg/L以下に維持することで、余剰汚泥の発生量を抑えることができることを見出した。一方、反応槽12内の溶解性窒素濃度が枯渇状態であると、BOD除去速度が大幅に低下してしまう。したがって、反応槽12内の溶解性窒素濃度は、残存状態、具体的には3mg/L以上に維持すること、好ましくは5mg/L以上に維持することで、BOD除去速度の大幅な低下を抑制できる。 By the way, phosphorus and nitrogen in the organic waste water are taken into the cells of the microorganism as a nutrient source for the microorganism in the reaction tank 12. Therefore, it is preferable to add a phosphorus source or a nitrogen source to the organic wastewater from the viewpoint of promoting the growth of microorganisms in the reaction vessel 12 and the decomposition of organic substances. However, as a result of diligent studies by the present inventors, it has been found that when the concentration of soluble phosphorus in the reaction vessel 12 is high, the amount of excess sludge generated due to the decomposition of organic matter increases. Therefore, as a result of further studies, the concentration of soluble phosphorus in the reaction vessel 12 should be maintained in a depleted state, specifically, 0.5 mg / L or less, preferably 0.1 mg / L or less. Therefore, it was found that the amount of excess sludge generated can be suppressed. On the other hand, if the concentration of soluble nitrogen in the reaction vessel 12 is depleted, the BOD removal rate will be significantly reduced. Therefore, the concentration of soluble nitrogen in the reaction vessel 12 is maintained in a residual state, specifically, 3 mg / L or more, preferably 5 mg / L or more, thereby suppressing a significant decrease in the BOD removal rate. can.

そこで、図1に示す処理装置1では、制御装置16により、窒素源添加ポンプ30及びリン源添加ポンプ36を稼働して、窒素源及びリン源を反応槽12内に導入してもよいが、制御装置16は、検出器20a,20bにより測定された溶解性リン濃度及び溶解性窒素濃度に基づいて、反応槽12内の溶解性リン濃度が0.5mg/L以下、溶解性窒素濃度が3mg/L以上に維持されるように、窒素源及びリン源の供給量を制御する。 Therefore, in the processing device 1 shown in FIG. 1, the nitrogen source addition pump 30 and the phosphorus source addition pump 36 may be operated by the control device 16 to introduce the nitrogen source and the phosphorus source into the reaction tank 12. The control device 16 has a soluble phosphorus concentration of 0.5 mg / L or less and a soluble nitrogen concentration of 3 mg in the reaction vessel 12 based on the soluble phosphorus concentration and the soluble nitrogen concentration measured by the detectors 20a and 20b. Control the supply of nitrogen and phosphorus sources so that they are maintained above / L.

また、原水槽10に導入された有機性排水中のリン濃度が高く、検出器20bにより測定された溶解性リン濃度が0.5mg/Lを超えるような場合には、制御装置16は、凝集剤添加ポンプ42を稼働させ、凝集剤を原水槽10に添加して、有機性排水の溶解性リン濃度を低下させることで、反応槽12内の溶解性リン濃度を0.5mg/L以下に維持する。また、原水槽10に導入された有機性排水中のリン濃度が低く、有機性排水にリン源を供給しなくても、検出器20bにより測定された溶解性リン濃度が0.5mg/L以下となる場合であっても、反応槽12内の溶解性リン濃度が0.5mg/Lを超えない範囲において、有機性排水にリン源を供給してもよい。 Further, when the phosphorus concentration in the organic wastewater introduced into the raw water tank 10 is high and the soluble phosphorus concentration measured by the detector 20b exceeds 0.5 mg / L, the control device 16 aggregates. By operating the agent addition pump 42 and adding the coagulant to the raw water tank 10 to reduce the soluble phosphorus concentration in the organic wastewater, the soluble phosphorus concentration in the reaction tank 12 is reduced to 0.5 mg / L or less. maintain. Further, the phosphorus concentration in the organic wastewater introduced into the raw water tank 10 is low, and the soluble phosphorus concentration measured by the detector 20b is 0.5 mg / L or less even if the phosphorus source is not supplied to the organic wastewater. Even in this case, the phosphorus source may be supplied to the organic wastewater as long as the concentration of soluble phosphorus in the reaction vessel 12 does not exceed 0.5 mg / L.

また、原水槽10に導入された有機性排水中の窒素濃度が高く、有機性排水に窒素源を供給しなくても、検出器20aにより測定された溶解性窒素濃度が3mg/L以上となる場合であっても、有機性排水の窒素源を供給してもよい。ただし、放流基準等を考慮すれば、反応槽12内の溶解性窒素濃度の上限は20mg/L以下に維持することが好ましく、10mg/L以下に維持することがより好ましい。 Further, the nitrogen concentration in the organic wastewater introduced into the raw water tank 10 is high, and the soluble nitrogen concentration measured by the detector 20a is 3 mg / L or more even if the nitrogen source is not supplied to the organic wastewater. Even in some cases, a nitrogen source of organic wastewater may be supplied. However, considering the discharge standard and the like, the upper limit of the soluble nitrogen concentration in the reaction vessel 12 is preferably maintained at 20 mg / L or less, and more preferably maintained at 10 mg / L or less.

反応槽12内の溶解性リン濃度及び溶解性窒素濃度は、検出器によるオンライン分析が望ましいが、検出器を設置しない場合には、作業者によるマニュアル分析でもよい。 The concentration of soluble phosphorus and the concentration of soluble nitrogen in the reaction vessel 12 are preferably analyzed online by a detector, but if a detector is not installed, manual analysis by an operator may be used.

また、例えば、検出器20a,20bを原水槽10に設置し、有機性排水の溶解性リン濃度及び溶解性窒素濃度から、反応槽12内の溶解性リン濃度及び溶解性窒素濃度を推定してもよい。この場合、例えば、予め実験等により、有機性排水の溶解性リン濃度と反応槽12内の溶解性リン濃度の相関を示すマップ(或いは式やテーブル等)及び有機性排水の溶解性窒素濃度と反応槽12内の溶解性窒素濃度の相関を示すマップ(或いは式やテーブル等)を作成し、これを制御装置16に記憶させる。そして、制御装置16は、検出器20a,20bにより測定された有機性排水の溶解性リン濃度及び溶解性窒素濃度を上記マップ等に当てはめて、反応槽12内の溶解性リン濃度及び溶解性窒素濃度を推定する。制御装置16は、推定した反応槽12内の溶解性リン濃度が0.5mg/Lを超える場合には、凝集剤添加ポンプ42を稼働させ、凝集剤を原水槽10に添加し、0.5mg/L以下の場合には、リン源を添加しない又は反応槽12内の溶解性リン濃度が0.5mg/Lを超えない範囲においてリン源が添加されるように、リン源添加ポンプ36を稼働させる。また、制御装置16は、推定した反応槽12内の溶解性窒素濃度が3mg/L未満の場合には、窒素源添加ポンプ30を稼働させ、反応槽12内に窒素源を供給し、3mg/Lを超える場合には、窒素源を添加しない又は所定量の窒素源が添加されるように、窒素源添加ポンプ30を稼働させる。 Further, for example, the detectors 20a and 20b are installed in the raw water tank 10, and the soluble phosphorus concentration and the soluble nitrogen concentration in the reaction tank 12 are estimated from the soluble phosphorus concentration and the soluble nitrogen concentration of the organic wastewater. May be good. In this case, for example, a map (or formula, table, etc.) showing the correlation between the soluble phosphorus concentration in the organic wastewater and the soluble phosphorus concentration in the reaction vessel 12 and the soluble nitrogen concentration in the organic wastewater are obtained by experiments or the like in advance. A map (or formula, table, etc.) showing the correlation of the soluble nitrogen concentration in the reaction vessel 12 is created and stored in the control device 16. Then, the control device 16 applies the soluble phosphorus concentration and the soluble nitrogen concentration of the organic wastewater measured by the detectors 20a and 20b to the above map and the like, and applies the soluble phosphorus concentration and the soluble nitrogen in the reaction tank 12 to the above map and the like. Estimate the concentration. When the estimated soluble phosphorus concentration in the reaction tank 12 exceeds 0.5 mg / L, the control device 16 operates the flocculant addition pump 42, adds the flocculant to the raw water tank 10, and 0.5 mg. In the case of / L or less, the phosphorus source addition pump 36 is operated so that the phosphorus source is not added or the phosphorus source is added within the range where the soluble phosphorus concentration in the reaction vessel 12 does not exceed 0.5 mg / L. Let me. When the estimated soluble nitrogen concentration in the reaction vessel 12 is less than 3 mg / L, the control device 16 operates the nitrogen source addition pump 30 to supply the nitrogen source into the reaction vessel 12 at 3 mg / L. If it exceeds L, the nitrogen source addition pump 30 is operated so that no nitrogen source is added or a predetermined amount of nitrogen source is added.

有機性排水の溶解性リン濃度を低下させる方法は、有機性排水に凝集剤を添加することが望ましいが、例えば、処理水槽14内の処理水を原水槽10に供給し、有機性排水を希釈する方法でもよい。 As a method for reducing the soluble phosphorus concentration of the organic wastewater, it is desirable to add a flocculant to the organic wastewater. For example, the treated water in the treated water tank 14 is supplied to the raw water tank 10 to dilute the organic wastewater. It may be a method of doing.

図2は、本実施形態に係る有機性排水の処理装置の構成の他の一例を示す模式図である。図2の処理装置2において、図1の処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図2の処理装置2は、第1反応槽12a及び第2反応槽12bを有する反応槽群を備える。反応槽群は、第1反応槽12aを前段とし、第2反応槽12bを後段として、第1反応槽12a及び第2反応槽12bを直列配置した構成となっている。なお、反応槽群は、反応槽を3段以上に直列配置した構成でもよい。 FIG. 2 is a schematic diagram showing another example of the configuration of the organic wastewater treatment apparatus according to the present embodiment. In the processing device 2 of FIG. 2, the same components as those of the processing device 1 of FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The processing apparatus 2 of FIG. 2 includes a reaction tank group having a first reaction tank 12a and a second reaction tank 12b. The reaction tank group has a configuration in which the first reaction tank 12a and the second reaction tank 12b are arranged in series with the first reaction tank 12a as the first stage and the second reaction tank 12b as the second stage. The reaction tank group may be configured such that the reaction tanks are arranged in series in three or more stages.

原水槽10の原水出口には流入ライン22aの一端が接続され、第1反応槽12aの入口には流入ライン22aの他端が接続されている。第1反応槽12aの出口には流入ライン22bの一端が接続され、第2反応槽12bの入口には流入ライン22bの他端が接続されている。第2反応槽12bの出口には処理水ライン24の一端が接続され、処理水槽14の入口には処理水ライン24の他端が接続されている。また、流入ライン22aには、窒素源添加ライン28aの一端が接続され、窒素源タンク26aには窒素源添加ライン28aの他端が接続されている。また、流入ライン22aには、リン源添加ライン34aの一端が接続され、リン源タンク32aにはリン源添加ライン34aの他端が接続されている。また、流入ライン22bには、窒素源添加ライン28bの一端が接続され、窒素源タンク26bには窒素源添加ライン28bの他端が接続されている。また、流入ライン22bには、リン源添加ライン34bの一端が接続され、リン源タンク32bにはリン源添加ライン34bの他端が接続されている。 One end of the inflow line 22a is connected to the raw water outlet of the raw water tank 10, and the other end of the inflow line 22a is connected to the inlet of the first reaction tank 12a. One end of the inflow line 22b is connected to the outlet of the first reaction tank 12a, and the other end of the inflow line 22b is connected to the inlet of the second reaction tank 12b. One end of the treated water line 24 is connected to the outlet of the second reaction tank 12b, and the other end of the treated water line 24 is connected to the inlet of the treated water tank 14. Further, one end of the nitrogen source addition line 28a is connected to the inflow line 22a, and the other end of the nitrogen source addition line 28a is connected to the nitrogen source tank 26a. Further, one end of the phosphorus source addition line 34a is connected to the inflow line 22a, and the other end of the phosphorus source addition line 34a is connected to the phosphorus source tank 32a. Further, one end of the nitrogen source addition line 28b is connected to the inflow line 22b, and the other end of the nitrogen source addition line 28b is connected to the nitrogen source tank 26b. Further, one end of the phosphorus source addition line 34b is connected to the inflow line 22b, and the other end of the phosphorus source addition line 34b is connected to the phosphorus source tank 32b.

次に、図2に示す処理装置2の動作について説明する。 Next, the operation of the processing device 2 shown in FIG. 2 will be described.

制御装置16により、原水ポンプ18が稼働され、原水槽10内の有機性排水が流入ライン22aを通り、第1反応槽12aに供給される。そして、曝気装置46から空気が第1反応槽12aに供給され、好気条件で、第1反応槽12a内で有機性排水中の有機物が、担体44に付着した微生物等により生物処理される(第1生物処理工程)。第1反応槽12aで処理された第1処理水は、流入ライン22bを通り、第2反応槽12bに供給される。そして、曝気装置46から空気が第2反応槽12bに供給され、好気条件で、第2反応槽12b内で第1処理水中の有機物が、担体44に付着した微生物等により生物処理される(第2生物処理工程)。第2反応槽12bで処理された処理水は、処理水ライン24を通り処理水槽14に供給される。 The control device 16 operates the raw water pump 18, and the organic wastewater in the raw water tank 10 passes through the inflow line 22a and is supplied to the first reaction tank 12a. Then, air is supplied from the aeration device 46 to the first reaction tank 12a, and the organic matter in the organic wastewater in the first reaction tank 12a is biologically treated by microorganisms and the like attached to the carrier 44 under aerobic conditions (the organic matter in the first reaction tank 12a). First biological treatment step). The first treated water treated in the first reaction tank 12a passes through the inflow line 22b and is supplied to the second reaction tank 12b. Then, air is supplied from the aeration device 46 to the second reaction tank 12b, and the organic matter in the first treatment water is biologically treated in the second reaction tank 12b by microorganisms and the like attached to the carrier 44 under aerobic conditions ( Second biological treatment step). The treated water treated in the second reaction tank 12b is supplied to the treated water tank 14 through the treated water line 24.

ここで、反応槽が2段以上で構成されている場合には、そのうちの少なくとも1つの反応槽において、溶解性リン濃度を枯渇状態、具体的には0.5mg/L以下に維持すること、好ましくは0.1mg/L以下に維持すること、且つ溶解性窒素濃度を残存状態、具体的には3mg/L以上に維持すること、好ましくは5mg/L以上に維持すればよい。これにより、余剰汚泥の発生量を抑え、BOD除去速度の大幅な低下を抑制できる。図2に示す処理装置2では、例えば、制御装置16は、第1反応槽12aに設置された検出器20a,20bにより測定された溶解性リン濃度及び溶解性窒素濃度に基づいて、第1反応槽12a内の溶解性リン濃度が0.5mg/L以下、溶解性窒素濃度が3mg/L以上に維持されるように、窒素源添加ポンプ30a、リン源添加ポンプ36a(又は凝集剤添加ポンプ42)の稼働を制御する。第2反応槽12bも同様に、第2反応槽12bに設置された検出器20a,20bにより測定された溶解性リン濃度及び溶解性窒素濃度に基づいて、第2反応槽12b内の溶解性リン濃度が0.5mg/L以下、溶解性窒素濃度が3mg/L以上に維持されるように、窒素源添加ポンプ30b、リン源添加ポンプ36b(凝集剤添加ポンプ42)の稼働を制御してもよい。なお、反応槽が2段以上で構成されている場合には、1段目の反応槽で溶解性リンを枯渇状態とし、溶解性窒素を残存状態にすることが好ましい。この場合、1段目の反応槽で有機物の大半が除去されて、2段目の反応槽内で除去する有機物は少なくなるため、2段目以降の反応槽でリン残存状態の制御を行わなくても、システム全体での余剰汚泥量を抑えることができる。 Here, when the reaction tank is composed of two or more stages, the soluble phosphorus concentration should be maintained in a depleted state, specifically, 0.5 mg / L or less in at least one of the reaction tanks. It may be preferably maintained at 0.1 mg / L or less, and the soluble nitrogen concentration may be maintained in a residual state, specifically, 3 mg / L or more, preferably 5 mg / L or more. As a result, the amount of excess sludge generated can be suppressed, and a significant decrease in the BOD removal rate can be suppressed. In the processing device 2 shown in FIG. 2, for example, the control device 16 makes a first reaction based on the soluble phosphorus concentration and the soluble nitrogen concentration measured by the detectors 20a and 20b installed in the first reaction tank 12a. The nitrogen source addition pump 30a and the phosphorus source addition pump 36a (or the flocculant addition pump 42) are maintained so that the soluble phosphorus concentration in the tank 12a is maintained at 0.5 mg / L or less and the soluble nitrogen concentration is maintained at 3 mg / L or more. ) Is controlled. Similarly, the second reaction tank 12b also has the soluble phosphorus in the second reaction tank 12b based on the soluble phosphorus concentration and the soluble nitrogen concentration measured by the detectors 20a and 20b installed in the second reaction tank 12b. Even if the operation of the nitrogen source addition pump 30b and the phosphorus source addition pump 36b (aggregator addition pump 42) is controlled so that the concentration is maintained at 0.5 mg / L or less and the soluble nitrogen concentration is maintained at 3 mg / L or more. good. When the reaction tank is composed of two or more stages, it is preferable to deplete the soluble phosphorus and leave the soluble nitrogen in the residual state in the first stage reaction tank. In this case, most of the organic matter is removed in the first-stage reaction tank, and less organic matter is removed in the second-stage reaction tank. Therefore, the phosphorus residual state is not controlled in the second-stage and subsequent reaction tanks. However, the amount of excess sludge in the entire system can be suppressed.

以下、本実施形態の処理装置の運転条件等を説明する。 Hereinafter, the operating conditions and the like of the processing apparatus of this embodiment will be described.

反応槽内のpHは、微生物の育成等の点から、例えば、弱酸性~弱アルカリ性に調整されることが好ましく、pH6~8の範囲に調整されることがより好ましい。 The pH in the reaction vessel is preferably adjusted to, for example, weakly acidic to weakly alkaline, and more preferably adjusted to the range of pH 6 to 8 from the viewpoint of growing microorganisms.

反応槽内の溶存酸素濃度は、例えば、0.5 mg/L以上であることが好ましく、1 mg/L以上であることがより好ましい。 The dissolved oxygen concentration in the reaction vessel is, for example, preferably 0.5 mg / L or more, and more preferably 1 mg / L or more.

反応槽の後段には、固液分離装置を設置してもよい。特に、処理水を河川放流する場合には、反応槽の後段に固液分離装置を設置することが好ましい。固液分離装置は、従来公知の装置等であり、例えば、沈澱池、加圧浮上装置、除濁膜装置、MBR等が挙げられる。 A solid-liquid separation device may be installed in the subsequent stage of the reaction vessel. In particular, when the treated water is discharged into a river, it is preferable to install a solid-liquid separation device at the subsequent stage of the reaction tank. The solid-liquid separation device is a conventionally known device or the like, and examples thereof include a settling pond, a pressurized flotation device, a turbid film device, and an MBR.

反応槽は、担体が流動しない固定床式、担体が流動する流動床式のいずれでもよい。流動床式は原水のショートパスがおきにくい、メンテナンス性に優れる、導入コストが低い等といったメリットがある。 The reaction vessel may be either a fixed bed type in which the carrier does not flow or a fluidized bed type in which the carrier flows. The fluidized bed type has merits such as the fact that a short pass of raw water is difficult to occur, the maintenance is excellent, and the introduction cost is low.

また、反応槽のBOD容積負荷(反応槽群の場合は全反応槽のBOD容積負荷)は、1.5kg/m/day以上が好ましく、2.0kg/m/day以上がより好ましい。 Further, the BOD volume load of the reaction tank (in the case of the reaction tank group, the BOD volume load of all the reaction tanks) is preferably 1.5 kg / m 3 / day or more, and more preferably 2.0 kg / m 3 / day or more.

窒素源としては、窒素化合物であれば特に制限はないが、例えば、塩化アンモニウム、硫酸アンモニウム、リン酸水素二アンモニウム、尿素等が挙げられる。工場で発生した余剰の廃硫酸アンモニウム等も適用可能である。 The nitrogen source is not particularly limited as long as it is a nitrogen compound, and examples thereof include ammonium chloride, ammonium sulfate, diammonium hydrogen phosphate, and urea. Excess ammonium sulfate generated in the factory can also be applied.

リン源としては、リン酸及びリン化合物であれば特に制限はないが、例えば、リン酸二カリウム,リン酸二ナトリウム,リン酸一カリウム,リン酸一ナトリウム,リン酸アンモニウム等が挙げられる。 The phosphorus source is not particularly limited as long as it is phosphoric acid or a phosphorus compound, and examples thereof include dipotassium phosphate, disodium phosphate, monopotassium phosphate, monosodium phosphate, and ammonium phosphate.

窒素源やリン源以外の栄養塩及び微量元素を原水中に添加してもよく、例えば、カルシウム、マグネシウム、鉄、銅、亜鉛、マンガン等が挙げられる。 Nutrients and trace elements other than nitrogen sources and phosphorus sources may be added to the raw water, and examples thereof include calcium, magnesium, iron, copper, zinc, and manganese.

担体は、例えば、プラスチック製担体、スポンジ状担体、ゲル状担体等が挙げられるが、これらの中では、コストや耐久性の点で、スポンジ状担体が好ましい。 Examples of the carrier include a plastic carrier, a sponge-like carrier, a gel-like carrier, and the like, and among these, a sponge-like carrier is preferable in terms of cost and durability.

担体のセル数(細孔の数)は、生物処理の処理速度を向上させる点で、好ましくは30個/25mm以上であり、より好ましくは30個/25mm以上、100個/25mm以下であり、さらに好ましくは40個/25mm以上、100個/25mm以下であり、特に好ましくは46個/25mm以上、100個/25mm以下である。担体のセル数は、例えば、JIS K 65400-1(附属書1)に基づいて求められる。 The number of cells (number of pores) of the carrier is preferably 30 cells / 25 mm or more, more preferably 30 cells / 25 mm or more, and 100 cells / 25 mm or less in terms of improving the processing speed of biological treatment. More preferably, it is 40 pieces / 25 mm or more and 100 pieces / 25 mm or less, and particularly preferably 46 pieces / 25 mm or more and 100 pieces / 25 mm or less. The number of cells of the carrier is determined based on, for example, JIS K 6540-1 (Annex 1).

担体の表面積は、生物処理の処理速度を向上させる点で、好ましくは3000m/m以上であり、より好ましくは3500m/m以上であり、さらに好ましくは4000m/m以上であり、特に好ましくは4500m/m以上である。担体の表面積の上限は、セル数や担体の大きさ等を考慮して決めればよく、特に制限はない。 The surface area of the carrier is preferably 3000 m 2 / m 3 or more, more preferably 3500 m 2 / m 3 or more, and further preferably 4000 m 2 / m 3 or more in terms of improving the treatment speed of biological treatment. Particularly preferably, it is 4500 m 2 / m 3 or more. The upper limit of the surface area of the carrier may be determined in consideration of the number of cells, the size of the carrier, and the like, and is not particularly limited.

担体の生物付着量は、生物処理の処理速度を向上させる点で、500mg/L以上であることが好ましく、1000mg/L以上であることがより好ましい。担体の生物付着量は多ければ多い方がよく、特に上限はないが、上限は、例えば、5000mg/Lである。 The biofouling amount of the carrier is preferably 500 mg / L or more, and more preferably 1000 mg / L or more, in terms of improving the treatment speed of the biological treatment. The larger the amount of biofouling of the carrier, the better, and there is no particular upper limit, but the upper limit is, for example, 5000 mg / L.

担体の形状は、特に限定されず、立方体状等の四角体状、粒状、球状、ペレット状、円筒状、繊維状、フィルム状等が挙げられる。 The shape of the carrier is not particularly limited, and examples thereof include a square shape such as a cube, a granular shape, a spherical shape, a pellet shape, a cylindrical shape, a fibrous shape, and a film shape.

担体の大きさは、特に限定されず、反応槽の大きさや担体の形状等に応じて、適宜設定されればよく、例えば、立方体状であれば、一辺の長さが3~20mmの範囲が好ましく、球状であれば、径が0.5~20mm程度の範囲が好ましい。担体の大きさは、ノギスまたはマイクロスコープ等を用いて測定することができる。 The size of the carrier is not particularly limited and may be appropriately set according to the size of the reaction vessel, the shape of the carrier, etc. For example, in the case of a cube, the length of one side is in the range of 3 to 20 mm. If it is spherical, the diameter is preferably in the range of about 0.5 to 20 mm. The size of the carrier can be measured using a caliper, a microscope, or the like.

担体の比重は、反応槽内部で流動状態を形成するために、少なくとも1.0より大きく、真比重として、1.1以上、または見かけ比重として、1.01以上のものが好ましい。 The specific gravity of the carrier is preferably at least 1.0 and more, preferably 1.1 or more as a true specific gravity, or 1.01 or more as an apparent specific gravity in order to form a fluid state inside the reaction vessel.

反応槽への担体の投入量は、反応槽の容積に対して10~70%の範囲が好ましい。担体の投入量が反応槽の容積に対して10%未満であると反応速度が小さくなる場合があり、70%を超えると担体が流動しにくくなり、長期運転において汚泥による閉塞等で原水がショートパスし処理水質が悪くなる場合がある。 The amount of the carrier charged into the reaction vessel is preferably in the range of 10 to 70% with respect to the volume of the reaction vessel. If the amount of carrier charged is less than 10% of the volume of the reaction tank, the reaction rate may decrease, and if it exceeds 70%, the carrier will not flow easily, and the raw water will be short-circuited due to clogging due to sludge during long-term operation. It may pass and the treated water quality may deteriorate.

以下、実施例および比較例を挙げ、本開示をより具体的に詳細に説明するが、本開示は、以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail with reference to Examples and Comparative Examples, but the present disclosure is not limited to the following Examples.

下記に示す試験条件で、単一の反応槽に、イソプロピルアルコール含有排水を通水し、生物処理を行った。 Under the test conditions shown below, isopropyl alcohol-containing wastewater was passed through a single reaction vessel for biological treatment.

<試験条件>
反応槽の容積:2L
担体:疎水性ポリウレタン製のスポンジ状担体
担体充填率:嵩体積として20%充填
滞留時間:6時間
イソプロピルアルコール含有排水:BODが約800mg/L、Nが2mg/L以下、Pが0.1mg/L以下
BOD容積負荷:約3.2kg/m/day
水温:約20℃
槽内DO:2mg/L以上
槽内pH:6.5~8.0
<Test conditions>
Reaction tank volume: 2L
Carrier: Sponge-like carrier made of hydrophobic polyurethane Carrier filling rate: 20% as bulk volume Dwelling time: 6 hours Isopropyl alcohol-containing wastewater: BOD is about 800 mg / L, N is 2 mg / L or less, P is 0.1 mg / L or less BOD volumetric load: Approximately 3.2 kg / m 3 / day
Water temperature: Approximately 20 ° C
In-tank DO: 2 mg / L or more In-tank pH: 6.5-8.0

<比較例1>
イソプロピルアルコール含有排水に塩化アンモニウムとリン酸を添加し、N濃度54mg/L、P濃度9.6mg/Lとして、反応槽へ流入させ、生物処理を行ったところ、反応槽内の溶解性窒素濃度は19mg/L、溶解性リン濃度は4.4mg/Lとなった。その結果、除去BODあたりの汚泥生成率は31%、BOD除去速度は2.8kg/m/dayであった。
<Comparative Example 1>
Ammonium chloride and phosphoric acid were added to the isopropyl alcohol-containing wastewater, and the N concentration was 54 mg / L and the P concentration was 9.6 mg / L. Was 19 mg / L, and the soluble phosphorus concentration was 4.4 mg / L. As a result, the sludge generation rate per removed BOD was 31%, and the BOD removal rate was 2.8 kg / m 3 / day.

<実施例1>
イソプロピルアルコール含有排水に塩化アンモニウムを添加し、N濃度36mg/L、P濃度0.012mg/Lとして、反応槽へ流入させ、生物処理を行ったところ、反応槽内の溶解性窒素濃度は34mg/Lで窒素残存状態となり、溶解性リン濃度は0.005mg/Lでリン枯渇状態となった。その結果、除去BODあたりの汚泥生成率は16%、BOD除去速度は2.0kg/m/dayであった。
<Example 1>
Ammonium chloride was added to the isopropyl alcohol-containing wastewater, and the N concentration was 36 mg / L and the P concentration was 0.012 mg / L. At L, nitrogen remained, and at a soluble phosphorus concentration of 0.005 mg / L, phosphorus was depleted. As a result, the sludge generation rate per removed BOD was 16%, and the BOD removal rate was 2.0 kg / m 3 / day.

<実施例2>
イソプロピルアルコール含有排水に塩化アンモニウムとリン酸を添加し、N濃度37mg/L、P濃度2.6mg/Lとして、反応槽へ流入させ、生物処理を行ったところ、反応槽内の溶解性窒素濃度は23mg/Lで窒素残存状態となり、溶解性リン濃度は0.062mg/Lでリン枯渇状態となった。その結果、除去BODあたりの汚泥生成率は20%、BOD除去速度は2.5kg/m/dayであった。
<Example 2>
Ammonium chloride and phosphoric acid were added to the isopropyl alcohol-containing wastewater, and the N concentration was 37 mg / L and the P concentration was 2.6 mg / L. At 23 mg / L, nitrogen remained, and at a soluble phosphorus concentration of 0.062 mg / L, phosphorus was depleted. As a result, the sludge generation rate per removed BOD was 20%, and the BOD removal rate was 2.5 kg / m 3 / day.

<実施例3>
イソプロピルアルコール含有排水に塩化アンモニウムとリン酸を添加し、N濃度14mg/L、P濃度1.3mg/Lとして、反応槽へ流入させ、生物処理を行ったところ、反応槽内の溶解性窒素濃度は3.5mg/Lで窒素残存状態となり、溶解性リン濃度は0.056mg/Lでリン枯渇状態となった。その結果、除去BODあたりの汚泥生成率は20%、BOD除去速度は2.0kg/m/dayであった。
<Example 3>
Ammonium chloride and phosphoric acid were added to the isopropyl alcohol-containing wastewater, and the N concentration was 14 mg / L and the P concentration was 1.3 mg / L. At 3.5 mg / L, nitrogen remained, and at a soluble phosphorus concentration of 0.056 mg / L, phosphorus was depleted. As a result, the sludge generation rate per removed BOD was 20%, and the BOD removal rate was 2.0 kg / m 3 / day.

<比較例2>
イソプロピルアルコール含有排水にリン酸を添加し、N濃度1.4mg/L、P濃度6.7mg/Lとして、反応槽へ流入させ、生物処理を行ったところ、反応槽内の溶解性窒素濃度は1.6mg/Lで窒素枯渇状態となり、溶解性リン濃度は6.5mg/Lでリン残存状態となった。その結果、除去BODあたりの汚泥生成率は29%、BOD除去速度は1.3kg/m/dayであった。
<Comparative Example 2>
Phosphorus was added to the isopropyl alcohol-containing wastewater, and the N concentration was 1.4 mg / L and the P concentration was 6.7 mg / L. At 1.6 mg / L, nitrogen was depleted, and at a soluble phosphorus concentration of 6.5 mg / L, phosphorus remained. As a result, the sludge generation rate per removed BOD was 29%, and the BOD removal rate was 1.3 kg / m 3 / day.

実施例及び比較例の結果から、反応槽内の溶解性リン濃度を枯渇状態とし、反応槽内の溶解性窒素濃度を残存状態とすることで、余剰汚泥の発生量を抑え、BOD除去速度の大幅な低下を抑制することができると言える。 From the results of Examples and Comparative Examples, by depleting the soluble phosphorus concentration in the reaction vessel and leaving the soluble nitrogen concentration in the reaction vessel in the residual state, the amount of excess sludge generated can be suppressed and the BOD removal rate can be increased. It can be said that a significant decrease can be suppressed.

1,2 処理装置、10 原水槽、12 反応槽、12a 第1反応槽、12b 第2反応槽、14 処理水槽、16 制御装置、18 原水ポンプ、20a,20b 検出器、22,22a,22b 流入ライン、24 処理水ライン、26,26a,26b 窒素源タンク、28,28a,28b 窒素源添加ライン、30,30a,30b 窒素源添加ポンプ、32,32a,32b リン源タンク、34,34a,34b リン源添加ライン、36,36a,36b リン源添加ポンプ、38 凝集剤タンク、40 凝集剤添加ライン、42 凝集剤添加ポンプ、44 担体、46 曝気装置。
1,2 Treatment equipment, 10 Raw water tank, 12 Reaction tank, 12a 1st reaction tank, 12b 2nd reaction tank, 14 Treatment water tank, 16 Control device, 18 Raw water pump, 20a, 20b detector, 22, 22a, 22b Inflow Line, 24 treated water line, 26,26a, 26b nitrogen source tank, 28,28a, 28b nitrogen source addition line, 30,30a, 30b nitrogen source addition pump, 32,32a, 32b phosphorus source tank, 34,34a, 34b Phosphorus source addition line, 36, 36a, 36b Phosphorus source addition pump, 38 coagulant tank, 40 coagulant addition line, 42 coagulant addition pump, 44 carrier, 46 aeration device.

Claims (6)

担体を備える反応槽により、好気条件で有機性排水を生物処理する有機性排水の処理方法であって、
前記反応槽内の溶解性リン濃度を0.5mg/L以下に維持し、且つ前記反応槽内の溶解性窒素濃度を3mg/L以上に維持して、前記生物処理を行うことを特徴とする有機性排水の処理方法。
A method for treating organic wastewater by biologically treating organic wastewater under aerobic conditions using a reaction tank equipped with a carrier.
The biological treatment is characterized by maintaining the concentration of soluble phosphorus in the reaction vessel at 0.5 mg / L or less and maintaining the concentration of soluble nitrogen in the reaction vessel at 3 mg / L or more. How to treat organic wastewater.
前記反応槽は、直列2段以上の反応槽から構成され、直列2段以上の反応槽のうちの少なくとも1つの反応槽において、溶解性リン濃度を0.5mg/L以下に維持し、且つ溶解性窒素濃度を3mg/L以上に維持して、前記生物処理を行うことを特徴とする請求項1に記載の有機性排水の処理方法。 The reaction vessel is composed of a reaction vessel having two or more stages in series, and the soluble phosphorus concentration is maintained at 0.5 mg / L or less and dissolved in at least one of the reaction tanks having two or more stages in series. The method for treating organic wastewater according to claim 1, wherein the biological treatment is carried out while maintaining the sex nitrogen concentration at 3 mg / L or more. 前記反応槽は流動床式反応槽であり、前記反応槽のBOD容積負荷は1.5kg/m/day以上であることを特徴とする請求項1又は2に記載の有機性排水の処理方法。 The method for treating organic wastewater according to claim 1 or 2, wherein the reaction tank is a fluidized bed type reaction tank, and the BOD volume load of the reaction tank is 1.5 kg / m 3 / day or more. .. 担体を備える反応槽により、好気条件で有機性排水を生物処理する有機性排水の処理装置であって、
前記反応槽内の溶解性リン濃度を0.5mg/L以下に維持し、且つ前記反応槽内の溶解性窒素濃度を3mg/L以上に維持して、前記生物処理を行うことを特徴とする有機性排水の処理装置。
An organic wastewater treatment device that biologically treats organic wastewater under aerobic conditions using a reaction tank equipped with a carrier.
The biological treatment is characterized by maintaining the concentration of soluble phosphorus in the reaction vessel at 0.5 mg / L or less and maintaining the concentration of soluble nitrogen in the reaction vessel at 3 mg / L or more. Organic waste treatment equipment.
前記反応槽は、直列2段以上の反応槽から構成され、直列2段以上の反応槽のうちの少なくとも1つの反応槽において、溶解性リン濃度を0.5mg/L以下に維持し、且つ溶解性窒素濃度を3mg/L以上に維持して、前記生物処理を行うことを特徴とする請求項4に記載の有機性排水の処理装置。 The reaction vessel is composed of a reaction vessel having two or more stages in series, and the soluble phosphorus concentration is maintained at 0.5 mg / L or less and dissolved in at least one of the reaction tanks having two or more stages in series. The organic waste treatment apparatus according to claim 4, wherein the biological treatment is carried out while maintaining the sex nitrogen concentration at 3 mg / L or more. 前記反応槽は流動床式反応槽であり、前記反応槽のBOD容積負荷は1.5kg/m/day以上であることを特徴とする請求項4又は5に記載の有機性排水の処理装置。
The organic wastewater treatment apparatus according to claim 4 or 5, wherein the reaction tank is a fluidized bed type reaction tank, and the BOD volume load of the reaction tank is 1.5 kg / m 3 / day or more. ..
JP2020147799A 2020-09-02 2020-09-02 Method for treating organic wastewater and apparatus for treating organic wastewater Pending JP2022042384A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020147799A JP2022042384A (en) 2020-09-02 2020-09-02 Method for treating organic wastewater and apparatus for treating organic wastewater
CN202180053088.1A CN115968357A (en) 2020-09-02 2021-08-12 Method and apparatus for treating organic wastewater
PCT/JP2021/029766 WO2022050025A1 (en) 2020-09-02 2021-08-12 Organic wastewater treatment method and organic wastewater treatment device
TW110131395A TW202218999A (en) 2020-09-02 2021-08-25 Method for treating organic wastewater and device for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020147799A JP2022042384A (en) 2020-09-02 2020-09-02 Method for treating organic wastewater and apparatus for treating organic wastewater

Publications (1)

Publication Number Publication Date
JP2022042384A true JP2022042384A (en) 2022-03-14

Family

ID=80629539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020147799A Pending JP2022042384A (en) 2020-09-02 2020-09-02 Method for treating organic wastewater and apparatus for treating organic wastewater

Country Status (1)

Country Link
JP (1) JP2022042384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048112A1 (en) * 2022-09-01 2024-03-07 オルガノ株式会社 Wastewater treatment method and wastewater treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048112A1 (en) * 2022-09-01 2024-03-07 オルガノ株式会社 Wastewater treatment method and wastewater treatment device

Similar Documents

Publication Publication Date Title
JP5932639B2 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
KR101312966B1 (en) Two-stage anoxic membrane bio-reactor system for treating wastewater in combination with an anaerobic bath and return lines
US10479710B2 (en) Granule-forming method and waste water treatment method
HUT61254A (en) Process for equipment for processing manure, fermented manure and sewage containing kjeldahl-nitrogen
KR20150085990A (en) Water and wastewater treatment system and metho of the same
US20210061691A1 (en) Water treatment method and water treatment device
JP2007105627A (en) Method for treating nitrate-containing waste liquid and device therefor
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP2022042384A (en) Method for treating organic wastewater and apparatus for treating organic wastewater
JP2022042385A (en) Method for treating organic wastewater and apparatus for treating organic wastewater
WO2022050025A1 (en) Organic wastewater treatment method and organic wastewater treatment device
US10294134B2 (en) Systems and methods for enhanced facultative biosolids stabilization
EP2279153B1 (en) Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
CN104271516A (en) System and method for treating wastewater containing suspended organic substance
KR100913726B1 (en) Method of controlling dissolved oxygen level in waste water treatment system
US20120318735A1 (en) Process for the thermophilic aerobic treatment of concentrated organic waste water and the related plant
WO2019244969A1 (en) Water treatment method and water treatment apparatus
KR200413348Y1 (en) Removal reactor of Ammonia , phosphorous and solid in wastewater
JPWO2019234909A1 (en) Water treatment system and water treatment method
KR102200986B1 (en) Apparatus for treating waste water
US20140311972A1 (en) Nitrification method and system
JP2006088047A (en) Water treatment method and equipment therefor
KR101236693B1 (en) Apparatus for sewage and wastewater treatment
JP2010269276A (en) Method and apparatus for controlling water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507