JP2006088047A - Water treatment method and equipment therefor - Google Patents

Water treatment method and equipment therefor Download PDF

Info

Publication number
JP2006088047A
JP2006088047A JP2004277121A JP2004277121A JP2006088047A JP 2006088047 A JP2006088047 A JP 2006088047A JP 2004277121 A JP2004277121 A JP 2004277121A JP 2004277121 A JP2004277121 A JP 2004277121A JP 2006088047 A JP2006088047 A JP 2006088047A
Authority
JP
Japan
Prior art keywords
carrier
water
treated
reaction tank
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277121A
Other languages
Japanese (ja)
Other versions
JP4200443B2 (en
Inventor
Tatsuo Sumino
立夫 角野
Kazuichi Isaka
和一 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004277121A priority Critical patent/JP4200443B2/en
Publication of JP2006088047A publication Critical patent/JP2006088047A/en
Application granted granted Critical
Publication of JP4200443B2 publication Critical patent/JP4200443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method and equipment therefor which hardly cause wear of carriers and are capable of highly retaining the activity of the carriers and maintaining stable treatment performance. <P>SOLUTION: The water treatment equipment is provided with a reaction tank 10 in which the granular carriers 16 with microorganisms entrapped/fixed therein are made to flow, water 12 to be treated is caused to contact with the carriers and, thereby harmful components in the water 12 to be treated are biologically treated and are removed, a pump 25 which extracts a part of the carriers 16 from the reaction tank 10, a carrier storage tank 26 which stores extracted carriers 16 and a stop valve 30 which feeds stored carriers 16 to the reaction tank 10. The harmful components in the water 12 to be treated flowing into the reaction tank 10 are detected by a detection meter 36, and the extraction and feeding of the carriers are controlled, by a controller 38 in accordance with a load of the harmful components. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は水処理方法及びその装置に係り、特に微生物を固定化した粒状の担体を用いて被処理水中の有害成分を生物学的に処理して除去する水処理方法及びその装置に関する。   The present invention relates to a water treatment method and apparatus, and more particularly, to a water treatment method and apparatus for biologically treating and removing harmful components in water to be treated using a granular carrier on which microorganisms are immobilized.

閉鎖系水域における富栄養化の問題に対処するために、流入廃水中の窒素を除去することが強く望まれている。窒素は主にアンモニア性窒素の形態で下水や各種産業廃水に含まれる。廃水中のアンモニア性窒素を除去する方法としては、生物学的な方法が一般に採用されている。この方法は硝化細菌を用いてアンモニア性窒素を亜硝酸や硝酸に酸化し、次に脱窒細菌を用いて亜硝酸や硝酸を窒素ガスに変換して除去する。   In order to address the problem of eutrophication in closed waters, it is highly desirable to remove nitrogen in the influent wastewater. Nitrogen is mainly contained in sewage and various industrial wastewater in the form of ammoniacal nitrogen. Biological methods are generally employed as methods for removing ammoniacal nitrogen from wastewater. This method uses nitrifying bacteria to oxidize ammonia nitrogen to nitrite and nitric acid, and then uses denitrifying bacteria to convert nitrous acid and nitric acid to nitrogen gas for removal.

硝化細菌は増殖速度が遅いため、安定した窒素除去を行うためには、硝化反応槽では窒素の負荷が0.2〜0.4kg-窒素/m/日の範囲の低負荷運転を行う必要があり、硝化反応槽の大型化を招く。この対策として、硝化細菌を包括固定化した担体を硝化反応槽に投入して硝化細菌を高濃度に保持する方法が普及しつつある。この方法によれば硝化反応槽を小型化した高速処理が可能となる。 Because nitrifying bacteria have a slow growth rate, in order to perform stable nitrogen removal, it is necessary to perform low-load operation in the nitrification reaction tank with a nitrogen load of 0.2 to 0.4 kg-nitrogen / m 3 / day. There is an increase in the size of the nitrification reaction tank. As a countermeasure against this, a method of keeping a high concentration of nitrifying bacteria by introducing a carrier in which nitrifying bacteria are comprehensively immobilized into a nitrification reaction tank is becoming widespread. According to this method, high-speed processing in which the nitrification reaction tank is miniaturized becomes possible.

硝化細菌ばかりでなく、有機物分解菌、環境ホルモン分解菌などを高濃度に保持して高速処理するために、これらの微生物を包括固定化した担体が実用規模で使用され、又は研究開発されている。この種の担体は通常は粒状に形成され、被処理水との接触効率を高めるために機械的に又は曝気によって被処理水と混合攪拌し、流動させた状態で使用する。担体の材料としては主に高分子ゲルが利用される(例えば、特許文献1、特許文献2参照)。
特許第3389811号公報 特許第3514360号公報
In order to maintain not only nitrifying bacteria but also organic matter-degrading bacteria, environmental hormone-degrading bacteria, etc. at a high concentration and perform high-speed processing, a carrier in which these microorganisms are comprehensively immobilized is used on a practical scale or researched and developed. . This type of carrier is usually formed in a granular form, and is used in a state where it is mixed and stirred with the water to be treated mechanically or by aeration in order to increase the contact efficiency with the water to be treated. As the carrier material, a polymer gel is mainly used (for example, see Patent Document 1 and Patent Document 2).
Japanese Patent No. 3389811 Japanese Patent No. 3514360

しかしながら、上記した担体は被処理水と激しく混合攪拌されるために長期間の運転によって徐々に磨耗する。特に高分子ゲルを用いて微生物を包括固定化した担体は磨耗が激しい。さらに、担体を低負荷の条件で長時間使用すると担体内の微生物が自己分解して減少し活性が低下する。その結果、微生物を高濃度に保持して高速処理するという本来の利点が減殺するという問題点があった。   However, since the above-mentioned carrier is vigorously mixed and agitated with the water to be treated, it is gradually worn out over a long period of operation. In particular, a carrier in which microorganisms are entrapped and immobilized using a polymer gel is highly worn. Further, when the carrier is used under a low load condition for a long time, the microorganisms in the carrier are self-degraded and reduced, and the activity is lowered. As a result, there is a problem that the original advantage of high-speed processing while maintaining a high concentration of microorganisms is diminished.

本発明の目的は、上記従来技術の問題点を改善し、担体の磨耗が少なく、かつ担体の活性を高く保持して、安定した処理性能を維持することができる水処理方法及びその装置を提供することにある。   The object of the present invention is to provide a water treatment method and apparatus capable of improving the above-mentioned problems of the prior art, reducing the wear of the carrier, maintaining the activity of the carrier high, and maintaining stable treatment performance. There is to do.

前記目的を達成するために、本発明に係る水処理方法は、微生物を包括固定化した粒状の担体が流動する反応槽に被処理水を供給し、前記流動する担体と被処理水とを接触させることにより前記被処理水中の有害成分を生物学的に処理して除去する水処理方法において、前記有害成分の負荷に応じて前記反応槽で流動させる担体量を制御することを特徴とする。   In order to achieve the above object, a water treatment method according to the present invention supplies treated water to a reaction tank in which a granular carrier in which microorganisms are entrapped and immobilized flows, and the fluidized carrier and treated water are brought into contact with each other. In the water treatment method for biologically treating and removing harmful components in the water to be treated, the amount of the carrier flowing in the reaction tank is controlled according to the load of the harmful components.

上記方法において、前記有害成分の負荷が下限値以下であれば前記担体の一部を反応槽から引抜き、前記有害成分の負荷が上限値以上又は処理水の水質が基準値以上であれば前記引抜いた担体を反応槽に投入することが望ましい。前記有害成分が窒素成分である場合には、当該窒素成分の負荷の下限値を50mg-窒素/h/L-担体未満に設定することが望ましい。   In the above method, a part of the carrier is withdrawn from the reaction tank if the load of the harmful component is not more than a lower limit value, and if the load of the harmful component is not less than the upper limit value or the quality of treated water is not less than a reference value, the withdrawal is performed. It is desirable to put the existing carrier into the reaction vessel. When the harmful component is a nitrogen component, it is desirable to set the lower limit of the load of the nitrogen component to less than 50 mg-nitrogen / h / L-carrier.

また、本発明に係る水処理装置は、微生物を包括固定化した粒状の担体を流動させ被処理水と担体とを接触させることにより被処理水中の有害成分を生物学的に処理して除去する反応槽と、前記有害成分の負荷に応じて前記反応槽内で流動させる担体量を調整する担体量調整手段とを具備したことを特徴とする。   Further, the water treatment apparatus according to the present invention biologically treats and removes harmful components in the water to be treated by flowing a granular carrier in which microorganisms are comprehensively immobilized and bringing the water to be treated into contact with the carrier. It is characterized by comprising a reaction tank and a carrier amount adjusting means for adjusting the amount of the carrier that flows in the reaction tank according to the load of the harmful component.

前記担体量調整手段が、前記反応槽から前記担体の一部を引抜く担体引抜き手段と、前記担体引抜き手段によって引抜いた担体を保管する担体保管手段と、前記担体保管手段に保管された担体を前記反応槽に投入する担体投入手段とによって構成されたことが望ましい。また、前記反応槽に流入する被処理水及び/又は反応槽から排出する処理水の水質をモニタリングするモニタリング手段を備え、前記モニタリング手段によるモニタリング結果に基づいて前記担体量調整手段を制御するようにしたことが望ましい。   The carrier amount adjusting means includes a carrier extracting means for extracting a part of the carrier from the reaction tank, a carrier storing means for storing the carrier extracted by the carrier extracting means, and a carrier stored in the carrier storing means. It is desirable that it is constituted by a carrier charging means for charging into the reaction tank. In addition, a monitoring means for monitoring the quality of the treated water flowing into the reaction tank and / or the treated water discharged from the reaction tank is provided, and the carrier amount adjusting means is controlled based on the monitoring result by the monitoring means. It is desirable to have done.

本発明によれば、有害成分の負荷が低い時には、反応槽で流動させる担体量を少なくするように制御する。このため、流動させない担体はその期間中は空曝気や攪拌を受けず、担体の磨耗を少なくすることができる。また、反応槽では担体に対する有害成分の負荷が常に適正な範囲に保持されることになり、担体の活性を高く保持して安定な生物処理を継続させることができる。   According to the present invention, when the load of harmful components is low, control is performed so as to reduce the amount of carrier flowing in the reaction tank. For this reason, the carrier that is not fluidized is not subjected to air aeration or agitation during that period, and wear of the carrier can be reduced. In addition, the load of harmful components on the carrier is always kept in an appropriate range in the reaction tank, and the biological activity can be kept high and the biological treatment can be continued.

本発明に係る担体はモノマー材料やプレポリマー材料と微生物を混合し、この混合液を固化することによって得られる。固化する方法としては重合、イオン供給、結晶化などがよい。モノマー材料としてはアクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマートなどがよい。プレポリマー材料としてはポリエチレングリコールジアクリレートやポリエチレングリコールメタアルリルレートがよく、その誘導体を用いることもできる。担体は球状、角型又は筒状などに成形され、大きさは球相当径として1〜10mmがよい。固定化する微生物濃度は、例えば硝化細菌の場合には硝化細菌数が10個/mL-担体以上であると活性が発現する。製造時の硝化細菌数を10個/mL-担体以上とすると、適正な馴養によって担体内部で10個/mL-担体以上に増殖する。 The carrier according to the present invention can be obtained by mixing a monomer material or prepolymer material and a microorganism and solidifying the mixed solution. As a solidifying method, polymerization, ion supply, crystallization and the like are preferable. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formate and the like are preferable. As the prepolymer material, polyethylene glycol diacrylate and polyethylene glycol methallyllate are good, and derivatives thereof can also be used. The carrier is formed into a spherical shape, a square shape or a cylindrical shape, and the size is preferably 1 to 10 mm as a sphere equivalent diameter. For example, in the case of nitrifying bacteria, the concentration of microorganisms to be immobilized exhibits activity when the number of nitrifying bacteria is 10 6 / mL-carrier or more. When the number of nitrifying bacteria at the time of production is 10 5 / mL-carrier or more, it grows to 10 8 cells / mL-carrier or more inside the carrier by appropriate habituation.

固定化する微生物は活性汚泥、硝化細菌群、脱窒細菌群、嫌気性アンモニア酸化細菌群などの複合微生物、又は硝化細菌、脱窒細菌、嫌気性アンモニア酸化細菌、アオコ分解菌、PCB分解菌、ダイオキシン分解菌、環境ホルモン分解菌などの純粋菌などがある。   Microorganisms to be immobilized are activated sludge, nitrifying bacteria group, denitrifying bacteria group, anaerobic ammonia oxidizing bacteria group and other complex microorganisms, or nitrifying bacteria, denitrifying bacteria, anaerobic ammonia oxidizing bacteria, blue-green-decomposing bacteria, PCB-degrading bacteria, There are pure bacteria such as dioxin-degrading bacteria and environmental hormone-degrading bacteria.

このような担体を用いた基礎実験結果を以下に説明する。固定化する微生物として硝化細菌を用いた。すなわち、硝化細菌濃縮液(菌数10個/mL)30部、ポリエチレングリコールジアクリレート10部、テトラメチルエチレンジアミン0.5部、水59.25部を混合した懸濁液に重合剤として過硫酸カリウム0.25部を添加すると重合が始まり、ゲル化する。このゲルを1辺が3mmの立方体に切断し、基礎実験用の担体とした。 The basic experiment results using such a carrier will be described below. Nitrifying bacteria were used as microorganisms to be immobilized. That is, persulfuric acid as a polymerization agent in a suspension obtained by mixing 30 parts of a nitrifying bacteria concentrate (10 9 bacteria / mL), 10 parts of polyethylene glycol diacrylate, 0.5 part of tetramethylethylenediamine, and 59.25 parts of water. When 0.25 part of potassium is added, polymerization starts and gelation occurs. This gel was cut into cubes having a side of 3 mm, and used as a carrier for basic experiments.

実験1(磨耗特性実験)
反応槽壁面(コンクリート製や鋼板製)と担体との衝突による担体の磨耗を想定し、以下の加速実験を行った。すなわち、有効容積が2Lの攪拌機付き水槽の壁面に紙やすりを貼り付け、水2Lと担体200mLを投入した。攪拌機の回転数を60rpmとして攪拌し、担体の容積変化を調べた。図5に実験結果を示す。線Aで示したように担体の容積は日数の経過とともに直線的に減少している。これに対し50日〜100日までの間、担体を水槽から抜き取って保管し、100日目から再度、水槽に投入して同様に攪拌した結果を線Bで示す。この実験結果から、担体が長期間の攪拌によって磨耗し、徐々に減容すること、担体を抜き取り保管するとその分、磨耗が少なくなり、寿命を長くできることが判明した。
Experiment 1 (Abrasion characteristics experiment)
The following acceleration experiment was performed assuming wear of the carrier due to collision between the reaction vessel wall surface (made of concrete or steel plate) and the carrier. That is, sandpaper was pasted on the wall surface of a water tank with a stirrer having an effective volume of 2 L, and 2 L of water and 200 mL of carrier were added. Stirring was carried out at a rotational speed of the stirrer of 60 rpm, and changes in the volume of the carrier were examined. FIG. 5 shows the experimental results. As indicated by line A, the volume of the carrier decreases linearly with the passage of days. On the other hand, from the 50th day to the 100th day, the carrier is extracted from the water tank and stored, and the result of the same stirring in the water tank again from the 100th day is shown by a line B. From this experimental result, it was found that the carrier was worn out by long-term stirring and gradually reduced in volume, and when the carrier was extracted and stored, the wear was reduced accordingly, and the life could be extended.

実験2(空曝気実験)
馴養することによって硝化細菌が十分に増殖した担体(硝化細菌数10個/mL-担体)を栄養のない清水中で空曝気し、硝化細菌数の変化を調べた。比較のために担体を水切りした後に所定の温度で保管した場合についても調べた。図6に実験結果を示す。図6において線Cは空曝気した場合、線Dは20℃で保管した場合、線Eは5℃で保管した場合を示す。空曝気すると担体の硝化細菌数が半減期4日で減少する。これは、空曝気によって硝化細菌が自己分解したためである。一方、空曝気せずに保管すると菌数の減少は少なく、特に5℃で保管した場合には菌数はほとんど減少しない。
Experiment 2 (Air aeration experiment)
Carriers with sufficient growth of nitrifying bacteria (10 8 nitrifying bacteria / mL-carrier) by acclimation were aerated in fresh water without nutrients, and changes in the number of nitrifying bacteria were examined. For comparison, the case where the carrier was drained and stored at a predetermined temperature was also examined. FIG. 6 shows the experimental results. In FIG. 6, line C shows the case where air is aerated, line D shows the case where it is stored at 20 ° C., and line E shows the case where it is stored at 5 ° C. Air aeration reduces the number of nitrifying bacteria in the carrier with a half-life of 4 days. This is because nitrifying bacteria self-decomposed by air aeration. On the other hand, when stored without aeration, there is little decrease in the number of bacteria, especially when stored at 5 ° C., the number of bacteria hardly decreases.

実験3(担体内部での菌の増殖実験)
製造直後の担体(硝化細菌数10個/mL-担体)をアンモニア性窒素濃度100〜400mg/Lの原水に投入し、窒素成分負荷を10〜313mg-N/h/L-担体に変化させ、各負荷における培養1ヶ月後の硝化細菌の増殖状況を調べた。図7に実験結果を示す。窒素成分負荷が10又は21mg-N/h/L-担体と低い場合には、硝化細菌数はほとんど増殖しない。担体として活性が発現する硝化細菌数10個/mL-担体以上にするためには窒素成分負荷を33mg-N/h/L-担体以上、好ましくは50mg-N/h/L-担体程度に保持すべきであることが判る。
Experiment 3 (Experiment of bacterial growth inside the carrier)
Was charged immediately after production carrier (nitrifying bacteria number 10 5 / mL-carrier) in the raw water ammonia nitrogen concentration 100 to 400 mg / L, varying the nitrogen component load 10~313mg-N / h / L- carrier The growth status of nitrifying bacteria after 1 month of culture in each load was examined. FIG. 7 shows the experimental results. When the nitrogen component load is as low as 10 or 21 mg-N / h / L-carrier, the number of nitrifying bacteria hardly grows. In order to increase the number of nitrifying bacteria exhibiting activity as 10 6 carriers / mL-carrier or more, the nitrogen component load is 33 mg-N / h / L-carrier or more, preferably about 50 mg-N / h / L-carrier. It turns out that it should be retained.

本発明は上述の基礎実験結果に基づいて成されたものである。図1は本発明の第1実施形態を示す装置系統図である。反応槽10は被処理水12の流入口と処理水14の排出口15を有する。また、反応槽10内には微生物を包括固定化した粒状の担体16が投入されている。担体16の投入総量は反応槽10の有効容積に対して5〜25%程度とする。固定化した微生物が硝化細菌などの好気性微生物である場合には、反応槽10の底部に配設した散気手段18にブロワ20から空気を送り込み、反応槽10内を曝気する。この曝気エネルギによって、担体16が流動して流入した被処理水12と担体16とが激しく混合接触する。その結果、被処理水12中の除去対象である有害成分が担体16に固定化された微生物と接触し、有害成分は微生物の生物学的な作用によって分解又は酸化し除去される。なお、固定化した微生物が脱窒細菌などの嫌気性微生物である場合には、散気手段18の代わりに攪拌機を用いるか又は不活性ガスを反応槽10内に吹き込むことによって担体16を流動させる。   The present invention has been made based on the above-described basic experimental results. FIG. 1 is an apparatus system diagram showing a first embodiment of the present invention. The reaction tank 10 has an inlet for treated water 12 and an outlet 15 for treated water 14. In addition, a granular carrier 16 in which microorganisms are comprehensively immobilized is placed in the reaction tank 10. The total amount of the carrier 16 is about 5 to 25% with respect to the effective volume of the reaction vessel 10. When the immobilized microorganism is an aerobic microorganism such as nitrifying bacteria, air is sent from the blower 20 to the air diffuser 18 disposed at the bottom of the reaction tank 10 to aerate the inside of the reaction tank 10. Due to this aeration energy, the water 12 to be treated and the carrier 16 that have flowed and flowed in are vigorously mixed and contacted. As a result, harmful components to be removed in the treated water 12 come into contact with the microorganisms immobilized on the carrier 16, and the harmful components are decomposed or oxidized and removed by the biological action of the microorganisms. When the immobilized microorganism is an anaerobic microorganism such as denitrifying bacteria, the carrier 16 is caused to flow by using a stirrer instead of the aeration means 18 or blowing an inert gas into the reaction tank 10. .

反応槽10の排出口15側にはスクリーン22が設けられ、このスクリーン22によって担体16と処理水14が分離される。反応槽10にはポンプ25を具備した担体引抜き管24が接続し、引抜き管24の他端は担体保管タンク26に接続している。担体保管タンク26を冷蔵設備内に配置し、5℃程度の環境下に置くことが望ましい。ポンプ25によって反応槽10から引抜かれた被処理水と担体16は担体保管タンク26の上部に送り込まれ、担体16は下方に沈降して保管される。担体16と分離した被処理水は溢流樋28を経て反応槽10に戻される。担体保管タンク26の底部には自動開閉弁30を具備した担体投入管32が接続し、担体投入管32の他端は反応槽10に接続している。   A screen 22 is provided on the outlet 15 side of the reaction tank 10, and the carrier 16 and the treated water 14 are separated by this screen 22. The reaction tank 10 is connected to a carrier extraction pipe 24 having a pump 25, and the other end of the extraction pipe 24 is connected to a carrier storage tank 26. It is desirable to place the carrier storage tank 26 in a refrigeration facility and place it in an environment of about 5 ° C. The water to be treated and the carrier 16 drawn out from the reaction tank 10 by the pump 25 are sent to the upper part of the carrier storage tank 26, and the carrier 16 is stored by sinking downward. The water to be treated separated from the carrier 16 is returned to the reaction tank 10 through the overflow tank 28. A carrier input pipe 32 having an automatic opening / closing valve 30 is connected to the bottom of the carrier storage tank 26, and the other end of the carrier input pipe 32 is connected to the reaction tank 10.

被処理水の流入管34には被処理水中の有害成分濃度を検出する検出計36が配設されている。検出計36の検出値は制御器38に送信され、制御器38では、検出計36から送信された被処理水中の有害成分濃度の検出値に基づいて反応槽10における有害成分の負荷を算出する。また、反応槽10に投入されている担体量が判明している場合には、担体に対する有害成分の負荷をも算出する。そして、制御器38では算出したこれらの有害成分の負荷に応じて、担体引抜き手段であるポンプ25の駆動と、担体投入手段である自動開閉弁30の開閉を制御する。   A detector 36 for detecting the concentration of harmful components in the water to be treated is disposed in the inflow pipe 34 of the water to be treated. The detection value of the detector 36 is transmitted to the controller 38, and the controller 38 calculates the load of harmful components in the reaction tank 10 based on the detected value of the concentration of harmful components in the treated water transmitted from the detector 36. . Further, when the amount of the carrier charged in the reaction tank 10 is known, the load of harmful components on the carrier is also calculated. Then, the controller 38 controls the driving of the pump 25 that is the carrier drawing means and the opening and closing of the automatic on-off valve 30 that is the carrier loading means according to the calculated loads of these harmful components.

すなわち、有害成分の負荷が下限値以下であれば、制御器38はポンプ25を一時的に駆動させて、反応槽10に投入されている担体16の一部を反応槽10から引抜き、引抜いた担体16を担体保管タンク26に送り込む。担体保管タンク26では送り込まれた担体16を一時的に保管する。また、有害成分の負荷が上限値以上であれば自動開閉弁30を一時的に開とし、担体保管タンク26に保管された担体16の少なくとも一部を反応槽10に投入する。なお、担体16の1回分の引抜き量、投入量は全担体量の3〜5%程度とする。また、担体保管タンク26の容量には制限があるので、担体保管タンク26で保管する担体16の最大量を例えば全担体量の20〜40%程度に制限することが好ましい。有害成分の負荷が下限値と上限値との間であれば上記した担体16の引抜きと投入を行わずに現状の運転を継続する。   That is, if the load of harmful components is equal to or lower than the lower limit value, the controller 38 temporarily drives the pump 25 to pull out a part of the carrier 16 put in the reaction tank 10 from the reaction tank 10 and pull it out. The carrier 16 is fed into the carrier storage tank 26. In the carrier storage tank 26, the fed carrier 16 is temporarily stored. If the load of harmful components is not less than the upper limit value, the automatic opening / closing valve 30 is temporarily opened, and at least a part of the carrier 16 stored in the carrier storage tank 26 is put into the reaction tank 10. It should be noted that the amount of the carrier 16 to be pulled out and charged is about 3 to 5% of the total amount of the carrier. Since the capacity of the carrier storage tank 26 is limited, it is preferable to limit the maximum amount of the carrier 16 stored in the carrier storage tank 26 to, for example, about 20 to 40% of the total carrier amount. If the load of harmful components is between the lower limit value and the upper limit value, the current operation is continued without pulling out and loading the carrier 16 described above.

この第1実施形態によれば、有害成分の負荷が下限値以下の時に、担体16の一部を反応槽10から引抜いて、担体保管タンク26で保管するようにした。このため、反応槽10では担体単位容積当たりの有害成分の負荷がその分、上昇し、空曝気や低負荷の状態を回避できる。このため、反応槽10における担体16の活性の低下を防止することができる。また、有害成分の負荷が上限値以上の時には、引抜いた担体16を反応槽10に戻すようにした。このため、反応槽10では担体単位容積当たりの有害成分の負荷が常に適正な範囲に保持されることになり、安定な生物処理を継続させることができる。また、担体保管タンク26に保管された担体16はその保管期間中は空曝気や攪拌を受けずに5℃程度の環境下に静置されるので、活性の低下や磨耗を受けない。このため、本実施形態の方法及び装置によれば担体の磨耗が少なく、かつ担体の活性を高く保持して、安定した処理性能を維持した水処理を実現することができる。なお、有害成分がアンモニア性窒素である場合には、当該窒素成分の負荷の下限値を30〜50mg-窒素/h/L-担体に設定することが望ましい。すなわち、図7に示したように、窒素成分の負荷が30〜50mg-窒素/h/L-担体の付近では担体16は硝化細菌数が10〜10個/mL-担体程度であり、活性が十分にある。この担体16を引抜き、保管することで、保管期間中に活性を高く維持できる。このため、反応槽10に再投入した時には、即座に活性を発揮することができる。 According to the first embodiment, when the load of harmful components is equal to or lower than the lower limit value, a part of the carrier 16 is pulled out from the reaction tank 10 and stored in the carrier storage tank 26. For this reason, in the reaction tank 10, the load of harmful components per unit volume of the carrier is increased accordingly, and it is possible to avoid air aeration and a low load state. For this reason, the fall of the activity of the support | carrier 16 in the reaction tank 10 can be prevented. Further, when the load of harmful components is equal to or higher than the upper limit value, the extracted carrier 16 is returned to the reaction vessel 10. For this reason, in the reaction tank 10, the load of harmful components per unit volume of the carrier is always maintained within an appropriate range, and stable biological treatment can be continued. Further, since the carrier 16 stored in the carrier storage tank 26 is left in an environment of about 5 ° C. without being subjected to air aeration or agitation during the storage period, the activity is not reduced or worn. For this reason, according to the method and apparatus of this embodiment, it is possible to realize a water treatment in which the carrier is less worn and the activity of the carrier is kept high and a stable treatment performance is maintained. When the harmful component is ammonia nitrogen, it is desirable to set the lower limit of the nitrogen component load to 30 to 50 mg-nitrogen / h / L-carrier. That is, as shown in FIG. 7, in the vicinity of the nitrogen component load of 30 to 50 mg-nitrogen / h / L-carrier, the carrier 16 has a number of nitrifying bacteria of about 10 6 to 10 7 cells / mL-carrier, There is enough activity. By extracting and storing the carrier 16, the activity can be maintained high during the storage period. For this reason, when the reaction vessel 10 is recharged, the activity can be immediately exhibited.

図2は本発明の第2実施形態を示す装置系統図である。図2において図1と同一の符号を付した要素は、図1と同様の要素であり説明を省略する。この第2実施形態では、処理水の排出口15に処理水の水質をモニタリングする水質計40が配置され、水質計40の検出値が制御器38Aに送信される。制御器38Aでは検出計36から送信された被処理水中の有害成分濃度の検出値と、水質計40から送信された処理水の検出値に基づいて、担体引抜き手段であるポンプ25の駆動と、担体投入手段である自動開閉弁30の開閉を制御する。   FIG. 2 is an apparatus system diagram showing a second embodiment of the present invention. In FIG. 2, elements denoted by the same reference numerals as those in FIG. 1 are the same elements as in FIG. In this 2nd Embodiment, the water quality meter 40 which monitors the quality of the treated water is arrange | positioned at the discharge port 15 of the treated water, and the detected value of the water quality meter 40 is transmitted to the controller 38A. In the controller 38A, based on the detected value of the harmful component concentration in the for-treatment water transmitted from the detector 36 and the detected value of the treated water transmitted from the water quality meter 40, the driving of the pump 25 which is the carrier drawing means, It controls the opening / closing of the automatic opening / closing valve 30 which is a carrier loading means.

図3は当該実施形態での制御例を示すフローチャートである。まず、ステップS100では水質計40の検出値が制御器38Aに送信され、処理水の水質が適正(排水基準値以下)であれば次のステップS110に移る。また、処理水の水質が不適正(排水基準値以上)であれば反応槽10での担体量が不足していると判断し、制御器38Aでは反応槽10に担体を投入するように制御する(S120)。ステップS110では検出計36から送信された被処理水中の有害成分濃度の検出値に基づいて反応槽10における有害成分の負荷を算出する。また、反応槽10に収容されている担体量が判明している場合には、担体に対する有害成分の負荷をも算出する。そして、制御器38では算出したこれらの有害成分の負荷が下限値以下であれば、制御器38はポンプ25を一時的に駆動させて、反応槽10に収容されている担体16の一部を反応槽10から引抜き、引抜いた担体16を担体保管タンク26に送り込む(S130)。なお、担体16の1回分の引抜き量、投入量は前記第1実施形態と同様に全担体量の3〜5%程度とする。また、担体保管タンク26で保管する担体16の最大量も全担体量の20〜40%程度に制限する。したがって、保管した担体16が最大量に達している場合には、ステップS110において有害成分の負荷が下限値以下であっても引抜きは行わず、現状の運転を継続する。   FIG. 3 is a flowchart showing an example of control in this embodiment. First, in step S100, the detection value of the water quality meter 40 is transmitted to the controller 38A. If the water quality of the treated water is appropriate (the drainage standard value or less), the process proceeds to the next step S110. Further, if the quality of the treated water is inappropriate (over the drainage standard value), it is determined that the amount of the carrier in the reaction tank 10 is insufficient, and the controller 38A controls to put the carrier into the reaction tank 10. (S120). In step S110, the load of the harmful component in the reaction tank 10 is calculated based on the detected value of the harmful component concentration in the for-treatment water transmitted from the detector 36. In addition, when the amount of the carrier accommodated in the reaction tank 10 is known, the load of harmful components on the carrier is also calculated. Then, if the load of these harmful components calculated by the controller 38 is equal to or lower than the lower limit value, the controller 38 temporarily drives the pump 25 to remove a part of the carrier 16 accommodated in the reaction tank 10. The carrier 16 pulled out from the reaction tank 10 is sent to the carrier storage tank 26 (S130). Note that the amount of the carrier 16 withdrawn and charged is set to about 3 to 5% of the total amount of carrier as in the first embodiment. Further, the maximum amount of the carrier 16 stored in the carrier storage tank 26 is also limited to about 20 to 40% of the total carrier amount. Therefore, if the stored carrier 16 has reached the maximum amount, the current operation is continued without being pulled out even if the load of harmful components is below the lower limit value in step S110.

また、有害成分の負荷が下限値を越えていれば現状の運転を継続する。以降、同様の手順で数時間に1回の頻度で同様の制御を繰り返す。流入する被処理水の水質変動が激しい場合には、各時点の検出計36の検出値によって有害成分の負荷を算出すると、算出値も被処理水の水質変動に合わせて変動し、制御が不安定になる。したがって、有害成分の負荷を算出する際には、検出計36の検出値を所定の時間帯(例えば、制御間隔時間)で平均化した値を用いることが望ましい。   Further, if the load of harmful components exceeds the lower limit value, the current operation is continued. Thereafter, the same control is repeated at a frequency of once every several hours in the same procedure. If the quality of the treated water flowing in is severe, calculating the load of harmful components based on the detection value of the detector 36 at each time point causes the calculated value to fluctuate with the quality of the treated water, resulting in poor control. Become stable. Therefore, when calculating the load of harmful components, it is desirable to use a value obtained by averaging the detection value of the detector 36 in a predetermined time zone (for example, control interval time).

この第2実施形態によれば、処理水14の水質をモニタリングして、当該水質が不適正(排水基準値以上)であれば反応槽10に担体を投入するようにしたので、処理水14の水質安定化を図ることができる。   According to the second embodiment, the water quality of the treated water 14 is monitored, and if the water quality is inappropriate (over the drainage standard value), the carrier is introduced into the reaction tank 10. Water quality can be stabilized.

本発明は第1実施形態や第2実施形態に限定されない。例えば被処理水12や処理水14の水質のモニタリング及び制御器38や38Aの自動制御系を省略することが可能である。すなわち、被処理水12や処理水14の定期的なサンプリングによる水質検査の結果に基づき、運転員がマニュアルで担体引抜き手段や担体投入手段を操作する構成も本発明に含まれる。   The present invention is not limited to the first embodiment or the second embodiment. For example, it is possible to omit the water quality monitoring of the treated water 12 and the treated water 14 and the automatic control system of the controllers 38 and 38A. That is, the present invention also includes a configuration in which the operator manually operates the carrier extraction means and the carrier input means based on the result of the water quality inspection by periodic sampling of the treated water 12 and the treated water 14.

また、担体引抜き手段としては図1や図2に図示した渦巻き式などのポンプ25に替えてエアリフト式のポンプを採用してもよい。担体投入手段も図1や図2に図示した自動開閉弁30に替えて各種のポンプを採用してもよい。さらに、本発明に係る担体量調整手段は、第1、第2実施形態に示した担体引抜き手段と担体保管手段と担体投入手段とによって構成されたものに限定されない。   Further, as the carrier drawing means, an air lift type pump may be employed instead of the spiral type pump 25 shown in FIGS. Various pumps may be adopted as the carrier loading means in place of the automatic opening / closing valve 30 shown in FIGS. Furthermore, the carrier amount adjusting means according to the present invention is not limited to the one constituted by the carrier extracting means, the carrier storing means, and the carrier loading means shown in the first and second embodiments.

図4は本発明の第3実施形態を示す装置系統図である。図4において図1と同一の符号を付した要素は、図1と同様の要素であり説明を省略する。反応槽10内には上端と下端が開放された仕切り壁42が設けられている。仕切り壁42で仕切られた左側の領域が担体量調整手段としての担体16の保管エリア44であり、この保管エリア44の左側面は急傾斜面とされている。また、仕切り壁42で仕切られた右側の領域が担体16の流動エリア45とされる。仕切り壁42の下端側には上下方向にスライドする開閉扉46が設けられている。図4は開閉扉46を締めた状態であり、流動エリア45で流動する担体16の一部が仕切り壁42の上端を乗り越えて保管エリア44に入り込み沈降することによって、担体16は保管エリア44の下部に一時的に保管される。開閉扉46を引き上げて開放すると、保管エリア44内に保管された担体16が流動エリア45に流れ込み、流動エリア45内の他の担体16と同様に流動して被処理の生物学的な処理に寄与する。   FIG. 4 is an apparatus system diagram showing a third embodiment of the present invention. In FIG. 4, elements denoted by the same reference numerals as those in FIG. 1 are the same elements as in FIG. A partition wall 42 having an open upper end and a lower end is provided in the reaction tank 10. The left area partitioned by the partition wall 42 is a storage area 44 of the carrier 16 as the carrier amount adjusting means, and the left side surface of the storage area 44 is a steeply inclined surface. In addition, the right area partitioned by the partition wall 42 is a flow area 45 of the carrier 16. An opening / closing door 46 that slides in the vertical direction is provided on the lower end side of the partition wall 42. FIG. 4 shows a state in which the opening / closing door 46 is tightened, and a part of the carrier 16 flowing in the flow area 45 gets over the upper end of the partition wall 42 and enters the storage area 44 and sinks. Temporarily stored at the bottom. When the opening / closing door 46 is pulled up and opened, the carrier 16 stored in the storage area 44 flows into the flow area 45 and flows in the same manner as the other carriers 16 in the flow area 45 to be subjected to biological treatment of the object to be processed. Contribute.

保管エリア44内に保管された担体16は保管期間中には流動せず空曝気もされないので、磨耗せず、活性も低下しない。開閉扉46の開度又は開閉頻度を調整することにより、保管エリア44内に保管する担体16の量を調整することができる。換言すれば反応槽10内で流動させる担体量を調整することができる。したがって、有害成分の負荷に応じて反応槽10内で流動させる担体量を好適な量に制御することによって、担体の磨耗が少なくかつ担体の活性を高く保持して、安定した処理性能を維持することができる。   Since the carrier 16 stored in the storage area 44 does not flow and is not aerated during the storage period, it does not wear and does not decrease its activity. The amount of the carrier 16 stored in the storage area 44 can be adjusted by adjusting the opening degree or opening / closing frequency of the opening / closing door 46. In other words, it is possible to adjust the amount of the carrier that flows in the reaction vessel 10. Therefore, by controlling the amount of carrier that flows in the reaction vessel 10 according to the load of harmful components to a suitable amount, the wear of the carrier is kept low and the activity of the carrier is kept high, thereby maintaining stable processing performance. be able to.

実施例1
硝化細菌濃縮液(菌数10個/ml)50部、ポリエチレングリコールジアクリレート4部、アクリルアミド1部、テトラメチルエチレンジアミン0.5部、水44.25部を混合した懸濁液に重合剤として過硫酸カリウム0.25部を添加すると重合が始まり、ゲル化する。このゲルを1辺が3mmの立方体に切断し、実験用の担体とした。実験条件は以下のとおりである。
実験装置 図1に示したものと同様
被処理水 BOD約10mg/L、アンモニア性窒素32〜280mg/L
反応槽における被処理水の滞留時間 8時間
反応槽における担体の充填率 20%
担体に対する窒素負荷 20〜175mg-窒素/h/L-担体
上記した条件で連続処理した。被処理水の水質変動が大きく、当初は窒素負荷が120mg-窒素/h/L-担体で定常運転をしていたが、その後、窒素負荷が30mg-窒素/h/L-担体に低下した時点で担体の引抜きを開始した。担体総量に対して担体を40%引抜いた時点で引抜きを停止し、引抜いた担体を常温で保管した。その後、窒素負荷が100mg-窒素/h/L-担体を越えた時点で引抜いた担体の全量を反応槽に再投入した。このようにして、窒素負荷30mg-窒素/h/L-担体で担体を引抜き、窒素負荷100mg-窒素/h/L-担体で担体を再投入する運転を繰り返した。その結果、担体の磨耗率は年間2%であり、引抜き保管をしない場合の年間磨耗率3%に比べて、担体の磨耗率が著しく低下し、担体の磨耗に対する寿命が1.5倍に向上した。また、引抜き保管をしない場合では処理水のアンモニア窒素濃度が4〜24mg/Lの範囲で変動した。一方、担体の引抜き、再投入を行った場合には処理水のアンモニア窒素濃度が4〜8mg/Lであり、安定した処理水を得ることができた。
Example 1
As a polymerization agent, a suspension obtained by mixing 50 parts of a nitrifying bacteria concentrate (10 9 bacteria / ml), 4 parts of polyethylene glycol diacrylate, 1 part of acrylamide, 0.5 part of tetramethylethylenediamine, and 44.25 parts of water When 0.25 part of potassium persulfate is added, polymerization starts and gelation occurs. This gel was cut into a cube having a side of 3 mm, and used as an experimental carrier. The experimental conditions are as follows.
Experimental apparatus Water to be treated as shown in FIG. 1 BOD about 10 mg / L, ammoniacal nitrogen 32 to 280 mg / L
Retention time of water to be treated in reaction tank 8 hours Carrier filling rate in reaction tank 20%
Nitrogen loading on carrier 20-175 mg-nitrogen / h / L-carrier Continuous treatment under the conditions described above. The quality of the water to be treated was large and the nitrogen load was initially operating at 120 mg-nitrogen / h / L-carrier, but then the nitrogen load dropped to 30 mg-nitrogen / h / L-carrier. Then, the extraction of the carrier was started. When 40% of the carrier was drawn out with respect to the total amount of the carrier, the drawing was stopped, and the drawn carrier was stored at room temperature. Thereafter, the entire amount of the carrier extracted when the nitrogen load exceeded 100 mg-nitrogen / h / L-carrier was reintroduced into the reaction vessel. In this way, the operation of drawing out the carrier with a nitrogen load of 30 mg-nitrogen / h / L-carrier and repeating the operation with the nitrogen load of 100 mg-nitrogen / h / L-carrier was repeated. As a result, the wear rate of the carrier is 2% per year, and the wear rate of the carrier is significantly reduced compared to the annual wear rate of 3% when not pulled out and stored, and the life against the wear of the carrier is 1.5 times longer. did. Moreover, when not carrying out extraction storage, the ammonia nitrogen concentration of the treated water fluctuated in the range of 4 to 24 mg / L. On the other hand, when the carrier was pulled out and re-introduced, the ammonia nitrogen concentration of the treated water was 4 to 8 mg / L, and stable treated water could be obtained.

実施例2
実施例1で用いた同一のものを実験用の担体とした。実験条件は以下のとおりである。
実験装置 図2に示したものと同様
被処理水 BOD約10mg/L、アンモニア性窒素124〜280mg/L
反応槽における被処理水の滞留時間 8時間
反応槽における担体の充填率 20%
担体に対する窒素負荷 78〜175mg-窒素/h/L-担体
(計画負荷 140mg-窒素/h/L-担体)
上記した条件で連続処理した。処理水のアンモニア性窒素濃度の判断基準を5mg/Lに設定し、5mg/L以下では担体の引抜きを開始した。担体総量に対して担体を40%引抜いた時点で引抜きを停止し、引抜いた担体を常温で保管した。また、アンモニア性窒素濃度が5mg/Lを越えると引抜いた担体の全量を反応槽に再投入した。このようにして、担体の引抜きと再投入を繰り返す運転を行った。その結果、担体の磨耗率は年間2%であり、引抜き保管をしない場合の年間磨耗率3%に比べて、担体の磨耗率が著しく低下し、担体の磨耗に対する寿命が1.5倍に向上した。
Example 2
The same carrier used in Example 1 was used as an experimental carrier. The experimental conditions are as follows.
Experimental apparatus Water to be treated as shown in FIG. 2 BOD about 10 mg / L, ammoniacal nitrogen 124-280 mg / L
Retention time of water to be treated in reaction tank 8 hours Carrier filling rate in reaction tank 20%
Nitrogen loading on carrier 78-175 mg-nitrogen / h / L-carrier
(Plan load 140mg-nitrogen / h / L-carrier)
Continuous treatment was performed under the conditions described above. The criteria for determining the ammoniacal nitrogen concentration of the treated water was set to 5 mg / L, and the extraction of the carrier was started at 5 mg / L or less. When 40% of the carrier was drawn out with respect to the total amount of the carrier, the drawing was stopped, and the drawn carrier was stored at room temperature. When the ammoniacal nitrogen concentration exceeded 5 mg / L, the entire amount of the carrier extracted was reintroduced into the reaction vessel. Thus, the operation | movement which repeats drawing | extracting and reintroducing of a support | carrier was performed. As a result, the wear rate of the carrier is 2% per year, and the wear rate of the carrier is significantly reduced compared to the annual wear rate of 3% when not pulled out and stored, and the life against the wear of the carrier is 1.5 times longer. did.

実施例3
嫌気性アンモニア酸化細菌濃縮液(菌数10個/mL)34部、ポリエチレングリコールジアクリレート6部、テトラメチルエチレンジアミン0.5部、水59.25部を混合した懸濁液に重合剤として過硫酸カリウム0.25部を添加すると重合が始まり、ゲル化する。このゲルを1辺が3mmの立方体に切断し、実験用の担体とした。実験条件は以下のとおりである。
実験装置 図2に示したものと同様。ただし、散気手段による曝気を行わずに反応槽内を攪拌することによって、槽内を嫌気条件に維持して運転
被処理水 アンモニア性窒素300mg/L、亜硝酸性窒素260mg/L
反応槽における被処理水の滞留時間 4時間
反応槽における担体の充填率 15%
上記した条件で連続処理した。処理水の全窒素濃度の判断基準を80mg/Lに設定し、80mg/L以下では担体の引抜きを開始した。担体総量に対して担体を30%引抜いた時点で引抜きを停止し、引抜いた担体を5℃で保管した。また、全窒素濃度が100mg/Lを越えると引抜いた担体の全量を反応槽に再投入した。このようにして、担体の引抜きと再投入を繰り返す運転を行った。その結果、担体の磨耗率は年間4%であり、引抜き保管をしない場合の年間磨耗率6%に比べて、担体の磨耗率が著しく低下し、担体の磨耗に対する寿命が1.5倍に向上した。
Example 3
Anaerobic ammonium oxidizing bacteria concentrate (a few 10 9 bacteria / mL) 34 parts, 6 parts of polyethylene glycol diacrylate, 0.5 parts of tetramethylethylenediamine as a polymerization agent mixture suspension water 59.25 parts over When 0.25 part of potassium sulfate is added, polymerization starts and gelation occurs. This gel was cut into a cube having a side of 3 mm, and used as an experimental carrier. The experimental conditions are as follows.
Experimental apparatus Similar to that shown in FIG. However, by stirring the inside of the reaction tank without performing aeration by the aeration means, the inside of the tank is maintained under anaerobic conditions, and the water to be treated is 300 mg / L for ammonia nitrogen and 260 mg / L for nitrite nitrogen.
Residence time of water to be treated in reaction tank 4 hours Carrier filling rate in reaction tank 15%
Continuous treatment was performed under the conditions described above. The criterion for determining the total nitrogen concentration of the treated water was set to 80 mg / L, and the extraction of the carrier was started at 80 mg / L or less. When the carrier was drawn 30% of the total amount of the carrier, the drawing was stopped, and the drawn carrier was stored at 5 ° C. When the total nitrogen concentration exceeded 100 mg / L, the entire amount of the extracted carrier was reintroduced into the reaction vessel. Thus, the operation | movement which repeats drawing | extracting and reintroducing of a support | carrier was performed. As a result, the wear rate of the carrier is 4% per year, and the wear rate of the carrier is significantly reduced compared to the annual wear rate of 6% when not withdrawn and stored, and the life against the wear of the carrier is increased by 1.5 times. did.

本発明の第1実施形態を示す装置系統図である。1 is an apparatus system diagram showing a first embodiment of the present invention. 本発明の第2実施形態を示す装置系統図である。It is an apparatus system diagram which shows 2nd Embodiment of this invention. 第2実施形態での制御例を示すフローチャートである。It is a flowchart which shows the example of control in 2nd Embodiment. 本発明の第3実施形態を示す装置系統図である。It is an equipment distribution diagram showing a 3rd embodiment of the present invention. 実験1の実験結果を示すグラフである。6 is a graph showing an experimental result of Experiment 1. 実験2の実験結果を示すグラフである。10 is a graph showing an experimental result of Experiment 2. 実験3の実験結果を示すグラフである。10 is a graph showing an experimental result of Experiment 3.

符号の説明Explanation of symbols

10………反応槽、12………被処理水、14………処理水、16………担体、18………散気手段、20………ブロワ、22………スクリーン、24………担体引抜き管、25………ポンプ、26………担体保管タンク、28………溢流樋、30………自動開閉弁、32………担体投入管、34………流入管、36………検出計、38,38A………制御器、40………水質計、42………仕切り壁、44………保管エリア、45………流動エリア、46………開閉扉。   DESCRIPTION OF SYMBOLS 10 ......... Reaction tank, 12 ......... Water to be treated, 14 ......... Treatment water, 16 ...... Carrier, 18 ......... Air diffuser, 20 ...... Blower, 22 ...... Screen, 24 ... ...... Carrier extraction pipe, 25 ......... Pump, 26 ......... Carrier storage tank, 28 ......... Overflow tank, 30 ......... Automatic open / close valve, 32 ......... Carrier input pipe, 34 ......... Inflow pipe 36 ......... Detector, 38, 38A ......... Control, 40 ......... Water quality meter, 42 ......... Partition wall, 44 ......... Storage area, 45 ......... Flow area, 46 ......... Opening and closing door.

Claims (6)

微生物を包括固定化した粒状の担体が流動する反応槽に被処理水を供給し、前記流動する担体と被処理水とを接触させることにより前記被処理水中の有害成分を生物学的に処理して除去する水処理方法において、前記有害成分の負荷に応じて前記反応槽で流動させる担体量を制御することを特徴とする水処理方法。   The water to be treated is supplied to a reaction vessel in which a granular carrier in which microorganisms are entrapped and immobilized flows, and the fluidized carrier and the water to be treated are brought into contact with each other to biologically treat harmful components in the water to be treated. In this water treatment method, the amount of carrier fluidized in the reaction vessel is controlled in accordance with the load of the harmful component. 前記有害成分の負荷が下限値以下であれば前記担体の一部を反応槽から引抜き、前記有害成分の負荷が上限値以上又は処理水の水質が基準値以上であれば前記引抜いた担体を反応槽に投入することを特徴とする請求項1に記載の水処理方法。   If the load of harmful components is lower than the lower limit, a part of the carrier is withdrawn from the reaction tank, and if the load of harmful components is higher than the upper limit or the quality of treated water is higher than the reference value, the extracted carrier is reacted. The water treatment method according to claim 1, wherein the water treatment method is performed in a tank. 前記有害成分が窒素成分であり、当該窒素成分の負荷の下限値が50mg-窒素/h/L-担体未満である請求項2に記載の水処理方法。   The water treatment method according to claim 2, wherein the harmful component is a nitrogen component, and the lower limit of the load of the nitrogen component is less than 50 mg-nitrogen / h / L-carrier. 微生物を包括固定化した粒状の担体を流動させ被処理水と担体とを接触させることにより被処理水中の有害成分を生物学的に処理して除去する反応槽と、前記有害成分の負荷に応じて前記反応槽内で流動させる担体量を調整する担体量調整手段とを具備したことを特徴とする水処理装置。   A reaction vessel that biologically treats and removes harmful components in the water to be treated by flowing a granular carrier in which microorganisms are comprehensively immobilized and bringing the water to be treated into contact with the carrier, and depending on the load of the harmful components And a carrier amount adjusting means for adjusting the amount of the carrier flowing in the reaction tank. 前記担体量調整手段が、前記反応槽から前記担体の一部を引抜く担体引抜き手段と、前記担体引抜き手段によって引抜いた担体を保管する担体保管手段と、前記担体保管手段に保管された担体を前記反応槽に投入する担体投入手段とによって構成されたことを特徴とする請求項4に記載の水処理装置。   The carrier amount adjusting means includes a carrier extracting means for extracting a part of the carrier from the reaction tank, a carrier storing means for storing the carrier extracted by the carrier extracting means, and a carrier stored in the carrier storing means. The water treatment apparatus according to claim 4, wherein the water treatment apparatus is configured by a carrier charging unit that charges the reaction tank. 前記反応槽に流入する被処理水及び/又は反応槽から排出する処理水の水質をモニタリングするモニタリング手段を備え、前記モニタリング手段によるモニタリング結果に基づいて前記担体量調整手段を制御するようにしたことを特徴とする請求項4又は請求項5に記載の水処理装置。   A monitoring means for monitoring the quality of the treated water flowing into the reaction tank and / or the treated water discharged from the reaction tank is provided, and the carrier amount adjusting means is controlled based on the monitoring result by the monitoring means. The water treatment device according to claim 4 or 5, characterized in that.
JP2004277121A 2004-09-24 2004-09-24 Water treatment method and apparatus Expired - Fee Related JP4200443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277121A JP4200443B2 (en) 2004-09-24 2004-09-24 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277121A JP4200443B2 (en) 2004-09-24 2004-09-24 Water treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2006088047A true JP2006088047A (en) 2006-04-06
JP4200443B2 JP4200443B2 (en) 2008-12-24

Family

ID=36229524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277121A Expired - Fee Related JP4200443B2 (en) 2004-09-24 2004-09-24 Water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4200443B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122865A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Water treatment and carrier acclimatization method and its device
JP2009095243A (en) * 2007-10-12 2009-05-07 Hitachi Plant Technologies Ltd Culture method and device, and drain treatment method and device
JP2010201377A (en) * 2009-03-04 2010-09-16 Hitachi Plant Technologies Ltd System and method for preserving anaerobic microorganism immobilizing carrier
JP2016198743A (en) * 2015-04-14 2016-12-01 学校法人 東洋大学 Waste water treatment method and waste water treatment device of high salts concentration-containing waste
JP2019025410A (en) * 2017-07-28 2019-02-21 オルガノ株式会社 Method for treating organic matter-containing water and apparatus for treating organic matter-containing water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122865A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Water treatment and carrier acclimatization method and its device
JP2009095243A (en) * 2007-10-12 2009-05-07 Hitachi Plant Technologies Ltd Culture method and device, and drain treatment method and device
JP2010201377A (en) * 2009-03-04 2010-09-16 Hitachi Plant Technologies Ltd System and method for preserving anaerobic microorganism immobilizing carrier
JP2016198743A (en) * 2015-04-14 2016-12-01 学校法人 東洋大学 Waste water treatment method and waste water treatment device of high salts concentration-containing waste
JP2019025410A (en) * 2017-07-28 2019-02-21 オルガノ株式会社 Method for treating organic matter-containing water and apparatus for treating organic matter-containing water

Also Published As

Publication number Publication date
JP4200443B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP5932639B2 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
EP1806325B1 (en) Method of treating nitrogen-containing liquid
JP5038985B2 (en) Aeration-less water treatment system
JP6448382B2 (en) Nitrogen-containing wastewater denitrification method and denitrification apparatus
US10479710B2 (en) Granule-forming method and waste water treatment method
JP5963668B2 (en) Wastewater treatment method
TWI429600B (en) A denitrification treatment method and a denitrification treatment apparatus
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4923348B2 (en) Biological denitrification method
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP4470169B2 (en) Water treatment method and apparatus
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JP4200443B2 (en) Water treatment method and apparatus
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP4042718B2 (en) Anaerobic ammonia oxidation method and apparatus
JP4608771B2 (en) Biological denitrification equipment
JP2004255269A (en) Denitrification method and denitrification apparatus
JP6461408B1 (en) Water treatment method and water treatment apparatus
JP4618420B2 (en) Method for oxidizing nitrous acid-containing liquid
TW202202454A (en) Aerobic biological processing method and device
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP5558866B2 (en) Water treatment apparatus and water treatment method
JPH07116691A (en) Treatment of drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees