JPH07116691A - Treatment of drainage - Google Patents

Treatment of drainage

Info

Publication number
JPH07116691A
JPH07116691A JP5264426A JP26442693A JPH07116691A JP H07116691 A JPH07116691 A JP H07116691A JP 5264426 A JP5264426 A JP 5264426A JP 26442693 A JP26442693 A JP 26442693A JP H07116691 A JPH07116691 A JP H07116691A
Authority
JP
Japan
Prior art keywords
tank
aeration
intermittent
drainage
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5264426A
Other languages
Japanese (ja)
Inventor
Hiroshi Terunuma
洋 照沼
Toshinobu Makuta
俊信 幕田
Makoto Yamamoto
真 山本
Tatsuya Uchida
達也 内田
Yuuhei Inamori
悠平 稲森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Chemical Techno Plant Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Chemical Techno Plant Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Chemical Techno Plant Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP5264426A priority Critical patent/JPH07116691A/en
Publication of JPH07116691A publication Critical patent/JPH07116691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To simultaneously remove nitrogen and phosphorus contained in drainage in an intermittent aeration activated sludge treatment method by introducing drainage into an anaeration tank and returning a part of settling sludge in a precipitation tank and also agitating drainage, and thereafter introducing drainage into an intermittent dispersion aeration tank and applying activated sludge treatment to drainage. CONSTITUTION:An anaeration tank 2 in which anaerobic treatment is performed for drainage 1 is equipped with a pump 8 and an agitator 10. The pump 8 is interlocked with an oxidation-reduction electrometer 6 to introduce primary settling sludge automatically when oxidation-reduction potential of drainage in the tank 2 is regulated to >=-150mV. Further an intermittent aeration tank 3 into which drainage 1 anaero-bically agitated in the anaeration tank 2 is sent is equipped with an aeration device 12 interlocked with a dissolved oxygen meter 9 through a timer 11 and with an agitator 10. Drainage 1 is introduced into the anaeration tank 2 and a part of sludge precipitated in a precipitation tank 4 is returned into the tank 2. After mechanical agitation treatment is performed in a specified retention time, drainage is introduced into an intermittent aeration tank 3. Aeration and nonaeration are alternately repeated herein and solid-liquid separation is applied to the mixed liquid of activated sludge in the precipitation tank 4. Supernatant liquid is discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排水中の有機性汚濁物
質とともに窒素及びリンをも同時に除去することができ
る排水の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater which can simultaneously remove nitrogen and phosphorus together with organic pollutants in wastewater.

【0002】[0002]

【従来の技術】湖沼及び内湾等の閉鎖性水域の富栄養化
を抑制する上で、その主原因となる生活排水中の栄養塩
素としての窒素・リンを同時に除去できる低コストで且
つ維持管理の容易な処理技術を確立し普及させることが
重要である。有機物、窒素の処理技術としては、これま
で数多くの手法が開発され導入されてきたが、運転コス
トの低減、維持管理の容易性から生物処理が主流であ
り、そのプロセスの一つに間欠ばつ気活性汚泥法があ
る。
2. Description of the Related Art In controlling eutrophication of closed water areas such as lakes and inner bays, nitrogen and phosphorus as nutrient chlorine in domestic wastewater, which is the main cause, can be removed at the same time at low cost and with maintenance management. It is important to establish and disseminate easy processing technology. Although many techniques have been developed and introduced as a treatment technology for organic substances and nitrogen, biological treatment is the mainstream due to the reduction of operating costs and the ease of maintenance, and one of the processes is intermittent aeration. There is an activated sludge method.

【0003】図5に従来の間欠ばつ気活性汚泥法の処理
フローを示す。従来の間欠ばつ気活性汚泥法は、タイマ
11のセットでばっ気/非ばっ気時間比を設定するた
め、排水1の水量、水質及び間欠ばつ気槽3内の汚泥濃
度等による負荷変動に対応できず、硝化不足によるアン
モニア性窒素の残存又は過ばっ気による硝酸性窒素の残
存等が生じ、処理性能が低下する場合がある。
FIG. 5 shows a processing flow of a conventional intermittent aerated activated sludge method. In the conventional intermittent aerated activated sludge method, the aeration / non-aeration time ratio is set by setting the timer 11, so it is possible to cope with load fluctuations due to the amount of water in the drainage 1, the water quality, and the sludge concentration in the intermittent aeration tank 3. However, there is a case where ammoniacal nitrogen is left due to insufficient nitrification or nitrate nitrogen is left due to overaeration, and the treatment performance is deteriorated.

【0004】そこで、これらの負荷変動に対応すべく、
図6に示す溶存酸素(以下DOと称す)自動制御間欠ば
つ気活性汚泥法が開発された。これは、DO計9とタイ
マ11を用いDO濃度の上限値と下限値及び嫌気撹拌時
間を設定することで、ばっ気装置12のON−OFFを
自動制御するため負荷変動に影響されず確実に嫌気・好
気状態を確保することができることから、硝化・脱窒反
応が安定し維持管理が容易であるという特徴を有する。
しかし、間欠ばつ気槽3のみでは必ずしも満足したリン
除去性能が得られないことから、より高度な窒素・リン
除去を目的とすれば、従来のプロセスに生物学的リンの
除去の操作・制御を組み込むことが必要となる。
Therefore, in order to cope with these load fluctuations,
A dissolved oxygen (hereinafter referred to as DO) automatic control intermittent aeration activated sludge method shown in FIG. 6 has been developed. This is because the upper limit value and the lower limit value of the DO concentration and the anaerobic stirring time are set by using the DO meter 9 and the timer 11 to automatically control the ON / OFF of the aeration device 12 without being influenced by the load fluctuation. Since the anaerobic / aerobic state can be secured, the nitrification / denitrification reaction is stable and the maintenance is easy.
However, a satisfactory phosphorus removal performance is not always obtained with only the intermittent bubbling tank 3, so that for the purpose of more advanced nitrogen / phosphorus removal, the operation / control of conventional biological phosphorus removal should be performed. It is necessary to incorporate it.

【0005】[0005]

【発明が解決しようとする課題】前記図6の従来技術に
あっては、DO計9とタイマ11を用いDO濃度の上限
値と下限値及び嫌気撹拌時間を設定し、ばっ気の運転・
停止により間欠ばっ気槽3内のDO濃度を自動制御する
制御法により、間欠ばつ気槽3内は負荷変動に影響され
ず嫌気・好気状態を繰返し安定した硝化・脱窒反応を行
うことが可能である。 しかし、生物学的な脱窒と脱リ
ンの条件が異なることから、間欠ばつ気槽3内では必ず
しも顕著な生物学的なリンの放出及び過剰摂取の現象は
起きず、特にリンの放出に適した嫌気状態を保持しない
限り高いリン除去性能は望めないという課題がある。
In the prior art shown in FIG. 6, the DO meter 9 and the timer 11 are used to set the upper and lower limits of the DO concentration and the anaerobic stirring time, and the aeration operation is performed.
By the control method that automatically controls the DO concentration in the intermittent aeration tank 3 by stopping, it is possible to perform a stable nitrification / denitrification reaction by repeating the anaerobic / aerobic state without being affected by the load change in the intermittent aeration tank 3. It is possible. However, since the conditions of biological denitrification and dephosphorization are different, notable biological release and excessive intake of phosphorus do not necessarily occur in the intermittent aeration tank 3, and it is particularly suitable for the release of phosphorus. There is a problem that high phosphorus removal performance cannot be expected unless the anaerobic state is maintained.

【0006】本発明は、上記課題に鑑みてなされたもの
であり、排水中の窒素とリンとを同時に除去できる排水
の処理方法を提供することを目的としたものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for treating wastewater which can simultaneously remove nitrogen and phosphorus in the wastewater.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の本発明の構成を実施例に対応する図1を用いて説明す
ると、本発明は、有機物、窒素化合物、リン化合物を含
有する排水を連続的に処理する間欠ばっ気活性汚泥処理
法において、間欠ばつ気槽3の前段に嫌気槽2及び後段
に沈殿槽4を設置し、嫌気槽2に排水1の流入及び沈殿
槽4で沈殿した汚泥の一部を返送するとともに反応促進
のための機械的撹拌処理を行って排水を間欠ばつきばっ
気槽3に導き、該ばっ気槽3においてばっ気、非ばっ気
を交互に繰返し活性汚泥処理を行うとともに反応促進の
ための機械的撹拌処理を行い、活性汚泥処理の混合液を
沈殿槽4に導入して固液分離し、上澄み液を処理水とし
て放流することにより、嫌気槽2において汚泥からのリ
ンの放出を促進させるとともに間欠ばつ気槽3において
生物学的硝化・脱窒反応とリンの過剰摂取を促進させる
技術手段を講じたものである。
The structure of the present invention for achieving the above object will be described with reference to FIG. 1 corresponding to an embodiment. The present invention provides a waste water containing an organic substance, a nitrogen compound and a phosphorus compound. In the intermittent aerated activated sludge treatment method of continuously treating, the anaerobic tank 2 and the settling tank 4 are installed in the preceding stage of the intermittent aeration tank 3, and the wastewater 1 flows into the anaerobic tank 2 and precipitates in the settling tank 4. A part of the sludge is returned and a mechanical agitation process for promoting the reaction is carried out to guide the wastewater to the aeration tank 3 with intermittent aeration, and aeration and non-aeration are alternately repeated in the aeration tank 3 to activate sludge. In the anaerobic tank 2, the treatment and mechanical stirring treatment for promoting the reaction are carried out, the mixed liquid of the activated sludge treatment is introduced into the sedimentation tank 4 for solid-liquid separation, and the supernatant liquid is discharged as treated water. Promotes the release of phosphorus from sludge In which it took technical means to promote overdose biological nitrification and denitrification and phosphorus in Rutotomoni intermittent punishment Kiso 3.

【0008】間欠ばっ気槽3内はDO計とタイマ11に
よる制御により間欠的にばっ気・非ばっ気を繰返す。こ
の制御は該槽3内のDO濃度の上限設定値を検知・確認
するとばっ気が停止し、そして、嫌気設定時間経過後に
ばっ気が再開され、以下このばっ気・非ばっ気の運転が
繰りかえされるとともに反応効率を高めるために撹拌機
10によって常時該槽3内を撹拌する。その際、DO濃
度の上限値の代りにDO濃度の急激な上昇開始点を検知
し、ばっ気の停止を行えば省エネルギー化が図れる。
In the intermittent aeration tank 3, aeration and non-aeration are repeated intermittently under the control of the DO meter and the timer 11. When this control detects and confirms the upper limit set value of the DO concentration in the tank 3, aeration is stopped, and aeration is resumed after the anaerobic set time has elapsed. Below, this aeration / non-aeration operation is repeated. The inside of the tank 3 is constantly stirred by the stirrer 10 in order to improve the reaction efficiency while being returned. At that time, instead of the upper limit value of the DO concentration, the start point of the rapid increase of the DO concentration is detected, and if the aeration is stopped, energy can be saved.

【0009】また、嫌気槽2を排水の流れ方向に2槽以
上に分割し、流れを栓流型に近づけることにより、リン
の放出が促進されリン除去性能が向上する。
Further, by dividing the anaerobic tank 2 into two or more tanks in the flow direction of the waste water so that the flow approaches the plug flow type, the release of phosphorus is promoted and the phosphorus removal performance is improved.

【0010】さらに、嫌気槽2の酸化還元電位(以下O
RPと称す)を常に−150m以下とし、汚泥がリンを
放出する環境になるようにする。もし、この値以上にな
った場合、初沈汚泥等を流入させることでORPの値を
低下させる。
Further, the redox potential of the anaerobic tank 2 (hereinafter referred to as O
(Referred to as RP) is always -150 m or less so that sludge releases phosphorus. If it exceeds this value, the ORP value is lowered by introducing the first sludge and the like.

【0011】[0011]

【作用】生物学的脱リン法のプロセスは、先ず嫌気状態
で活性汚泥(脱リン菌)が有機物を取り込み体内に貯蔵
する際にリンを放出し、その汚泥を好気状態にすると蓄
積した有機物を消費すると同時に嫌気状態で放出した以
上のリンを過剰摂取することが知られている。また、嫌
気状態でのリン放出の条件としてORPが指標とされ、
その値は−150mV乃至−250mV範囲という報告
がされている。
[Function] The biological dephosphorization process is as follows: Activated sludge (dephosphorization bacteria) releases phosphine when stored in the body by activated sludge (dephosphorization bacteria) in an anaerobic state. It is known to consume too much phosphorus and excessively ingest more phosphorus than is released in an anaerobic state. In addition, ORP is used as an index as a condition for phosphorus release in an anaerobic state,
The value is reported to be in the range of -150 mV to -250 mV.

【0012】本発明による嫌気槽において、リン蓄積菌
を含んだ沈殿槽4よりの返送汚泥は流入排水と混合する
ことにより、BOD(有機物)濃度が高くなるとともに
嫌気濃度が上昇し、ORPの値が−200mV以下まで
低下する。このことは、脱リン菌がリンを放出するのに
必要な有機物の確保とORPの条件を満たしている。嫌
気槽2でリンを放出した汚泥は、DO制御により生物学
的硝化・脱窒が行われる間欠ばつ気槽3で同時にリンの
過剰摂取が進行する。その際、非ばっ気状態による嫌気
状態においてリンの放出は確認されず、これは脱窒が行
われるORP値よりリンが放出されるORP値の方が低
く、間欠ばつ気槽3ではリンが放出するORPまで低下
しないからである。
In the anaerobic tank according to the present invention, the sludge returned from the settling tank 4 containing phosphorus accumulating bacteria is mixed with the inflowing wastewater to increase the BOD (organic matter) concentration and the anaerobic concentration, thereby increasing the ORP value. Decreases to -200 mV or less. This satisfies the conditions for securing organic substances and ORP necessary for dephosphorization bacteria to release phosphorus. The sludge that has released phosphorus in the anaerobic tank 2 is simultaneously excessively ingested in the intermittent aeration tank 3 where biological nitrification and denitrification are performed by DO control. At that time, the release of phosphorus was not confirmed in the anaerobic state due to the non-aeration state. This is because the ORP value at which phosphorus is released is lower than the ORP value at which denitrification is performed, and phosphorus is released in the intermittent aeration tank 3. This is because the ORP does not decrease.

【0013】間欠ばつ気槽3のDO制御法において、D
O濃度上限設定値の代りにDO濃度の急激な上昇開始点
を用いてばっ気の停止を行うことにより硝化効率の向上
と省エネルギー化が図れる。これは、硝化過程で液中の
アンモニア性窒素が完全に消失すると同時にDO濃度が
上昇し始めることを利用したものである。また、単槽の
硝化・脱窒反応においては、ばっ気・非ばっ気を出来る
だけこまめに行うことが反応効率の向上につながる。よ
って、DO濃度が上昇すれば、硝化が終了したとみなし
脱窒工程に移行することで、エネルギーの浪費と過ばっ
気を防止すると同時に処理効率を向上させることが可能
である。
In the DO control method of the intermittent aeration tank 3, D
It is possible to improve the nitrification efficiency and save energy by stopping the aeration using the start point of the rapid increase of the DO concentration instead of the O concentration upper limit set value. This utilizes the fact that the ammonia concentration in the liquid completely disappears during the nitrification process and the DO concentration starts to rise at the same time. Further, in the nitrification / denitrification reaction of a single tank, it is possible to improve reaction efficiency by performing aeration / non-aeration as diligently as possible. Therefore, if the DO concentration rises, it is considered that nitrification is completed and the process proceeds to the denitrification step, whereby it is possible to prevent waste of energy and aeration and at the same time improve the treatment efficiency.

【0014】嫌気槽2を排水の流れ方向に2槽以上に分
割し、流れを栓流型に近付けることにより、嫌気槽2内
のORPがさらに低下しリンの放出が促進され、リンの
除去性能が向上する。
By dividing the anaerobic tank 2 into two or more tanks in the flow direction of the wastewater and bringing the flow closer to a plug flow type, the ORP in the anaerobic tank 2 is further lowered, the release of phosphorus is promoted, and the removal performance of phosphorus is increased. Is improved.

【0015】活性汚泥からのリンの放出は、周囲の環境
のORPが−150mV以下で良好に進行することか
ら、嫌気槽2内のORPを−150mV以下の範囲を常
に維持するようにし、もしこの値以上(範囲以外)にな
った場合、初沈汚泥等を自動的に流入させることでOR
Pの値を低下させる。このことから、自動制御により嫌
気槽2での常に安定したリンの放出が生じ、次の間欠ば
つ気槽3でのリンの過剰摂取が促進されることで常に安
定したリンの除去性能が得られる。
As for the release of phosphorus from the activated sludge, since the ORP of the surrounding environment progresses well at -150 mV or less, the ORP in the anaerobic tank 2 is always maintained in the range of -150 mV or less. When the value exceeds the value (outside the range), the first sludge etc. is automatically flowed in to perform OR
Decrease the value of P. From this fact, a stable phosphorus release in the anaerobic tank 2 is always generated by the automatic control, and an excessive intake of phosphorus in the next intermittent aeration tank 3 is promoted, so that a stable phosphorus removal performance is always obtained. .

【0016】[0016]

【実施例】本発明の実施例を図1乃至図4に基づき以下
説明する。2は、外部からの排水1を導入し嫌気処理を
行う嫌気槽であり、該槽2は酸化還元電位を測定するた
めの酸化還元電位計(ORP計)6と、該ORP計6に
連動し該槽2内の汚水の酸化還元電位が−150mV以
上になった場合に初沈汚泥等を自動的に流入させるポン
プ8と、該槽2内を撹拌させて反応の促進を図る撹拌機
10とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. Reference numeral 2 denotes an anaerobic tank for introducing effluent 1 from the outside to perform anaerobic treatment. The tank 2 is interlocked with the redox potential meter (ORP meter) 6 for measuring the redox potential. A pump 8 for automatically injecting initially settled sludge and the like when the oxidation-reduction potential of wastewater in the tank 2 becomes −150 mV or more, and a stirrer 10 for stirring the inside of the tank 2 to promote the reaction. Is equipped with.

【0017】3は、前記嫌気槽2に接続され嫌気槽2に
おいて嫌気撹拌された排水1を導入し、ばっ気、非ばっ
気を行って間欠ばつ気処理を行う間欠ばつ気槽であり、
該ばっ気槽3には槽内の溶存酸素(DO)を測定する溶
存酸素計(DO計)9と、該DO計9に連動するタイマ
11と、該タイマ11に連動し駆動するばっ気装置12
と、ばっ気・非ばっ気時に槽内の排水を撹拌し反応の促
進を図る撹拌機10とを備えている。
Reference numeral 3 is an intermittent aeration tank which is connected to the anaerobic tank 2 and introduces the effluent 1 which is anaerobically stirred in the anaerobic tank 2 to perform aeration and non-aeration to perform intermittent aeration treatment.
In the aeration tank 3, a dissolved oxygen meter (DO meter) 9 for measuring dissolved oxygen (DO) in the tank, a timer 11 interlocked with the DO meter 9, and an aeration device interlocked with the timer 11 and driven. 12
And a stirrer 10 that promotes the reaction by stirring the waste water in the tank during aeration / non-aeration.

【0018】4は、間欠ばつ気槽3に接続され、該槽3
で処理された処理水5を沈殿分離して上澄み液を系外に
流出させる沈殿槽である。そして、沈殿槽4と嫌気槽2
との間には沈殿槽4の沈殿汚泥を嫌気槽2へ返送するた
めの返送汚泥管7が接続されている。
Numeral 4 is connected to the intermittent aeration tank 3, and the tank 3
This is a settling tank in which the treated water 5 treated in step 2 is separated by precipitation and the supernatant liquid is allowed to flow out of the system. And settling tank 4 and anaerobic tank 2
A return sludge pipe 7 for returning the settled sludge from the settling tank 4 to the anaerobic tank 2 is connected between and.

【0019】間欠ばつ気槽3のばっ気装置運転制御は、
DO計9とタイマ11を用いて間欠ばつ気槽3内のDO
濃度の上限値と下限値及び嫌気撹拌時間を設定し自動制
御を行った。ばっ気状態は下限値から上限値までとし、
非ばっ気状態は下限値に達した後一定の撹拌時間を維持
することで嫌気・好気時間を制御した。また、間欠ばつ
気槽3内及び嫌気槽2内は常に撹拌機10で撹拌した。
The operation control of the aeration device of the intermittent aeration tank 3 is as follows.
DO in the intermittent spout air tank 3 using the DO meter 9 and the timer 11
The upper and lower limits of concentration and the anaerobic stirring time were set, and automatic control was performed. The aeration state is from the lower limit to the upper limit,
In the non-aeration state, the anaerobic / aerobic time was controlled by maintaining a constant stirring time after reaching the lower limit. Further, the inside of the intermittent aeration tank 3 and the inside of the anaerobic tank 2 were always stirred by the stirrer 10.

【0020】上記の装置を用いて、BOD200mg/
l、全窒素20mg/l、全リン7mg/lの排水を処理した
ところ、BOD10mg/l以下、全窒素12mg/l以下、
全リン1mg/l以下の処理水が得られ、有機汚濁物質、
窒素、リンの同時除去ができた。嫌気槽2内と間欠ばつ
気槽3内の水質の径時変化を図2に示す。嫌気槽2のO
RPは−200mV前後まで低下し、リン濃度は汚泥か
らのリン放出に伴うと思われるリン濃度の上昇がみら
れ、次の間欠ばつ気槽3においてはリンは安定して過剰
摂取されている。一般に、汚泥リン含有率が高いほどリ
ン除去能力が高いと考えられる。図3に従来の間欠ばつ
気法と本発明の嫌気+間欠ばつ気法における汚泥中のリ
ン含有率の比較を示す。本発明では、嫌気槽2を設置す
ることにより従来の倍以上のリン含有率が得られること
がわかる。
Using the above apparatus, BOD 200 mg /
l, total nitrogen 20 mg / l, total phosphorus 7 mg / l treated with waste water, BOD 10 mg / l or less, total nitrogen 12 mg / l or less,
Treated water containing less than 1 mg / l of total phosphorus is obtained, and organic pollutants,
Nitrogen and phosphorus could be removed simultaneously. FIG. 2 shows changes with time in water quality in the anaerobic tank 2 and the intermittent aeration tank 3. Anaerobic tank 2 O
The RP decreased to around -200 mV, and the phosphorus concentration was found to increase with the release of phosphorus from sludge, and phosphorus was stably excessively ingested in the next intermittent aeration tank 3. It is generally considered that the higher the sludge phosphorus content, the higher the phosphorus removal capacity. FIG. 3 shows a comparison of phosphorus content in sludge between the conventional intermittent aeration method and the anaerobic + intermittent aeration method of the present invention. In the present invention, it can be seen that by installing the anaerobic tank 2, a phosphorus content rate more than double that of the conventional case can be obtained.

【0021】図4には間欠ばつ気槽3のDO濃度とアン
モニア性窒素の径時変化を示すが、アンモニア性窒素が
硝化により消失してからDO濃度の急激な上昇(A点)
がみられる。よって、この急激な上昇開始点を検知しば
っ気を停止すれば、過ばっ気を防ぎ次の脱窒工程にすば
やく移行でき、反応効率を向上させるとともに省エネル
ギー化が図れる。
FIG. 4 shows the changes over time in the DO concentration and the ammonia nitrogen in the intermittent aeration tank 3, showing a rapid increase in the DO concentration after the ammonia nitrogen disappeared due to nitrification (point A).
Can be seen. Therefore, by detecting this sudden rising start point and stopping the aeration, the aeration can be prevented and the process can quickly proceed to the next denitrification step, so that the reaction efficiency can be improved and energy saving can be achieved.

【0022】嫌気槽2の縮小化のため嫌気槽2の容積を
縮小して実験を行ったが、嫌気槽2の滞留時間が短すぎ
るとORPの低下とリンの放出が生じなくなる。しか
し、嫌気槽2を2槽以上に分割することにより徐々にリ
ンの放出に適する環境が形成され、リン除去性能が向上
した。よって、嫌気槽2を分割し、流れを栓流型とする
ことにより嫌気槽2の縮小を可能にすることができた。
An experiment was conducted by reducing the volume of the anaerobic tank 2 in order to reduce the size of the anaerobic tank 2. However, if the residence time of the anaerobic tank 2 is too short, the ORP will not decrease and the phosphorus will not be released. However, by dividing the anaerobic tank 2 into two or more tanks, an environment suitable for the release of phosphorus was gradually formed, and the phosphorus removal performance was improved. Therefore, it was possible to reduce the size of the anaerobic tank 2 by dividing the anaerobic tank 2 and making the flow a plug flow type.

【0023】負荷変動等により嫌気槽2内のORPが低
下せずリンの放出が抑制されると、リン除去性能が低下
する。その際、ORPの上昇を検知し初沈汚泥13等を
嫌気槽2にポンプ8を介して流入させることにより、O
RPを低下させリンの放出を促進させることができる。
結果的にリン除去性能を安定して高く維持できることが
可能である。
When the ORP in the anaerobic tank 2 does not decrease due to load fluctuations and the release of phosphorus is suppressed, the phosphorus removal performance decreases. At that time, by detecting an increase in ORP and causing the first sludge 13 and the like to flow into the anaerobic tank 2 via the pump 8,
It can lower RP and accelerate the release of phosphorus.
As a result, the phosphorus removal performance can be stably maintained at a high level.

【0024】[0024]

【発明の効果】本発明の排水の処理方法は、排水中の有
機性汚濁物質、窒素及びリンを同時に除去できる効果を
奏するものである。
EFFECTS OF THE INVENTION The wastewater treatment method of the present invention has the effect of simultaneously removing organic pollutants, nitrogen and phosphorus in wastewater.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す処理フロー図。FIG. 1 is a process flow chart showing an embodiment of the present invention.

【図2】本発明の嫌気槽と間欠ばつ気槽におけるリン、
ORP、DOの径時変化を示す図。
FIG. 2 shows phosphorus in an anaerobic tank and an intermittent aeration tank of the present invention,
The figure which shows the time change of ORP and DO.

【図3】本発明と従来の間欠ばつ気法における汚泥のリ
ン含有率比較を示す図。
FIG. 3 is a diagram showing a comparison of phosphorus content in sludge between the present invention and a conventional intermittent aeration method.

【図4】本発明の間欠ばつ気槽内のDOとアンモニア性
窒素の径時変化を示す図。
FIG. 4 is a diagram showing temporal changes of DO and ammonia nitrogen in the intermittent aeration tank of the present invention.

【図5】従来の間欠ばつ気槽によるフロー図。FIG. 5 is a flow chart of a conventional intermittent aeration tank.

【図6】従来の溶存酸素自動制御間欠ばつ気槽による処
理フロー図。
FIG. 6 is a process flow chart of a conventional dissolved oxygen automatic control intermittent aeration tank.

【符号の説明】[Explanation of symbols]

1.排水 2.嫌気槽 3.間欠ばつ気槽 4.沈殿槽 5.処理水 6.ORP計 7.返送汚泥管 8.ポンプ 9.DO計 10.撹拌機 11.タイマ 12.ばっ気装置 13.初沈汚泥 1. Drainage 2. Anaerobic tank 3. Intermittent air tank 4. Settling tank 5. Treated water 6. ORP meter 7. Return sludge pipe 8. Pump 9. DO total 10. Stirrer 11. Timer 12. Aeration device 13. First sludge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 真 東京都千代田区神田駿河台三丁目1番地2 日立化成テクノプラント株式会社内 (72)発明者 内田 達也 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内 (72)発明者 稲森 悠平 茨城県つくば市小野川16番地の2 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Makoto Yamamoto 3-1, 1 Kanda Sugawadai, Chiyoda-ku, Tokyo Inside Hitachi Chemical Techno Plant Co., Ltd. Shimodate Factory Co., Ltd. (72) Inventor Yuhei Inamori 2 of 16 Onogawa, Tsukuba City, Ibaraki Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】有機物、窒素化合物、リン化合物を含有す
る排水を連続的に処理する間欠ばっ気活性汚泥処理法に
おいて、間欠ばつ気槽3の前段に嫌気槽2及び後段に沈
殿槽4を設置し、嫌気槽2に排水1の流入及び沈殿槽4
で沈殿した汚泥の一部を返送するとともに機械的撹拌処
理を行って排水1を間欠ばつきばっ気槽3に導き、該ば
っ気槽3においてばっ気、非ばっ気を交互に繰返し活性
汚泥処理を行うとともに機械的撹拌処理を行い、活性汚
泥処理の混合液を沈殿槽4に導入して固液分離し、上澄
み液を処理水として放流することにより、嫌気槽2にお
いて汚泥からのリンの放出を促進させるとともに間欠ば
つ気槽3において生物学的硝化・脱窒反応とリンの過剰
摂取を促進させることを特徴とする排水の処理方法。
1. In an intermittent aerated activated sludge treatment method for continuously treating wastewater containing an organic substance, a nitrogen compound, and a phosphorus compound, an anaerobic tank 2 is installed in a stage before the intermittent aeration tank 3 and a precipitation tank 4 is installed in a latter stage. The anaerobic tank 2, the inflow of the wastewater 1 and the precipitation tank 4
Part of the sludge settled in step 1 is returned and the mechanical agitation process is carried out to guide the wastewater 1 to the aeration tank 3 with intermittent spitting, and in the aeration tank 3, aeration and non-aeration are alternately repeated to activate sludge. And the mechanical agitation treatment are carried out, the mixed liquid of the activated sludge treatment is introduced into the settling tank 4 for solid-liquid separation, and the supernatant liquid is discharged as treated water, whereby phosphorus is released from the sludge in the anaerobic tank 2. And a biological nitrification / denitrification reaction in the intermittent aeration tank 3 and an excessive intake of phosphorus.
【請求項2】間欠ばつ気槽3が、内部に溶存酸素計9が
設置されるとともに溶存酸素の上限値と下限値及び嫌気
撹拌時間を設定し、間欠ばつ気槽3内の溶存酸素濃度を
ばっ気の運転・停止により自動制御することを特徴とす
る請求項1記載の排水の処理方法。
2. The intermittent oxygen gas tank 3 has a dissolved oxygen meter 9 installed therein, and the upper and lower limits of dissolved oxygen and anaerobic stirring time are set to determine the dissolved oxygen concentration in the intermittent oxygen gas tank 3. The method for treating wastewater according to claim 1, wherein the method is automatically controlled by operating / stopping aeration.
【請求項3】間欠ばつ気槽3が、内部に溶存酸素計9が
設置されるとともにばっ気時における溶存酸素濃度の急
激な上昇開始点を検知することでばっ気を停止し、さら
に溶存酸素濃度下限値及び嫌気撹拌時間設定値よってば
っ気運転することを特徴とする請求項1記載の排水の処
理方法。
3. An intermittent aeration tank 3 is provided with a dissolved oxygen meter 9 therein, and stops aeration by detecting a sudden rising start point of the dissolved oxygen concentration, and the dissolved oxygen concentration is further detected. The method for treating wastewater according to claim 1, wherein aeration operation is performed according to a lower limit value and an anaerobic stirring time set value.
【請求項4】嫌気槽2が、排水の流れ方向に2槽以上に
分割されたことを特徴とする請求項1記載の排水の処理
方法。
4. The method for treating wastewater according to claim 1, wherein the anaerobic tank 2 is divided into two or more tanks in the flow direction of the wastewater.
【請求項5】嫌気槽2が、内部に酸化還元電位計を設置
することにより、嫌気槽2内の酸化還元電位が−150
mV以下になると初沈殿汚泥等が供給されることを特徴
とする請求項1または請求項4記載の排水の処理方法。
5. The anaerobic tank 2 has an oxidation-reduction potentiometer installed therein so that the oxidation-reduction potential in the anaerobic tank 2 is -150.
The method for treating wastewater according to claim 1 or 4, wherein the first settling sludge or the like is supplied when the voltage becomes mV or less.
JP5264426A 1993-10-22 1993-10-22 Treatment of drainage Pending JPH07116691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5264426A JPH07116691A (en) 1993-10-22 1993-10-22 Treatment of drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5264426A JPH07116691A (en) 1993-10-22 1993-10-22 Treatment of drainage

Publications (1)

Publication Number Publication Date
JPH07116691A true JPH07116691A (en) 1995-05-09

Family

ID=17403019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5264426A Pending JPH07116691A (en) 1993-10-22 1993-10-22 Treatment of drainage

Country Status (1)

Country Link
JP (1) JPH07116691A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323687A (en) * 1997-05-23 1998-12-08 Nkk Corp Method for removing phosphorus in waste water
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method
CN108341492A (en) * 2018-04-26 2018-07-31 瑞盛环境股份有限公司 A kind of domestic sewage treatment process and its integrated apparatus based on SBBR reactors
CN114804518A (en) * 2022-04-18 2022-07-29 安徽华骐环保科技股份有限公司 One-stop rural decentralized sewage treatment equipment and treatment method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323687A (en) * 1997-05-23 1998-12-08 Nkk Corp Method for removing phosphorus in waste water
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method
CN108341492A (en) * 2018-04-26 2018-07-31 瑞盛环境股份有限公司 A kind of domestic sewage treatment process and its integrated apparatus based on SBBR reactors
CN114804518A (en) * 2022-04-18 2022-07-29 安徽华骐环保科技股份有限公司 One-stop rural decentralized sewage treatment equipment and treatment method thereof
CN114804518B (en) * 2022-04-18 2024-02-23 安徽华骐环保科技股份有限公司 One-stop rural decentralized sewage treatment equipment and treatment method thereof

Similar Documents

Publication Publication Date Title
CN104944689B (en) Device for treating high ammonia-nitrogen wastewater and method thereof
JP6448382B2 (en) Nitrogen-containing wastewater denitrification method and denitrification apparatus
JPWO2011148949A1 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
KR102311712B1 (en) Shortcut Nitrogen Removal Process and System by using Partial Nitritation in SBBR(Sequencing Batch Biofilm Reactor) with Media
CN101993174A (en) Integrated treatment process for coal mine sewage
KR100428047B1 (en) A Waste Water Purifier Using Overflow Sediment and Method
JP2000140884A (en) Waste water treatment and waste water treatment device
JP2000015287A (en) Waste water treatment method and apparatus
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JP5149728B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP2012024707A (en) Denitrification method and denitrification device for ammoniacal nitrogen waste liquid
CN110902967A (en) Wastewater treatment method and wastewater treatment system based on sequencing batch membrane biological reaction
JP3799557B2 (en) Wastewater treatment method
JP4386054B2 (en) Intermittent biological treatment method
JPH07116691A (en) Treatment of drainage
KR100420647B1 (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor
KR100329069B1 (en) A removal method of organics and nitrogen compounds of wastewater using sequence batch reactor
JP2006305555A (en) Apparatus and method for treating waste water
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
CN211712879U (en) Wastewater treatment system based on sequencing batch membrane bioreaction
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
CN114044573B (en) Dynamic circulation anaerobic ammonium oxidation biological denitrification system
JP3293218B2 (en) Biological nitrification denitrification treatment method
CN208776529U (en) A kind of side biological treatment device handling sludge-digestion liquid
JPH02116B2 (en)