JP2006015320A - Nitrate nitrogen treatment material and wastewater treatment method - Google Patents

Nitrate nitrogen treatment material and wastewater treatment method Download PDF

Info

Publication number
JP2006015320A
JP2006015320A JP2004229505A JP2004229505A JP2006015320A JP 2006015320 A JP2006015320 A JP 2006015320A JP 2004229505 A JP2004229505 A JP 2004229505A JP 2004229505 A JP2004229505 A JP 2004229505A JP 2006015320 A JP2006015320 A JP 2006015320A
Authority
JP
Japan
Prior art keywords
nitrate nitrogen
treatment
sulfur
water
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004229505A
Other languages
Japanese (ja)
Other versions
JP4602025B2 (en
Inventor
Katsuhiro Yamada
勝弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004229505A priority Critical patent/JP4602025B2/en
Publication of JP2006015320A publication Critical patent/JP2006015320A/en
Application granted granted Critical
Publication of JP4602025B2 publication Critical patent/JP4602025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitrate nitrogen treatment material which can perform a long-term stable treatment of wastewater containing high-concentration nitrate nitrogen. <P>SOLUTION: The nitrate nitrogen treatment material is used for denitrification of nitrate nitrogen in water by biological treatment using sulfur-oxidizing bacteria, and made by integrating an alkali (earth) metal carbonate powder and sulfur powder with a water-insoluble or slightly soluble organic binder. The alkali (earth) metal carbonate comprises magnesium carbonate of more than 70%. The treatment material is suitable for treatment of the wastewater containing high-concentration nitrate nitrogen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、硫黄酸化細菌による生物処理によって水中の硝酸性窒素を脱窒処理する材料であり、特に硝酸性窒素濃度が200mg/kg以上の高濃度硝酸性窒素含有水の処理に適する材料に関するものである。   The present invention relates to a material for denitrifying nitrate nitrogen in water by biological treatment with sulfur-oxidizing bacteria, and particularly to a material suitable for treatment of water containing high-concentration nitrate nitrogen having a nitrate nitrogen concentration of 200 mg / kg or more. It is.

河川、湖沼、閉鎖水域、閉鎖海域などの富栄養化の原因となる生活排水、工業排水、畜産排水、農業排水、水産養殖排水中の硝酸性窒素分を除去する技術として、独立栄養系硫黄酸化脱窒細菌(以下、硫黄酸化細菌という)や、従属栄養系脱窒細菌を用いたシステムが提案されている。従属栄養系脱窒細菌を用いたシステムは、廃液中に含まれるBODを利用して、またBODを含まない場合には、液体状のメタノール等の水素供給源の添加が必要になる。これらのシステムでは、処理中にpH変化が起こるため、それらを常時管理しながら運転する必要があり、また多量の汚泥処理等も必要となる。それに対して独立栄養系硫黄酸化脱窒細菌を用いた処理システムは、炭酸を用いて菌体を生成するため、余剰汚泥発生量は少なく、従属栄養系脱窒細菌を用いたシステムに比べ維持コストが少ないため、最近では各方面で注目されている。   Autotrophic sulfur oxidation is a technology that removes nitrate nitrogen in domestic wastewater, industrial wastewater, livestock wastewater, agricultural wastewater, and aquaculture wastewater that causes eutrophication in rivers, lakes, closed water areas, closed sea areas, etc. Systems using denitrifying bacteria (hereinafter referred to as sulfur oxidizing bacteria) and heterotrophic denitrifying bacteria have been proposed. A system using heterotrophic denitrifying bacteria requires the addition of a hydrogen supply source such as liquid methanol using BOD contained in the waste liquid, or in the case where BOD is not contained. In these systems, pH changes occur during the treatment, so that they must be operated while being constantly managed, and a large amount of sludge treatment is also required. On the other hand, the treatment system using autotrophic sulfur oxidative denitrifying bacteria produces cell bodies using carbonic acid, so the amount of excess sludge generated is small, and the maintenance cost is lower than the system using heterotrophic denitrifying bacteria. Recently, it has been attracting attention in various directions.

特公昭62-56798号公報Japanese Patent Publication No.62-56798 特公昭63-45274号公報Japanese Patent Publication No.63-45274 特公昭60-3876号公報Japanese Patent Publication No. 60-3876 特公平1-31958号公報Japanese Patent Publication No. 1-31958 特公平4-9199号公報Japanese Patent Publication No.4-9199 特開平4-74598号公報Japanese Patent Laid-Open No. 4-74598 特開平4-151000号公報Japanese Patent Laid-Open No. 4-151000 特開平4-197498号公報Japanese Unexamined Patent Publication No. 4-197498 特開平6-182393号公報JP-A-6-182393 特開2001-47086公報Japanese Patent Laid-Open No. 2001-47086 特開2001-104993号公報Japanese Patent Laid-Open No. 2001-104993

硫黄酸化細菌を用いた硝酸性窒素除去システム(以下、脱窒システムという)については、例えば特許文献1〜9など種々提案されている。
特許文献10、特許文献11には、硫黄と石灰石の溶融混合物に硫黄酸化細菌を含有させた脱窒システムが提案されており、石灰石を共存させていることから、発生する硫酸イオンを自然に中和することが可能でpHの調整は不要であり、メンテナンスの容易さと脱窒処理にかかるコストの面で優れた効果を示している。
Various nitrate nitrogen removal systems (hereinafter referred to as denitrification systems) using sulfur-oxidizing bacteria have been proposed, for example, in Patent Documents 1-9.
Patent Document 10 and Patent Document 11 propose a denitrification system in which a sulfur-oxidizing bacterium is contained in a molten mixture of sulfur and limestone. Since limestone coexists, the generated sulfate ions are naturally contained. The pH can be adjusted and adjustment of the pH is unnecessary, and an excellent effect is shown in terms of ease of maintenance and cost for denitrification treatment.

しかし、上記の独立栄養系硫黄酸化脱窒細菌を用いた処理システムでは、処理能力が従来の従属栄養系脱窒細菌を用いたシステムにくらべかなり低いため、処理時間が長くかかり、工業や畜産等から発生する廃液の大量処理や高濃度処理に対しては改良が求められている。   However, in the treatment system using the above-mentioned autotrophic sulfur-oxidizing denitrifying bacteria, the processing capacity is considerably lower than that of the conventional system using heterotrophic denitrifying bacteria, so that the processing time is long, and industrial and livestock production, etc. Improvement is demanded for the large-scale treatment and high-concentration treatment of waste liquid generated from wastewater.

そこで、本発明者らは、硫黄粉と石灰粉を有機系バインダーで一体化させることにより著しく脱窒速度を高めることができより大量の硝酸性窒素廃液を処理することを実現させることができることを見出し出願した。   Therefore, the present inventors can remarkably increase the denitrification rate by integrating sulfur powder and lime powder with an organic binder, and realize that a larger amount of nitrate nitrogen waste liquid can be treated. Filed a headline application.

しかしながら、上記組成の処理材においても、硝酸性窒素濃度が200mg/kg以上であれば、炭酸カルシウム(石灰石)を用いている限りは、必然的に水難溶性の石膏を生じやすいことから、長期にわたり安定的な処理をおこなうためには、定期的に水洗浄などにより石膏溶解または除去等のメンテナンスや高い濃度の場合には、水希釈などが必要であった。   However, even in the treatment material having the above composition, if the concentration of nitrate nitrogen is 200 mg / kg or more, as long as calcium carbonate (limestone) is used, a water-insoluble gypsum is inevitably easily formed, and therefore, for a long time. In order to perform a stable treatment, maintenance such as dissolution or removal of gypsum by regular washing with water or dilution with water is necessary in the case of a high concentration.

したがって、本発明の目的は、硝酸性窒素濃度が200mg/kg以上であっても、石膏が析出しにくい材料組成にすることにより、希釈や水洗浄をしなくとも長期にわたり安定して高濃度硝酸性窒素処理できる脱窒処理材を提供することにある。   Therefore, the object of the present invention is to provide a high-concentration nitric acid stably over a long period of time without dilution or washing with water by making the material composition in which gypsum does not easily precipitate even when the nitrate nitrogen concentration is 200 mg / kg or more. An object of the present invention is to provide a denitrification treatment material capable of treating nitrogen.

本発明者は、かかる課題を解決するために鋭意検討を重ねた結果、硫黄酸化細菌による生物的処理によって硝酸性窒素を脱窒処理するために使用される硝酸性窒素処理材中のアルカリ(土類)金属炭酸塩として、炭酸マグネシウムを用いることにより上記目的を達成できることを見出し、本発明を完成した。   As a result of intensive studies to solve such problems, the present inventor has found that the alkali (soil) in the nitrate nitrogen treatment material used to denitrify nitrate nitrogen by biological treatment with sulfur-oxidizing bacteria. ) The present invention has been completed by finding that the above object can be achieved by using magnesium carbonate as the metal carbonate.

請求項1に係わる発明は、硫黄酸化細菌による生物的処理によって硝酸性窒素を脱窒処理するために使用されるアルカリ(土類)金属炭酸塩粉末及び硫黄粉末及を水不溶性又は難溶性の有機系バインダーで一体化された硝酸性窒素処理材であって、アルカリ(土類)金属炭酸塩の70%以上が炭酸マグネシウムであることを特徴とする硝酸性窒素処理材である。
請求項2に係わる発明は、アルカリ(土類)金属炭酸塩の一部又は全部としてマグネサイト(菱苦土石)を使用する前記の高濃度硝酸性窒素処理材である。
The invention according to claim 1 is a water-insoluble or hardly soluble organic or alkaline metal carbonate powder and sulfur powder used for denitrifying nitrate nitrogen by biological treatment with sulfur-oxidizing bacteria. A nitrate nitrogen treatment material integrated with a system binder, wherein 70% or more of alkali (earth) metal carbonate is magnesium carbonate.
The invention according to claim 2 is the high-concentration nitrate nitrogen treatment material that uses magnesite (rhizobite) as part or all of the alkali (earth) metal carbonate.

以下、本発明の硝酸性窒素処理材について説明する。
本発明の硝酸性窒素処理材は、アルカリ(土類)金属炭酸塩粉末及び硫黄粉末及を水不溶性又は難溶性の有機系バインダーで一体化されたものである。以下、アルカリ(土類)金属炭酸塩を炭酸塩と、水不溶性又は難溶性の有機系バインダーをバインダーと略称することがある。
Hereinafter, the nitrate nitrogen treatment material of the present invention will be described.
The nitrate nitrogen treatment material of the present invention is obtained by integrating alkali (earth) metal carbonate powder and sulfur powder with a water-insoluble or hardly soluble organic binder. Hereinafter, alkali (earth) metal carbonate may be abbreviated as carbonate, and water-insoluble or hardly soluble organic binder may be abbreviated as binder.

アルカリ(土類)炭酸塩は、硫黄酸化細菌の炭素源となる炭酸を有した化合物であり、カルシウム、マグネシウムなどのアルカリ土類金属の炭酸塩、ナトリウム、カリウム、リチウムなどのアルカリ金属の炭酸塩あるいは重炭酸塩又はそれらの混合物などがあげられる。しかし、本発明では、水処理に用いるために水不溶性である必要があり、従ってアルカリ土類金属の炭酸塩が適するが、その中でも特に炭酸マグネシウムが好都合である。本発明の脱窒処理に際しては、脱窒反応が進行して硫黄酸化細菌により脱窒、すなわち硝酸または亜硝酸から窒素ガスへの還元反応と同時に硫黄から硫酸への酸化反応が生じる。また、硫酸の発生と硫黄酸化細菌が炭酸塩中の炭酸ガスを取り入れるために、アルカリ(土類)金属の硫酸塩が発生することになる。ここで、アルカリ土類金属炭酸塩としてカルシウムを多量に含む石灰石(炭酸カルシウム)や炭酸マグネシウムを約40%含有する苦石灰(ドロマイト)の粉末を使用すると、結果的に硫酸カルシウム(石膏)が発生することになる。石膏の水溶解性は非常に小さく、従って処理される硝酸性窒素濃度が200mg−N/kg以上になると、局部的にでも石膏の溶解度を超えてくることになり、長期的には処理材表面に石膏が析出したり、配管、ポンプや処理槽に石膏が析出してトラブルの原因となる。そこで、アルカリ(土類)金属炭酸塩として、炭酸マグネシウムを使用して硫酸マグネシウムを主として生成させることにより、上記のような脱窒能力の低下やトラブルを回避する。   Alkali (earth) carbonate is a compound that has carbonic acid as a carbon source for sulfur-oxidizing bacteria, and carbonates of alkaline earth metals such as calcium and magnesium, and carbonates of alkali metals such as sodium, potassium, and lithium. Alternatively, bicarbonate or a mixture thereof can be used. However, in the present invention, it is necessary to be insoluble in water for use in water treatment, and thus alkaline earth metal carbonates are suitable, and among these, magnesium carbonate is particularly advantageous. In the denitrification treatment of the present invention, the denitrification reaction proceeds and denitrification by sulfur-oxidizing bacteria, that is, the oxidation reaction from sulfur to sulfuric acid occurs simultaneously with the reduction reaction from nitric acid or nitrous acid to nitrogen gas. In addition, since sulfuric acid is generated and sulfur-oxidizing bacteria take in carbon dioxide in the carbonate, alkali (earth) metal sulfate is generated. Here, the use of limestone (calcium carbonate) containing a large amount of calcium as alkaline earth metal carbonate or dolomite powder containing about 40% magnesium carbonate results in the generation of calcium sulfate (gypsum). Will do. The water solubility of gypsum is very small. Therefore, when the concentration of nitrate nitrogen to be treated is 200 mg-N / kg or more, the solubility of gypsum will be exceeded even locally, and in the long term the surface of the treated material The gypsum deposits on the pipes, and the gypsum deposits on the pipes, pumps and treatment tanks, causing trouble. Therefore, by using magnesium carbonate as the alkali (earth) metal carbonate to mainly produce magnesium sulfate, the above-described reduction in denitrification ability and troubles are avoided.

したがって、使用する炭酸塩としては、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩又はこれらの混合物が使用できるが、本発明においては炭酸マグネシウムをアルカリ(土類)金属炭酸塩の70wt%以上、好ましくは80wt%以上使用する。その他のアルカリ(土類)金属炭酸塩としては、比較的難溶性で入手が容易な炭酸カルシウムやドロマイト等の炭酸カルシウム含有材料が好ましいが、全炭酸塩中の炭酸カルシウムは30wt%以下、好ましくは20wt%以下、より好ましくは10wt%以下とすることがよい。炭酸カルシウムが30%以下の少量であれば特に含まれていても大きな支障はないが、長期的な面からでは極力炭酸カルシウムの含有量は低いほうがよい。
また、炭酸マグネシウムは合成品であっても鉱物であっても差し支えないが、マグネサイト(菱苦土石)が望ましい。これは自然界に豊富に存在し、かつ適度な水不溶性を有し処理材の寿命という面からも特に有用である。同様に炭酸カルシウムについても、石灰石が望ましいが、これらに限定されない。また、ドロマイトも炭酸マグネシウム及び炭酸カルシウムを含む材料として有用である。
Therefore, as the carbonate to be used, alkali metal carbonate, alkaline earth metal carbonate or a mixture thereof can be used. In the present invention, magnesium carbonate is preferably 70 wt% or more of the alkali (earth) metal carbonate, preferably Use 80 wt% or more. As other alkali (earth) metal carbonates, calcium carbonate-containing materials such as calcium carbonate and dolomite, which are relatively insoluble and easily available, are preferable, but calcium carbonate in the total carbonate is 30 wt% or less, preferably It should be 20 wt% or less, more preferably 10 wt% or less. If calcium carbonate is contained in a small amount of 30% or less, there is no major problem even if it is contained, but from the long-term viewpoint, the content of calcium carbonate should be as low as possible.
Magnesium carbonate may be a synthetic product or a mineral, but magnesite is preferable. This is particularly useful from the standpoint of the life of the treatment material, which is abundant in nature and has moderate water insolubility. Similarly, limestone is desirable for calcium carbonate, but is not limited thereto. Dolomite is also useful as a material containing magnesium carbonate and calcium carbonate.

ここで使用される硫黄としては、例えば石油脱硫や石炭脱硫プラントの回収硫黄や天然硫黄などが上げられるが特に制限されるものではない。   Examples of sulfur used herein include, but are not particularly limited to, sulfur recovered from petroleum desulfurization and coal desulfurization plants, natural sulfur, and the like.

このときに使用される硫黄粉末及び炭酸塩の粒径としては、特に限定されないが、数μm〜数100μm程度が好ましい。本来、微生物が硫黄を消費することを考えると、その接触面積を大きくするため粒子を小さくした方が好ましいが、あまりに小さすぎると扱いにくい傾向となる。また、接着に使用するバインダー量も多く必要となるので、上記範囲が適当となる。   Although it does not specifically limit as a particle size of the sulfur powder and carbonate used at this time, About several micrometers-about several hundred micrometers are preferable. In consideration of the fact that microorganisms consume sulfur, it is preferable to make the particles smaller in order to increase the contact area. However, if it is too small, it tends to be difficult to handle. Moreover, since a large amount of binder is required for bonding, the above range is appropriate.

この場合に、硫黄と炭酸塩の混合の割合は、硫黄酸化細菌の増殖の促進およびそれに伴い発生する硫酸イオンを中和することが必要であることから、硫黄含有量は20〜70重量部、炭酸塩含有量は30〜80重量部が好ましい。したがって、本発明の処理材の組成は、硫黄粉末20〜70重量部、炭酸塩粉末30〜80重量部を含有し、両者の合計100重量部に対して、該粉末を一体化するための水不溶性又は難溶性の有機系バインダー0.1〜30重量部を配合してなるものであることが望ましい。   In this case, since the mixing ratio of sulfur and carbonate is necessary to promote the growth of sulfur-oxidizing bacteria and neutralize the sulfate ions generated therewith, the sulfur content is 20 to 70 parts by weight, The carbonate content is preferably 30 to 80 parts by weight. Therefore, the composition of the treatment material of the present invention contains 20 to 70 parts by weight of sulfur powder and 30 to 80 parts by weight of carbonate powder, and water for integrating the powder with respect to a total of 100 parts by weight of both. It is desirable to blend 0.1 to 30 parts by weight of an insoluble or hardly soluble organic binder.

次に硫黄粉末と炭酸塩を一体化する方法としては、取り扱い上または性能上で有機高分子をバインダーにすることがよい。その場合、有機系バインダーとしては硫黄化合物と炭酸塩を接着でき、かつ水中の硝酸性窒素を処理するためには必然的に水に不溶又は難溶なものでなければならない。ここで、水に不溶又は難溶とは、接着処理後において上記性質を示すものであればよい。たとえば、水に分散されたディスパージョン及び有機溶剤に分散又は溶解されたものがよいが、取り扱いや安全性から水系のエマルジョンが好都合である。それらの有機系高分子として水に分散されるものとしては、たとえばスチレン系、アクリル系、酢酸ビニル系やエポキシ系、ウレタン系、塩化ビニル系エマルジョンや天然ゴムラテックス及びクロロプレンゴムやスチレンブタジエンゴム等の合成ゴムラテックス又はアスファルトやパラフィン等の瀝青質のエマルジョン等があげられる。また、ケン化度の高い水難溶性のポリビニルアルコールも有用である。   Next, as a method for integrating the sulfur powder and the carbonate, it is preferable to use an organic polymer as a binder in terms of handling or performance. In that case, the organic binder must be capable of adhering a sulfur compound and carbonate, and must be insoluble or hardly soluble in water in order to treat nitrate nitrogen in water. Here, what is insoluble or hardly soluble in water is not particularly limited as long as it exhibits the above properties after the adhesion treatment. For example, a dispersion dispersed in water and a dispersion or dissolution in an organic solvent are preferable, but an aqueous emulsion is convenient from the viewpoint of handling and safety. As those organic polymers dispersed in water, for example, styrene, acrylic, vinyl acetate, epoxy, urethane, vinyl chloride emulsion, natural rubber latex, chloroprene rubber, styrene butadiene rubber, etc. Synthetic rubber latex or bituminous emulsion such as asphalt or paraffin. In addition, poorly water-soluble polyvinyl alcohol having a high degree of saponification is also useful.

有機系バインダーの含有量としては、上記硫黄粉末と炭酸塩粉末の合計100重量部に対して、0.1〜30重量部、好ましくは1〜15重量部、より好ましくは2〜10重量部がよい。0.1重量部未満では硫黄やマグネサイト等の炭酸塩の粉体を強固に接着させることができず、脱窒処理中に粉体が剥離して流出することがある。一方、30重量部を超えると粉体を強固に接着はできるが、脱窒に必要な硫黄やマグネサイト等の炭酸塩が有機系バインダーに覆われて有効に活用できず、また粒内の空隙も少なくなり、微生物の活性を高めることが困難となる。   The content of the organic binder is 0.1 to 30 parts by weight, preferably 1 to 15 parts by weight, and more preferably 2 to 10 parts by weight with respect to a total of 100 parts by weight of the sulfur powder and carbonate powder. Good. If the amount is less than 0.1 part by weight, the powder of carbonate such as sulfur or magnesite cannot be firmly adhered, and the powder may peel and flow out during the denitrification treatment. On the other hand, if the amount exceeds 30 parts by weight, the powder can be firmly adhered, but carbonates such as sulfur and magnesite, which are necessary for denitrification, are covered with an organic binder and cannot be effectively used. It becomes difficult to increase the activity of microorganisms.

本発明の硝酸性窒素脱窒処理材の製造方法は、硫黄粉末とマグネサイト等の炭酸塩粉末と有機系バインダーおよび必要に応じて適当量の水と配合し、均一に混練、造粒した後、これを乾燥する方法が簡便である。例えば、ミキサーやニーダーなどで粉体を混合し、有機系バインダーや水を添加し、再度混合して、必要に応じて押し出し機により、混練造粒した後、乾燥機やブロワー又は自然乾燥等で乾燥することにより水分を除去するこなどの方法がある。場合によっては、スパルタンリューザーのように混合混練することで一度に造粒することも可能であるが、これらの製造方法には限定されない。   The method for producing a nitrate nitrogen denitrification treatment material of the present invention comprises mixing sulfur powder, carbonate powder such as magnesite, an organic binder, and an appropriate amount of water as necessary, and kneading and granulating uniformly. The method of drying this is simple. For example, after mixing powder with a mixer or kneader, adding an organic binder or water, mixing again, kneading and granulating with an extruder if necessary, and then using a dryer, blower or natural drying There are methods such as removing moisture by drying. Depending on the case, it is possible to perform granulation at once by mixing and kneading like a Spartan Luzer, but it is not limited to these production methods.

本発明の処理材には、必要に応じて水酸化アルミニウムや水酸化マグネシウムなどの難燃剤や酸化鉄、活性炭等の硫化水素発生防止剤、さらには、処理中のpH変化を抑えるために、少量の水酸化マグネシウム、酸化マグネシウム、珪酸カルシウム、珪酸マグネシウムまたはフライアッシュ、ベントナイト、製鉄スラグ、コンクリート粉砕物などの中和剤、さらには、ゼオライトやロックール等の微生物保持材、ベントナイトやタルク等の成形改良材等を添加してもよい。   In the treatment material of the present invention, a flame retardant such as aluminum hydroxide or magnesium hydroxide, a hydrogen sulfide generation inhibitor such as iron oxide or activated carbon, and a small amount as necessary to suppress pH change during treatment. Of magnesium hydroxide, magnesium oxide, calcium silicate, magnesium silicate or fly ash, bentonite, iron slag, concrete pulverized materials, etc., and microbial retention materials such as zeolite and rock ole, bentonite and talc Materials and the like may be added.

本発明の処理材は高濃度に硝酸性窒素(NO3-及びNO2-をいう)を含む排水の処理に有用である。
次に本発明の排水の処理方法について、説明する。
畜産排水、工場排水等の高濃度に硝酸性窒素を含む排水(-NO3及び-NO2又はこれらのイオンの合計から計算されるNとして200ppm以上)を、本発明の処理材と一定時間接触させる。硫黄酸化細菌を主体とした脱窒細菌を含む雑菌による生物的処理により、窒素ガスが排出されると共に、硫酸が生成してアルカリ(土類)金属の硫酸塩を生じる。ここで、硫黄酸化細菌を主体とした脱窒細菌は排水発生近辺の土壌中から採取又は培養することもできるし、別途入手した脱窒細菌を培養して使用することもできる。排水と処理材との接触時間は温度等によっても異なるが1〜24hr程度である。処理後の排水は放出するか、他の汚染物質を含む場合は、更なる処理を行う。なお、排水処理は長期間連続的に行うことが有利である。
The treatment material of the present invention is useful for treating wastewater containing nitrate nitrogen (referring to NO3- and NO2-) at a high concentration.
Next, the waste water treatment method of the present invention will be described.
Wastewater containing nitrate nitrogen at a high concentration such as livestock wastewater and industrial wastewater (-NO3 and -NO2 or 200 ppm or more as N calculated from the sum of these ions) is brought into contact with the treatment material of the present invention for a certain period of time. Biological treatment with various bacteria including denitrifying bacteria mainly composed of sulfur-oxidizing bacteria discharges nitrogen gas and generates sulfuric acid to produce an alkali (earth) metal sulfate. Here, denitrifying bacteria mainly composed of sulfur-oxidizing bacteria can be collected or cultured from the soil in the vicinity of wastewater generation, or separately obtained denitrifying bacteria can be cultured and used. The contact time between the waste water and the treatment material is about 1 to 24 hours although it varies depending on the temperature and the like. If the wastewater after treatment is discharged or contains other pollutants, further treatment is performed. In addition, it is advantageous to perform the waste water treatment continuously for a long period of time.

本発明の処理方法において、硝酸性窒素濃度がN=200mg/kg以上と高く、脱窒しやすい排水の場合には脱窒速度が非常に高くなる場合がある。その場合、発生する硫酸イオンは強酸性であり、本組成物中に配合されている炭酸マグネシウムで中和されることになるが、炭酸マグネシウムでは従来の炭酸カルシウムに比べ中和能力に劣ることからpHが5.5以下まで低下することがある。イオウ酸化細菌の脱窒能力は、pHが中性域から酸性域になることにより、その脱窒能力は低下すると考えられることから、処理中のpHは5.5〜8.5に調整されることがよく、さらに望ましくはpHは6.5〜7.5に調整されることがよい。調整する方法としては、単純に処理中の排水にpH計をいれ、水酸化ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸水素カリウム等のアルカル液を注入してもよく、本脱窒材とは別に弱アルカリである水酸化マグネシウムの粒や粉をバインダーで成型した造粒品を添加してもよい。後者の場合には、特にpH測定やコントロールするための設備や調整薬剤を添加する必要が無くメンテナンスも非常に簡易となる。   In the treatment method of the present invention, the concentration of nitrate nitrogen is as high as N = 200 mg / kg or more, and in the case of wastewater that is easily denitrified, the denitrification rate may be very high. In that case, the generated sulfate ions are strongly acidic and will be neutralized by the magnesium carbonate blended in the composition, but magnesium carbonate is inferior in neutralization ability compared to conventional calcium carbonate. The pH may drop to 5.5 or lower. Since the denitrification ability of sulfur-oxidizing bacteria is considered to decrease as the pH changes from neutral to acidic, the pH during treatment is adjusted to 5.5 to 8.5. More preferably, the pH is adjusted to 6.5 to 7.5. As a method of adjustment, simply put a pH meter into the wastewater being treated, and inject alkaline liquid such as sodium hydroxide, sodium hydrogen carbonate, potassium hydroxide, potassium hydrogen carbonate, etc. Separately, a granulated product obtained by molding particles or powder of magnesium hydroxide, which is a weak alkali, with a binder may be added. In the latter case, it is not particularly necessary to add equipment for adjusting and controlling pH and adjusting chemicals, and the maintenance becomes very simple.

高濃度に硝酸性窒素を含む排水の処理を長期間安定的に行うことができる。   It is possible to stably treat wastewater containing nitrate nitrogen at a high concentration for a long period of time.

硝酸性窒素処理材の作成には、イオウは200メッシュ(軽井沢精錬社製)の粉体を、炭酸カルシウムは200メッシュ(CaCO3含有量98%、MgCO3含有量1%以下、ニッチツ社製)の粉体を、ドロマイトはドロマイトタンカル200メッシュ(MgCO3含有量38%、CaCO3含有量62%、駒形石灰工業社製)の粉体を、マグネサイトは200メッシュ(MgCO3含有量95%、CaCO3含有量4%、ソブエクレー社製)の粉体を用いた。また硫化水素防止及び活性化剤として比表面積30m2/g(リモナイト工業社製)の黄土粉体を用いた。
有機系バインダーは、アクリル系エマルジョン(中央理化社製、製品名:ES-45)を用いた。表1に示す配合(重量部)により混練後、押し出し機により5mmφ、長さ5〜10mmに造粒し、100℃の熱風乾燥機で乾燥して水分を1%以下まで除去して処理材を作成した。表1中の樹脂は有機系バインダー中に含まれる樹脂固形分の重量部を示す。
For the production of nitrate nitrogen treatment material, sulfur is 200 mesh (manufactured by Karuizawa Seimitsu), calcium carbonate is 200 mesh (CaCO 3 content 98%, MgCO 3 content 1% or less, manufactured by Nichetsu) Dolomite is a dolomite tankal 200 mesh (MgCO 3 content 38%, CaCO 3 content 62%, manufactured by Komagata Lime Industry Co., Ltd.), magnesite is 200 mesh (MgCO 3 content 95%, A powder having a CaCO 3 content of 4%, manufactured by Sobueclay Co., Ltd. was used. Further, a loess powder having a specific surface area of 30 m2 / g (manufactured by Limonite Kogyo Co., Ltd.) was used as a hydrogen sulfide prevention and activator.
As the organic binder, an acrylic emulsion (manufactured by Chuo Rika Co., Ltd., product name: ES-45) was used. After kneading with the formulation shown in Table 1 (parts by weight), granulate to 5 mmφ and length of 5 to 10 mm with an extruder, dry with a hot air dryer at 100 ° C. to remove moisture to 1% or less, and treat the treated material. Created. The resins in Table 1 represent parts by weight of resin solids contained in the organic binder.

処理材への硫黄酸化細菌の担持は、ポリビンに処理材1kgと硝酸カリウム溶液(硝酸性窒素濃度で200mg−N/kg)500gおよび硫黄酸化細菌培養汚泥を50g添加し、硝酸性窒素濃度が10mg−N/kg以下になった時点で硝酸カリウムを硝酸性窒素濃度で200mg−N/kgになるように添加して、1週間担持培養を行った。評価に際しては、かるく水洗浄した。   The treatment material is loaded with sulfur-oxidizing bacteria by adding 1 kg of the treatment material, 500 g of potassium nitrate solution (200 mg-N / kg in nitrate nitrogen concentration) and 50 g of sulfur-oxidizing bacteria culture sludge to polybin, and the nitrate nitrogen concentration is 10 mg- When N / kg or less was reached, potassium nitrate was added to a nitrate nitrogen concentration of 200 mg-N / kg, and the support culture was performed for 1 week. In the evaluation, it was washed with light water.

実施例1〜2
表1に示す実施例1〜2の配合で得られた菌付処理材200gと硝酸性窒素濃度で1000mg−N/kgに調整した硝酸カリウム溶液100gを250mlのポリビンに入れ、24時間後に硝酸性窒素濃度をイオンクロマトグラフィーで測定した。その後、その水を全量廃棄したのち、再度硝酸性窒素濃度で1000mg−N/kgに調整した硝酸カリウム溶液100gを添加する。それを50回繰り返しして、脱窒性能の長期安定性評価を行った。
なお、本実施例においては、処理中のpH低下を抑え、安定化させるために、水酸化マグネシウムの造粒品を脱窒処理剤とは別に、脱窒処理の開始から10gを混合添加しておいた。水酸化マグネシウムの造粒品の組成は、水酸化マグネシウム粉末(ソブエクレー製;製品名 エブソンRF)/イオウ粉末(軽井沢精錬社製 200メッシュ)=50/50重量部とし、造粒は本脱窒材の製法に準拠した。配合した造粒品を脱窒処理剤とは別にこれを添加することで処理中のpHは6.5〜7.5を安定的に保つことができ長期の脱窒処理も可能であった。
Examples 1-2
200 g of the fungus-treated material obtained by the formulation of Examples 1 and 2 shown in Table 1 and 100 g of potassium nitrate solution adjusted to 1000 mg-N / kg with nitrate nitrogen concentration are put into 250 ml of polyvin, and after 24 hours nitrate nitrogen The concentration was measured by ion chromatography. Thereafter, the entire amount of the water is discarded, and 100 g of a potassium nitrate solution adjusted to 1000 mg-N / kg with a nitrate nitrogen concentration is added again. This was repeated 50 times to evaluate the long-term stability of the denitrification performance.
In this example, in order to suppress and stabilize the pH reduction during the treatment, the granulated product of magnesium hydroxide was added and mixed with 10 g from the start of the denitrification treatment separately from the denitrification treatment agent. Oita. The composition of the granulated product of magnesium hydroxide is magnesium hydroxide powder (manufactured by Sobueclay; product name Ebson RF) / sulfur powder (200 mesh manufactured by Karuizawa Seisen Co., Ltd.) = 50/50 parts by weight. Conforms to the manufacturing method. By adding the blended granulated product separately from the denitrification treatment agent, the pH during treatment could be stably maintained at 6.5 to 7.5, and a long-term denitrification treatment was possible.

比較例1〜3
表1に示す比較例1〜3の配合で得られた菌付処理材200gを実施例と同じような操作を行い、脱窒性能の長期安定性評価を行った。
Comparative Examples 1-3
The same treatment as in the example was performed on 200 g of the bacterial treatment material obtained by the blending of Comparative Examples 1 to 3 shown in Table 1, and the long-term stability evaluation of the denitrification performance was performed.

表1に配合割合と脱窒処理結果示す。表において、配合量を示す数字は重量部である。また、終了後の硝酸性窒素濃度の単位は、(mg-N/kg)である。下記表1から明らかなように、実施例は、比較例に比べて、高濃度の硝酸性窒素に対しての脱窒処理において長期安定した脱窒脱窒処理材であることが分かる。   Table 1 shows the mixing ratio and denitrification treatment results. In the table, the number indicating the blending amount is part by weight. The unit of nitrate nitrogen concentration after completion is (mg-N / kg). As is clear from Table 1 below, it can be seen that the example is a denitrification / denitrification treatment material that is stable for a long time in the denitrification treatment with respect to high-concentration nitrate nitrogen as compared with the comparative example.

Figure 2006015320
Figure 2006015320

Claims (4)

硫黄酸化細菌による生物的処理によって水中の硝酸性窒素を脱窒処理するために使用されるアルカリ(土類)金属炭酸塩粉末及び硫黄粉末及を水不溶性又は難溶性の有機系バインダーで一体化された硝酸性窒素処理材であって、アルカリ(土類)金属炭酸塩の70%以上が炭酸マグネシウムであることを特徴とする硝酸性窒素処理材。   Alkaline (earth) metal carbonate powder and sulfur powder used to denitrify nitrate nitrogen in water by biological treatment with sulfur-oxidizing bacteria are integrated with water-insoluble or sparingly soluble organic binder. A nitrate nitrogen treatment material, wherein 70% or more of the alkali (earth) metal carbonate is magnesium carbonate. アルカリ(土類)金属炭酸塩の一部又は全部としてマグネサイトを使用する請求項1記載の高濃度硝酸性窒素処理材。   The high-concentration nitrate nitrogen treatment material according to claim 1, wherein magnesite is used as part or all of the alkali (earth) metal carbonate. 請求項1に記載の硝酸性窒素処理材と、硝酸性窒素濃度が200mg/kg以上の排水を接触させて、硝酸性窒素を硫黄酸化細菌による生物的処理によって窒素ガスに分解することを特徴とする排水の処理方法。   The nitrate nitrogen treatment material according to claim 1 is brought into contact with wastewater having a nitrate nitrogen concentration of 200 mg / kg or more, and nitrate nitrogen is decomposed into nitrogen gas by biological treatment with sulfur-oxidizing bacteria. Wastewater treatment method. 請求項1に記載の硝酸性窒素処理材と、硝酸性窒素濃度が200mg/kg以上の排水を接触させて、硝酸性窒素を硫黄酸化細菌による生物的処理によって窒素ガスに分解するにあたって、処理水中のpHを5.5〜9に保ちながら脱窒処理を行うことを特徴とする排水の処理方法。   When the nitrate nitrogen treatment material according to claim 1 is brought into contact with waste water having a nitrate nitrogen concentration of 200 mg / kg or more, nitrate nitrogen is decomposed into nitrogen gas by biological treatment with sulfur-oxidizing bacteria. A wastewater treatment method characterized in that denitrification treatment is performed while maintaining the pH of 5.5-9.
JP2004229505A 2004-06-01 2004-08-05 Nitrate nitrogen treatment material and waste water treatment method Expired - Fee Related JP4602025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229505A JP4602025B2 (en) 2004-06-01 2004-08-05 Nitrate nitrogen treatment material and waste water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004162939 2004-06-01
JP2004229505A JP4602025B2 (en) 2004-06-01 2004-08-05 Nitrate nitrogen treatment material and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2006015320A true JP2006015320A (en) 2006-01-19
JP4602025B2 JP4602025B2 (en) 2010-12-22

Family

ID=35790029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229505A Expired - Fee Related JP4602025B2 (en) 2004-06-01 2004-08-05 Nitrate nitrogen treatment material and waste water treatment method

Country Status (1)

Country Link
JP (1) JP4602025B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206674A (en) * 2010-03-30 2011-10-20 Nippon Steel Engineering Co Ltd Cleaning material and method of cleaning water containing nitrate-nitrogen
CN104692526A (en) * 2015-03-18 2015-06-10 合肥工业大学 Method for increasing denitrification rate in wastewater treatment through goethite
JP2018094553A (en) * 2016-12-14 2018-06-21 一般財団法人畜産環境整備機構 Sulfur material for denitrification
CN114634246A (en) * 2022-04-15 2022-06-17 合肥工业大学 Method for deep denitrification by utilizing sulfur paste autotrophic nitrogen
CN115304159A (en) * 2022-06-23 2022-11-08 无锡映川环境技术有限公司 Broad-spectrum adaptive autotrophic denitrification filter material and preparation method thereof
CN117285157A (en) * 2023-10-11 2023-12-26 北京天诚众合科技发展有限公司 Denitrifying bacteria culture complexing agent for degrading nitrogen in sewage, and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171643A (en) * 1987-12-28 1989-07-06 Kohjin Co Ltd Carrier for immobilizing microorganism
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production
JP2001047086A (en) * 1999-08-10 2001-02-20 Nippon Steel Chem Co Ltd Activation material for denitrifying nitrate nitrogen
JP2001104993A (en) * 1999-10-01 2001-04-17 Nitchitsu Co Ltd Nitrate nitrogen denitrifying composition and production thereof
JP2002239593A (en) * 2001-02-20 2002-08-27 Nippon Steel Chem Co Ltd Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2002370097A (en) * 2001-06-13 2002-12-24 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment apparatus and treatment method using the same
JP2003103294A (en) * 2001-09-28 2003-04-08 Aquas Corp Method and apparatus for removing nitrate nitrogen in water
JP2003334590A (en) * 2002-05-17 2003-11-25 Nippon Steel Chem Co Ltd Method for removing nitrate nitrogen in wastewater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171643A (en) * 1987-12-28 1989-07-06 Kohjin Co Ltd Carrier for immobilizing microorganism
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production
JP2001047086A (en) * 1999-08-10 2001-02-20 Nippon Steel Chem Co Ltd Activation material for denitrifying nitrate nitrogen
JP2001104993A (en) * 1999-10-01 2001-04-17 Nitchitsu Co Ltd Nitrate nitrogen denitrifying composition and production thereof
JP2002239593A (en) * 2001-02-20 2002-08-27 Nippon Steel Chem Co Ltd Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2002370097A (en) * 2001-06-13 2002-12-24 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment apparatus and treatment method using the same
JP2003103294A (en) * 2001-09-28 2003-04-08 Aquas Corp Method and apparatus for removing nitrate nitrogen in water
JP2003334590A (en) * 2002-05-17 2003-11-25 Nippon Steel Chem Co Ltd Method for removing nitrate nitrogen in wastewater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206674A (en) * 2010-03-30 2011-10-20 Nippon Steel Engineering Co Ltd Cleaning material and method of cleaning water containing nitrate-nitrogen
CN104692526A (en) * 2015-03-18 2015-06-10 合肥工业大学 Method for increasing denitrification rate in wastewater treatment through goethite
JP2018094553A (en) * 2016-12-14 2018-06-21 一般財団法人畜産環境整備機構 Sulfur material for denitrification
CN114634246A (en) * 2022-04-15 2022-06-17 合肥工业大学 Method for deep denitrification by utilizing sulfur paste autotrophic nitrogen
CN114634246B (en) * 2022-04-15 2024-02-02 合肥工业大学 Autotrophic deep denitrification method utilizing sulfur paste
CN115304159A (en) * 2022-06-23 2022-11-08 无锡映川环境技术有限公司 Broad-spectrum adaptive autotrophic denitrification filter material and preparation method thereof
CN115304159B (en) * 2022-06-23 2023-11-10 无锡映川环境技术有限公司 Broad-spectrum adaptive autotrophic denitrification filter material and preparation method thereof
CN117285157A (en) * 2023-10-11 2023-12-26 北京天诚众合科技发展有限公司 Denitrifying bacteria culture complexing agent for degrading nitrogen in sewage, and preparation method and application thereof
CN117285157B (en) * 2023-10-11 2024-04-09 北京天诚众合科技发展有限公司 Denitrifying bacteria culture complexing agent for degrading nitrogen in sewage, and preparation method and application thereof

Also Published As

Publication number Publication date
JP4602025B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US20090069181A1 (en) Product and Process for Treating Water Bodies, Sediments and Soils
CN105253986A (en) Denitrogenation agent
JP4602025B2 (en) Nitrate nitrogen treatment material and waste water treatment method
CN108483616A (en) A kind of ammonia nitrogen removal agent
Zhang et al. Bioremediation of stainless steel pickling sludge through microbially induced carbonate precipitation
JP2007044589A (en) Waste water treatment method, and sulfur-containing denitrification material
JP2917096B2 (en) Water quality and bottom sedimentary malignant improver
KR101002191B1 (en) Method for reducing sludge and wastewater and for treating gas
JP2002239593A (en) Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2007245022A (en) Method for preventing groundwater pollution due to nitrate nitrogen
JP2006224087A (en) Treatment method of wastewater containing nitrate nitrogen
Devai et al. Effectiveness of selected chemicals for controlling emission of malodorous sulfur gases in sewage sludge
JP2004167471A (en) Water treatment material, nitrate nitrogen treating material, and its production method
JP2000343097A (en) Nitrate nitrogen denitrification substrate and its production
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JP6890960B2 (en) Denitrification reaction accelerator composition
JP4541110B2 (en) Method of treating wastewater containing fluorine and nitrate nitrogen
JPS6128494A (en) Water quality modifier
JP2004351306A (en) Water cleaning material effectively utilizing shell of foulings
JP4947247B2 (en) Composition for removing nitrate nitrogen and the like and method for producing the same
JP2001047086A (en) Activation material for denitrifying nitrate nitrogen
KR101619777B1 (en) Removing agent of green tides and red tides
JP4391392B2 (en) Method for producing granules for nitrate nitrogen treatment
JP2010241653A (en) Method for producing steel slag for water area sinking
JP2004008903A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees