JP2004351306A - Water cleaning material effectively utilizing shell of foulings - Google Patents
Water cleaning material effectively utilizing shell of foulings Download PDFInfo
- Publication number
- JP2004351306A JP2004351306A JP2003151308A JP2003151308A JP2004351306A JP 2004351306 A JP2004351306 A JP 2004351306A JP 2003151308 A JP2003151308 A JP 2003151308A JP 2003151308 A JP2003151308 A JP 2003151308A JP 2004351306 A JP2004351306 A JP 2004351306A
- Authority
- JP
- Japan
- Prior art keywords
- shell
- phosphorus
- mussels
- shells
- foulings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、発電所の冷却水路等で捕集されるイガイ類、フジツボ類などの付着生物殻を活用した水質浄化材、その製法並びにその用途に関するものである。
【0002】
【従来の技術】
内湾、湖沼、ダム湖などの富栄養化を防ぐためには、流入する河川・水路などを通じての栄養塩の負荷削減が必要である。しかし、窒素、リンを除去する三次処理はコストがかかる。また、窒素については生物学的硝化脱窒反応により除去可能であるが、リンについては物理化学的方法に依存しているのが現状である。富栄養化を防ぐためには、排出源における排水処理が極めて重要となってきており、経済的で取り扱いの簡単な水質浄化材の開発が望まれている。
【0003】
一方、発電所冷却水路系に付着、増殖するムラサキイガイやフジツボは、冷却機能等を低下させるため、定期的に除去される。除去されたこれらの付着生物は、焼却あるいは埋め立て処分されている。しかし、処分場不足や堆積した場合の悪臭発生などの問題があり、有効利用策の開発が急務とされている。
【0004】
有効利用策として、殻のセメント原料への使用が一部で行われている。また、貝肉については、コンポスト化が試みられているが、悪臭発生などにより地元に受け入れられない場合もある。
近年になって、ムラサキイガイの肉部を利用した配合飼料(特許文献1)、またタンパク質分解酵素を用いた貝の軟体部を分離取得し殻と分ける方法が開発されたが(特願2002―130881参照)、貝殻の水質浄化材への有効利用に関しては検討例がない。
【0005】
【特許文献1】
特開平11−28061号公報
【0006】
【発明が解決しようとする課題】
本発明は、従来、発電所廃棄物とされるムラサキイガイ貝殻やフジツボ殻を活用した水質浄化材の開発を目的とした。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明者は、付着生物殻の有効活用ならびに処理について種々検討した結果、ムラサキイガイなどのイガイ類貝殻、アカフジツボなどのフジツボ類殻などの付着生物殻が水質浄化用の接触材(濾材、微生物担体)への利用はもとより、リンなどの吸着材として有効活用できることを見出し、本発明を完成した。
【0008】
【発明の実施の形態】
発電所冷却水路では、年間を通して周辺海域より数度高い温度の海水が流れている。このため、これを適水温とするムラサキイガイ、ミドリイガイ、フジツボなどの付着生物が多数生息、繁殖する。発電所としてはこれらの処理が必要となる。
本発明者は、付着生物殻が主として炭酸カルシウムからなることに着目し、これらの有効活用ならびに処理法について種々検討した結果、水質浄化用の接触材への利用、アルカリ供給材、リン酸態リンの吸着材としての活用、栄養塩吸着後の殻の肥料化等により付着生物殻の有効活用、減容化が図れること、さらには、アンモニア態窒素などの吸着材(イオン交換材)としても活用できることを見出した。以下、ムラサキイガイを例に記述するが、他の付着生物殻も同様に活用できる。
【0009】
[貝殻の調製]
本発明の接触材、吸着材等に使用するための付着生物殻としては、特に限定されないが、年間を通して同じ温度条件下で生育する発電所冷却水路での付着生物の殻が好ましい。付着生物としてのムラサキイガイは、1cm以下の小さなものから10cm以上のものが一回の冷却水路の清掃の際に除去される。このようなムラサキイガイから貝肉を除去して使用する。貝肉の除去は、熱湯によって貝を開かせるか、または、貝殻を一部破砕した後、パパイン等の蛋白分解酵素を用いて、貝肉の一部若しくは全部を分解し、水洗、篩分け等によって貝肉を除去する。
貝殻は、小さなものはそのまま、大きなものは適当な大きさに破砕して、目的に応じて粒度を調整して使用に供する。貝殻は、目的に応じて焼成処理する。焼成は、貝殻の破砕前または後のいずれでもよく、電気炉やオイルバーナー方式などの通常の焼成炉等で焼成してよい。焼成温度は、特に限定されないが、ダイオキシンの発生等を考慮して800℃以上の温度が望ましく、好ましくは800〜900℃付近である。
【0010】
[接触材(水質浄化材)]
付着生物殻は、養魚用の循環濾過水の浄化や生活排水浄化等の接触材として適用できる。一例として、循環濾過養魚への活用について述べる。循環濾過飼育では魚の排泄物であるアンモニアを微生物の働きにより、亜硝酸経由で低魚毒性の硝酸に酸化する。この作用では、水中のアルカリを消費するため、飼育水中のpHが低下する。飼育水のpHが6以下になるとアンモニアの酸化率が著しく低下する。このため、炭酸水素ナトリウム等を加え、pHを7程度に保つ必要がある。
【0011】
ムラサキイガイ殻を飼育水との接触材に用いると、アンモニア酸化微生物がほとんど棲息しない状態からアンモニア酸化菌が十分繁殖し、初期濃度50mg/Lのアンモニアが水中から消滅するまでの約60日間、水のpHは7.5から7.9に保たれた.。一方、従来のプラスチック濾材を用いた場合には、炭酸水素ナトリウムの添加が必要であった。ムラサキイガイ殻は、焼成または未焼成で、採取時に破砕された状態のもの、更に砕いたもののいずれも同様の結果を示し、どちらでも使用できることが認められた.。好ましくは未焼成で使用される。
【0012】
ムラサキイガイ殻はプラスチック濾材よりアンモニア酸化細菌の繁殖に適しており、新たにセットした水槽において、プラスチック濾材より速くアンモニアの減少が起こる。
ムラサキイガイ殻は、新たに構築した循環路養魚システム(特公平7―55116号公報、特許第2035885号公報)の濾材として活用できる。処理すべき循環水量および濾過槽の規模に応じて貝殻の破砕粒度を選択するとよい。
【0013】
例えば、ムラサキイガイ殻を循環濾過飼育の接触材として用い、1日あたりのアンモニア負荷量を4ないし5mg/Lとした場合、約60日後には殻重量は30から40%減少した。したがって、付着生物殻をアンモニアの酸化に接触材として用いると、水中へのアルカリ供給源となるともに、殻の減容処理ができる。そのため、付着生物殻を河川浄化などに用いた場合、貝殻のカルシウム成分はもと来た海へ帰ることとなり、海棲生物の環境保持にも好ましい結果を与えるものと考えられる。
【0014】
[リン吸着]
ムラサキイガイ殻はそのまま無処理(未焼成)でも、リン酸態リンを吸着する性質があることを見出した。処理・未処理のいずれの場合でも、リン吸着能は殻の粒度を小さくするほど高く、リン酸態リン濃度10mg/L程度では粒径0.5mm未満では24時間以内に90%以上の吸着率を有する。また、0.5−1.0mm粒度では24時間以内に50%の吸着率を示し、48時間では吸着率65%を示す。さらに、1週間(168時間)での吸着率は85−90%となる。1.0mm以上10.0mm未満の粒度では24時間で約40%の吸着率である。使用目的によって粒度を選択する。
【0015】
ムラサキイガイ殻のリン酸態リン吸着能は、熱処理することにより吸着能が高くなる。100から200℃程度の熱処理では、未処理の殻と吸着能は変わらない。400から600℃の熱処理は、処理水中のリン酸態リン濃度を高める場合もあり、好ましくない。800から900℃で1時間処理(焼成)すると、貝殻の形状のもので、100mg/L濃度のリン酸態リンに対し、24時間以内に90%以上の吸着能を有するようになる。この熱処理の場合には貝肉が存在しても差し支えない。
【0016】
取り扱いの観点から、ムラサキイガイ殻を適当な大きさに破砕し、これに粘土等のセラミック材料を加えて混合・造粒し、乾燥後、焼成してセラミックスとすると扱いやすく、便利である。殻の破砕粒の大きさは特に限定されないが、粘土との混合性、成形性などの点で0.5mm未満の粒度が好ましい。粘土との混合比は、ムラサキイガイ殻細粉の量を50から60%とするとよい。これよりムラサキイガイ殻が多いと保形性が悪くなり、使用時に破損することがある。焼成時間は800から900℃で3時間程度がよい。焼成後は炉中で常温まで冷やす。その後は、密閉容器に保存するか、直ちに淡水(蒸留水が望ましいが、水道水でも可)に浸漬し、その後、自然乾燥すると、強度が保たれ、崩れにくくなる。このセラミックス貝殻のリン酸態リン吸着能は、焼成した貝殻と変わらない。
セラミックス貝殻の大きさは、特に限定されないが通常粒径5〜10mm前後とするとよく、5cm以下であれば実用上問題なく使用できる。形状は、通常粒状とするが、目的に応じてレンガ(煉瓦)状など種々の形状としてもよい。
【0017】
リン酸態リンの吸着処理に用いたムラサキイガイ殻は、リンおよびカルシウム肥料としてさらに活用できる。我が国は、リン鉱石資源を有せず、リン肥料は輸入に頼っているのが現状である。本発明によれば、水質浄化材のみならず肥料として、リン酸態リンを吸着したムラサキイガイ殻を有効利用できる。
【0018】
[イオン交換]
未処理および800℃で処理したムラサキイガイ殻は、アンモニア態窒素に対して吸着能を有しない。しかし、ごく少量のリン酸態リンを添加すると、800℃で処理した殻はアンモニア態窒素を吸着する。この現象は、カルシウムイオンとのイオン交換によって吸着されるものと推測される。同様に、リン酸態リンを吸着したムラサキイガイ殻はカルシウムイオンとの交換でカドミウム、水銀、鉛などの金属イオンを吸着することが期待できる。
このイオン交換能は、800℃の焼成温度の殻に限定されることなく、800℃以上の温度で焼成した貝殻に同様の効果が得られる。
イオン交換によりアンモニア態窒素を吸着したムラサキイガイ殻も肥料として緑・農地へ有効利用できる。
【0019】
【実施例】
以下、実験例に基づき本発明を説明するが、本発明はこれらの例に限定されるものではない。
【0020】
実験例1
ムラサキイガイ殻を接触材として用いた実験例を示す。新たに準備し、アンモニア酸化細菌の生息していない状態の容量10Lの水槽に、アンモニア態窒素濃度50mg/Lとなるように塩化アンモニウムを入れ、小型の濾過槽に各々100mLのプラスチック製濾材、無処理のムラサキイガイ殻砕片を入れ、循環濾過方式で実験を行った。
ムラサキイガイ殻では実験開始後20日でアンモニア濃度の低下が見られるようになり、61日目には0mg/Lとなった。一方、プラスチック濾材(EC濾材)では、アンモニアの酸化がなかなか進まず、77日で約50%となった。この間、プラスチック濾材区のpHは6まで低下し、pH維持のため炭酸水素ナトリウムを4g添加した。一方、ムラサキイガイ殻区のpHは7.5から7.9に保たれた。なお、濾材を入れなかったブランク区でも、水槽壁などにアンモニア酸化細菌が繁殖し、アンモニア濃度の低下が見られた。結果を図1に示す。
【0021】
実験例2
容量200mLの三角フラスコに濃度2mg/Lのリン酸態リン溶液を100mL、粒径0.5mm未満の無処理のムラサキイガイ殻を10g入れ、65rpmで振盪した。その結果、図2に示したように、24時間後のリン酸態リン濃度は0.1mg/Lとなった。
【0022】
実験例3
容量200mLの三角フラスコに濃度2mg/Lのリン酸態リン溶液を100mL入れ、ここに、熱処理をした粒径0.5から1mmのムラサキイガイ殻10g、対照として同一粒径の無処理の殻10gを入れ、65rpmで振盪した。結果は図3に示すとおりであった。すなわち、400℃および600℃で処理した殻はリンを吸着せず、時にはリン濃度が初期値より増加した。100℃、200℃処理と無処理の殻ではリン吸着に差が認められず、24時間後の吸着率は50%であった。また、800℃で処理した殻のリン酸吸着率は91%であった。
【0023】
実験例4
実験例2、3と同様にして、800℃で処理した貝殻片の大きさ別(0.5−1.0mm、1.0−10.0mm、10.0mm以上)のリン吸着能について調べた結果、図4に示したとおり、大きさによる吸着率の差は認められなかった。すなわち、800℃で処理すれば、貝殻の大きさのままでも吸着材として利用できる。
【0024】
実験例5
粒径0.5mm未満のムラサキイガイ殻細粉と粘土(60:40)を混ぜ造粒し、乾燥後に焼成して作製したセラミックス(粒径約5mm)のリン吸着能について調べた。実験方法は実験2、3、4と同様とし、10gのセラミックスを三角フラスコに入れ、初期濃度を4mg/Lとした。結果を図5に示した。14時間後のリン酸態リン濃度は1.5mg/Lであり、24時間後には0.17mg/Lとなり、吸着率は96%となった。
【0025】
実験例6
容量200mLの三角フラスコに濃度12mg/Lのアンモニア態窒素溶液100mLを入れ、ここに、800℃で熱処理した粒径0.5−1.0mmのムラサキイガイ殻10gを入れ、アンモニアの吸着について検討した。その結果、図6に示したように192時間後まで、アンモニアの減少は起こらなかった。
そこで、155μg/L濃度のリン酸態リン溶液0.2mLを加えた。リン酸態リン溶液添加24時間後には、アンモニアの減少が認められるようになり、48時間後(288時間)には75%のアンモニア態窒素が吸着された(図6参照)。なお、ブランクは熱処理しない粒径0.5−1.0mmのムラサキイガイ殻を同量用いて同様に行った。
【0026】
実験例7
リン酸態リン濃度と800℃で処理した粒径0.5−1.0mmのムラサキイガイ殻の単位重量当たりのリン吸着量について調べた。図7に示したようにリン酸濃度の増加とともにリン吸着量も増加し、96mg/Lでは0.85mg/gの吸着量となった。これらの値、関係を用いれば、肥料成分の含有量が算出できる。
【0027】
【発明の効果】
本発明は、以上説明したように、これまで発電所廃棄物として取り扱われていた付着生物殻を、接触材、リン吸着材、イオン交換材などの水質浄化材として活用できる。また、リン酸態リンやアンモニア態窒素を吸着した付着生物殻は、リン、窒素、カルシウム肥料として有効活用できる。
【図面の簡単な説明】
【図1】濾材とアンモニア酸化能との関係を示すグラフである。
【図2】ムラサキイガイ殻のリン吸着能を示すグラフである。
【図3】熱処理したムラサキイガイ殻のリン吸着能を示すグラフである。
【図4】熱処理したムラサキイガイ殻の粒径とリン吸着能との関係を示すグラフである。
【図5】ムラサキイガイ殻セラミックのリン吸着能を示すグラフである。
【図6】ムラサキイガイ殻のアンモニア吸着能に及ぼすリン添加効果を示すグラフである。
【図7】リン濃度とムラサキイガイ殻の単位重量当たりのリン吸着能の関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water purification material utilizing attached organism husks such as mussels and barnacles collected in a cooling water channel or the like of a power plant, a production method thereof, and uses thereof.
[0002]
[Prior art]
In order to prevent eutrophication of inner bays, lakes and dam lakes, it is necessary to reduce the load of nutrients through inflowing rivers and waterways. However, the tertiary treatment for removing nitrogen and phosphorus is costly. Further, nitrogen can be removed by a biological nitrification denitrification reaction, but phosphorus currently depends on a physicochemical method. In order to prevent eutrophication, wastewater treatment at a discharge source has become extremely important, and development of an economical and easy-to-handle water purification material has been desired.
[0003]
On the other hand, mussels and barnacles that adhere to and grow on the cooling water system of the power plant are periodically removed to reduce the cooling function and the like. These removed organisms have been incinerated or landfilled. However, there are problems such as shortage of disposal sites and generation of offensive odors when piled up, and it is urgently necessary to develop effective utilization measures.
[0004]
As an effective utilization measure, the use of husks as a raw material for cement has been partially performed. Although composting of shellfish has been attempted, it may not be accepted locally due to bad odors.
In recent years, a compound feed utilizing the mussels of mussels (Patent Document 1), and a method of separating and obtaining shells of soft shells using proteolytic enzymes and separating them from shells have been developed (Japanese Patent Application No. 2002-130881). No reference has been made on the effective use of shells for water purification materials.
[0005]
[Patent Document 1]
JP-A-11-28061
[Problems to be solved by the invention]
An object of the present invention is to develop a water purification material utilizing mussel shells and barnacle shells conventionally regarded as power station waste.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has conducted various studies on the effective use and treatment of the attached husks, and found that attached husks such as mussels such as mussels and barnacles such as red barnacles are used for water purification. The inventors have found that the present invention can be effectively used not only as a contact material (filter material, microbial carrier) but also as an adsorbent for phosphorus and the like, and thus completed the present invention.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the cooling water channel of the power plant, seawater with a temperature several degrees higher than the surrounding sea area flows throughout the year. For this reason, a large number of attached organisms such as mussels, green mussels, barnacles, etc., having the appropriate water temperature, inhabit and propagate. These treatments are required for the power plant.
The present inventor paid attention to the fact that the attached husks are mainly composed of calcium carbonate, and conducted various studies on their effective use and treatment methods. As a result, the use as a contact material for water purification, alkali supply material, phosphoric acid phosphorus, etc. Of adsorbed husks as an adsorbent, effective use and reduced volume of attached husks by converting husks into fertilizer after nutrient adsorption, and also used as adsorbents (ion exchange materials) for ammonia nitrogen etc. I found what I can do. Hereinafter, a mussel is described as an example, but other attached biological hulls can be similarly used.
[0009]
[Preparation of shells]
The attached organism shell used for the contact material, the adsorbent and the like of the present invention is not particularly limited, but is preferably an attached organism shell in a cooling water channel of a power plant that grows under the same temperature conditions throughout the year. Blue mussels as attached organisms are removed from small ones of 1 cm or less to those of 10 cm or more in one cleaning of the cooling water channel. Shellfish is removed from such mussels for use. To remove the shell meat, open the shell with boiling water, or crush the shell partially, then decompose part or all of the shell meat using a protease such as papain, wash with water, screen, etc. To remove the shellfish.
Small shells are used as they are, and large shells are crushed to an appropriate size, and the particle size is adjusted according to the purpose before use. The shells are fired according to the purpose. The firing may be performed before or after the crushing of the shell, and may be performed in a normal firing furnace such as an electric furnace or an oil burner method. Although the firing temperature is not particularly limited, a temperature of 800 ° C. or higher is desirable in consideration of generation of dioxin and the like, and preferably around 800 to 900 ° C.
[0010]
[Contact material (water purification material)]
The attached husks can be used as a contact material for purification of circulating filtered water for fish farming and purification of domestic wastewater. As an example, utilization for circulating filtration fish farming will be described. In circulating filtration breeding, ammonia, which is the excrement of fish, is oxidized to low fish toxic nitric acid via nitrite by the action of microorganisms. In this action, the alkali in the water is consumed, so that the pH in the breeding water decreases. When the pH of the breeding water becomes 6 or less, the oxidation rate of ammonia is significantly reduced. For this reason, it is necessary to add sodium hydrogen carbonate or the like to keep the pH at about 7.
[0011]
When the mussel shell is used as a contact material with the breeding water, the ammonia oxidizing bacteria sufficiently propagate from a state in which almost no ammonia oxidizing microorganisms inhabit, and the water for about 60 days until the initial concentration of 50 mg / L of ammonia disappears from the water. The pH was kept between 7.5 and 7.9. . On the other hand, when a conventional plastic filter medium was used, it was necessary to add sodium hydrogen carbonate. The mussels of mussels, either fired or unfired, were crushed at the time of collection, and further crushed, showed similar results, and it was recognized that either type could be used. . It is preferably used unfired.
[0012]
Blue mussel shells are more suitable for the propagation of ammonia oxidizing bacteria than plastic filter media, and ammonia decreases faster than plastic filter media in a newly set aquarium.
The mussel shell can be used as a filter medium for a newly constructed circulation fish culture system (Japanese Patent Publication No. 7-55116, Japanese Patent No. 2035885). It is advisable to select the crushing particle size of the shell according to the amount of circulating water to be treated and the size of the filtration tank.
[0013]
For example, when the mussel shell was used as a contact material for circulating filtration rearing and the ammonia load per day was 4 to 5 mg / L, the shell weight was reduced by 30 to 40% after about 60 days. Therefore, when the attached hulls are used as a contact material for the oxidation of ammonia, the hulls serve as a source of alkali into water and can be subjected to shell volume reduction processing. Therefore, when the attached organism shell is used for river purification, etc., the calcium component of the shell returns to the original sea, and it is considered that a favorable result is also provided for environmental protection of marine organisms.
[0014]
[Phosphorus adsorption]
The mussel shell was found to have the property of adsorbing phosphoric acid-phosphorus even without treatment (unfired). In both cases of treated and untreated, the adsorption capacity of phosphorus is higher as the particle size of the shell is smaller. At a phosphate phosphorus concentration of about 10 mg / L, an adsorption rate of 90% or more within 24 hours for a particle diameter of less than 0.5 mm Having. In the case of a particle size of 0.5 to 1.0 mm, an adsorption rate of 50% is shown within 24 hours, and an adsorption rate of 65% is shown in 48 hours. Furthermore, the adsorption rate in one week (168 hours) is 85-90%. At a particle size of 1.0 mm or more and less than 10.0 mm, the adsorption rate is about 40% in 24 hours. Select the particle size according to the purpose of use.
[0015]
The phosphoric acid-phosphorus adsorbing ability of the mussel shell is increased by heat treatment. The heat treatment at about 100 to 200 ° C. does not change the adsorption ability of the untreated shell. Heat treatment at 400 to 600 ° C. is not preferable because it may increase the concentration of phosphoric acid phosphorus in the treated water. When treated (fired) at 800 to 900 ° C. for 1 hour, it has a shell shape and has an adsorption capacity of 90% or more for phosphoric acid phosphorus at a concentration of 100 mg / L within 24 hours. In the case of this heat treatment, shellfish may be present.
[0016]
From the viewpoint of handling, it is convenient and convenient to crush the mussel shell to an appropriate size, add a ceramic material such as clay to the mixture, mix and granulate, dry, and fire to obtain ceramic. The size of the crushed particles of the shell is not particularly limited, but a particle size of less than 0.5 mm is preferable from the viewpoint of mixability with clay and moldability. The mixing ratio with clay is preferably such that the amount of mussel shell fine powder is 50 to 60%. If the number of mussels is larger than this, shape retention may be deteriorated, and the shell may be damaged during use. The firing time is preferably about 800 to 900 ° C. for about 3 hours. After firing, cool in a furnace to room temperature. After that, it is stored in a closed container or immediately immersed in fresh water (preferably distilled water, but tap water is also acceptable), and then naturally dried, the strength is maintained and it is difficult to collapse. The phosphoric acid-phosphorus adsorbing ability of the ceramic shell is not different from that of the baked shell.
Although the size of the ceramic shell is not particularly limited, it is usually preferably about 5 to 10 mm in particle size, and if it is 5 cm or less, it can be used without any practical problem. The shape is usually granular, but may be various shapes such as a brick (brick) shape according to the purpose.
[0017]
The mussel husk used for the phosphoric acid phosphorus adsorption treatment can be further utilized as a phosphorus and calcium fertilizer. At present, Japan does not have phosphate ore resources and relies on imports of phosphorus fertilizers. ADVANTAGE OF THE INVENTION According to this invention, the mussel shell which adsorbed the phosphoric acid phosphorus can be used effectively as a fertilizer as well as a water quality purification material.
[0018]
[Ion exchange]
The mussel shells untreated and treated at 800 ° C. have no ability to adsorb ammonia nitrogen. However, when a very small amount of phosphoric acid phosphorus is added, the shell treated at 800 ° C. adsorbs ammonia nitrogen. This phenomenon is presumed to be adsorbed by ion exchange with calcium ions. Similarly, mussel shells adsorbing phosphoric acid phosphorus can be expected to adsorb metal ions such as cadmium, mercury, and lead by exchanging with calcium ions.
This ion exchange ability is not limited to the shell at the sintering temperature of 800 ° C., and the same effect can be obtained in shells baked at a temperature of 800 ° C. or higher.
Mussels of mussels adsorbing ammonia nitrogen by ion exchange can also be effectively used as fertilizer for green and farmland.
[0019]
【Example】
Hereinafter, the present invention will be described based on experimental examples, but the present invention is not limited to these examples.
[0020]
Experimental example 1
An experimental example using a mussel shell as a contact material is shown. Freshly prepared, ammonium chloride was added to a 10 L capacity water tank in which ammonia oxidizing bacteria did not inhabit so that the concentration of ammonia nitrogen was 50 mg / L, and 100 mL of plastic filter media was added to a small filtration tank. The treated mussel shell crushed pieces were put in, and an experiment was conducted by a circulation filtration method.
In the mussel shell, a decrease in the ammonia concentration was observed 20 days after the start of the experiment, and it became 0 mg / L on the 61st day. On the other hand, in the case of the plastic filter medium (EC filter medium), the oxidation of ammonia did not progress easily, and reached about 50% in 77 days. During this time, the pH of the plastic filter medium section dropped to 6, and 4 g of sodium hydrogen carbonate was added to maintain the pH. On the other hand, the pH of the mussel shell was maintained at 7.5 to 7.9. In addition, even in the blank section where no filter medium was added, ammonia oxidizing bacteria proliferated on the aquarium wall and the like, and a decrease in the ammonia concentration was observed. The results are shown in FIG.
[0021]
Experimental example 2
A 200-mL Erlenmeyer flask was charged with 100 mL of a 2 mg / L phosphoric acid-phosphorus solution and 10 g of untreated mussel shell having a particle size of less than 0.5 mm, and shaken at 65 rpm. As a result, as shown in FIG. 2, the phosphate phosphorus concentration after 24 hours was 0.1 mg / L.
[0022]
Experimental example 3
A 200 mL Erlenmeyer flask is charged with 100 mL of a 2 mg / L phosphoric acid-phosphorus solution, and 10 g of heat-treated mussel shell having a particle size of 0.5 to 1 mm and 10 g of an untreated shell having the same particle size as a control. And shaken at 65 rpm. The results were as shown in FIG. That is, the shells treated at 400 ° C. and 600 ° C. did not adsorb phosphorus, and sometimes the phosphorus concentration increased from the initial value. No difference was observed in phosphorus adsorption between the shells treated at 100 ° C. and 200 ° C. and untreated, and the adsorption rate after 24 hours was 50%. The phosphoric acid adsorption rate of the shell treated at 800 ° C. was 91%.
[0023]
Experimental example 4
In the same manner as in Experimental Examples 2 and 3, the phosphorus adsorption capacity of the shell pieces treated at 800 ° C. was examined for the size (0.5-1.0 mm, 1.0-10.0 mm, 10.0 mm or more). As a result, as shown in FIG. 4, no difference in the adsorption rate depending on the size was observed. In other words, if the treatment is performed at 800 ° C., the shell can be used as an adsorbent even in the same size.
[0024]
Experimental example 5
A ceramic (particle diameter: about 5 mm) produced by mixing and granulating mussel shell fine powder having a particle diameter of less than 0.5 mm and clay (60:40), drying and calcining the mixture was examined for phosphorus adsorption ability. The experiment method was the same as in
[0025]
Experimental example 6
A 200 mL Erlenmeyer flask was charged with 100 mL of a 12 mg / L ammonia-nitrogen solution, 10 g of mussel shell having a particle size of 0.5 to 1.0 mm heat-treated at 800 ° C. was placed therein, and the adsorption of ammonia was examined. As a result, as shown in FIG. 6, the reduction of ammonia did not occur until after 192 hours.
Therefore, 0.2 mL of a 155 μg / L phosphoric acid phosphorous solution was added. Twenty-four hours after the addition of the phosphoric acid phosphorus solution, a decrease in ammonia became evident, and after 48 hours (288 hours), 75% of ammonia nitrogen was adsorbed (see FIG. 6). The blank was similarly prepared using the same amount of mussel shell having a particle size of 0.5 to 1.0 mm without heat treatment.
[0026]
Experimental example 7
The phosphate concentration and the amount of phosphorus adsorbed per unit weight of the mussel shell treated at 800 ° C. and having a particle size of 0.5 to 1.0 mm were examined. As shown in FIG. 7, as the phosphoric acid concentration increased, the phosphorus adsorption amount also increased. At 96 mg / L, the adsorption amount was 0.85 mg / g. By using these values and relationships, the content of the fertilizer component can be calculated.
[0027]
【The invention's effect】
As described above, the present invention can utilize the attached biological hulls, which have been treated as power plant waste, as a water purification material such as a contact material, a phosphorus adsorbent, and an ion exchange material. The attached husks that have adsorbed phosphate phosphorus and ammonia nitrogen can be effectively used as phosphorus, nitrogen and calcium fertilizers.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between a filter medium and ammonia oxidizing ability.
FIG. 2 is a graph showing the phosphorus adsorption ability of mussels.
FIG. 3 is a graph showing the phosphorus adsorption capacity of heat-treated mussels.
FIG. 4 is a graph showing the relationship between the particle size of heat-treated mussels and the ability to adsorb phosphorus.
FIG. 5 is a graph showing the phosphorus adsorption ability of a mussel shell ceramic.
FIG. 6 is a graph showing the effect of adding phosphorus on the ammonia adsorption capacity of mussels.
FIG. 7 is a graph showing the relationship between phosphorus concentration and phosphorus adsorption capacity per unit weight of mussels.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003151308A JP2004351306A (en) | 2003-05-28 | 2003-05-28 | Water cleaning material effectively utilizing shell of foulings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003151308A JP2004351306A (en) | 2003-05-28 | 2003-05-28 | Water cleaning material effectively utilizing shell of foulings |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004351306A true JP2004351306A (en) | 2004-12-16 |
Family
ID=34046865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003151308A Pending JP2004351306A (en) | 2003-05-28 | 2003-05-28 | Water cleaning material effectively utilizing shell of foulings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004351306A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007216119A (en) * | 2006-02-15 | 2007-08-30 | Petroleum Energy Center | Water-permeable purification wall and purification treatment method of contaminated ground water |
JPWO2006057287A1 (en) * | 2004-11-25 | 2008-06-05 | 楠 敏明 | Activated sludge production inhibitor |
JP2009039616A (en) * | 2007-08-07 | 2009-02-26 | Cosmo Oil Co Ltd | Cleaning accelerator and cleaning method of soil and underground water |
JP2012125741A (en) * | 2010-12-17 | 2012-07-05 | Komatsu Seiren Co Ltd | Water purification material |
WO2014129836A1 (en) * | 2013-02-21 | 2014-08-28 | 주식회사 이노테라피 | Composition containing powder of byssal threads and shell of mussel for adsorbing pollutants |
CN106902735A (en) * | 2017-02-28 | 2017-06-30 | 沈阳理工大学 | A kind of method that utilization feces of livestock and poultry prepares pollutant purification material and composite fertilizer |
CN108996833A (en) * | 2018-08-17 | 2018-12-14 | 佛山市禅城区诺高环保科技有限公司 | A kind of processing method of cellulosic ethanol production waste water |
EP3789348A1 (en) * | 2019-09-04 | 2021-03-10 | Wen-Lung Chin | Water purifying agent and method for making it |
-
2003
- 2003-05-28 JP JP2003151308A patent/JP2004351306A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006057287A1 (en) * | 2004-11-25 | 2008-06-05 | 楠 敏明 | Activated sludge production inhibitor |
JP2007216119A (en) * | 2006-02-15 | 2007-08-30 | Petroleum Energy Center | Water-permeable purification wall and purification treatment method of contaminated ground water |
JP2009039616A (en) * | 2007-08-07 | 2009-02-26 | Cosmo Oil Co Ltd | Cleaning accelerator and cleaning method of soil and underground water |
JP2012125741A (en) * | 2010-12-17 | 2012-07-05 | Komatsu Seiren Co Ltd | Water purification material |
WO2014129836A1 (en) * | 2013-02-21 | 2014-08-28 | 주식회사 이노테라피 | Composition containing powder of byssal threads and shell of mussel for adsorbing pollutants |
CN106902735A (en) * | 2017-02-28 | 2017-06-30 | 沈阳理工大学 | A kind of method that utilization feces of livestock and poultry prepares pollutant purification material and composite fertilizer |
CN106902735B (en) * | 2017-02-28 | 2021-04-06 | 沈阳理工大学 | Method for preparing pollutant purifying material and compound fertilizer by using livestock and poultry manure |
CN108996833A (en) * | 2018-08-17 | 2018-12-14 | 佛山市禅城区诺高环保科技有限公司 | A kind of processing method of cellulosic ethanol production waste water |
EP3789348A1 (en) * | 2019-09-04 | 2021-03-10 | Wen-Lung Chin | Water purifying agent and method for making it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4032199B2 (en) | Nitrate nitrogen denitrification substrate | |
CN107434303A (en) | The processing method of eutrophication aquiculture waste water | |
CN109305744A (en) | A kind of black and odorous water biological renovation method and system | |
Soumya et al. | Removal of phosphate and nitrate from aqueous solution using seagrass Cymodocea rotundata beads | |
CN110104786B (en) | Artificial floating bed composite ecological substrate and preparation method thereof | |
CN100534573C (en) | Filtration medium and preparation, filter element, purifier and drinking machine using the same | |
JP2004351306A (en) | Water cleaning material effectively utilizing shell of foulings | |
KR20180007872A (en) | Absorbent composition for removing phosphorus of underwater, methods of manufacturing and recycling the same and absorbent device | |
JP2011212640A (en) | Water clarifying method, water clarifying agent and method for producing water clarifying agent | |
CN115244012A (en) | Method for treating water, sediment and/or sludge | |
Yang et al. | Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics | |
CN107162168A (en) | A kind of biological aerated filter based on microbial augmentation | |
JP4947247B2 (en) | Composition for removing nitrate nitrogen and the like and method for producing the same | |
CN113307447B (en) | Zero-valent iron mixed culture denitrification coupling modified charcoal two-stage PRB underground water denitrification method and reactor | |
JP2004237170A (en) | Method and apparatus for treating nitrate nitrogen and phosphorus-containing water | |
EP3024319B1 (en) | New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction | |
JP3040097B2 (en) | Contact purification material and method for producing the same | |
WO2020255957A1 (en) | Water purification material and water purification method using same | |
KR100919777B1 (en) | Solid material for wastewater treatment and fabricating method the same | |
KR19980045201A (en) | Wastewater treatment agent using natural inorganic substance and its manufacturing method | |
JP2005342624A (en) | Method for producing bottom sediment purification material composed of shell | |
KR101237762B1 (en) | A Compound of Enhancing Water quality and Manufacturing Method thereof | |
WO2023238922A1 (en) | Water purification and greening method and water purification and greening device | |
JP4255390B2 (en) | Disassembling method | |
JP4390804B2 (en) | Method for suppressing activated sludge generation and method for treating sewage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080319 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080716 |