JP4001472B2 - Method and apparatus for treating metal-containing water - Google Patents

Method and apparatus for treating metal-containing water Download PDF

Info

Publication number
JP4001472B2
JP4001472B2 JP2001270399A JP2001270399A JP4001472B2 JP 4001472 B2 JP4001472 B2 JP 4001472B2 JP 2001270399 A JP2001270399 A JP 2001270399A JP 2001270399 A JP2001270399 A JP 2001270399A JP 4001472 B2 JP4001472 B2 JP 4001472B2
Authority
JP
Japan
Prior art keywords
fluidized bed
water
medium
crystallization
crystallization medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001270399A
Other languages
Japanese (ja)
Other versions
JP2003071468A (en
Inventor
淳一 野村
和彰 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001270399A priority Critical patent/JP4001472B2/en
Publication of JP2003071468A publication Critical patent/JP2003071468A/en
Application granted granted Critical
Publication of JP4001472B2 publication Critical patent/JP4001472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地下水を原水とする用水、工業排水、ゴミ浸出排水などの、高濃度の溶解性金属および懸濁状金属を含む水の処理方法及び処理装置に関し、特に金属含有水から高い効率で金属分を除去することができる金属含有水の処理方法及び処理装置に関する。
【0002】
【従来の技術】
従来、石灰岩地帯で出る地下水や河川水などにはカルシウム濃度が高いものがあり、硬水は洗濯には向かないので軟化処理が行われるが、それを食品工業や化学工業の原料水として使用せざるを得ないような場合には水質基準に適合するように、さらに積極的にカルシウム分を除去する処理が行われる。そのような処理の一つとして、カルシウム含有水をカルシウム分(カルシウム塩等を含む、以下簡単のため「カルシウム」ともいう)を析出させることができる媒体、例えばろ過用珪砂層を通すなどの手段が取られるが、連続的処理方法としてろ過砂の流動層を形成して、そこを通す方法等が提案されている。
【0003】
従来の流動床によるカルシウム除去方法として、図2に示すものがある。
図2で示されるカルシウム除去方法は、ろ過砂を晶析用媒体とする支持床の無い(整流盤の無い)流動床2に、炭酸イオンも含有したカルシウム含有水又は炭酸イオンを添加したカルシウム含有水を上向流で通水することにより行われる。なお、この明細書においては、反応槽1全体を流動床反応槽1といい、反応槽1内のろ過砂を含む水が流動している領域全体を流動床2といい、晶析用媒体(ろ過砂)が流動界面を形成している流動している層を晶析用媒体(ろ過砂)流動層3という。
流動床反応槽1の底部流入口12近辺にアルカリ剤を注入し、流動床2内の処理水pHを8〜10に調節することにより、前記水中の溶解性カルシウムを晶析除去し、加えて、前記流動床反応槽1のろ過砂流動層3上部に懸濁物質流動層4を形成させることにより、その流動層3を通過した、前記水中の懸濁状カルシウムをも除去し、さらに、前記流動床2の懸濁物質流動層4にスラッジ排出管17を備え、前記流動床反応槽の底部流入口12近辺に晶析用媒体排出管(排出弁)7を備えるものである。なお、前記流動層3の上部に安定した懸濁物質流動層4を形成させるために、流動床反応槽1の上部を拡大部とすることが好ましい。
【0004】
なお、図2において、5は分散板、6は被処理水流入口、8は逆止弁、9は被処理水流入弁、10は被処理水供給ポンプ、13はアルカリ剤供給ポンプ、14はアルカリ剤槽、15はpH測定器、16は処理水流出管、17はスラッジ排出管、18はスラッジ排出弁である。
【0005】
【発明が解決しようとする課題】
公知の流動層によるカルシウム除去方法について詳しく説明する。
カルシウムは、溶解しているものは、中性付近の水中において、2価態の場合はCa(HCO32やCaSO4の形態で存在する。
2価態のカルシウムは、炭酸イオンと(1)式のように反応し炭酸カルシウムとなる。
Ca2++HCO3 -+OH-→CaCO3↓+H2O・・・・(1)
被処理水中の炭酸カルシウムは、pHの上昇に従って溶解度が減少し、準安定状態を経て結晶化する。この時、準安定状態の炭酸カルシウムと晶析用媒体が接触すると、媒体表面に炭酸カルシウムが晶析する。このとき、被処理水のpHが低いと晶析が起こらず、pHが高すぎると媒体表面にではなく、水中に微細な炭酸カルシウム結晶が析出するため、pH制御が重要である。
この場合、水中の懸濁状カルシウムは上記反応に関与しないものの、流動層3上部に懸濁物質流動層4を形成することにより、懸濁状カルシウムも除去することができる。
【0006】
しかし、カルシウム晶析により粒径の増加した晶析用媒体は、その流動性が次第に低下するため、粒径の増加した晶析用媒体の引抜き、および新しい晶析用媒体の補充を頻繁に行う必要があった。
本発明は、このような従来の課題に鑑みてなされたものであり、晶析用媒体の引抜き頻度を少なくするカルシウム含有水の処理方法および処理装置を提供することを課題とする。
また、炭酸塩を形成する二価ないしそれ以上の金属イオンは、カルシウムと同様の反応により晶析用媒体表面に晶析するため、本発明はカルシウムに限定するものではなく、炭酸塩を形成する二価ないしそれ以上の金属イオン(簡単のために単に「金属」ということがある)を含有する水の処理にも適用することができる。
【0007】
【課題を解決するための手段】
本発明によれば、下記手段により上記課題を解決した。
(1)ろ過砂を晶析用媒体とする流動床に、炭酸イオンを含有するか又は炭酸イオンを添加した金属含有水を上向流で通水するとともに、流動床内の底部流入口近辺にアルカリ剤を注入し、流動床内の処理水pHを8〜10に調節することにより、前記水中の溶解性金属を晶析除去し、加えて、前記流動床のろ過砂流動層上部に、前記流動層を通過した前記水中の懸濁物質流動層を形成させることにより、前記水中の懸濁状金属化合物を除去し、さらに、前記流動床の懸濁物質流動層からスラッジ排出を行い、前記流動床内の底部流入口近辺から、晶析用媒体を排出する金属含有水の処理方法であって、前記流動床内の底部より空気を流入させ、晶析用媒体の粒径増加に伴い空気注入量を増加することにより、金属晶析により粒径が増加した流動媒体の流動性を維持することを特徴とする金属含有水の処理方法。
(2)前記流動床の晶析用媒体流動層上部に形成する懸濁物質流動層上部に、空気捕集板及び気液分離板を設け、空気注入による懸濁物質流動層からの懸濁物質の流出を防止することを特徴とする前記(1)記載の処理方法。
【0008】
(3)ろ過砂を晶析用媒体とする流動層とその上部に懸濁物質流動層を形成する流動床反応槽と、前記流動床反応槽は、前記懸濁物質流動層が形成される部分の水平方向断面積を、前記ろ過砂を晶析媒体とする流動層部の水平方向断面積よりも大きくし、該反応槽の底部に設けた炭酸イオンを含有するか又は炭酸イオンを添加した金属含有水の流入管と該反応槽上部に設けた処理水流出管、及び前記流動床内の処理水中に設置されたpH測定器と流動床内の処理水pHを調整するための前記反応槽底部付近に設けたアルカリ剤注入口とを有する金属含有水の処理装置であって、前記反応槽の底部に設けた粒径の増加した媒体を引き抜く晶析用媒体排出管、同底部付近に設けた空気流入管、晶析用媒体の粒径増加に伴い、空気量を増加させる機構、及び前記反応槽上部の懸濁物質流動層に設けたスラッジ排出管、及び前記晶析用媒体流動層の下部中に被処理水とアルカリ剤の混合を促進する分散板を備えたことを特徴とする金属含有水の処理装置。
(4)前記晶析用媒体流動層上部の懸濁物質流動層上部に、懸濁物質流動層を維持するための空気捕集板及び気液分離板を備えたことを特徴とする前記(3)記載の処理装置。
【0009】
すなわち、本発明は、流動床内の底部流入口近辺に空気流入管を設け、空気注入量を調節し、かつ、懸濁物質層上部に空気捕集板および気液分離板を設けることにより、カルシウム晶析により粒径が増加した流動媒体の流動性を維持し、懸濁状カルシウムをも除去することを重要ポイントとするものである。
【0010】
【発明の実施の形態】
(図の説明)
本発明の装置の一例を図1に示し、この図に基づいて本発明をより具体的に説明する。図1においてはカルシウム含有水の処理の場合について説明する。
なお、図2で示した構成要素と同一の機能を有する構成要素は同一符号を用いて示す。
図1に示す装置は、支持床の無い(整流盤のない)流動床反応槽1に晶析用媒体流動層3および懸濁物質流動層4を保持し、流動床内の底部流入口近辺にアルカリ剤注入口12と、流動床内の処理水中に設置されたpH測定器15を少なくとも配備し、該pH測定器15の出力信号により、アルカリ剤供給ポンプ13の吐出量を加減するものである。
【0011】
また、被処理水流入管11、原水を供給するための被処理水供給ポンプ10、被処理水流入弁9、停止時に晶析用媒体の逆流を防止する逆止弁8、粒径の増加した媒体を引抜く晶析用媒体排出弁7、スラッジ排出管17、スラッジ排出弁18、処理水流出管16を備え、さらに、被処理水と晶析用媒体とアルカリ剤の混合を促す分散板5、晶析用媒体の流動性を維持するための空気流入管21、懸濁物質流動層4を維持するための空気捕集板19と気液分離板20を備える。
【0012】
(流動床の形状)
流動床反応槽の下部構造は、その形状が円錐形、角錘形などが考えられるが、晶析用媒体の安息角以上の傾斜を有すれば特に規定するものではない。
流動床反応槽の懸濁物質流動層部分の直径は、晶析用媒体流動層部分の直径の1.5倍以上が好ましい。これは、懸濁物質(スラッジ)の粒径が小さいため、晶析用媒体流動層の上方の部分で上昇する処理水の速度を遅くしないと懸濁物質の流動層が形成されず、懸濁物質が反応槽の外に流出してしまうため、上昇する処理水の速度が十分遅くなるようにするためである。
【0013】
(流動床の直列接続)
本発明の流動床反応槽は、単独使用でも十分なカルシウム除去能力を有するが、被処理水中のカルシウム濃度が高い場合、流動床反応槽の槽高さを低く抑えたい場合などは、複数の反応槽を直列にして使用することができる。
【0014】
(炭酸カルシウム晶析用媒体)
本発明で用いる、炭酸カルシウムの晶析用媒体としては、ろ過砂そのもの以外に粒径0.1〜5.0mmの粒状物質を使用することができる。粒状物質としては、石灰石破砕物、アンスラサイト、活性炭、炭化物、樹脂等が使用できる。粒状物質の材質、粒径、形状、表面状態、充填密度等は、処理装置の形状、被処理水の性質に合わせて選定することができる。
【0015】
(晶析用媒体の充填層高)
流動床反応槽に充填する晶析用媒体の初期の充填層高は、反応槽の直径以上の高さまたは、晶析用媒体の平均粒径の800倍以上の高さであることが好ましいが、被処理水の水質、通水速度、目標の処理水質により任意の高さに設定することができ、特に規定するものではない。なお、ここでいう、「充填層高」は、カルシウム含有水の通水が始まる前の充填状態の晶析用媒体の層の高さであり、通水が始まって流動層が形成されてときの「流動層高」は通水条件により変わるが、その「流動層高」は通常「充填層高」の約1.3〜2.0倍となる。
【0016】
(通水速度)
通水速度は、LVで300〜3000m/日が好ましいが、当該媒体が流動し目標とする処理水質が得られる流速であれば、特に規定するものではない。
一般に、晶析用媒体にろ過砂を使用する場合、平均粒径0.5mmの砂では、通水速度0.5m/min(720m/d)以上、平均粒径1.0mmの砂では、流速1.0m/min(1440m/d)以上が目安となる。
【0017】
(通気量についての説明)
目的とする処理水質が得られるように、晶析用媒体の粒径および充填層高、通水速度を選定しても、カルシウム晶析により粒径が増加した流動媒体は、その流動性が次第に低下する。
一般に、流動床では底部ほどカルシウム晶析量が多く、流動層底部の媒体粒径が早期に増加し、流動性が悪化するものの、流動層内全体では、目標とする処理水質を得るのに十分な反応表面積を残している場合がある。
【0018】
このような場合、粒径の増加した流動層底部の媒体を頻繁に引抜くことは、流動条件の変動を頻繁に起こすので、維持管理上好ましくない。
そこで、本発明により流動床底部より空気を注入し、晶析用媒体の流動を維持する方法が有効になる。空気注入量は晶析用媒体層高さの関係で任意の量を注入できるが、空気量:被処理水量との比で0.05:1から1:1が好ましいが、晶析用媒体の粒径増加に伴い、注入量を増加するようにするのがよい。0.05以下では通気の効果が低く、1.0以上では流動床内の晶析用媒体の上部が混合し、良好な処理水質を得にくい。
【0019】
(炭酸イオンの含有量と添加)
被処理水は、通常カルシウムイオン1mgに対して1.5mg以上の炭酸イオンを含有するが、炭酸イオンを添加する必要がある。炭酸イオンの添加は、炭酸水素ナトリウム、炭酸ナトリウム、炭酸ガス等を添加することにより行う。なお、被処理水がカルシウム含有水以外のものである場合には、その被処理水の種類によって炭酸イオンの含有量が異なってくることが多い。
炭酸ガスを添加する場合は、空気流入管を用い、そこから導入することができる。しかし、被処理水として用いる通常の用水・排水は、炭酸カルシウムの生成に十分な炭酸イオンを含むため、特に存在量を規定するものではない。
【0020】
(アルカリ剤とpH調節)
pH調節用のアルカリ剤として、水酸化ナトリウム、炭酸ナトリウム等が使用できる。アルカリ剤注入口は、流動床内の底部流入口近辺に設ける。
流動床内の処理水pHは、8.0〜10.0の範囲で調節する。pH8.0以下では晶析反応は起こらず、pH10.0以上では晶析反応は起こるものの、炭酸カルシウムが水中で微細結晶となり担体表面に晶析しないため、本発明の効果が十分に発揮されない。
また、被処理水中のカルシウム濃度が高い場合、アルカリ剤の注入量が多くなるため、アルカリ剤注入口近辺のpHが10以上になる。この場合の対策としては、アルカリ剤の濃度を低くして多量に注入する方法、アルカリ剤の注入点を被処理水流入口近辺以外に流動層内に数箇所設ける方法、流動床を多段にする方法等が挙げられる。
【0021】
(媒体引抜きと補充)
晶析用媒体は炭酸カルシウム晶析により肥大化し、次第に流動性が低下し、流動床下部からの通気により再び流動性が回復するが、媒体の粒径がさらに大きくなった場合、流動床内の媒体量が一定量以上になった場合には、流動床下部の排出管より引抜き、新しい晶析用媒体を流動床上部より補充する。
補充する晶析用媒体としては、新しい媒体に限らず、引抜いた媒体を破砕したものなどが使用できる。
本発明の流動床は、スラッジ層が形成される構造を保有するため、引抜いた媒体を破砕したものは篩い分け操作を行わずに、補充用の媒体として再使用することができる。
【0022】
(スラッジ引抜きについて)
流動床内のスラッジ層厚が増加した場合、スラッジ排出管よりスラッジを排出する。
スラッジ層を形成する物質が、主に被処理水中の懸濁物質からなる場合、スラッジ配出管の位置をスラッジ層の下部、言い換えれば晶析用媒体の流動界面より上方に設けることで、効率的なスラッジ排出を行うことができる。
また、スラッジ層を形成する物質が、懸濁物質からなるスラッジ層上部と、微細な晶析用媒体から成るスラッジ層下部に分けられる場合、スラッジ排出管を両層の中間位置に設けることで、効率的なスラッジ排出を行うことができる。
【0023】
(まとめ)
本発明によれば、流動床内の晶析用媒体流動層により溶解性カルシウムを晶析除去し、かつ前記流動層上部に被処理水に含まれる懸濁物質によるスラッジ層を形成させ、水中の懸濁物質の捕捉能力を付加させることにより、被処理水中の懸濁状カルシウムを除去することができる。加えて、流動床下部からの通気により、粒径が増加し流動性の低下した晶析用媒体の流動性を回復し、媒体の引抜き頻度を減らすことができる。
また、炭酸塩を形成する二価ないしそれ以上の金属イオンは、カルシウムと同様の反応により晶析用媒体表面に晶析するため、本発明はカルシウムに限定するものではなく、炭酸塩を形成する二価ないしそれ以上の金属イオンを含有する水の処理にも適用することができる。
【0024】
【実施例】
以下、本発明を実施例により、その効果を明らかにする。ただし、以下に示す本発明の実施例により本発明は制限されるものではない。
【0025】
実施例1及び比較例1
比較例(従来例)として図2、第1表に示す処理装置を使用し、本発明の実施例として図1、第1表に示す処理装置を用いて処理実験を行った。なお、流動床反応槽の全高は6000mmであり、前記反応槽の底部の傾斜面の角度は45度であり、またスラッジ層部の内径拡大部の傾斜面の角度は45度である。
【0026】
【表1】

Figure 0004001472
【0027】
カルシウム晶析用媒体には平均径0.6mmのろ過砂を使用した。短期間の実験ではスラッジ層が形成されないため、スラッジ層の代りとして、粒径0.05〜0.2mmの微細な砂を使用した。
流動床反応槽は、媒体流動層部が内径100mm、スラッジ流動層部が内径350mmのカラムを使用し、処理水pHを9.5〜9.6になるように調節した。
実験結果を第2表に示す。
【0028】
【表2】
Figure 0004001472
【0029】
被処理水は、T−Ca硬度:110〜118mg/リットル、SS−Ca硬度:5〜7mg/リットルであった。なお、「T−Ca硬度」は全カルシウム濃度をいい、「SS−Ca硬度」は可溶性カルシウム濃度をいう。
従来例および本発明の通水2日後までを除いた処理水質は、T−Ca硬度:44〜46mg/リットル、SS−Ca硬度:1〜2mg/リットルであり、Ca硬度除去及びSS−Ca硬度の除去を安定に行うことができた。
比較例での媒体流動層の圧力損失水頭と充填層高の比は、2〜15日後:0.84〜0.85に対して20〜30日後:0.97〜0.98と明らかに増加した。これは、媒体の粒径増加による流動性の悪化を示している。
一方、本失明の媒体流動層の圧力損失水頭と充填層高の比は、実験期間を通して0.84〜0.85と一定であり、媒体の流動性が維持されていることを示している。
【0030】
通水30日後、晶析用媒体の引抜き作業を行った。
比較例(従来例)では、晶析用媒体排出弁を開放しても流動床内の被処理水が流出するに留まり、晶析用媒体は排出されなかった。そこで、流動床底部のフランジを外し、晶析用媒体を取り出した結果、底部から500mmぐらいにかけて媒体同士が付着したものと考えられる、数十ミリの不定形な固まりが取り出された。
一方、本発明では晶析用媒体排出弁の開放により、流動床内の晶析用媒体およびスラッジの少量が排出された。
以上より、晶析用媒体の引抜き頻度は従来例で15日に1回、本発明例では30日に1回となる。
【0031】
【発明の効果】
本発明によれば、カルシウム含有水のような金属含有水を晶析用媒体流動層を通すことにより、金属を晶析用媒体上に析出させて除去するに際して、金属が晶析用媒体上に析出するに伴って流動層の流動性が悪化するのを防ぐことができ、晶析用媒体の引出し頻度を増やすなどの手段を不要とし、操作の簡便化を図ることができる。
かつ、懸濁物質層上部に空気捕集板および気液分離板を設けることにより、例えばカルシウム晶析により粒径が増加した流動媒体の流動性を維持し、晶析用媒体の引抜き頻度を減らすことができ、懸濁状カルシウムをも除去することができた。
【図面の簡単な説明】
【図1】本発明に用いるカルシウム含有水の処理装置の一実施例を示す概略図である。
【図2】従来のカルシウム含有水の処理装置の一例を示す概略図である。
【符号の説明】
1 流動床反応槽
2 流動床
3 晶析用媒体流動層
4 懸濁物質(スラッジ)層
5 分散板
6 被処理水流入口
7 晶析用媒体排出弁
8 逆止弁
9 被処理水流入弁
10 被処理水供給ポンプ
11 被処理水流入管
12 アルカリ剤注入口
13 アルカリ剤供給ポンプ
14 アルカリ剤槽
15 pH測定器
16 処理水流出管
17 スラッジ排出管
18 スラッジ排出弁
19 空気捕集板
20 気液分離板
21 空気流入管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for treating water containing high-concentration soluble metals and suspended metals, such as water for use as raw water from groundwater, industrial wastewater, and waste leachable wastewater, and in particular, with high efficiency from metal-containing water. The present invention relates to a method and an apparatus for treating metal-containing water that can remove metal.
[0002]
[Prior art]
Conventionally, some groundwater and river water in limestone areas have high calcium concentration, and hard water is not suitable for washing, so softening treatment is performed, but it can not be used as raw water for food industry or chemical industry In the case where the water quality is not obtained, a treatment for removing calcium content more actively is performed so as to meet the water quality standard. As one of such treatments, a medium capable of precipitating calcium content (including calcium salts and the like, hereinafter also referred to as “calcium”), for example, passing through a silica sand layer for filtration, is included. However, as a continuous processing method, a method of forming a fluidized bed of filtered sand and passing it through has been proposed.
[0003]
FIG. 2 shows a conventional calcium removal method using a fluidized bed.
The calcium removal method shown in FIG. 2 includes calcium-containing water containing carbonate ions or calcium-containing water in which carbonate ions are added to a fluidized bed 2 having no support bed (no rectifier) using crystallization sand as a crystallization medium. This is done by passing water in an upward flow. In this specification, the entire reaction tank 1 is referred to as a fluidized bed reaction tank 1, and the entire region in which water containing the filtration sand in the reaction tank 1 is flowing is referred to as a fluidized bed 2, and a crystallization medium ( A fluidized layer in which (filtered sand) forms a fluid interface is referred to as a crystallization medium (filtered sand) fluidized bed 3.
By injecting an alkaline agent near the bottom inlet 12 of the fluidized bed reactor 1 and adjusting the pH of the treated water in the fluidized bed 2 to 8 to 10, the dissolved calcium in the water is crystallized and added. The suspended bed fluidized bed 4 is formed on the upper part of the filtered bed fluidized bed 3 of the fluidized bed reactor 1 to remove the suspended calcium in the water that has passed through the fluidized bed 3, and The suspension material fluidized bed 4 of the fluidized bed 2 is provided with a sludge discharge pipe 17, and a crystallization medium discharge pipe (discharge valve) 7 is provided near the bottom inlet 12 of the fluidized bed reaction tank. In order to form a stable suspended material fluidized bed 4 on the fluidized bed 3, it is preferable that the top of the fluidized bed reaction tank 1 is an enlarged portion.
[0004]
In FIG. 2, 5 is a dispersion plate, 6 is a treated water inlet, 8 is a check valve, 9 is a treated water inflow valve, 10 is a treated water supply pump, 13 is an alkaline agent supply pump, and 14 is an alkali. An agent tank, 15 is a pH measuring device, 16 is a treated water outflow pipe, 17 is a sludge discharge pipe, and 18 is a sludge discharge valve.
[0005]
[Problems to be solved by the invention]
A known calcium removal method using a fluidized bed will be described in detail.
Calcium dissolved in neutral water is present in the form of Ca (HCO 3 ) 2 or CaSO 4 in the divalent state.
The divalent calcium reacts with carbonate ions as shown in formula (1) to form calcium carbonate.
Ca 2+ + HCO 3 + OH → CaCO 3 ↓ + H 2 O (1)
The solubility of calcium carbonate in the water to be treated decreases with increasing pH and crystallizes through a metastable state. At this time, when the metastable calcium carbonate comes into contact with the crystallization medium, calcium carbonate crystallizes on the surface of the medium. At this time, if the pH of the water to be treated is low, crystallization does not occur, and if the pH is too high, fine calcium carbonate crystals are precipitated not in the surface of the medium but in the water, so pH control is important.
In this case, suspended calcium in water does not participate in the above reaction, but suspended calcium can also be removed by forming suspended material fluidized bed 4 on top of fluidized bed 3.
[0006]
However, since the fluidity of a crystallization medium whose particle size has increased due to calcium crystallization gradually decreases, the crystallization medium having an increased particle size is frequently pulled out and replenished with a new crystallization medium. There was a need.
This invention is made | formed in view of such a conventional subject, and makes it a subject to provide the processing method and processing apparatus of calcium containing water which reduce the extraction frequency of the crystallization medium.
In addition, since the divalent or higher metal ions that form carbonates crystallize on the surface of the crystallization medium by the same reaction as calcium, the present invention is not limited to calcium, and forms carbonates. It can also be applied to the treatment of water containing divalent or higher metal ions (sometimes simply referred to as “metal” for simplicity).
[0007]
[Means for Solving the Problems]
According to the present invention, the above problems have been solved by the following means.
(1) A metal-containing water containing carbonate ions or added with carbonate ions is passed upward through a fluidized bed using filtered sand as a crystallization medium, and near the bottom inlet in the fluidized bed. By injecting an alkaline agent and adjusting the pH of the treated water in the fluidized bed to 8 to 10, the soluble metal in the water is crystallized and removed. By forming a suspended material fluidized bed in the water that has passed through the fluidized bed, the suspended metal compound in the water is removed, and sludge is discharged from the suspended material fluidized bed in the fluidized bed, and the fluidized bed A method for treating metal-containing water that discharges a crystallization medium from the vicinity of a bottom inlet in the bed, wherein air is introduced from the bottom of the fluidized bed, and air is injected as the particle size of the crystallization medium increases. by increasing the amount, particle size is increased by a metal crystallization Processing method of a metal-containing water, which comprises maintaining the fluidity of the dynamic media.
(2) An air collecting plate and a gas-liquid separation plate are provided above the suspended material fluidized bed formed above the crystallization medium fluidized bed of the fluidized bed, and suspended material from the suspended material fluidized bed by air injection. The processing method according to the above (1), wherein the outflow is prevented.
[0008]
(3) A fluidized bed using filtered sand as a crystallization medium, a fluidized bed reaction tank for forming a suspended material fluidized bed thereon, and the fluidized bed reaction tank in which the suspended material fluidized bed is formed. The metal in which the horizontal cross-sectional area is larger than the horizontal cross-sectional area of the fluidized bed part using the filtration sand as a crystallization medium, and contains carbonate ions or is added with carbonate ions provided at the bottom of the reaction vessel. An inflow pipe of contained water, a treated water outflow pipe provided at the top of the reaction tank, a pH measuring device installed in the treated water in the fluidized bed, and the bottom of the reaction tank for adjusting the treated water pH in the fluidized bed An apparatus for treating metal-containing water having an alkaline agent inlet provided in the vicinity thereof, and a crystallization medium discharge pipe for extracting a medium having an increased particle diameter provided at the bottom of the reaction tank, provided near the bottom air inlet pipe, with the particle size increased crystallization析用medium, machine to increase the amount of air , And wherein the reaction vessel sludge discharge pipe provided on the suspended solids fluidized layer at the top, and having a dispersion plate to facilitate mixing of the water to be treated and an alkali agent in a lower portion of the crystallization析用medium fluidized bed Metal-containing water treatment equipment.
(4) The above (3), characterized in that an air collecting plate and a gas-liquid separation plate for maintaining the suspended material fluidized bed are provided above the suspended material fluidized bed above the crystallization medium fluidized bed. ) The processing device described.
[0009]
That is, the present invention provides an air inflow pipe near the bottom inlet in the fluidized bed, adjusts the air injection amount, and provides an air collection plate and a gas-liquid separation plate above the suspended substance layer, The important point is to maintain the fluidity of the fluidized medium whose particle size has been increased by calcium crystallization and to remove suspended calcium.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(Explanation of the figure)
An example of the apparatus of the present invention is shown in FIG. 1, and the present invention will be described more specifically based on this figure. In FIG. 1, the case of the treatment of calcium-containing water will be described.
In addition, the component which has the same function as the component shown in FIG. 2 is shown using the same code | symbol.
The apparatus shown in FIG. 1 holds a crystallization medium fluidized bed 3 and a suspended material fluidized bed 4 in a fluidized bed reaction tank 1 without a support bed (without a flow rectifier), in the vicinity of the bottom inlet in the fluidized bed. The alkaline agent inlet 12 and at least a pH measuring device 15 installed in the treated water in the fluidized bed are provided, and the discharge amount of the alkaline agent supply pump 13 is adjusted by the output signal of the pH measuring device 15. .
[0011]
Moreover, the to-be-treated water inflow pipe 11, the to-be-treated water supply pump 10 for supplying raw water, the to-be-treated water inflow valve 9, the check valve 8 for preventing the backflow of the crystallization medium when stopped, and the medium having an increased particle size A dispersion plate 5 that includes a crystallization medium discharge valve 7, a sludge discharge pipe 17, a sludge discharge valve 18, and a treated water outflow pipe 16, and further promotes mixing of the treated water, the crystallization medium, and the alkaline agent, An air inlet pipe 21 for maintaining the fluidity of the crystallization medium, an air collecting plate 19 and a gas-liquid separating plate 20 for maintaining the suspended substance fluidized bed 4 are provided.
[0012]
(Fluidized bed shape)
The lower structure of the fluidized bed reactor may be conical or pyramidal, but is not particularly defined as long as it has an inclination greater than the repose angle of the crystallization medium.
The diameter of the suspension fluidized bed portion of the fluidized bed reactor is preferably 1.5 times or more the diameter of the crystallization medium fluidized bed portion. This is because the suspended substance (sludge) has a small particle size, and unless the rate of treated water rising in the upper part of the crystallization medium fluidized bed is slowed down, the suspended substance fluidized bed will not be formed and suspended. This is because the substance flows out of the reaction tank, so that the speed of the rising treatment water is sufficiently slow.
[0013]
(Series connection of fluidized beds)
The fluidized bed reaction tank of the present invention has sufficient calcium removing ability even when used alone, but when the calcium concentration in the water to be treated is high, or when it is desired to keep the height of the fluidized bed reaction tank low, a plurality of reactions are performed. Tanks can be used in series.
[0014]
(Calcium carbonate crystallization medium)
As the crystallization medium for calcium carbonate used in the present invention, a granular material having a particle size of 0.1 to 5.0 mm can be used in addition to the filtration sand itself. As the granular material, crushed limestone, anthracite, activated carbon, carbide, resin and the like can be used. The material, particle size, shape, surface state, packing density, etc. of the particulate material can be selected in accordance with the shape of the treatment apparatus and the properties of the water to be treated.
[0015]
(Packed bed height of crystallization medium)
The initial packed bed height of the crystallization medium filled in the fluidized bed reaction tank is preferably higher than the diameter of the reaction tank or 800 times higher than the average particle diameter of the crystallization medium. It can be set to any height depending on the quality of the water to be treated, the water flow rate, and the target treated water quality, and is not particularly specified. The “packed bed height” referred to here is the height of the layer of the crystallization medium in a packed state before the passage of calcium-containing water, and when the fluidized bed is formed after the passage of water. The “fluidized bed height” varies depending on the water flow conditions, but the “fluidized bed height” is usually about 1.3 to 2.0 times the “filled bed height”.
[0016]
(Water flow rate)
The water flow rate is preferably 300 to 3000 m / day in terms of LV, but is not particularly limited as long as the medium flows and the target treated water quality is obtained.
In general, when filtering sand is used as the crystallization medium, the flow rate is 0.5 m / min (720 m / d) or more for sand having an average particle size of 0.5 mm, and the flow velocity is used for sand having an average particle size of 1.0 mm. 1.0 m / min (1440 m / d) or more is a standard.
[0017]
(Explanation about air flow)
Even if the particle size of the crystallization medium, the packed bed height, and the water flow rate are selected so that the desired treated water quality can be obtained, the fluidity of the fluidized medium whose particle diameter has increased due to calcium crystallization is gradually increased. descend.
In general, in the fluidized bed, the amount of crystallized calcium is larger at the bottom, and the medium particle size at the bottom of the fluidized bed increases early and the fluidity deteriorates, but the whole fluidized bed is sufficient to obtain the target treated water quality May leave a large reaction surface area.
[0018]
In such a case, frequently pulling out the medium at the bottom of the fluidized bed having an increased particle size is not preferable in terms of maintenance because the flow conditions are frequently changed.
Therefore, according to the present invention, a method for injecting air from the bottom of the fluidized bed and maintaining the flow of the crystallization medium is effective. The air injection amount can be injected in any amount depending on the height of the crystallization medium layer, but the ratio of air amount: water to be treated is preferably 0.05: 1 to 1: 1. As the particle size increases, the injection amount should be increased. If it is 0.05 or less, the effect of aeration is low, and if it is 1.0 or more, the upper part of the crystallization medium in the fluidized bed is mixed and it is difficult to obtain good treated water quality.
[0019]
(Carbonate content and addition)
The water to be treated usually contains 1.5 mg or more of carbonate ions per 1 mg of calcium ions, but it is necessary to add carbonate ions. Carbonate ions are added by adding sodium hydrogen carbonate, sodium carbonate, carbon dioxide gas, or the like. When the water to be treated is other than calcium-containing water, the carbonate ion content often varies depending on the type of water to be treated.
When adding carbon dioxide gas, it can introduce | transduce from there using an air inflow pipe | tube. However, normal irrigation water / drainage used as water to be treated contains carbonate ions sufficient for the production of calcium carbonate, and therefore does not regulate the abundance.
[0020]
(Alkaline agent and pH adjustment)
Sodium hydroxide, sodium carbonate, etc. can be used as an alkaline agent for pH adjustment. The alkaline agent inlet is provided near the bottom inlet in the fluidized bed.
The treated water pH in the fluidized bed is adjusted in the range of 8.0 to 10.0. Although the crystallization reaction does not occur at pH 8.0 or lower and the crystallization reaction occurs at pH 10.0 or higher, calcium carbonate becomes fine crystals in water and does not crystallize on the surface of the carrier.
Further, when the calcium concentration in the water to be treated is high, the injection amount of the alkaline agent increases, so that the pH in the vicinity of the alkaline agent injection port becomes 10 or more. As a countermeasure in this case, a method of injecting a large amount of alkali agent at a low concentration, a method of providing several injection points of the alkali agent in the fluidized bed other than the vicinity of the treated water inlet, and a method of multi-stage fluidized beds Etc.
[0021]
(Medium extraction and replenishment)
The crystallization medium is enlarged due to calcium carbonate crystallization, and the fluidity gradually decreases, and the fluidity is restored again by aeration from the lower part of the fluidized bed, but when the particle size of the medium further increases, When the amount of the medium exceeds a certain amount, the medium is pulled out from the discharge pipe at the lower part of the fluidized bed, and a new crystallization medium is replenished from the upper part of the fluidized bed.
The replenishing crystallization medium is not limited to a new medium, and a medium obtained by crushing a drawn medium can be used.
Since the fluidized bed of the present invention has a structure in which a sludge layer is formed, a material obtained by pulverizing a drawn medium can be reused as a replenishing medium without performing a sieving operation.
[0022]
(About sludge extraction)
When the sludge layer thickness in the fluidized bed increases, the sludge is discharged from the sludge discharge pipe.
When the substance that forms the sludge layer is mainly composed of suspended substances in the water to be treated, the efficiency of the sludge distribution pipe is set at the lower part of the sludge layer, in other words, above the flow interface of the crystallization medium. Sludge can be discharged.
In addition, when the substance forming the sludge layer is divided into the upper part of the sludge layer made of suspended substances and the lower part of the sludge layer made of fine crystallization medium, by providing a sludge discharge pipe at an intermediate position between both layers, Efficient sludge discharge can be performed.
[0023]
(Summary)
According to the present invention, soluble calcium is crystallized and removed by the crystallization medium fluidized bed in the fluidized bed, and a sludge layer is formed on the fluidized bed by suspended substances contained in the water to be treated. By adding the ability to capture suspended substances, suspended calcium in the water to be treated can be removed. In addition, the aeration from the lower part of the fluidized bed can recover the fluidity of the crystallization medium whose particle size is increased and fluidity is lowered, and the frequency of drawing out the medium can be reduced.
In addition, since the divalent or higher metal ions that form carbonates crystallize on the surface of the crystallization medium by the same reaction as calcium, the present invention is not limited to calcium, and forms carbonates. It can also be applied to treatment of water containing divalent or higher metal ions.
[0024]
【Example】
Hereinafter, the effect of the present invention will be clarified by examples. However, this invention is not restrict | limited by the Example of this invention shown below.
[0025]
Example 1 and Comparative Example 1
The processing apparatus shown in FIG. 2 and Table 1 was used as a comparative example (conventional example), and a processing experiment was conducted using the processing apparatus shown in FIG. 1 and Table 1 as an example of the present invention. The total height of the fluidized bed reaction tank is 6000 mm, the angle of the inclined surface at the bottom of the reaction tank is 45 degrees, and the angle of the inclined surface of the inner diameter enlarged portion of the sludge layer is 45 degrees.
[0026]
[Table 1]
Figure 0004001472
[0027]
Filter sand with an average diameter of 0.6 mm was used as the calcium crystallization medium. Since a sludge layer was not formed in a short-term experiment, fine sand having a particle size of 0.05 to 0.2 mm was used instead of the sludge layer.
In the fluidized bed reaction tank, a column having an inner diameter of 100 mm and an inner diameter of 350 mm was used for the medium fluidized bed portion and the treated water pH was adjusted to 9.5 to 9.6.
The experimental results are shown in Table 2.
[0028]
[Table 2]
Figure 0004001472
[0029]
The water to be treated had a T-Ca hardness of 110 to 118 mg / liter and an SS-Ca hardness of 5 to 7 mg / liter. “T-Ca hardness” refers to the total calcium concentration, and “SS-Ca hardness” refers to the soluble calcium concentration.
The treated water quality excluding the conventional example and up to 2 days after passing water according to the present invention is T-Ca hardness: 44 to 46 mg / liter, SS-Ca hardness: 1 to 2 mg / liter, and removal of Ca hardness and SS-Ca hardness. Could be removed stably.
In the comparative example, the ratio of the pressure loss head of the fluidized bed and the packed bed height clearly increases from 2 to 15 days: 0.84 to 0.85, after 20 to 30 days: 0.97 to 0.98. did. This indicates a deterioration in fluidity due to an increase in the particle size of the medium.
On the other hand, the ratio of the pressure loss head to the packed bed height of the fluidized bed of this blindness is constant from 0.84 to 0.85 throughout the experimental period, indicating that the fluidity of the medium is maintained.
[0030]
After 30 days of water flow, the crystallization medium was pulled out.
In the comparative example (conventional example), even though the crystallization medium discharge valve was opened, the water to be treated in the fluidized bed only flowed out, and the crystallization medium was not discharged. Therefore, the flange at the bottom of the fluidized bed was removed, and the crystallization medium was taken out. As a result, an irregular mass of several tens of millimeters, which was considered to have adhered to the medium from the bottom to about 500 mm, was taken out.
On the other hand, in the present invention, a small amount of the crystallization medium and sludge in the fluidized bed was discharged by opening the crystallization medium discharge valve.
From the above, the frequency of drawing out the crystallization medium is once every 15 days in the conventional example, and once every 30 days in the example of the present invention.
[0031]
【The invention's effect】
According to the present invention, when metal-containing water such as calcium-containing water is passed through the crystallization medium fluidized bed to deposit and remove the metal on the crystallization medium, the metal is deposited on the crystallization medium. It is possible to prevent the fluidity of the fluidized bed from deteriorating as it is deposited, eliminating the need for increasing the frequency of drawing out the crystallization medium and simplifying the operation.
In addition, by providing an air collection plate and a gas-liquid separation plate above the suspended material layer, for example, the fluidity of a fluid medium whose particle size has been increased by calcium crystallization is maintained, and the frequency of drawing out the crystallization medium is reduced And suspended calcium could also be removed.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a treatment apparatus for calcium-containing water used in the present invention.
FIG. 2 is a schematic view showing an example of a conventional calcium-containing water treatment apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fluidized bed reaction tank 2 Fluidized bed 3 Crystallization medium fluidized bed 4 Suspended substance (sludge) layer 5 Dispersion plate 6 Water to be treated inlet 7 Crystallized medium discharge valve 8 Check valve 9 Water to be treated inflow valve 10 Covered Treated water supply pump 11 treated water inflow pipe 12 alkaline agent inlet 13 alkaline agent supply pump 14 alkaline agent tank 15 pH meter 16 treated water outflow pipe 17 sludge discharge pipe 18 sludge discharge valve 19 air collecting plate 20 gas-liquid separation plate 21 Air inlet pipe

Claims (4)

ろ過砂を晶析用媒体とする流動床に、炭酸イオンを含有するか又は炭酸イオンを添加した金属含有水を上向流で通水するとともに、流動床内の底部流入口近辺にアルカリ剤を注入し、流動床内の処理水pHを8〜10に調節することにより、前記水中の溶解性金属を晶析除去し、加えて、前記流動床のろ過砂流動層上部に、前記流動層を通過した前記水中の懸濁物質流動層を形成させることにより、前記水中の懸濁状金属化合物を除去し、さらに、前記流動床の懸濁物質流動層からスラッジ排出を行い、前記流動床内の底部流入口近辺から、晶析用媒体を排出する金属含有水の処理方法であって、前記流動床内の底部より空気を流入させ、晶析用媒体の粒径増加に伴い空気注入量を増加することにより、金属晶析により粒径が増加した流動媒体の流動性を維持することを特徴とする金属含有水の処理方法。In the fluidized bed using the filtration sand as the crystallization medium, metal-containing water containing carbonate ions or added with carbonate ions is passed upward, and an alkaline agent is added near the bottom inlet in the fluidized bed. Inject and adjust the pH of the treated water in the fluidized bed to 8 to 10 to crystallize and remove the soluble metal in the water. In addition, the fluidized bed is formed above the fluidized bed fluidized bed of the fluidized bed. By forming a suspended solids fluidized bed in the water that has passed through, the suspended metallic compound in the water is removed, and sludge is discharged from the suspended solids fluidized bed of the fluidized bed. A method for treating metal-containing water that discharges the crystallization medium from the vicinity of the bottom inlet, in which air is introduced from the bottom of the fluidized bed, and the air injection amount is increased as the particle size of the crystallization medium is increased. Fluidized media whose particle size has increased due to metal crystallization. Processing method of a metal-containing water, characterized in that to maintain liquidity. 前記流動床の晶析用媒体流動層上部に形成する懸濁物質流動層上部に、空気捕集板及び気液分離板を設け、空気注入による懸濁物質流動層からの懸濁物質の流出を防止することを特徴とする請求項1記載の処理方法。  An air collecting plate and a gas-liquid separation plate are provided above the suspended material fluidized bed formed above the crystallization medium fluidized bed of the fluidized bed, and the suspension material flows out of the suspended material fluidized bed by air injection. The processing method according to claim 1, wherein prevention is performed. ろ過砂を晶析用媒体とする流動層とその上部に懸濁物質流動層を形成する流動床反応槽と、前記流動床反応槽は、前記懸濁物質流動層が形成される部分の水平方向断面積を、前記ろ過砂を晶析媒体とする流動層部の水平方向断面積よりも大きくし、該反応槽の底部に設けた炭酸イオンを含有するか又は炭酸イオンを添加した金属含有水の流入管と該反応槽上部に設けた処理水流出管、及び前記流動床内の処理水中に設置されたpH測定器と流動床内の処理水pHを調整するための前記反応槽底部付近に設けたアルカリ剤注入口とを有する金属含有水の処理装置であって、前記反応槽の底部に設けた粒径の増加した媒体を引き抜く晶析用媒体排出管、同底部付近に設けた空気流入管、晶析用媒体の粒径増加に伴い、空気量を増加させる機構、及び前記反応槽上部の懸濁物質流動層に設けたスラッジ排出管、及び前記晶析用媒体流動層の下部中に被処理水とアルカリ剤の混合を促進する分散板を備えたことを特徴とする金属含有水の処理装置。A fluidized bed using filtered sand as a crystallization medium, a fluidized bed reaction tank for forming a suspended material fluidized bed thereon, and the fluidized bed reaction tank in a horizontal direction of a portion where the suspended material fluidized bed is formed The cross-sectional area is larger than the horizontal cross-sectional area of the fluidized bed part using the filtration sand as a crystallization medium, and contains carbonate ions provided at the bottom of the reaction tank or metal-containing water to which carbonate ions are added. An inflow pipe and a treated water outflow pipe provided at the top of the reaction tank, a pH measuring device installed in the treated water in the fluidized bed, and the bottom of the reaction tank for adjusting the treated water pH in the fluidized bed A metal-containing water treatment apparatus having an alkali agent inlet, wherein a crystallization medium discharge pipe for extracting a medium having an increased particle diameter provided at the bottom of the reaction tank and an air inflow pipe provided near the bottom are provided. , with the particle size increased crystallization析用medium, mechanism for increasing the air quantity,及A sludge discharge pipe provided in a suspension material fluidized bed at the upper part of the reaction tank, and a dispersion plate for promoting mixing of water to be treated and an alkaline agent are provided in the lower part of the crystallization medium fluidized bed. Metal-containing water treatment equipment. 前記晶析用媒体流動層上部の懸濁物質流動層上部に、懸濁物質流動層を維持するための空気捕集板及び気液分離板を備えたことを特徴とする請求項3記載の処理装置。  4. The process according to claim 3, further comprising an air collecting plate and a gas-liquid separation plate for maintaining the suspended material fluidized bed above the suspended material fluidized bed above the crystallization medium fluidized bed. apparatus.
JP2001270399A 2001-09-06 2001-09-06 Method and apparatus for treating metal-containing water Expired - Fee Related JP4001472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270399A JP4001472B2 (en) 2001-09-06 2001-09-06 Method and apparatus for treating metal-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270399A JP4001472B2 (en) 2001-09-06 2001-09-06 Method and apparatus for treating metal-containing water

Publications (2)

Publication Number Publication Date
JP2003071468A JP2003071468A (en) 2003-03-11
JP4001472B2 true JP4001472B2 (en) 2007-10-31

Family

ID=19096059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270399A Expired - Fee Related JP4001472B2 (en) 2001-09-06 2001-09-06 Method and apparatus for treating metal-containing water

Country Status (1)

Country Link
JP (1) JP4001472B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129977A (en) * 2015-10-10 2015-12-09 许建民 Novel aerobiont fluidized bed reactor and technology thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501432B2 (en) * 2004-01-09 2010-07-14 栗田工業株式会社 Anaerobic treatment method and apparatus
JP5808638B2 (en) * 2011-10-07 2015-11-10 新日鐵住金株式会社 Method and apparatus for treating wastewater containing high concentration calcium and alkali
KR101349770B1 (en) * 2012-07-02 2014-01-16 한국수자원공사 Softening system
CN103755007B (en) * 2014-02-19 2015-07-08 南京大学 Fenton fluidized bed treatment device and waste water treatment method thereof
JP6797053B2 (en) * 2017-03-27 2020-12-09 水ing株式会社 Crystallization method and crystallization equipment
CN111377527A (en) * 2018-12-31 2020-07-07 中国石油化工股份有限公司 Treatment method of high-salt-content organic wastewater

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153191A (en) * 1984-12-26 1986-07-11 Ebara Infilco Co Ltd Catalytic dephosphorizer
JPH05154487A (en) * 1991-12-06 1993-06-22 Unitika Ltd Separation of ammonium magnesium phosphate compound
JP3656267B2 (en) * 1995-03-16 2005-06-08 石川島播磨重工業株式会社 Dephosphorization device
JP4186251B2 (en) * 1998-03-27 2008-11-26 栗田工業株式会社 Dephosphorization device
JP3659383B2 (en) * 1998-03-30 2005-06-15 株式会社荏原製作所 Method and apparatus for treating manganese-containing water
JP4568391B2 (en) * 1999-08-23 2010-10-27 株式会社西原環境テクノロジー Fluidized bed crystallization reactor
JP3770303B2 (en) * 1999-10-14 2006-04-26 栗田工業株式会社 Calcium removal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129977A (en) * 2015-10-10 2015-12-09 许建民 Novel aerobiont fluidized bed reactor and technology thereof

Also Published As

Publication number Publication date
JP2003071468A (en) 2003-03-11

Similar Documents

Publication Publication Date Title
JP4892212B2 (en) Reaction crystallizer
US8968572B2 (en) Method and apparatus for the purification of water contaminated with sulfate ions and with heavy metal ions
JP4001472B2 (en) Method and apparatus for treating metal-containing water
JP4519485B2 (en) Phosphorus recovery method and apparatus
US9272934B2 (en) Removal of selenium from coal mining runoff water
WO1999050189A1 (en) Method and device for treating manganese-containing water
JP3659383B2 (en) Method and apparatus for treating manganese-containing water
US4250033A (en) Excess-growth control system for fluidized-bed reactor
JP5952132B2 (en) Phosphorus removal and collection apparatus and phosphorus removal and collection method
TWI640477B (en) Method of synthesizing homogeneous granular basic cupric carbonate and copper oxide by using fluidized-bed crystallization technology
JP3880190B2 (en) Method and apparatus for treating manganese-containing water
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JP3729365B2 (en) Method and apparatus for treating manganese-containing water
JP2005288416A (en) Biofiltration device
US4765912A (en) Geothermal brine clarifier process for removing solids from geothermal brine
JP2000140825A (en) Floatation treatment
JP2005239457A (en) Method and apparatus for preparation of slaked lime aqueous solution
JP2003117306A (en) Reaction crystallizing method and apparatus
JP3360608B2 (en) Cleaning method for water treatment equipment
JP2001113288A (en) Waste water treatment method
JPS6012191A (en) Fluidized bed type dephosphorization apparatus
JP2018161641A (en) Crystallization method and crystallizer
JPH10216740A (en) Treatment of fluorine-containing waste water
JP2003225678A (en) Method for treating drainage containing fluorine and hydrogen peroxide
JP4177985B2 (en) Method and apparatus for treating fluorine-containing water

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees