JP3656267B2 - Dephosphorization device - Google Patents

Dephosphorization device Download PDF

Info

Publication number
JP3656267B2
JP3656267B2 JP05745595A JP5745595A JP3656267B2 JP 3656267 B2 JP3656267 B2 JP 3656267B2 JP 05745595 A JP05745595 A JP 05745595A JP 5745595 A JP5745595 A JP 5745595A JP 3656267 B2 JP3656267 B2 JP 3656267B2
Authority
JP
Japan
Prior art keywords
air
gas
reaction vessel
liquid
separation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05745595A
Other languages
Japanese (ja)
Other versions
JPH08252584A (en
Inventor
雅治 山下
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP05745595A priority Critical patent/JP3656267B2/en
Publication of JPH08252584A publication Critical patent/JPH08252584A/en
Application granted granted Critical
Publication of JP3656267B2 publication Critical patent/JP3656267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【産業上の利用分野】
本発明は被処理水(排水)に含まれるアンモニウムイオン、オルトリン酸イオンを除去する脱リン装置に関するものである。
【0002】
【従来の技術】
被処理水(排水)に含まれるアンモニウムイオン(NH4 + )、オルトリン酸イオン(HPO4 2-)を除去する装置として脱リン装置がある。
【0003】
この脱リン装置は、図4に示すように、底部の導入口gから排水を反応容器aに導入し、この容器a内に排水中に不足するマグネシウムイオン(Mg2+)を添加すると共に、NaOH等のアルカリ剤を注入してpH調整を行い、かつ空気を吹き込みながら、Mg2++NH4 + +HPO4 2-+OH- +6H2 O→MgNH4 PO4 ・6H2 O+H2 Oなる反応を起こさせて、排水中のNH4 + ,HPO4 2-を同時に除去し脱リン処理を行うものである。処理された液は、容器a内を上昇してドラフトチューブbを有する大径部(沈降部)cから取出口dを介して排出される。そのドラフトチューブbは、注入されるエアーにより沈降部cの液に乱れが生じないようにするためのもので、すなわち空気はドラフトチューブb内に案内されて、チューブb外の沈降部cの液を乱すことなく、排気される。
【0004】
また、沈降部cの液(処理水)の一部を循環ポンプeにより反応容器aの底部に戻す配管fが設けられ、これにより、排水中のNH4 + ,HPO4 2-の濃度が高い場合において、特にHPO4 2-を一定濃度以下となるように配管f及び循環ポンプeを用いて処理水の一部を循環させて排水との混合を行わせることにより処理効率の向上を図っている。
【0005】
【課題を解決するための手段】
本発明の脱リン装置は、アンモニウムイオン、オルトリン酸イオンを含む被処理水を底部から導入し、これに空気を吹き込んでマグネシウムイオンの存在下でMgNH4 PO4 を析出させて脱リン処理を行い、この処理水を上部から排出する反応容器を備えた脱リン装置において、前記反応容器内に、上昇する空気を回収する気体回収装置を設け、前記反応容器の上方に気液分離槽を設け、前記気体回収装置と前記気液分離槽とを上昇管で接続し、前記気液分離槽に前記気体回収装置の下方に臨んだ下降管を接続し前記上昇管で、前記気体回収装置で回収した空気の上昇力によって前記気体回収装置内の処理水の一部を前記気液分離槽まで上昇させ、前記気液分離槽で上昇した液から空気を分離し、前記下降管で見掛け比重が重くなった液を下降させて反応容器内下方に戻す循環手段を構成したものである。
【0006】
そこで、本発明は、このような事情を考慮してなされたものであり、その目的は、設置面積を小さくできると共に循環ポンプを不要にして省エネ化を図れる脱リン装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の脱リン装置は、アンモニウムイオン、オルトリン酸イオンを含む被処理水を底部から導入し、これに空気を吹き込んでマグネシウムイオンの存在下でMgNH4 PO4 を析出させて脱リン処理を行い、この処理水を上部から排出する反応容器を備えた脱リン装置において、前記反応容器内に、上昇する空気を回収する気体回収装置を設け、その気体回収装置で回収した空気の上昇力によって処理水の一部を上昇させ、この上昇した液から空気を分離して見掛け比重が重くなった液を下降させて反応容器内下方に戻す循環手段を設けたものである。
【0008】
【作用】
被処理水は底部から反応容器内に導入され、これに空気が吹き込まれながらマグネシウムイオンの存在下で排水中のアンモニウムイオン、オルトリン酸イオンが除去されて、被処理水が脱リン処理される(Mg2++NH4 + +HPO4 2-+OH- +6H2 O→MgNH4 PO4 ・6H2 O+H2 O)。この液は空気と共に容器内を上昇して気体回収装置に至り、そこで空気が回収され、一部が上部から排出される。残りは、気体回収装置で回収した空気の上昇力によって上昇し、上昇後空気が分離されて見掛け比重が重くなって反応容器内下方に戻され循環する。このように、処理水の循環を空気の上昇力を利用して行うので、循環ポンプを必要とせず、省エネルギー化を図れる。また、空気を気体回収装置で回収するため、気体回収装置の上部の反応容器内は空気による乱れがなく沈降部として有効に利用できる。その沈降部に配設される処理水の循環用の配管はドラフトチューブよりも径が小さくてすむため、沈降部の有効径を大きくとれるので、沈降部の径を小さくすることができ、設置のための空間、面積を小さくすることが可能となる。
【0009】
【実施例】
以下、本発明の一実施例を添付図面に基づいて詳述する。
【0010】
図1において、1は反応容器を示し、この反応容器は、竪型で有底円筒状に形成されていると共に頂部が密閉されている。
【0011】
反応容器1の底部には、アンモニウムイオン、オルトリン酸イオンを含む被処理水(排水)を供給するための原水ポンプ2を有する排水管3が接続される導入口4が設けられていると共に、上部には処理水が溢流する溢流堰5が設けられ、この溢流堰5に処理水を排出する流出管6が接続されている。
【0012】
反応容器1内の下方には、導入口4から導入される排水を容器1内に均一に分配するための水分配装置7が設けられている。水分配装置7は、排水を容器1内に均一に分配することができるもので、例えば傘状構造のものがある。水分配装置7の下方には、容器1内に空気を分散させる空気吹込部8が設けられ、この空気吹込部8には空気供給量可変のブロワ9を有する空気供給管10が接続されており、空気吹込部8から分散された空気により容器1内が撹拌されるようになっている。
【0013】
また、反応容器1の下方には、アルカリ剤例えばNaOHを供給するための流量可変のポンプ11を有するアルカリ管12が接続され、容器1内のpHがMgNH4 PO4 が析出するpH条件になるように、例えば 7.7〜9.5 好ましくは 8.1となるように適宜(例えば容器1内のpHが所定値になるように)NaOHが注入されるようになっている。又、反応容器1の下方には、マグネシウムイオンを含む溶液例えば塩化マグネシウム(MgCl2 ),酢酸マグネシウム,水酸化マグネシウム等の水溶液中でマグネシウムがイオン化するマグネシウム塩溶液を供給するための流量可変のポンプ13を有するマグネシウム管14が接続され、MgNH4 PO4 の析出にマグネシウムが不足する場合には適宜(例えば容器からの処理水に含まれるアンモニウムイオン(NH4 + )又はオルトリン酸イオン(HPO4 2-)が所定値以下になるように)MgCl2 溶液が注入されるようになっている。
【0014】
反応容器1内の中央より上部には、容器1内を上下に沈降部1aとMgNH 4 PO4 が析出・造粒する反応部1bとに仕切るように気体回収装置15が設けられている。気体回収装置15は、空気吹込部8から吹き込まれた空気を回収するもので、空気の回収を行えるならばどのような構造のものでもよい。例えばUASB法に用いられる三相分離部と同じ構造やその類似の構造の気固液分離装置でもよい。気固液分離装置は、空気を回収すると共にその空気に伴って上昇するMgNH4 PO4 粒子を沈降させて、空気とMgNH4 PO4 粒子と排水とを気固液分離するものである。例えば、図2及び図3に示すように、上昇する空気がガスフード16内に案内されるようにガスフード16を1段又は複数段図示例では2段に設け、各ガスフード16の一端部にフード16内に溜まった空気をガス回収部17に案内されるようにガス流入口18を設け、かつガス流入口18からガス回収部17に集められて回収された空気を空気管19に排出させる構造でもよい。このようにすれば、空気はガスフード16で回収されてからガス回収部17に流入して集められ、そこから空気管19に流入する。この際、空気の上昇に伴って上昇したMgNH4 PO4 粒子はガスフード16内面に衝突して沈降する。
【0015】
気体回収装置15には、図1に示すように、回収した空気によって気体回収装置15内の液(又はMgNH4 PO4 粒子を含む液)が上昇流となって流れる上昇管20が接続され、この上昇管20が反応容器1より上方に設けられた気液分離槽21に接続されている。気液分離槽21は、上昇管20から導入される液から空気を分離するもので、空気のリフト効果を利用して処理水の一部が気液分離槽21に運ばれるので、気液分離槽21では激しい撹拌が生じる。
【0016】
気液分離槽21の上部には分離した空気が流入する空気流入管22が接続され、この空気流入管22にはエアートラップ23が介設されており、気液分離槽21内に少量の内圧がかかるようになっている。また、気液分離槽21の下部には、空気が分離して見掛けの比重が重くなった液が下降流となって流れる下降管24が接続され、この下降管24の排出口が反応容器1内の水分配装置7と空気吹込部8との間に配置される。上昇管21と気液分離槽22と下降管24とから循環手段25が構成され、気液分離槽21の液が反応容器1内の下方に戻される、すなわち処理水の一部が循環するようになっている。さらに反応容器1には反応部1b内で大粒化したMgNH4 PO4 粒子を排出するための排出管(図示せず)が接続され、反応部1a内で増量したMgNH4 PO4 粒子が適宜排出されるようになっている。
【0017】
次に本実施例の作用を述べる。
【0018】
アンモニウムイオン、オルトリン酸イオンを含む排水が導入口4から反応容器1内に導入され、水分配装置7により容器1内に均一に分配されてから反応部1b内を上昇する。この反応容器1内には、容器1内のpHがMgNH4 PO4 が析出するpH条件になるようにNaOHが注入されると共に、MgNH4 PO 4 の析出にマグネシウムイオンが不足する場合には不足する量のMgCl2 溶液が注入され、かつ、空気吹込部8から空気が分散されて、反応部1b内が十分に撹拌される。これにより、Mg2++NH4 + +HPO4 2-+OH- +6H2 O→MgNH4 PO4 ・6H2 O+H2 Oなる反応が起こり、排水中のNH4 + ,HPO4 2-が同時に除去され、排水の脱リン処理が行われる。生成したMgNH 4 PO4 はMgNH4 PO4 粒子の表面上に付着して造粒される。処理水は上昇して気体回収装置15、沈降部1a、溢流堰5を介して流出管6に排出される。
【0019】
気体回収装置15では空気吹込部8から吹き込まれた空気が回収されるため、気体回収装置15の上部の沈降部1aでは空気による乱れがないので、全体を沈降部1aとして有効に利用することができる。その沈降部1aに配設される処理水の循環用の配管(上昇管20及び下降管24)はドラフトチューブ(図4参照)よりも径が小さくてすむ。このように、沈降部1aの有効径を大きくとれるので、沈降部1a内径は反応部1b内径と同径か、または少し拡張するだけですみ、設置のための空間、面積を小さくすることができる。この際、気体回収装置15が気固液分離装置であると、沈降部1aへの固形分(MgNH4 PO4 粒子)の流入が一層抑制されるので、固形分がほとんど含まれない処理水が反応容器1から排出されることになる。
【0020】
また、気体回収装置15内の液(又はMgNH4 PO4 粒子を含む液)の一部は、気体回収装置15で回収した空気の上昇力によって上昇管20内を上昇して、気液分離槽21に至る。気液分離槽21では激しい撹拌が生じ、液を上昇させた空気が液から分離する。分離した空気は空気流入管22に入り、エアートラップ23を介して大気に放出される。気液分離槽21内の空気が分離して見掛けの比重が重くなった液は、下降管24内を下降して、その排出口から水分配装置7と空気吹込部8との間に戻され循環し、混合する。この際、空気流入管22のエアートラップ23により、気液分離槽21内に少量の内圧がかかるので、水が分離槽21から反応容器1へ強い撹拌力を持って流入する。これにより、処理水の循環・混合を循環ポンプなしで行うことができ、省エネルギー化を図れる。また、処理水の循環により、反応部1bのリン濃度が低下して、MgNH4 PO4 の過飽和度が低下するため、MgNH4 PO4 はMgNH4 PO4 粒子の表面でのみ析出するので、MgNH4 PO4 粒子が大粒化する。このため、MgNH4 PO4 粒子と処理水とを効率よく分離することができる。
【図面の簡単な説明】
以上要するに本発明によれば、設置面積を小さくできると共に省エネルギー化を図れるという優れた効果を奏する。
【図1】本発明の一実施例を示す構成図である。
【図2】気固液分離装置の一例を示す横断面図である。
【図3】図2に示す気固液分離装置の要部を示す斜視図である。
【図4】従来の脱リン装置の一例を示す構成図である。
【符号の説明】
1 反応容器
15 気体回収装置
25 循環手段
[0001]
[Industrial application fields]
The present invention relates to a dephosphorization apparatus for removing ammonium ions and orthophosphate ions contained in water to be treated (drainage).
[0002]
[Prior art]
There is a dephosphorization device as a device for removing ammonium ions (NH 4 + ) and orthophosphate ions (HPO 4 2− ) contained in water to be treated (drainage).
[0003]
As shown in FIG. 4, this dephosphorization apparatus introduces waste water into a reaction vessel a through an introduction port g at the bottom, and adds magnesium ions (Mg 2+ ) that are insufficient in the waste water into the vessel a. PH is adjusted by injecting an alkaline agent such as NaOH, and a reaction of Mg 2+ + NH 4 + + HPO 4 2 + OH + 6H 2 O → MgNH 4 PO 4 .6H 2 O + H 2 O occurs while blowing air. Thus, NH 4 + and HPO 4 2- in the waste water are simultaneously removed and dephosphorization is performed. The treated liquid rises in the container a and is discharged from the large diameter part (sedimentation part) c having the draft tube b through the outlet d. The draft tube b is for preventing the liquid in the sedimentation section c from being disturbed by the injected air, that is, the air is guided into the draft tube b and the liquid in the sedimentation section c outside the tube b. It is exhausted without disturbing.
[0004]
In addition, a pipe f for returning a part of the liquid (treated water) in the sedimentation section c to the bottom of the reaction vessel a by a circulation pump e is provided, whereby the concentration of NH 4 + and HPO 4 2− in the waste water is high. In particular, in order to improve the treatment efficiency, in particular, a part of the treated water is circulated by using the pipe f and the circulation pump e so that the concentration of HPO 4 2− is not more than a certain concentration and mixed with the waste water. Yes.
[0005]
[Means for Solving the Problems]
The dephosphorization apparatus of the present invention introduces water to be treated containing ammonium ions and orthophosphate ions from the bottom, blows air into the water to precipitate MgNH 4 PO 4 in the presence of magnesium ions, and performs dephosphorization treatment. In the dephosphorization apparatus provided with a reaction vessel for discharging the treated water from above, a gas recovery device for collecting rising air is provided in the reaction vessel, and a gas-liquid separation tank is provided above the reaction vessel, The gas recovery device and the gas-liquid separation tank are connected by a riser pipe, a downcomer pipe that faces the lower side of the gas recovery apparatus is connected to the gas-liquid separation tank, and the gas recovery apparatus is recovered by the riser pipe A part of the treated water in the gas recovery device is raised to the gas-liquid separation tank by the rising force of the air, and the air is separated from the liquid raised in the gas-liquid separation tank, and the apparent specific gravity is heavy in the downcomer Liquid It is obtained by constituting the circulating means for returning the lower reaction vessel is lowered.
[0006]
Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a dephosphorization apparatus that can reduce the installation area and save energy by eliminating the need for a circulation pump.
[0007]
[Means for Solving the Problems]
The dephosphorization apparatus of the present invention introduces water to be treated containing ammonium ions and orthophosphate ions from the bottom, blows air into the water to precipitate MgNH 4 PO 4 in the presence of magnesium ions, and performs dephosphorization treatment. In the dephosphorization apparatus provided with the reaction vessel for discharging the treated water from the upper part, a gas recovery device for recovering the rising air is provided in the reaction vessel, and the treatment is performed by the rising force of the air recovered by the gas recovery device. A circulating means is provided for raising a part of the water, separating the air from the raised liquid, and lowering the liquid whose apparent specific gravity is heavy and returning it downward in the reaction vessel.
[0008]
[Action]
The water to be treated is introduced into the reaction vessel from the bottom, and while air is blown into the water, ammonium ions and orthophosphate ions in the waste water are removed in the presence of magnesium ions, and the water to be treated is dephosphorized ( Mg 2+ + NH 4 + + HPO 4 2− + OH + 6H 2 O → MgNH 4 PO 4 .6H 2 O + H 2 O). This liquid rises with the air in the container and reaches the gas recovery device, where the air is recovered and a part is discharged from the upper part. The remainder rises due to the ascending force of the air collected by the gas recovery device, and after rising, the air is separated, the apparent specific gravity becomes heavier, and is returned to the lower part in the reaction vessel and circulated. In this way, since the treated water is circulated using the ascending force of the air, a circulation pump is not required and energy saving can be achieved. Further, since air is recovered by the gas recovery device, the inside of the reaction vessel at the upper part of the gas recovery device is not disturbed by air and can be effectively used as a sedimentation part. Since the pipe for circulating the treated water disposed in the settling portion is smaller in diameter than the draft tube, the effective diameter of the settling portion can be increased, so that the diameter of the settling portion can be reduced, Therefore, it is possible to reduce the space and area.
[0009]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0010]
In FIG. 1, reference numeral 1 denotes a reaction vessel. The reaction vessel is formed in a bowl shape with a bottomed cylinder and the top is sealed.
[0011]
The bottom of the reaction vessel 1 is provided with an inlet 4 to which a drain pipe 3 having a raw water pump 2 for supplying water to be treated (drainage) containing ammonium ions and orthophosphate ions is connected. The overflow weir 5 overflows the treated water, and an overflow pipe 6 for discharging the treated water is connected to the overflow weir 5.
[0012]
Below the inside of the reaction vessel 1, a water distributor 7 is provided for uniformly distributing the wastewater introduced from the inlet 4 into the vessel 1. The water distribution device 7 can uniformly distribute the wastewater into the container 1, and has an umbrella structure, for example. Below the water distributor 7, an air blowing portion 8 for dispersing air in the container 1 is provided, and an air supply pipe 10 having a blower 9 having a variable air supply amount is connected to the air blowing portion 8. The interior of the container 1 is agitated by the air dispersed from the air blowing section 8.
[0013]
In addition, an alkali tube 12 having a variable flow rate pump 11 for supplying an alkaline agent such as NaOH is connected below the reaction vessel 1, and the pH in the vessel 1 becomes a pH condition in which MgNH 4 PO 4 is precipitated. Thus, for example, NaOH is injected appropriately (for example, so that the pH in the container 1 becomes a predetermined value) so as to be 7.7 to 9.5, preferably 8.1. Also, below the reaction vessel 1, a variable flow rate pump for supplying a magnesium salt solution in which magnesium is ionized in an aqueous solution such as magnesium chloride (MgCl 2 ), magnesium acetate, magnesium hydroxide or the like containing magnesium ions. 13 is connected, and when magnesium is insufficient for precipitation of MgNH 4 PO 4 (for example, ammonium ions (NH 4 + ) or orthophosphate ions (HPO 4 2 contained in the treated water from the vessel). -) is to be equal to or less than the predetermined value) so that the MgCl 2 solution is injected.
[0014]
A gas recovery device 15 is provided above the center of the reaction vessel 1 so as to partition the vessel 1 up and down into a settling portion 1a and a reaction portion 1b where MgNH 4 PO 4 precipitates and granulates. The gas recovery device 15 recovers air blown from the air blowing section 8 and may have any structure as long as it can recover air. For example, a gas-solid-liquid separator having the same structure as the three-phase separator used in the UASB method or a similar structure may be used. The gas-solid liquid separation apparatus collects air and settles MgNH 4 PO 4 particles rising with the air to separate the air, MgNH 4 PO 4 particles and waste water into gas-solid liquid. For example, as shown in FIGS. 2 and 3, the gas hood 16 is provided in one stage or two stages in the illustrated example so that the rising air is guided into the gas hood 16, and one end of each gas hood 16 is provided. A gas inlet 18 is provided so that the air accumulated in the hood 16 is guided to the gas recovery unit 17, and the air collected and recovered from the gas inlet 18 to the gas recovery unit 17 is discharged to the air pipe 19. The structure to be made may be sufficient. In this way, the air is collected by the gas hood 16 and then flows into the gas collecting unit 17 where it is collected and then flows into the air pipe 19. At this time, the MgNH 4 PO 4 particles that have risen as the air rises collide with the inner surface of the gas hood 16 and settle.
[0015]
As shown in FIG. 1, the gas recovery device 15 is connected to a riser pipe 20 through which the liquid in the gas recovery device 15 (or a liquid containing MgNH 4 PO 4 particles) flows as an upward flow by the recovered air, This ascending pipe 20 is connected to a gas-liquid separation tank 21 provided above the reaction vessel 1. The gas-liquid separation tank 21 separates air from the liquid introduced from the ascending pipe 20, and a part of the treated water is conveyed to the gas-liquid separation tank 21 by using the lift effect of the air. In the tank 21, vigorous stirring occurs.
[0016]
An air inflow pipe 22 into which separated air flows is connected to the upper portion of the gas-liquid separation tank 21, and an air trap 23 is interposed in the air inflow pipe 22, and a small amount of internal pressure is contained in the gas-liquid separation tank 21. It has come to take. In addition, a lower pipe 24 is connected to the lower part of the gas-liquid separation tank 21, and the liquid in which the apparent specific gravity is increased due to the separation of air flows downward. The outlet of the lower pipe 24 is connected to the reaction vessel 1. Ru is disposed between the water distributor 7 and the air blower unit 8 of the inner. The ascending pipe 21, the gas-liquid separation tank 22 and the descending pipe 24 constitute a circulation means 25, and the liquid in the gas-liquid separation tank 21 is returned downward in the reaction vessel 1, that is, a part of the treated water is circulated. It has become. Further, the reaction vessel 1 is connected to a discharge pipe (not shown) for discharging MgNH 4 PO 4 particles that have become large in the reaction unit 1b, and the increased amount of MgNH 4 PO 4 particles in the reaction unit 1a is appropriately discharged. It has come to be.
[0017]
Next, the operation of this embodiment will be described.
[0018]
Waste water containing ammonium ions and orthophosphate ions is introduced into the reaction vessel 1 from the introduction port 4 and is uniformly distributed in the vessel 1 by the water distributor 7, and then rises in the reaction unit 1 b. The reaction vessel 1, insufficient when the pH in the vessel 1 with NaOH is injected as MgNH 4 PO 4 is the pH for precipitation, insufficient magnesium ions to deposition of MgNH 4 PO 4 An amount of MgCl 2 solution to be injected is injected, and air is dispersed from the air blowing section 8 to sufficiently agitate the inside of the reaction section 1b. As a result, a reaction of Mg 2+ + NH 4 + + HPO 4 2 + OH + 6H 2 O → MgNH 4 PO 4 .6H 2 O + H 2 O occurs, and NH 4 + and HPO 4 2− in the waste water are simultaneously removed. Waste water is dephosphorized. The produced MgNH 4 PO 4 adheres to the surface of the MgNH 4 PO 4 particles and is granulated. The treated water rises and is discharged to the outflow pipe 6 through the gas recovery device 15, the settling part 1 a, and the overflow weir 5.
[0019]
Since the air blown from the air blowing unit 8 is collected in the gas recovery device 15, since there is no turbulence due to air in the settling portion 1 a on the upper side of the gas recovery device 15, the whole can be effectively used as the settling portion 1 a. it can. Pipes for circulating the treated water (rising pipe 20 and descending pipe 24) disposed in the settling portion 1a may be smaller in diameter than the draft tube (see FIG. 4). Thus, since the effective diameter of the sedimentation part 1a can be taken, the internal diameter of the sedimentation part 1a is the same as the internal diameter of the reaction part 1b, or only needs to be expanded a little, and the space and area for installation can be reduced. . At this time, if the gas recovery device 15 is a gas-solid-liquid separation device, the inflow of the solid content (MgNH 4 PO 4 particles) into the sedimentation section 1a is further suppressed, so that treated water containing almost no solid content can be obtained. It will be discharged from the reaction vessel 1.
[0020]
Further, a part of the liquid (or liquid containing MgNH 4 PO 4 particles) in the gas recovery device 15 rises in the ascending pipe 20 by the ascending force of the air recovered by the gas recovery device 15, and the gas-liquid separation tank 21. In the gas-liquid separation tank 21, vigorous agitation occurs, and the air that has raised the liquid is separated from the liquid. The separated air enters the air inflow pipe 22 and is released to the atmosphere through the air trap 23. The liquid whose apparent specific gravity is increased due to the separation of the air in the gas-liquid separation tank 21 descends in the downcomer 24 and is returned between the water distributor 7 and the air blowing unit 8 through the discharge port. Circulate and mix. At this time, since a small amount of internal pressure is applied to the gas-liquid separation tank 21 by the air trap 23 of the air inflow pipe 22, water flows into the reaction vessel 1 from the separation tank 21 with a strong stirring force. Thereby, circulation and mixing of treated water can be performed without a circulation pump, and energy saving can be achieved. Moreover, the circulation of the treated water, and the phosphorus concentration in the reaction portion 1b lowered, because the degree of supersaturation of MgNH 4 PO 4 is lowered, since MgNH 4 PO 4 is precipitated only on the surface of MgNH 4 PO 4 particles, MgNH 4 PO 4 particles become large. For this reason, MgNH 4 PO 4 particles and treated water can be efficiently separated.
[Brief description of the drawings]
In short, according to the present invention, there is an excellent effect that the installation area can be reduced and energy saving can be achieved.
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of a gas-solid-liquid separator.
3 is a perspective view showing a main part of the gas-solid-liquid separator shown in FIG.
FIG. 4 is a configuration diagram showing an example of a conventional dephosphorization apparatus.
[Explanation of symbols]
1 Reaction vessel 15 Gas recovery device 25 Circulation means

Claims (1)

アンモニウムイオン、オルトリン酸イオンを含む被処理水を底部から導入し、これに空気を吹き込んでマグネシウムイオンの存在下でMgNH4 PO4 を析出させて脱リン処理を行い、この処理水を上部から排出する反応容器を備えた脱リン装置において、
前記反応容器内に、上昇する空気を回収する気体回収装置を設け、
前記反応容器の上方に気液分離槽を設け、前記気体回収装置と前記気液分離槽とを上昇管で接続し、前記気液分離槽に前記気体回収装置の下方に臨んだ下降管を接続し前記上昇管で、前記気体回収装置で回収した空気の上昇力によって前記気体回収装置内の処理水の一部を前記気液分離槽まで上昇させ、前記気液分離槽で上昇した液から空気を分離し、前記下降管で見掛け比重が重くなった液を下降させて反応容器内下方に戻す循環手段を構成したことを特徴とする脱リン装置。
Water to be treated containing ammonium ions and orthophosphate ions is introduced from the bottom, air is blown into this to deposit MgNH 4 PO 4 in the presence of magnesium ions, dephosphorization treatment, and this treated water is discharged from the top. In a dephosphorization apparatus equipped with a reaction vessel
A gas recovery device for recovering rising air is provided in the reaction vessel,
A gas-liquid separation tank is provided above the reaction vessel, the gas recovery device and the gas-liquid separation tank are connected by an ascending pipe, and a downcomer pipe facing the gas recovery apparatus is connected to the gas-liquid separation tank Then, with the riser pipe, a part of the treated water in the gas recovery device is raised to the gas-liquid separation tank by the rising force of the air recovered by the gas recovery apparatus, and from the liquid raised in the gas-liquid separation tank A dephosphorization apparatus comprising a circulation means for separating air and lowering a liquid whose apparent specific gravity is increased by the downcomer pipe and returning the liquid downward in the reaction vessel.
JP05745595A 1995-03-16 1995-03-16 Dephosphorization device Expired - Lifetime JP3656267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05745595A JP3656267B2 (en) 1995-03-16 1995-03-16 Dephosphorization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05745595A JP3656267B2 (en) 1995-03-16 1995-03-16 Dephosphorization device

Publications (2)

Publication Number Publication Date
JPH08252584A JPH08252584A (en) 1996-10-01
JP3656267B2 true JP3656267B2 (en) 2005-06-08

Family

ID=13056152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05745595A Expired - Lifetime JP3656267B2 (en) 1995-03-16 1995-03-16 Dephosphorization device

Country Status (1)

Country Link
JP (1) JP3656267B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001472B2 (en) * 2001-09-06 2007-10-31 株式会社荏原製作所 Method and apparatus for treating metal-containing water
JP4586582B2 (en) * 2004-04-20 2010-11-24 株式会社Ihi Dephosphorization device
JP4586581B2 (en) * 2005-03-07 2010-11-24 株式会社Ihi Dephosphorization device

Also Published As

Publication number Publication date
JPH08252584A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
JP2002510551A (en) Wastewater purification method and apparatus
JPS5810160B2 (en) water biological purification equipment
LT5160B (en) Method of separating suspension, in particular for waste water treatment, and an apparatus for performing the same
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
CS271652B1 (en) Complex device for multistep water conditioning treatment and water purification
JP3656267B2 (en) Dephosphorization device
JP2006075839A (en) Method for primary treatment of organic sewage and device therefor
JP6278796B2 (en) Deodorization device
JP2003503200A (en) Wastewater purification method and apparatus
JP2007244995A (en) Treatment equipment of digestion sludge
CN105621600B (en) Deflector type lacks aerobic reactor
CN111606381B (en) Sludge-water separation device and method for biological sewage treatment
CN211310940U (en) Coagulation oil removing tank
JPH11165189A (en) Apparatus and method for treating water
JP4147609B2 (en) Dephosphorization device
JPS58183913A (en) Apparatus for regenerating waste water
CN205773762U (en) A kind of stream CIAR sewage disposal system continuously
CN207227117U (en) Denitrification reactor
JP3726429B2 (en) Dephosphorization device
JP2004305991A (en) Granulation dephosphorization apparatus
CN212222629U (en) Precipitation oil removal sewage treatment device and system
CN213294834U (en) A mud-water separation device for sewage biological treatment
CN209890406U (en) Integrated fluorine-containing wastewater advanced treatment device
CN207619191U (en) Denitrification reactor
JP3667867B2 (en) Levitation separator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

EXPY Cancellation because of completion of term