JP2001170683A - Biological denitrification method for water - Google Patents

Biological denitrification method for water

Info

Publication number
JP2001170683A
JP2001170683A JP35381499A JP35381499A JP2001170683A JP 2001170683 A JP2001170683 A JP 2001170683A JP 35381499 A JP35381499 A JP 35381499A JP 35381499 A JP35381499 A JP 35381499A JP 2001170683 A JP2001170683 A JP 2001170683A
Authority
JP
Japan
Prior art keywords
gas
water
carbon dioxide
reaction tank
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35381499A
Other languages
Japanese (ja)
Inventor
Makiko Udagawa
万規子 宇田川
Yasuyuki Yagi
康之 八木
Hiroyuki Yamada
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP35381499A priority Critical patent/JP2001170683A/en
Publication of JP2001170683A publication Critical patent/JP2001170683A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a biological denitrification method for water of a gaseous hydrogen utilization system which does not entail an increase of a pH by accompanying a denitrification reaction even for raw water having a high concentration of nitrate nitrogen and does not degrade denitrification treatment performance. SOLUTION: Contact materials 12 holding denitrification bacteria are packed in a reaction chamber 10. The raw water containing the nitrate nitrogen is supplied to the reaction chamber 10 and the gaseous hydrogen in the gaseous mixture diffused from an air diffuser 18 is regulated to a specified concentration or above and the nitrate nitrogen in the raw water is biologically subjected to the denitrification treatment. At this time, carbon dioxide is intermittently or continuously supplied to the raw water so that the pH of effluent attains 8 to 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水の生物学的脱窒方
法に係り、特に硝酸性窒素及び/又は亜硝酸性窒素(以
下、両者を総称して硝酸性窒素という。)を含有する水
を脱窒菌を保持した反応槽に供給し、水素ガスを用いて
生物学的に脱窒処理する方法に関する。
The present invention relates to a method for biological denitrification of water, and more particularly to water containing nitrate nitrogen and / or nitrite nitrogen (both are collectively referred to as nitrate nitrogen). To a reaction tank holding denitrifying bacteria and biologically denitrifying using hydrogen gas.

【0002】[0002]

【従来の技術】従来の生物学的脱窒方法は、原水中の有
機物に含まれる水素を水素供与体として利用する。ま
た、原水中の有機物に含まれる水素が少ない場合には、
水素供与体を補給するために酢酸やメタノールなどの有
機物を原水に適量注入し、脱窒処理する方法が実用化さ
れている。しかしながら、このような方法によって原水
中の硝酸性窒素を完全に除去するためには、窒素除去に
必要な反応当量の2〜3倍の過剰な有機物を供給する必
要があり、必然的に反応槽からの流出水に未反応の有機
物が残留する。したがって、反応槽の後段に曝気槽を設
けて残留有機物を除去する必要がある。
2. Description of the Related Art Conventional biological denitrification processes utilize hydrogen contained in organic matter in raw water as a hydrogen donor. Also, when the amount of hydrogen contained in the organic matter in the raw water is small,
In order to supply a hydrogen donor, a method of injecting an appropriate amount of an organic substance such as acetic acid or methanol into raw water and performing a denitrification treatment has been put to practical use. However, in order to completely remove nitrate nitrogen in raw water by such a method, it is necessary to supply an excess amount of organic substances that is two to three times the reaction equivalent required for nitrogen removal. Unreacted organic matter remains in the effluent from the reactor. Therefore, it is necessary to provide an aeration tank at the latter stage of the reaction tank to remove residual organic substances.

【0003】硝酸性窒素を含有し、かつ有機物濃度が低
い原水としては、金属表面処理で排出される硝酸洗浄廃
水、発電所から排出されるアンモニア含有廃水、特定地
域の地下水などが挙げられる。特に、地下水を飲料用に
供する場合には含有する硝酸性窒素を除去する必要があ
るが、浄水の過程で前記した酢酸やメタノールなどの有
機物を添加することの精神的な不安は大きい。また、現
実の問題として、脱窒処理後に残留する有機物の確実に
除去するために要する経済的な負担も大きい。このた
め、生物学的脱窒方法における水素供与体として、前記
有機物に替わり、有機物が残留する恐れがない水素ガス
を用いる方法が提案されている。
[0003] Raw water containing nitrate nitrogen and having a low organic substance concentration includes nitric acid washing wastewater discharged from metal surface treatment, ammonia-containing wastewater discharged from a power plant, and groundwater in a specific area. In particular, when groundwater is used for drinking, it is necessary to remove nitrate nitrogen contained therein, but there is great mental anxiety about adding the above-mentioned organic substances such as acetic acid and methanol during the water purification process. In addition, as a practical problem, there is a large economic burden required to reliably remove organic substances remaining after the denitrification treatment. For this reason, a method has been proposed in which a hydrogen gas is used as a hydrogen donor in a biological denitrification method, instead of the organic substance, in which there is no possibility that the organic substance remains.

【0004】[0004]

【発明が解決しようとする課題】ところで本発明者の実
験によれば、上記水素供与体として水素ガスを用いる方
法を硝酸性窒素の濃度が比較的高く、かつ有機物濃度が
比較的低い原水に適用した場合には新たな問題点が発生
することが判明した。すなわち、硝酸性窒素の濃度が高
い場合には、反応槽内の水のpHが高くなること、この
ため脱窒菌の活性が低下し、脱窒処理が不十分となるこ
とが判明した。この脱窒反応に伴うpHの上昇は原水の
pH緩衝性によっても変化するが、通常の地下水の場
合、硝酸性窒素の濃度が15mg/Lを超えると脱窒反
応によって反応槽内の水のpHが10以上になり、脱窒
処理性能が急激に低下する。
According to experiments by the present inventors, the method using hydrogen gas as the hydrogen donor is applied to raw water having a relatively high nitrate nitrogen concentration and a relatively low organic matter concentration. In that case, it was found that a new problem occurred. That is, it was found that when the concentration of nitrate nitrogen was high, the pH of the water in the reaction tank was increased, the activity of the denitrifying bacteria was reduced, and the denitrification treatment was insufficient. The increase in pH due to the denitrification reaction also changes depending on the pH buffering property of the raw water, but in the case of ordinary groundwater, when the concentration of nitrate nitrogen exceeds 15 mg / L, the pH of the water in the reaction tank is increased by the denitrification reaction. Becomes 10 or more, and the denitrification treatment performance rapidly decreases.

【0005】本発明の目的は、前記従来技術の問題点を
解消し、硝酸性窒素の濃度が高い原水であっても、脱窒
反応に伴うpHの上昇がなく、脱窒処理性能が低下しな
い水素ガス利用式の水の生物学的脱窒方法を提供するこ
とにある。
[0005] An object of the present invention is to solve the above-mentioned problems of the prior art, and even in raw water having a high concentration of nitrate nitrogen, there is no increase in pH due to the denitrification reaction, and the denitrification treatment performance does not decrease. An object of the present invention is to provide a method for biological denitrification of water using hydrogen gas.

【0006】[0006]

【課題を解決するための手段】本発明に係る水の生物学
的脱窒方法は、硝酸性窒素を含有する水を脱窒菌を保持
した反応槽に供給し、水素ガスを用いて生物学的に脱窒
処理する方法において、前記反応槽内の水に炭酸ガスを
間欠的又は連続的に供給することを特徴とする。
According to the method of biologically denitrifying water according to the present invention, water containing nitrate nitrogen is supplied to a reaction tank holding denitrifying bacteria, and the biological denitrification is carried out using hydrogen gas. In the method for denitrification, carbon dioxide gas is intermittently or continuously supplied to water in the reaction tank.

【0007】また、本発明に係る水の生物学的脱窒方法
は、前記反応槽からの流出水のpH値が7〜9の範囲、
好ましくは8〜9の範囲となるように前記炭酸ガスの供
給量を制御することを特徴とする。
Further, in the method for biologically denitrifying water according to the present invention, the pH value of the effluent from the reaction tank is in the range of 7 to 9,
Preferably, the supply amount of the carbon dioxide gas is controlled so as to be in the range of 8 to 9.

【0008】また、本発明に係る水の生物学的脱窒方法
は、前記炭酸ガスを前記水素ガスと混合した状態で前記
反応槽内の水に供給することを特徴とする。
[0008] Further, the biological denitrification method of water according to the present invention is characterized in that the carbon dioxide gas is supplied to the water in the reaction tank in a state of being mixed with the hydrogen gas.

【0009】以下、本発明に至るまでの技術的背景につ
いて説明する。水素供与体として水素ガスを用いる方法
では水中の硝酸性窒素の大部分は下記の(1)式又は
(2)式によって還元され窒素ガスとなる。 2NO3 -+5H2 → N2+4H2O+2OH- ……(1) 2NO2 -+3H2 → N2+2H2O+2OH- ……(2) (1)式又は(2)式から明らかなように脱窒反応によ
って水酸イオンが生成されるため、反応槽内の水のpH
が上昇する。このpH上昇は原水中の硝酸性窒素の濃度
に依存し、硝酸性窒素の濃度が高い場合には反応槽内の
水のpHも高くなり、前記したように脱窒処理性能の低
下をもたらす。一方、水素供与体として有機物を用いる
従来の方法や原水中の有機物濃度が高い場合では上記
(1)式又は(2)式の反応以外に、有機物を構成する
炭素に起因して重炭酸イオンを生成する反応が、例えば
下記の(3)式、(4)式に示すように併行して進行す
る。 CH3OH+H2O → CO2+3H2 ……(3) CO2+2H2O → HCO3 -+H3+ ……(4) 上記(4)式で生成された重炭酸イオンがpHの上昇に
対して強い緩衝性を示すので、pHの急激な上昇が発生
せず、脱窒処理性能の低下も生じないと考えられる。こ
のため、従来の生物学的脱窒方法においては脱窒反応の
進行に伴うpHの上昇や脱窒処理性能の低下はあまり問
題にはされていなかった。
The technical background up to the present invention will be described below. In the method using hydrogen gas as a hydrogen donor, most of nitrate nitrogen in water is reduced to nitrogen gas by the following formula (1) or (2). 2NO 3 + 5H 2 → N 2 + 4H 2 O + 2OH (1) 2NO 2 + 3H 2 → N 2 + 2H 2 O + 2OH (2) Denitrification as evident from equation (1) or (2) Since the reaction produces hydroxyl ions, the pH of the water in the reactor is
Rises. This increase in pH depends on the concentration of nitrate nitrogen in the raw water, and when the concentration of nitrate nitrogen is high, the pH of the water in the reaction tank also increases, resulting in a decrease in denitrification treatment performance as described above. On the other hand, in the conventional method using an organic substance as the hydrogen donor or when the concentration of the organic substance in the raw water is high, bicarbonate ions due to carbon constituting the organic substance are generated in addition to the reaction of the above formula (1) or (2). The generated reaction proceeds concurrently, for example, as shown in the following equations (3) and (4). CH 3 OH + H 2 O → CO 2 + 3H 2 ... (3) CO 2 + 2H 2 O → HCO 3 + H 3 O + ... (4) The bicarbonate ion generated by the above formula (4) causes an increase in pH. On the other hand, since it exhibits strong buffering properties, it is considered that no rapid increase in pH occurs and no decrease in denitrification treatment performance occurs. For this reason, in the conventional biological denitrification method, an increase in pH and a decrease in denitrification treatment performance with the progress of the denitrification reaction have not been considered a problem.

【0010】本発明は上記の知見に基づいてなされたも
のであり、重炭酸イオンがpHの上昇に対して強い緩衝
を示すことに着目し、水素供与体として水素ガスを用い
る方法においても重炭酸イオンを積極的に生成させる手
段として、反応槽の水に炭酸ガスを供給するようにした
ものである。
The present invention has been made on the basis of the above findings, and has been focused on the fact that bicarbonate ions exhibit a strong buffer against an increase in pH. As means for positively generating ions, carbon dioxide gas is supplied to water in a reaction tank.

【0011】供給する炭酸ガスは無害であり、過剰に供
給しても特に問題はないが、経済性の観点から必要な量
だけを供給することが望ましい。このためには、反応槽
からの流出水のpH値が7〜9の範囲、好ましくは8〜
9の範囲となるように前記炭酸ガスの供給量を制御す
る。
The carbon dioxide gas to be supplied is harmless, and there is no particular problem even if it is supplied in excess, but it is desirable to supply only a necessary amount from the viewpoint of economy. For this purpose, the pH value of the effluent from the reactor is in the range of 7 to 9, preferably 8 to 9.
The supply amount of the carbon dioxide gas is controlled so as to be in the range of 9.

【0012】また、炭酸ガスを前記水素ガスと混合した
状態で前記反応槽内の水に供給することによって、これ
らのガスと水との接触効率が向上し、前記(1)式、
(2)式の反応と、炭酸ガスの吹き込みによる前記
(4)式の重炭酸イオンの生成反応が同時に進行して効
率のよい脱窒処理が実現する。
Further, by supplying carbon dioxide gas to the water in the reaction tank in a state of being mixed with the hydrogen gas, the contact efficiency between these gases and water is improved, and the above formula (1) is used.
The reaction of formula (2) and the bicarbonate ion generation reaction of formula (4) by blowing carbon dioxide gas proceed simultaneously, thereby realizing an efficient denitrification treatment.

【0013】[0013]

【発明の実施の形態】図1は本発明方法の実施の形態を
示す装置系統図である。反応槽10には脱窒菌にを保持
した接触材12が充填されており、硝酸性窒素を含有す
る原水は管路14から反応槽10の低部に供給される。
原水は反応槽10内を上昇し、前記接触材12の層を通
過する過程で脱窒菌ににより生物学的な脱窒処理を受け
た後、管路16から流出水として排出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing an embodiment of the method of the present invention. The reaction tank 10 is filled with a contact material 12 holding denitrifying bacteria, and raw water containing nitrate nitrogen is supplied to a lower part of the reaction tank 10 through a pipe 14.
The raw water rises in the reaction tank 10, undergoes a biological denitrification treatment by a denitrifying bacterium in the course of passing through the layer of the contact material 12, and is then discharged as effluent from a pipe 16.

【0014】反応槽10内の下部には水素ガスや炭酸ガ
スを散気するための散気装置18が設けられている。す
なわち、この散気装置18は反応槽10の気相部20に
接続したガス循環路22に連結されており、ガス循環路
22の途中に設けたブロア24によって、気相部20か
らの混合ガスが散気装置18から反応槽10内に繰り返
し散気される。また、ガス循環路22には水素ガス供給
用の管路26及び炭酸ガス供給用の管路28が接続され
ている。
A gas diffuser 18 for diffusing hydrogen gas or carbon dioxide gas is provided at a lower portion in the reaction tank 10. That is, the gas diffuser 18 is connected to a gas circulation path 22 connected to the gas phase section 20 of the reaction tank 10, and the mixed gas from the gas phase section 20 is blown by a blower 24 provided in the gas circulation path 22. Is repeatedly diffused into the reaction tank 10 from the diffuser 18. The gas circulation path 22 is connected to a hydrogen gas supply pipe 26 and a carbon dioxide gas supply pipe 28.

【0015】また、反応槽10の気相部20には排気用
の管路30が接続され、かつ、水素ガスモニタ32が設
けられている。水素ガスモニタ32は気相部20内の混
合ガス中の水素ガス濃度を検出し、例えば水素ガス濃度
が10%以下になると管路30に設けられた排出弁34
を開とし、気相部20内の混合ガスの一部を反応槽10
外に排気するように作動する。この排気が終了すると排
出弁34を閉とした後、前記水素ガス供給用の管路26
に設けた供給弁36を開とし、ガス循環路22に水素ガ
スを注入する。注入された水素ガスはガス循環路22内
の混合ガスと混合され、ブロア24を経て散気装置18
から反応槽10内に散気される。この水素ガスの注入に
よって気相部20内の混合ガス中の水素ガス濃度が急速
に上昇する。そこで、混合ガス中の水素ガス濃度が例え
ば50%に達した時点で供給弁36を閉として水素ガス
の注入を停止する。以上の操作によって、10〜50%
の比較的高濃度の水素ガスを含む混合ガスが反応槽10
内に散気されることになり、水素ガスが脱窒反応のため
の水素供与体として利用され、脱窒反応が効率よく進行
する。
An exhaust pipe 30 is connected to the gas phase section 20 of the reaction tank 10, and a hydrogen gas monitor 32 is provided. The hydrogen gas monitor 32 detects the concentration of hydrogen gas in the mixed gas in the gas phase section 20. For example, when the concentration of hydrogen gas becomes 10% or less, a discharge valve 34 provided in the pipe 30 is provided.
Is opened, and a part of the mixed gas in the gas phase section 20 is removed from the reaction tank 10.
Operates to exhaust to the outside. When the exhaust is completed, the exhaust valve 34 is closed, and then the hydrogen gas supply line 26 is closed.
Is opened, and hydrogen gas is injected into the gas circulation path 22. The injected hydrogen gas is mixed with the mixed gas in the gas circulation path 22,
From the reaction tank 10. Due to the injection of the hydrogen gas, the concentration of the hydrogen gas in the mixed gas in the gas phase section 20 rapidly increases. Therefore, when the hydrogen gas concentration in the mixed gas reaches, for example, 50%, the supply valve 36 is closed to stop the injection of the hydrogen gas. By the above operation, 10 to 50%
Mixed gas containing a relatively high concentration of hydrogen gas in the reaction tank 10
The hydrogen gas is used as a hydrogen donor for the denitrification reaction, and the denitrification reaction proceeds efficiently.

【0016】前記(1)式、(2)式に示したように脱
窒反応では水素ガスが消費され、窒素ガスが発生する反
応であるから、混合ガス中の水素ガス濃度は時間の経過
とともに徐々に低下する。したがって、前記したように
水素ガス濃度が10%以下に達した段階で排気の操作
と、引き続く水素ガスの注入操作を繰り返す。このよう
に水素ガスを10%以下として排気するので、注入した
水素ガスの大部分を脱窒反応に利用でき、水素ガスの有
効活用が図れる。
As shown in the above equations (1) and (2), the denitrification reaction is a reaction in which hydrogen gas is consumed and nitrogen gas is generated, so that the concentration of hydrogen gas in the mixed gas changes with time. Decreases gradually. Therefore, as described above, when the hydrogen gas concentration has reached 10% or less, the evacuation operation and the subsequent hydrogen gas injection operation are repeated. Since the hydrogen gas is evacuated to 10% or less, most of the injected hydrogen gas can be used for the denitrification reaction, and the hydrogen gas can be effectively used.

【0017】なお、前記(1)式、(2)式に示したよ
うに脱窒反応は5モル又は3モルの水素ガスが消費さ
れ、1モルの窒素ガスが発生する反応であるから、脱窒
反応の進行に伴って、密閉系である気相部20の混合ガ
スの絶対量が減少し、気相部20内の圧力が低下する。
したがって、前記水素ガスモニタ32による排気及び水
素ガス注入の制御だけでは気相部20内の圧力が不安定
となる傾向がある。このため、上記の制御に併せて気相
部20内に圧力センサを配置し気相部20内の圧力を所
定の範囲内に維持するように制御することが好ましい。
As shown in the above formulas (1) and (2), the denitrification reaction consumes 5 mol or 3 mol of hydrogen gas and generates 1 mol of nitrogen gas. With the progress of the nitrogen reaction, the absolute amount of the mixed gas in the gas phase section 20 which is a closed system decreases, and the pressure in the gas phase section 20 decreases.
Therefore, the pressure in the gas phase section 20 tends to be unstable only by controlling the exhaust gas and the hydrogen gas injection by the hydrogen gas monitor 32. For this reason, it is preferable that a pressure sensor is disposed in the gas phase section 20 in conjunction with the above control, and control is performed such that the pressure in the gas phase section 20 is maintained within a predetermined range.

【0018】次に、炭酸ガスの注入操作について説明す
る。前記のように脱窒反応によって水酸イオンが生成
し、反応槽10内の水のpHが上昇する。炭酸ガスの注
入はこのpHの上昇を抑制することを目的として実施さ
れる。すなわち、前記流出水の管路16にpHモニタ3
8を設け、この管路16内を通過する流出水のpH値が
9以上になると、前記炭酸ガス供給用の管路28に設け
た供給弁40を開とし、ガス循環路22に炭酸ガスを注
入する。注入された炭酸ガスはガス循環路22内の混合
ガスと混合され、ブロア24を経て散気装置18から反
応槽10内に散気される。この炭酸ガスの注入によって
反応槽10内の水に重炭酸イオンが生成され、この重炭
酸イオンのpH緩衝作用によって反応槽10内の水のp
Hが徐々に低下し、流出水のpHも同様に低下する。流
出水のpH値が8以下となった時点で供給弁40を閉と
して炭酸ガスの注入を停止する。
Next, the operation of injecting carbon dioxide gas will be described. As described above, hydroxyl ions are generated by the denitrification reaction, and the pH of the water in the reaction tank 10 rises. The injection of carbon dioxide gas is performed for the purpose of suppressing the increase in pH. That is, the pH monitor 3 is connected to the line 16 of the effluent.
When the pH value of the effluent passing through the pipe 16 becomes 9 or more, the supply valve 40 provided in the pipe 28 for supplying carbon dioxide gas is opened, and the carbon dioxide gas is supplied to the gas circulation path 22. inject. The injected carbon dioxide gas is mixed with the mixed gas in the gas circulation path 22 and is diffused into the reaction tank 10 from the diffusion device 18 through the blower 24. The injection of the carbon dioxide gas generates bicarbonate ions in the water in the reaction tank 10, and the pH of the water in the reaction tank 10 is reduced by the pH buffering action of the bicarbonate ions.
H gradually decreases and the pH of the effluent decreases as well. When the pH value of the effluent becomes 8 or less, the supply valve 40 is closed to stop the injection of the carbon dioxide gas.

【0019】炭酸ガスは上記のようにガス循環路22内
の混合ガスと合流し、水素ガスと混合した状態で前記反
応槽10内の水に供給されるので、これらのガスと水と
の接触効率が向上し、前記(1)式、(2)式の反応
と、炭酸ガスの吹き込みによる重炭酸イオンの生成反応
が同時に進行して、反応槽10内の水のpH値は流出水
とほぼ同様に8〜9の範囲に維持される。発明者の知見
によればpH値が6〜9.5の範囲であれば脱窒菌の活
性が低下することはなく、脱窒処理が効率よく進行す
る。
As described above, the carbon dioxide gas joins with the mixed gas in the gas circulation path 22 and is supplied to the water in the reaction tank 10 in a state of being mixed with the hydrogen gas. The efficiency is improved, and the reactions of the above equations (1) and (2) and the reaction of generating bicarbonate ions by blowing carbon dioxide gas proceed simultaneously, so that the pH value of the water in the reaction tank 10 is almost equal to that of the effluent water. Similarly, it is maintained in the range of 8-9. According to the findings of the inventor, when the pH value is in the range of 6 to 9.5, the activity of the denitrifying bacteria does not decrease, and the denitrification treatment proceeds efficiently.

【0020】なお、注入された炭酸ガスの内、利用され
なかった分は気相部20から水素ガスや窒素ガスと混合
された状態でガス循環路22を経て再び散気装置18か
ら反応槽10内に散気される。このため、注入した炭酸
ガスの大部分を無駄なく利用できる。また、前記したよ
うに流出水のpH値が8以下となった時点で炭酸ガスの
注入を停止した場合においても、気相部20に残存して
いる炭酸ガスが重炭酸イオンの生成反応に寄与するの
で、流出水のpH値が急激に上昇することはない。
The unused portion of the injected carbon dioxide gas is mixed with hydrogen gas or nitrogen gas from the gas phase section 20 through the gas circulation path 22 again from the gas diffuser 18 to the reaction tank 10. It is diffused inside. Therefore, most of the injected carbon dioxide can be used without waste. Further, even when the injection of carbon dioxide gas is stopped when the pH value of the effluent water becomes 8 or less as described above, the carbon dioxide gas remaining in the gas phase portion 20 contributes to the bicarbonate ion generation reaction. Therefore, the pH value of the effluent does not rise sharply.

【0021】上記の説明では流出水のpH値に基いて炭
酸ガスを間欠的に供給する方法を述べたが、原水中の硝
酸性窒素の濃度が常時高い場合には、ベースロードとな
る設定量の炭酸ガスを連続的に注入し、流出水のpH値
が一時的に上昇した時に注入量を増加させるような制御
をするとよい。この場合において、注入量の増減の頻度
を検出し、増減の頻度が適当になるように前記設定量を
変化させる制御をすれば、より一層処理の安定化を図る
ことができる。また、炭酸ガスの供給を制御する指標と
して流出水のpHを用いたが、これに限らず、例えば反
応槽10中心部の水のpHに基いて炭酸ガスの供給を制
御するようにしてもよい。さらに、炭酸ガスの供給を制
御する他の方法として、水素ガスの消費量に見合って炭
酸ガスの注入必要量が定まるという考え方に立ち、水素
ガスの供給時に水素ガスに対して一定の比率の炭酸ガス
を供給するようにしてもよい。このような方法によれば
制御系の簡便化を図ることができる。
In the above description, the method of intermittently supplying the carbon dioxide gas based on the pH value of the effluent has been described. However, when the concentration of nitrate nitrogen in the raw water is constantly high, the set amount serving as the base load is set. It is preferable to inject carbon dioxide gas continuously, and to increase the injection amount when the pH value of the effluent temporarily rises. In this case, if the frequency of the increase and decrease of the injection amount is detected and the control for changing the set amount is performed so that the frequency of the increase and decrease becomes appropriate, the processing can be further stabilized. Further, although the pH of the effluent was used as an index for controlling the supply of carbon dioxide, the supply of carbon dioxide may be controlled based on, for example, the pH of water in the center of the reaction tank 10. . Further, as another method of controlling the supply of carbon dioxide, based on the idea that the required amount of carbon dioxide to be injected is determined in accordance with the consumption of hydrogen gas, a certain ratio of carbon dioxide to hydrogen gas during the supply of hydrogen gas is used. A gas may be supplied. According to such a method, the control system can be simplified.

【0022】また、前記の実施の形態では反応槽10内
に脱窒菌を保持する手段として、反応槽10内に接触材
12を充填し、この接触材12に脱窒菌を保持する形態
を説明した。しかしながら本発明はこれに限らず、例え
ば反応槽10内に脱窒菌を浮遊状態で所定濃度に保持さ
せる周知の手段を用いるようにしてもよい。
Further, in the above-described embodiment, as a means for holding denitrifying bacteria in the reaction tank 10, the contact material 12 is filled in the reaction tank 10, and the denitrifying bacteria are held in the contact material 12. . However, the present invention is not limited to this. For example, well-known means for maintaining the denitrifying bacteria in the reaction tank 10 at a predetermined concentration in a floating state may be used.

【0023】[0023]

【予備実験例】水道水又は水道水にpH緩衝剤として炭
酸水素ナトリウムを各種の濃度で添加したものをサンプ
ル液とした。これらのサンプル液にそれぞれ水酸化ナト
リウムを添加してpHを10.5に調整した後、硝酸を
添加してサンプル液のpHが7.0になるまでの滴定量
を調べた。その結果を図2に示す。
[Preliminary Experimental Examples] Tap water or tap water to which sodium hydrogen carbonate was added at various concentrations as a pH buffer was used as a sample liquid. After adjusting the pH to 10.5 by adding sodium hydroxide to each of these sample solutions, titration was performed until nitric acid was added and the pH of the sample solution reached 7.0. The result is shown in FIG.

【0024】図2において、横軸は各サンプル液の初期
のM−アルカリ度を示し、縦軸は上記した硝酸の滴定量
を硝酸性窒素(NO3 -)濃度に換算して示してある。こ
の換算された硝酸性窒素濃度はpHが7.0の原水を前
記(1)式の脱窒反応によってpHが10.5となるま
で進行させた場合に除去できる硝酸性窒素濃度にほぼ相
当すると推測される。この図から、通常の水道水と同程
度の約20mg-CaCO3/LのM−アルカリ度を含む
原水から硝酸性窒素を15mg/L程度除去すると原水
のpHは7.0から10.5に上昇し、脱窒菌の活性が低
下し始めることが推定される。また、原水のM−アルカ
リ度を約80mg-CaCO3/Lにすると硝酸性窒素を
20mg/L程度除去しても原水のpHは7.0から1
0.5までには上昇せず、脱窒菌の活性が低下しないこ
とが推定される。以上の予備実験例から本発明に係る炭
酸ガス注入の効果が間接的に裏付けられた。
In FIG. 2, the abscissa indicates the initial M-alkalinity of each sample solution, and the ordinate indicates the titer of nitric acid described above in terms of nitrate nitrogen (NO 3 ) concentration. The converted nitrate nitrogen concentration substantially corresponds to the nitrate nitrogen concentration that can be removed when the raw water having a pH of 7.0 is advanced to a pH of 10.5 by the denitrification reaction of the above formula (1). Guessed. From this figure, when about 15 mg / L of nitrate nitrogen is removed from raw water containing about 20 mg-CaCO 3 / L of M-alkalinity, which is about the same as ordinary tap water, the pH of the raw water falls from 7.0 to 10.5. It is estimated that the activity increases and the activity of the denitrifying bacteria starts to decrease. Further, when the M-alkalinity of the raw water is set to about 80 mg-CaCO 3 / L, the pH of the raw water becomes 7.0 to 1 even if nitrate nitrogen is removed at about 20 mg / L.
It does not increase by 0.5, and it is estimated that the activity of the denitrifying bacteria does not decrease. From the above preliminary experiments, the effect of carbon dioxide gas injection according to the present invention was indirectly supported.

【0025】[0025]

【実験例】反応槽(有効容積20L)内に脱窒菌を保持
した接触材(材質:アンスラサイト)を充填率50%で
充填し、硝酸性窒素濃度が20mg/Lの原水を流量2
0L/h(硝酸性窒素負荷20mg/L・h)で連続的
に通水した。また、連続通水時に水素ボンベからの水素
ガスを反応槽に間欠的に供給し、反応槽に循環させる混
合ガス中の水素ガスの濃度が10〜50%となるように
調節した。運転が安定した後、前半の通水日数47日ま
では反応槽に炭酸ガスを供給せず、後半の48日目から
は前記水素ガスの間欠供給時に水素ガスの供給量に対し
て5%の量の炭酸ガスを供給するようにした。
[Experimental example] A contact material (material: anthracite) holding denitrifying bacteria was filled into a reaction tank (effective volume 20 L) at a filling rate of 50%, and raw water having a nitrate nitrogen concentration of 20 mg / L was supplied at a flow rate of 2%.
Water was continuously passed at 0 L / h (nitrate nitrogen load: 20 mg / L · h). In addition, hydrogen gas was intermittently supplied to the reaction tank from the hydrogen tank during continuous water supply, and the concentration of hydrogen gas in the mixed gas circulated to the reaction tank was adjusted to be 10 to 50%. After the operation became stable, no carbon dioxide gas was supplied to the reaction tank until the first 47 days of water flow, and from the second half day 48, the intermittent supply of the hydrogen gas was 5% of the supply amount of the hydrogen gas. An amount of carbon dioxide was supplied.

【0026】実験の結果を図3に示す。図3から明らか
なように、炭酸ガスを供給しない前半では,pHが約7
の原水に対して処理水のpHは10以上に上昇し、硝酸
性窒素の除去率は70%前後であった。一方、炭酸ガス
を供給した後半では,pHが約7の原水に対して処理水
のpHは8以下であり、硝酸性窒素の除去率は95%以
上の高い値を示した。なお、処理水のM−アルカリ度
は、前半では10〜20mg-CaCO3/Lであり、後
半では90〜120mg-CaCO3/Lであった。
FIG. 3 shows the results of the experiment. As is clear from FIG. 3, in the first half when the carbon dioxide gas was not supplied, the pH was about 7
The pH of the treated water increased to 10 or more with respect to the raw water, and the removal rate of nitrate nitrogen was around 70%. On the other hand, in the latter half of the supply of carbon dioxide, the pH of the treated water was 8 or less with respect to the raw water having a pH of about 7, and the nitrate nitrogen removal rate showed a high value of 95% or more. Incidentally, M- alkalinity of treated water, in the first half is 10~20mg-CaCO 3 / L, in the second half was 90~120mg-CaCO 3 / L.

【0027】[0027]

【発明の効果】本発明は、硝酸性窒素を含有する水を脱
窒菌を保持した反応槽に供給し、水素ガスを用いて生物
学的に脱窒処理する方法において、前記反応槽内の水に
炭酸ガスを間欠的又は連続的に供給するようにしたの
で、硝酸性窒素の濃度が高い原水に対しても、脱窒反応
に伴うpHの上昇がなく、脱窒処理性能が低下しない水
素ガス利用式の水の生物学的脱窒方法を提供することが
できる。
According to the present invention, there is provided a method of supplying water containing nitrate nitrogen to a reaction tank holding denitrifying bacteria and performing a biological denitrification treatment using hydrogen gas. Since the carbon dioxide gas is supplied intermittently or continuously, hydrogen gas that does not increase in pH due to the denitrification reaction and does not lower the denitrification treatment performance even for raw water with a high concentration of nitrate nitrogen A water-based method for biological denitrification of water can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す装置系統図である。FIG. 1 is an apparatus system diagram showing an embodiment of the present invention.

【図2】本発明に係る予備実験例の結果を示すグラフで
ある。
FIG. 2 is a graph showing the results of a preliminary experimental example according to the present invention.

【図3】本発明に係る連続通水の実験例の結果を示すグ
ラフである。
FIG. 3 is a graph showing the results of an experimental example of continuous water flow according to the present invention.

【符号の説明】[Explanation of symbols]

10……反応槽 12……接触材 18……散気装置 20……気相部 22……循環経路 32……水素ガスモニタ 38……pHモニタ 10 reaction tank 12 contact material 18 air diffuser 20 gas phase part 22 circulation path 32 hydrogen gas monitor 38 pH monitor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】硝酸性窒素を含有する水を脱窒菌を保持し
た反応槽に供給し、水素ガスを用いて生物学的に脱窒処
理する方法において、前記反応槽内の水に炭酸ガスを間
欠的又は連続的に供給することを特徴とする水の生物学
的脱窒方法。
1. A method for supplying water containing nitrate nitrogen to a reaction tank holding denitrifying bacteria and performing a biological denitrification treatment using hydrogen gas, wherein carbon dioxide gas is added to the water in the reaction tank. A method for biological denitrification of water, characterized in that it is supplied intermittently or continuously.
【請求項2】前記反応槽からの流出水のpH値が7〜9
の範囲となるように前記炭酸ガスの供給量を制御するこ
とを特徴とする請求項1に記載の水の生物学的脱窒方
法。
2. The pH value of the effluent from the reaction tank is 7-9.
The method for biologically denitrifying water according to claim 1, wherein the supply amount of the carbon dioxide gas is controlled so as to fall within the range of.
【請求項3】前記炭酸ガスを前記水素ガスと混合した状
態で前記反応槽内の水に供給することを特徴とする請求
項1又は請求項2に記載の水の生物学的脱窒方法。
3. The method for biological denitrification of water according to claim 1, wherein the carbon dioxide gas is supplied to the water in the reaction tank in a state of being mixed with the hydrogen gas.
JP35381499A 1999-12-14 1999-12-14 Biological denitrification method for water Pending JP2001170683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35381499A JP2001170683A (en) 1999-12-14 1999-12-14 Biological denitrification method for water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35381499A JP2001170683A (en) 1999-12-14 1999-12-14 Biological denitrification method for water

Publications (1)

Publication Number Publication Date
JP2001170683A true JP2001170683A (en) 2001-06-26

Family

ID=18433402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35381499A Pending JP2001170683A (en) 1999-12-14 1999-12-14 Biological denitrification method for water

Country Status (1)

Country Link
JP (1) JP2001170683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2012066164A (en) * 2010-09-21 2012-04-05 Dowa Technology Kk Method and device for treating nitric acid containing water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2012066164A (en) * 2010-09-21 2012-04-05 Dowa Technology Kk Method and device for treating nitric acid containing water

Similar Documents

Publication Publication Date Title
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
WO2010016268A1 (en) Water treatment system and water treatment method
EP0567860B2 (en) System and microorganism removing method
CN107473371A (en) A kind of utilize adsorbs the method that ammonia nitrogen material reinforcement SBR realizes Stable short-cut nitrosification
US11685677B2 (en) Nitrite-oxidizing bacteria activity inhibitor and method
JP2011189286A (en) Water treatment system for organic wastewater
JP5166014B2 (en) Equipment for removing dissolved hydrogen sulfide in anaerobic treatment
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP5149728B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP2006143780A (en) Biogas purification system
JP2001170683A (en) Biological denitrification method for water
JP5391010B2 (en) Operation method of denitrification reactor
JP2004148242A (en) Waste water treatment method and waste water treatment equipment
JP2000189995A (en) Method and device for removing nitrogen in waste water
JP2003103280A (en) Wastewater decoloring method and apparatus therefor
JPH11333492A (en) Apparatus and method for methane fermentation
JP3537995B2 (en) Wastewater treatment method
JP2011062657A (en) Nitrification apparatus and biological nitrification and denitrification apparatus
JP2003334590A (en) Method for removing nitrate nitrogen in wastewater
JP2009183910A (en) Method and apparatus for treating water containing organic substance
JP2601879B2 (en) Anaerobic treatment equipment for organic wastewater
JPH11128958A (en) Water denitrification treatment apparatus
JPH10230291A (en) Biological denitrification method of water and device therefor
JPH11347576A (en) Method and apparatus for treating water
CN111886206A (en) Sludge discharge control device, water treatment system, and sludge discharge control method