JPH11128958A - Water denitrification treatment apparatus - Google Patents

Water denitrification treatment apparatus

Info

Publication number
JPH11128958A
JPH11128958A JP31645497A JP31645497A JPH11128958A JP H11128958 A JPH11128958 A JP H11128958A JP 31645497 A JP31645497 A JP 31645497A JP 31645497 A JP31645497 A JP 31645497A JP H11128958 A JPH11128958 A JP H11128958A
Authority
JP
Japan
Prior art keywords
gas
denitrification
hydrogen gas
hydrogen
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31645497A
Other languages
Japanese (ja)
Inventor
Makiko Udagawa
万規子 宇田川
Yasuyuki Yagi
康之 八木
Hiroyuki Yamada
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP31645497A priority Critical patent/JPH11128958A/en
Publication of JPH11128958A publication Critical patent/JPH11128958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus which can carry out denitrification at high efficiency while heightening the utilization ratio of supplied hydrogen gas at the time when water containing nitric acid nitrogen is treated by a biological denitrification method or a chemical denitrification method by supplying hydrogen gas as hydrogen donor. SOLUTION: An electrolytic tank 3 to continuously supply hydrogen gas in the equivalent amount necessary to decompose nitric acid and/or nitrous acid-nitrogen in water into nitrogen gas is installed in a denitrification tank 1, a gas discharge pipe 7 to discharge nitrogen-containing gas generated in the tank 1 to the outside and a gas circulation pipe to circulate a mixed gas of an upper part of the denitrification tank 1 to the bottom part are also installed in the denitrification tank 1 and, while the hydrogen gas concentration in the mixed gas being measured by a hydrogen monitor 14, the supply amount of hydrogen gas is increased or decreased by a hydrogen gas supply control system 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硝酸性窒素及び/
又は亜硝酸性窒素を含有する水を水素ガスを用いて生物
学的及び/又は化学的に処理する脱窒処理装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention
Alternatively, the present invention relates to a denitrification treatment apparatus for biologically and / or chemically treating water containing nitrite nitrogen using hydrogen gas.

【0002】[0002]

【従来の技術】硝酸性窒素を含有する廃水としては、金
属表面処理で排出される硝酸洗浄廃水や発電所からの高
濃度アンモニア廃水などが挙げられる。また、数年前か
ら地下水の硝酸汚染が問題となり、汚染された井戸水を
取水する浄水場では硝酸性窒素あるいは亜硝酸性窒素の
除去が深刻な問題となっている。水道水中の硝酸性窒素
あるいは亜硝酸性窒素は、メトヘモグロビン血症の原因
物質であるとともに発癌性物質であるニトロソアミンの
前駆物質とされているが、近年の水道統計では国内の浄
水場数の5%近くが硝酸性窒素5ppm 以上の原水を取水
している。
2. Description of the Related Art Wastewater containing nitrate nitrogen includes nitrate washing wastewater discharged from metal surface treatment and high-concentration ammonia wastewater from a power plant. Also, nitrate contamination of groundwater has been a problem for several years, and removal of nitrate nitrogen or nitrite nitrogen has become a serious problem at water treatment plants that take in contaminated well water. Nitrate nitrogen or nitrite nitrogen in tap water is both a causative agent of methemoglobinemia and a precursor of carcinogenic nitrosamines. Nearly, raw water with nitrate nitrogen of 5ppm or more is taken.

【0003】硝酸性窒素及び/又は亜硝酸性窒素を含有
する水の脱窒処理方法としては、従来、生物学的脱窒
法、イオン交換法や逆浸透膜法などが知られている。し
かしながら、従来の生物学的脱窒法においては、汚泥の
発生、処理水水質のコントロールの難しさが問題とな
り、また、廃水中の有機物濃度が少ない場合には、水素
供与体として酢酸やメタノールなどの有機物を原水に添
加して処理するが、硝酸性及び亜硝酸性窒素を完全に除
去するには、窒素除去に必要な反応当量の2〜3倍の過
剰な有機物を供給する必要があり、必然的に脱窒槽から
の流出水に有機物が残留する。したがって、脱窒槽の後
段に再曝気槽を設けて残留有機物の処理を行う方式が採
られている。
[0003] As a method of denitrifying water containing nitrate nitrogen and / or nitrite nitrogen, a biological denitrification method, an ion exchange method, a reverse osmosis membrane method and the like are conventionally known. However, in the conventional biological denitrification method, generation of sludge, difficulty in controlling the quality of treated water becomes a problem, and when the concentration of organic matter in wastewater is low, acetic acid or methanol such as hydrogen donor is used as a hydrogen donor. Organic matter is added to raw water for treatment. To completely remove nitrate and nitrite nitrogen, it is necessary to supply an excess of organic matter two to three times the reaction equivalent required for nitrogen removal. Organic matter remains in the effluent from the denitrification tank. Therefore, a method is employed in which a re-aeration tank is provided after the denitrification tank to treat residual organic matter.

【0004】また、イオン交換法は、使用している樹脂
の交換容量に限界があり、一定の時間間隔で樹脂の再生
が必要となることや水中に含まれる硝酸性窒素以外のイ
オンも同時に除去してしまうなど、水道水の製造には必
ずしも適当ではない。他方、逆浸透膜法は、再生操作が
ないため、再生薬剤の処理問題は生じないが、逆浸透膜
で濃縮された濃厚液の処理が新たな問題となる。濃厚液
には、硝酸性窒素などが高濃度で存在するため別途処理
することが必要であるばかりか、逆浸透装置にかけた原
水の20〜30%近い水量の濃厚液が排出される。この
ように、飲料水を対象とする硝酸性窒素除去方式は、幾
つか検討されているものの、まだ、解決すべき問題が多
いと同時に処理コストの大幅な増加を招くものである。
In addition, the ion exchange method has a limitation in the exchange capacity of a resin used, and it is necessary to regenerate the resin at regular time intervals, and simultaneously remove ions other than nitrate nitrogen contained in water. It is not always suitable for producing tap water. On the other hand, in the reverse osmosis membrane method, since there is no regeneration operation, there is no problem in treating the regenerated medicine, but the treatment of the concentrated liquid concentrated in the reverse osmosis membrane becomes a new problem. Since the concentrated liquid contains a high concentration of nitrate nitrogen and the like, it is necessary to separately treat the concentrated liquid, and the concentrated liquid having a water amount close to 20 to 30% of the raw water applied to the reverse osmosis device is discharged. As described above, although a number of nitrate nitrogen removal methods for drinking water have been studied, there are still many problems to be solved and a large increase in treatment cost.

【0005】さらに、硝酸性窒素及び/又は亜硝酸性窒
素を除去するため、上記方法の他に水素ガスを用いて還
元する方法がある。この方法は、下記の(1)式又は
(2)式で表される。 2NO3 - +5H2 → N2 +4H2 O+2OH- ・・・(1) 2NO2 - +3H2 → N2 +2H2 O+2OH- ・・・(2)
[0005] Further, in order to remove nitrate nitrogen and / or nitrite nitrogen, there is a method other than the above-mentioned method, in which reduction is performed using hydrogen gas. This method is represented by the following equation (1) or (2). 2NO 3 - + 5H 2 → N 2 + 4H 2 O + 2OH - ··· (1) 2NO 2 - + 3H 2 → N 2 + 2H 2 O + 2OH - ··· (2)

【0006】水素ガスで硝酸性及び/又は亜硝酸性窒素
を窒素ガスに還元する方法としては、水素ガスを水素供
与体とする水素酸化細菌の脱窒能を利用する方法と、P
tやPd合金などの水素添加触媒を用いる方法がある。
前者は、独立栄養細菌の硝酸呼吸能を利用する生物学的
処理方法であり、特開平8−39095号公報などで提
案されている。また、後者は、物理化学的な触媒還元法
であり、特開平6−154786号公報、特開平7−3
28651号公報などに開示されている。しかしなが
ら、このような水素ガスを用いたリアクタは、純水素ガ
スを供給し、利用されなかった水素ガスは、そのまま希
釈排気するなどの手段が採られ、水素利用効率は5〜1
0%にすぎなかった。水素ガスは可燃性ガスであり、ま
た、数十%濃度では爆発する危険性も高い。したがっ
て、高濃度の水素ガスをリアクタから大量に排気するこ
とは安全性の面からも好ましくない。
As a method for reducing nitrate and / or nitrite nitrogen to nitrogen gas with hydrogen gas, a method utilizing the denitrification ability of a hydrogen oxidizing bacterium using hydrogen gas as a hydrogen donor,
There is a method using a hydrogenation catalyst such as t or Pd alloy.
The former is a biological treatment method utilizing the nitrate respiration ability of autotrophic bacteria, and is proposed in Japanese Patent Application Laid-Open No. 8-39095. The latter is a physicochemical catalytic reduction method, which is disclosed in JP-A-6-154786 and JP-A-7-3.
No. 28651 discloses this. However, such a reactor using hydrogen gas supplies pure hydrogen gas, and the unused hydrogen gas is diluted and evacuated as it is.
It was only 0%. Hydrogen gas is a flammable gas, and there is a high risk of explosion at a concentration of tens of percent. Therefore, exhausting a large amount of high-concentration hydrogen gas from the reactor is not preferable in terms of safety.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記の従来
技術の問題点を解消し、水素供与体として水素ガスを供
給する生物学的脱窒法又は水素添加触媒の存在下に水素
ガスにより還元する化学的脱窒法により硝酸性及び/又
は亜硝酸性窒素含有水を処理する際に、供給水素ガスの
利用率を高めて効率よく脱窒しうる装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a biological denitrification method in which hydrogen gas is supplied as a hydrogen donor, or reduction by hydrogen gas in the presence of a hydrogenation catalyst. It is an object of the present invention to provide a device capable of efficiently denitrifying by increasing the utilization rate of a supplied hydrogen gas when treating nitrate- and / or nitrite-containing water by a chemical denitrification method.

【0008】[0008]

【課題を解決するための手段】本発明は、脱窒に必要な
水素ガスを脱窒槽内に連続的に供給するとともに、脱窒
槽内の水素混合ガスを脱窒槽の底部へ循環させることに
よって上記課題を解決しうるとの知見に基づいて完成し
たものである。
According to the present invention, hydrogen gas required for denitrification is continuously supplied into a denitrification tank, and a hydrogen mixed gas in the denitrification tank is circulated to the bottom of the denitrification tank. It has been completed based on the knowledge that the problem can be solved.

【0009】すなわち、本発明の水の脱窒処理装置は、
硝酸性窒素及び/又は亜硝酸性窒素を含有する水の脱窒
処理装置において、脱窒槽に、水中の硝酸性及び/又は
亜硝酸性窒素を窒素ガスに分解するのに必要な水素ガス
を連続供給する水素ガス供給手段と、槽内で発生する窒
素含有ガスを外部へ排気するガス排出配管と、脱窒槽上
部の混合ガスを底部へ循環するガス循環配管とを設けた
ことを特徴とする。
That is, the water denitrification treatment apparatus of the present invention comprises:
In a denitrification treatment apparatus for water containing nitrate nitrogen and / or nitrite nitrogen, a denitrification tank continuously feeds hydrogen gas necessary for decomposing nitrate and / or nitrite nitrogen in water into nitrogen gas. A hydrogen gas supply means for supplying, a gas exhaust pipe for exhausting a nitrogen-containing gas generated in the tank to the outside, and a gas circulation pipe for circulating a mixed gas at the top of the denitrification tank to the bottom are provided.

【0010】[0010]

【発明の実施の形態】本発明の脱窒処理装置は、硝酸性
窒素及び/又は亜硝酸性窒素を含有する水を脱窒槽内に
水素ガスを連続供給して脱窒処理することにより、硝酸
性窒素及び/又は亜硝酸性窒素を窒素ガスまで分解さ
せ、除去するものである。以下、説明を簡明にするた
め、単に硝酸性窒素を含有する水として説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The denitrification treatment apparatus of the present invention performs nitric acid treatment by continuously supplying hydrogen gas containing nitrate nitrogen and / or nitrite nitrogen to a denitrification tank with hydrogen gas. Nitrogen and / or nitrite nitrogen are decomposed into nitrogen gas and removed. Hereinafter, for the sake of simplicity, the description will be made simply as water containing nitrate nitrogen.

【0011】本発明の脱窒処理装置において、脱窒槽
は、脱窒菌が付着した接触材を充填した生物学的脱窒槽
あるいは水素添加触媒、例えばCu/Pd触媒、Cu/
Pt触媒、Cu/Rh触媒などが充填されている化学的
脱窒槽であってよい。対象とする被処理水の硝酸性窒素
濃度が高い(50mg/L以上)ときには、生物学的脱
窒槽単独では、pH上昇により、処理が不充分な状態で
終了するおそれがある。この場合には、生物学的脱窒槽
の後段に化学的脱窒槽を連結するのが好ましい。
In the denitrification treatment apparatus of the present invention, the denitrification tank is a biological denitrification tank filled with a contact material to which denitrifying bacteria are attached, or a hydrogenation catalyst such as a Cu / Pd catalyst or a Cu / Pd catalyst.
It may be a chemical denitrification tank filled with a Pt catalyst, a Cu / Rh catalyst, or the like. When the concentration of nitrate nitrogen in the target water to be treated is high (50 mg / L or more), the treatment may end in an insufficient state due to a rise in pH in the biological denitrification tank alone. In this case, it is preferable to connect a chemical denitrification tank after the biological denitrification tank.

【0012】また、脱窒槽の底部に接続する水素ガス供
給手段は、水素ガスを連続供給できるものであれば、特
に制限はなく、水素ガスボンベあるいは水の電気分解装
置であってよく、水の電気分解装置から発生した水素ガ
スを耐圧容器に一時的に貯留し、水素ガスの必要量に応
じて耐圧容器から供給する方式であってもよい。電気分
解装置は、隔膜電解槽であるのが好ましい。脱窒反応が
起こることにより供給した水素ガスは、消費され、その
1/5量の窒素ガスが発生し、脱窒槽上部の気相は水素
含有混合ガスとなっている。本発明においては、連続供
給した水素ガスの利用効率を向上させるため、脱窒槽上
部の混合ガスをガス循環配管を経て(ガスブロワ又はエ
ゼクタなどを用いて)槽下部に供給し、ガスを循環する
構成とする。
The hydrogen gas supply means connected to the bottom of the denitrification tank is not particularly limited as long as it can continuously supply hydrogen gas, and may be a hydrogen gas cylinder or a water electrolysis apparatus. The hydrogen gas generated from the decomposition device may be temporarily stored in a pressure-resistant container, and supplied from the pressure-resistant container according to the required amount of the hydrogen gas. The electrolyzer is preferably a diaphragm electrolyzer. The hydrogen gas supplied by the denitrification reaction is consumed, and 1/5 the amount of nitrogen gas is generated. The gas phase above the denitrification tank is a hydrogen-containing mixed gas. In the present invention, in order to improve the utilization efficiency of the continuously supplied hydrogen gas, a configuration in which the mixed gas in the upper part of the denitrification tank is supplied to the lower part of the tank via a gas circulation pipe (using a gas blower or an ejector) to circulate the gas. And

【0013】さらに、本発明においては、水素ガスは連
続的に供給されるが、脱窒槽上部の混合ガス中の水素ガ
ス濃度に応じて供給量を自動的に増減するのが好まし
い。そのため、脱窒槽上部(気相部)の混合ガス中の水
素ガス濃度を監視する水素モニタを設け、水素ガス濃度
が設定値を超えたら水素ガス供給量を減少させ、逆に水
素ガス濃度が設定値より低くなったら水素ガス供給量を
増加させる水素ガス供給制御システムを付設するのが好
ましい。上記水素モニタの設置場所としては、例えば、
脱窒槽上部(気相部)、ガス排出配管の入口付近、ガス
循環配管の入口付近などが挙げられる。本発明により気
相部の混合ガスを循環させるとともに、水素ガス供給量
を気相部の混合ガス中の水素ガス濃度に応じて自動的に
増減させることにより、水素ガスの利用率が著しく向上
し、効率よく脱窒処理を行うことができる。
Further, in the present invention, although the hydrogen gas is supplied continuously, it is preferable to automatically increase or decrease the supply amount according to the hydrogen gas concentration in the mixed gas in the upper part of the denitrification tank. Therefore, a hydrogen monitor is installed to monitor the concentration of hydrogen gas in the gas mixture above the denitrification tank (gas phase). If the hydrogen gas concentration exceeds the set value, the supply amount of hydrogen gas is reduced, and the hydrogen gas concentration is set It is preferable to provide a hydrogen gas supply control system that increases the hydrogen gas supply amount when the value becomes lower than the value. As the installation location of the hydrogen monitor, for example,
The upper part of the denitrification tank (gas phase part), near the inlet of the gas discharge pipe, near the inlet of the gas circulation pipe, and the like. According to the present invention, the gas mixture in the gas phase is circulated, and the supply rate of the hydrogen gas is automatically increased or decreased in accordance with the hydrogen gas concentration in the gas mixture in the gas phase. The denitrification can be performed efficiently.

【0014】また、脱窒槽上部(気相部)の混合ガスは
連続的に排気される。水素ガスは、可燃性ガスであり、
爆発の危険性があるので、外気が脱窒槽へ混入し、脱窒
槽内で水素ガスと支燃性ガスの酸素が接触することを防
止するため、ガス排出配管に、例えば、逆止弁、水封槽
などの外気遮断装置を設けるのが好ましい。この外気遮
断装置を介して排出される混合ガスは、水素ガス燃焼手
段で燃焼させた後に外気に放出することが安全性の面か
ら好ましい。水素ガスの燃焼は、白金やパラジウムを
0.1〜0.5容量%含んだアルミナ担体を触媒として
用い、100℃以下の温度で行うのが好ましい。その
際、水素ガス濃度が高いと爆発の危険性があり、また、
反応熱により1%の水素ガス濃度で100℃付近まで温
度が上昇するため、希釈手段により水素ガス濃度を1%
以下まで希釈してから燃焼させるのが好ましい。さら
に、水素ガス燃焼のための助燃ガスとして、電解槽の陽
極部で発生する酸素ガスを供給してもよい。
Further, the mixed gas in the upper part (gas phase part) of the denitrification tank is continuously exhausted. Hydrogen gas is a flammable gas,
Since there is a danger of explosion, to prevent the outside air from entering the denitrification tank and contacting the hydrogen gas and the oxygen of the oxidizing gas in the denitrification tank, use a gas discharge pipe, such as a check valve or water. It is preferable to provide an outside air blocking device such as a sealed tank. It is preferable from the viewpoint of safety that the mixed gas discharged through the outside air cutoff device is burned by the hydrogen gas combustion means and then released to the outside air. The combustion of the hydrogen gas is preferably performed at a temperature of 100 ° C. or lower using an alumina carrier containing 0.1 to 0.5% by volume of platinum or palladium as a catalyst. At that time, if the concentration of hydrogen gas is high, there is a danger of explosion,
Since the temperature rises to about 100 ° C. at a hydrogen gas concentration of 1% due to reaction heat, the hydrogen gas concentration is reduced to 1% by a diluting means.
It is preferable to burn after diluting to the following. Further, oxygen gas generated at the anode of the electrolytic cell may be supplied as a combustion assisting gas for hydrogen gas combustion.

【0015】脱窒槽からの流出水は、曝気槽に流入させ
て嫌気性雰囲気から好気性雰囲気に回復させるととも
に、場合により存在しうる有機物を分解除去し、飲料水
に好適なものとする。曝気槽には、空気を吹き込むか、
又は水素ガス供給手段としての隔膜電解槽から発生する
酸素を単独で若しくは空気と一緒に吹き込むことができ
る。
The effluent from the denitrification tank is allowed to flow into an aeration tank to recover from an anaerobic atmosphere to an aerobic atmosphere, and to decompose and remove organic substances that may be present in some cases, making it suitable for drinking water. Blow air into the aeration tank,
Alternatively, oxygen generated from a diaphragm electrolytic cell as hydrogen gas supply means can be blown alone or together with air.

【0016】[0016]

【実施例】次に、図面を参照して実施例に基づいて本発
明を具体的に説明する。図1は、本発明の第一の実施例
を示す脱窒処理装置の系統図である。図1に示した脱窒
処理装置は、主として脱窒槽1と曝気槽2と水の電解槽
3とから成る。脱窒槽1には脱窒菌が付着した充填材又
は水素添加触媒からなる充填材が充填されており、硝酸
性窒素を含有する被処理液は、原水供給ポンプ4により
脱窒槽1に流入する。電解槽3で水の電気分解によって
発生した水素ガスは、水素ガス供給配管8により脱窒槽
1の底部から導入される。水素ガス供給手段として、隔
膜電解槽を用いた場合には、陰極部からの水素ガス発生
と同時に陽極部から酸素ガスが発生する。この酸素ガス
を酸素ガス供給配管9から水素ガス燃焼手段13へ助燃
ガスとして供給することができる。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram of a denitrification treatment apparatus showing a first embodiment of the present invention. The denitrification treatment apparatus shown in FIG. 1 mainly includes a denitrification tank 1, an aeration tank 2, and a water electrolysis tank 3. The denitrification tank 1 is filled with a filler to which denitrifying bacteria have adhered or a filler made of a hydrogenation catalyst, and the liquid to be treated containing nitrate nitrogen flows into the denitrification tank 1 by the raw water supply pump 4. Hydrogen gas generated by electrolysis of water in the electrolytic cell 3 is introduced from the bottom of the denitrification tank 1 through a hydrogen gas supply pipe 8. When a diaphragm electrolytic cell is used as the hydrogen gas supply means, oxygen gas is generated from the anode at the same time as hydrogen gas is generated from the cathode. This oxygen gas can be supplied from the oxygen gas supply pipe 9 to the hydrogen gas combustion means 13 as an auxiliary combustion gas.

【0017】また、脱窒槽1の気相部に連結されたガス
循環配管6からガスブロワやエゼクタなどのガス循環装
置5により、水素混合ガスが脱窒槽1の底部に送気さ
れ、未利用の水素ガスが利用に供される。脱窒槽1で
は、水素ガスを水素供与体として前記の式(1)、
(2)に示した脱窒反応が進行し、硝酸性窒素は窒素ガ
スに分解され、脱窒槽流出液は、曝気槽2へ導入し、こ
こで嫌気性雰囲気から好気性雰囲気に回復させて飲料水
に好適なものとし、脱窒槽流出液中に含まれる有機物を
分解除去することができる。
Further, a hydrogen mixed gas is sent to the bottom of the denitrification tank 1 from a gas circulation pipe 6 connected to a gas phase portion of the denitrification tank 1 by a gas circulation device 5 such as a gas blower or an ejector. Gas is provided for utilization. In the denitrification tank 1, the above formula (1) using hydrogen gas as a hydrogen donor
The denitrification reaction shown in (2) proceeds, the nitrate nitrogen is decomposed into nitrogen gas, and the effluent from the denitrification tank is introduced into the aeration tank 2, where the anaerobic atmosphere is restored to the aerobic atmosphere, and the beverage is recovered. It is suitable for water and can decompose and remove organic substances contained in the effluent of the denitrification tank.

【0018】脱窒槽1では硝酸性窒素の分解に伴い窒素
ガスの発生と水素ガスの消費が生じる。計画窒素除去量
に対して消費される量の水素ガスを水素ガス供給手段で
ある電解槽3から水素ガス供給配管8を介して供給し、
消費される水素ガスの1/5量の発生した窒素と未反応
水素の混合ガスがガス排出配管7から連続的に排気され
る。また、ガス排出配管7の入口付近には、脱窒槽1の
上部(気相部)の混合ガス中の水素ガス濃度を監視する
水素モニタ14を設け、水素ガス濃度が設定値を超えた
ら水素ガス供給量を減少させ、逆に水素ガス濃度が設定
値より低くなったら水素ガス供給量を増加させる水素ガ
ス供給制御システム15が接続されている。これによ
り、水素ガスの余分な供給・排気を防ぐことができ、ま
た、逆に、水素不足による脱窒性能低下を防ぐことがで
きる。
In the denitrification tank 1, nitrogen gas is generated and hydrogen gas is consumed as the nitrate nitrogen is decomposed. An amount of hydrogen gas consumed relative to the planned nitrogen removal amount is supplied from the electrolytic cell 3 as the hydrogen gas supply means via the hydrogen gas supply pipe 8,
A mixed gas of nitrogen and unreacted hydrogen, which is one fifth of the consumed hydrogen gas, is continuously exhausted from the gas discharge pipe 7. A hydrogen monitor 14 for monitoring the concentration of hydrogen gas in the mixed gas in the upper part (gas phase) of the denitrification tank 1 is provided near the inlet of the gas discharge pipe 7. A hydrogen gas supply control system 15 for reducing the supply amount and conversely increasing the hydrogen gas supply amount when the hydrogen gas concentration becomes lower than the set value is connected. As a result, unnecessary supply and exhaust of hydrogen gas can be prevented, and conversely, a decrease in denitrification performance due to insufficient hydrogen can be prevented.

【0019】水素ガスは、可燃性ガスであり、爆発の危
険性があることから、脱窒槽1内への空気混入防止のた
め、ガス排出配管7に外気遮断装置12を備える。この
外気遮断装置12を水封槽とした場合には、脱窒槽内圧
力を簡便に一定値に維持することができるメリットがあ
る。外気遮断装置12から排出される混合ガスは、水素
ガス燃焼手段13で燃焼させてから大気中に放出される
が、このとき水素ガスの燃焼を100℃以下の低温で行
うため、希釈手段16で混合ガス中の水素ガス濃度を1
%以下まで希釈してから水素ガス燃焼手段13へ送る。
水素ガス燃焼手段13には、電解槽3の陽極部から生成
した酸素ガスを酸素ガス供給配管9を介して送り、水素
ガスを燃焼させることにより、直接可燃性ガスを大気中
に放出することを防止することができる。
Since hydrogen gas is a flammable gas and has a risk of explosion, the gas exhaust pipe 7 is provided with an outside air shutoff device 12 to prevent air from entering the denitrification tank 1. When the outside air shutoff device 12 is a water sealing tank, there is an advantage that the pressure in the denitrification tank can be easily maintained at a constant value. The mixed gas discharged from the outside air shut-off device 12 is released into the atmosphere after being burned by the hydrogen gas combustion means 13. At this time, since the combustion of the hydrogen gas is performed at a low temperature of 100 ° C. or less, the dilution means 16 Reduce the hydrogen gas concentration in the mixed gas to 1
% And then sent to the hydrogen gas combustion means 13.
The oxygen gas generated from the anode section of the electrolytic cell 3 is sent to the hydrogen gas combustion means 13 through the oxygen gas supply pipe 9 to burn the hydrogen gas, thereby directly discharging the combustible gas to the atmosphere. Can be prevented.

【0020】図2は、本発明の第二の実施例を示す脱窒
処理装置の系統図である。図2に示した脱窒処理装置
は、電解槽3で発生した水素ガスを水素ガス貯留タンク
17に貯留しておき、このタンクに付加した調整弁と水
素モニタ14を水素ガス供給制御システム15に接続
し、水素ガス供給量を制御する構成とした点で第一の実
施例と相違する。
FIG. 2 is a system diagram of a denitrification treatment apparatus showing a second embodiment of the present invention. The denitrification treatment apparatus shown in FIG. 2 stores hydrogen gas generated in the electrolytic cell 3 in a hydrogen gas storage tank 17, and connects an adjusting valve and a hydrogen monitor 14 added to this tank to the hydrogen gas supply control system 15. The first embodiment differs from the first embodiment in that a connection is made and the supply amount of hydrogen gas is controlled.

【0021】次に、生物学的脱窒方式において本発明の
装置を用いて脱窒処理した場合の水素濃度による脱窒速
度への影響について説明する。図3は、硝酸性窒素10
0mg/Lに水素酸化細菌をSS濃度として3000m
g/L接種し、水素ガス濃度を変化させて脱窒速度を測
定した回分試験の結果を示す水素濃度−脱窒速度関係図
である。図3から分かるように、ガス循環量を空塔速度
として60m/hに設定した場合、脱窒速度20mg/
L・hを得るための水素濃度は約10%であった。ま
た、ガス循環量を変化させると、同脱窒速度を得るため
に必要な水素濃度は、ガス空塔速度10m/hで約30
%、170m/hで約5%と、異なる結果を得た。この
ように、脱窒反応に律速となる水素溶解速度は水素濃度
とガス循環量に依存する。したがって、与えられる硝酸
性窒素負荷に最適な水素濃度とガス循環量を予め装置特
性と併せて取得しておくことが好ましい。
Next, the influence of the hydrogen concentration on the denitrification rate when the denitrification treatment is performed using the apparatus of the present invention in the biological denitrification method will be described. FIG. 3 shows nitrate nitrogen 10
3000 mg of hydrogen oxidizing bacteria as SS concentration at 0 mg / L
It is a hydrogen concentration-denitrification rate relationship diagram showing the result of a batch test in which g / L was inoculated and the denitrification rate was measured by changing the hydrogen gas concentration. As can be seen from FIG. 3, when the gas circulation rate was set to 60 m / h as the superficial velocity, the denitrification rate was 20 mg / h.
The hydrogen concentration for obtaining L · h was about 10%. When the gas circulation rate is changed, the hydrogen concentration required to obtain the same denitrification rate is about 30 at a gas superficial velocity of 10 m / h.
%, About 5% at 170 m / h, different results were obtained. As described above, the rate of dissolution of hydrogen that is rate-limiting for the denitrification reaction depends on the hydrogen concentration and the gas circulation amount. Therefore, it is preferable that the optimum hydrogen concentration and gas circulation amount for the given nitrate nitrogen load be obtained in advance together with the device characteristics.

【0022】また、図1に示した脱窒処理装置におい
て、脱窒槽に水素酸化細菌を付着させた接触材を6リッ
トル充填し、硝酸性窒素15mg/Lの地下水を対象と
し、有効液容積12リットル、充填層容積当たりの硝酸
性窒素負荷20mg/L・h、液流速0.13L/分、
循環ガス空塔速度60m/h、水素ガスの排気濃度10
%の設定条件として連続通水し、原水及び処理水の硝酸
性窒素を測定した結果を図4に示す。図4から分かるよ
うに、この連続処理によって地下水中に含まれている硝
酸性窒素が1mg/L以下(除去率95%以上)にまで
除去できた。この脱窒処理装置により、気相部の混合ガ
ス中の水素ガス濃度が10〜12%で安定し、ガス排出
配管へ排出されるガス量もわずかであるため、水素利用
率は95%以上であった。
In the denitrification treatment apparatus shown in FIG. 1, a denitrification tank was filled with 6 liters of a contact material to which hydrogen oxidizing bacteria had adhered, and an effective liquid volume of 12 mg / L for nitrate nitrogen was used as ground water. Liter, nitrate nitrogen load 20 mg / Lh per packed bed volume, liquid flow rate 0.13 L / min,
Recirculating gas superficial velocity 60m / h, exhaust concentration of hydrogen gas 10
FIG. 4 shows the results of measuring the nitrate nitrogen in the raw water and the treated water by continuously passing water as the% setting condition. As can be seen from FIG. 4, the nitrate nitrogen contained in the groundwater could be removed to 1 mg / L or less (removal rate 95% or more) by this continuous treatment. With this denitrification treatment apparatus, the hydrogen gas concentration in the gas mixture in the gas phase is stabilized at 10 to 12%, and the amount of gas discharged to the gas discharge pipe is also small. there were.

【0023】さらに、30日経過時から、硝酸性窒素5
mg/Lの地下水に切り替え、気相部の混合ガス中の水
素ガス濃度を3%に設定した後、同様に処理した結果、
図4に示した良好な除去性能を得た。したがって、生物
学的脱窒槽に流入する被処理水の硝酸性窒素量に応じて
気相部の混合ガス中の水素ガス濃度を一定値に設定する
ことにより、水素利用率や処理性能の最適化を図ること
が可能であった。なお、上記と同一の脱窒槽構成におい
て、脱窒菌が付着した接触材の代わりに、PtやPdな
どの水素添加触媒を充填し、同様の試験を行った結果、
硝酸性窒素の除去率として80%以上を得た。
Further, after the elapse of 30 days, nitrate nitrogen 5
mg / L groundwater, and after setting the hydrogen gas concentration in the mixed gas of the gas phase to 3%, the same treatment was performed.
The good removal performance shown in FIG. 4 was obtained. Therefore, by setting the concentration of hydrogen gas in the mixed gas in the gas phase to a constant value according to the amount of nitrate nitrogen in the water to be treated flowing into the biological denitrification tank, optimization of the hydrogen utilization rate and treatment performance Was possible. In addition, in the same denitrification tank configuration as above, instead of the contact material to which the denitrifying bacteria adhered, a hydrogenation catalyst such as Pt or Pd was filled, and the same test was performed.
A removal rate of nitrate nitrogen of 80% or more was obtained.

【0024】[0024]

【発明の効果】本発明の脱窒処理装置を用いることによ
り、脱窒反応に必要な水素供与体として水素ガスを連続
的に供給し、高い水素ガス利用効率で、廃水中の硝酸性
窒素を効率よく除去することができる。また、排出され
る混合ガス中の水素ガスを燃焼させて爆発の危険のない
安全なガスとして大気中に放出することができる。さら
に、被処理水の硝酸性窒素濃度に応じて脱窒槽の気相部
の混合ガス中の水素ガス濃度を一定値に制御する構成と
することにより、自動的に水素利用効率と処理性能の最
適化を図ることができる。また、対象とする被処理水の
硝酸性窒素濃度が高い(50mg/L以上)ときには、
生物学的脱窒槽単独では、pH上昇が大きく、処理が不
充分な状態で終了するおそれがあるため、生物学的脱窒
槽の後段に化学的脱窒槽を連結することによって、効率
よく充分な窒素除去を達成することができる。
By using the denitrification treatment apparatus of the present invention, hydrogen gas is continuously supplied as a hydrogen donor necessary for the denitrification reaction, and the nitrate nitrogen in the wastewater can be removed with high hydrogen gas utilization efficiency. It can be removed efficiently. Further, the hydrogen gas in the discharged mixed gas can be burned and released into the atmosphere as a safe gas free from explosion. Furthermore, by automatically controlling the concentration of hydrogen gas in the gas mixture in the gas phase of the denitrification tank to a constant value in accordance with the concentration of nitrate nitrogen in the water to be treated, the hydrogen usage efficiency and the processing performance are automatically optimized. Can be achieved. When the concentration of nitrate nitrogen in the target water to be treated is high (50 mg / L or more),
Since the pH of the biological denitrification tank alone increases greatly and the treatment may end in an insufficient state, by connecting the chemical denitrification tank to the latter stage of the biological denitrification tank, sufficient nitrogen Elimination can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す脱窒処理装置の系統図
である。
FIG. 1 is a system diagram of a denitrification treatment apparatus showing one embodiment of the present invention.

【図2】本発明の別の実施例を示す脱窒装置の系統図で
ある。
FIG. 2 is a system diagram of a denitrification apparatus showing another embodiment of the present invention.

【図3】一定のガス循環量において脱窒処理を行った回
分試験の結果を示す水素濃度−脱窒速度関係図である。
FIG. 3 is a graph showing a relationship between a hydrogen concentration and a denitrification rate, showing a result of a batch test in which a denitrification treatment is performed at a constant gas circulation amount.

【図4】本発明の生物学的脱窒装置における連続試験の
結果を示す原水及び処理水の硝酸性窒素濃度の経日変化
を示すグラフである。
FIG. 4 is a graph showing the daily change of the nitrate nitrogen concentration of raw water and treated water showing the results of a continuous test in the biological denitrification apparatus of the present invention.

【符号の説明】 1 脱窒槽 2 曝気槽 3 電解槽 4 原水供給ポンプ 5 ガス循環装置 6 ガス循環配管 7 ガス排出配管 8 水素ガス供給配管 9 酸素ガス供給配管 10 充填材 11 充填材 12 外気遮断装置 13 水素ガス燃焼手段 14 水素モニタ 15 水素ガス供給制御システム 16 希釈手段 17 水素ガス貯留タンク[Description of Signs] 1 Denitrification tank 2 Aeration tank 3 Electrolysis tank 4 Raw water supply pump 5 Gas circulation device 6 Gas circulation pipe 7 Gas discharge pipe 8 Hydrogen gas supply pipe 9 Oxygen gas supply pipe 10 Filling material 11 Filling material 12 Outside air cutoff device 13 Hydrogen gas combustion means 14 Hydrogen monitor 15 Hydrogen gas supply control system 16 Dilution means 17 Hydrogen gas storage tank

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 硝酸性窒素及び/又は亜硝酸性窒素を含
有する水の脱窒処理装置において、脱窒槽に、水中の硝
酸性及び/又は亜硝酸性窒素を窒素ガスに分解するのに
必要な反応当量の水素ガスを連続供給する水素ガス供給
手段と、槽内で発生する窒素含有ガスを外部へ排気する
ガス排出配管と、脱窒槽上部の混合ガスを底部へ循環す
るガス循環配管とを設けたことを特徴とする水の脱窒処
理装置。
In a denitrification treatment apparatus for water containing nitrate nitrogen and / or nitrite nitrogen, a denitrification tank is required to decompose nitrate and / or nitrite nitrogen in water into nitrogen gas. Hydrogen gas supply means for continuously supplying a hydrogen gas having a high reaction equivalent, a gas discharge pipe for exhausting nitrogen-containing gas generated in the tank to the outside, and a gas circulation pipe for circulating the mixed gas at the top of the denitrification tank to the bottom. A denitrification treatment device for water, which is provided.
【請求項2】 脱窒槽上部の混合ガス中の水素ガス濃度
を監視する水素モニタを設け、水素ガス濃度が設定値を
超えたら水素ガス供給量を減少させ、逆に水素ガス濃度
が設定値より低くなったら水素ガス供給量を増加させる
水素ガス供給制御システムを付設した請求項1記載の水
の脱窒処理装置。
2. A hydrogen monitor for monitoring the concentration of hydrogen gas in the mixed gas in the upper part of the denitrification tank is provided. When the concentration of hydrogen gas exceeds a set value, the supply amount of hydrogen gas is reduced. 2. The water denitrification treatment apparatus according to claim 1, further comprising a hydrogen gas supply control system for increasing the supply amount of hydrogen gas when the hydrogen gas becomes low.
【請求項3】 ガス排出配管に、脱窒槽への空気の混入
を防止する外気遮断装置を設けた請求項1記載の水の脱
窒処理装置。
3. The water denitrification treatment device according to claim 1, wherein an outside air shutoff device for preventing air from entering the denitrification tank is provided in the gas discharge pipe.
【請求項4】 脱窒槽が、脱窒細菌を用いた生物学的脱
窒槽又は水素添加触媒を用いた化学的脱窒槽であるか、
又は生物学的脱窒槽と化学的脱窒槽を連結したものであ
る請求項1記載の水の脱窒処理装置。
4. The denitrification tank is a biological denitrification tank using a denitrification bacterium or a chemical denitrification tank using a hydrogenation catalyst.
The water denitrification treatment apparatus according to claim 1, wherein the biological denitrification tank and the chemical denitrification tank are connected.
【請求項5】 ガス排出配管に設けた外気遮断装置の後
に希釈手段及び水素ガス燃焼手段を設けた請求項3記載
の水の脱窒処理装置。
5. The water denitrification treatment apparatus according to claim 3, wherein a dilution means and a hydrogen gas combustion means are provided after the outside air cutoff apparatus provided in the gas discharge pipe.
【請求項6】 水素ガス供給手段として、隔膜電解槽を
用い、その電解槽の陽極部で発生する酸素ガスを、水素
ガス燃焼手段の助燃ガスとして供給するか、又は脱窒槽
の後段に接続した曝気槽に供給する請求項1記載の水の
脱窒処理装置。
6. A diaphragm electrolytic cell is used as hydrogen gas supply means, and oxygen gas generated at the anode of the electrolytic cell is supplied as auxiliary gas for hydrogen gas combustion means, or connected to the latter stage of the denitrification tank. The water denitrification treatment device according to claim 1, which is supplied to an aeration tank.
JP31645497A 1997-10-31 1997-10-31 Water denitrification treatment apparatus Pending JPH11128958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31645497A JPH11128958A (en) 1997-10-31 1997-10-31 Water denitrification treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31645497A JPH11128958A (en) 1997-10-31 1997-10-31 Water denitrification treatment apparatus

Publications (1)

Publication Number Publication Date
JPH11128958A true JPH11128958A (en) 1999-05-18

Family

ID=18077280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31645497A Pending JPH11128958A (en) 1997-10-31 1997-10-31 Water denitrification treatment apparatus

Country Status (1)

Country Link
JP (1) JPH11128958A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332496B1 (en) * 1999-05-24 2002-04-17 채문식 Method and Apparatus of denitrification for the purification of wastewater by using reduction of electric energy
WO2003045853A1 (en) * 2001-11-28 2003-06-05 Ebara Corporation Device and method for bio-membrane filtration
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
KR100990162B1 (en) 2008-04-28 2010-10-29 (주)범한엔지니어링 종합건축사 사무소 Denitrification method and apparatus of bank filtered water by use of aquifer.
CN109775914A (en) * 2019-01-17 2019-05-21 大渊环境技术(厦门)有限公司 A kind of plasma effluent treatment plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332496B1 (en) * 1999-05-24 2002-04-17 채문식 Method and Apparatus of denitrification for the purification of wastewater by using reduction of electric energy
WO2003045853A1 (en) * 2001-11-28 2003-06-05 Ebara Corporation Device and method for bio-membrane filtration
US7297275B2 (en) 2001-11-28 2007-11-20 Ebara Corporation Biomembrane filtration apparatus and method
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
KR100990162B1 (en) 2008-04-28 2010-10-29 (주)범한엔지니어링 종합건축사 사무소 Denitrification method and apparatus of bank filtered water by use of aquifer.
CN109775914A (en) * 2019-01-17 2019-05-21 大渊环境技术(厦门)有限公司 A kind of plasma effluent treatment plant

Similar Documents

Publication Publication Date Title
TWI568683B (en) Water treatment method and method for producing ultrapure water
CN109264845A (en) A kind of device and method of reverse osmosis concentrated water organic matter and ammonia nitrogen removal simultaneously
US20200156971A1 (en) Wastewater Treatment System and Method with Catalysts
JPH11128958A (en) Water denitrification treatment apparatus
JP2007190492A (en) Method and apparatus for treating nitrogen-containing wastewater
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
US20230322595A1 (en) Wastewater Ozone Treatment
JPH10230291A (en) Biological denitrification method of water and device therefor
JP3858359B2 (en) How to remove organic matter
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPH06269776A (en) Device for removing ammoniacal nitrogen in water
TW202212269A (en) Pure water production device and pure water production method
JPH10290996A (en) Denitrification apparatus for water
JP3739452B2 (en) Power plant wastewater treatment method containing amine compounds
JP3944774B2 (en) Startup method of denitrification equipment
JP2000167570A (en) Treatment of waste water
JP3822520B2 (en) Nitrogen compound-containing water treatment method
JP3509186B2 (en) Denitrification treatment method
JP2001113121A (en) Method for treating desulfurization waste water
JPH09117782A (en) Treatment of ammonia-containing waste water
JPH07265877A (en) Treatment of ammonia-containing waste water
JPH09239384A (en) Treatment of waste water from condesnate desalination device of thermal power station
JP2003145136A (en) Method and apparatus for treating wastewater
JPH0839081A (en) Treatment of regenerated waste water of condensed water desalting apparatus
JPH06154787A (en) Device for removing nitrogen