JPH09117782A - Treatment of ammonia-containing waste water - Google Patents

Treatment of ammonia-containing waste water

Info

Publication number
JPH09117782A
JPH09117782A JP29927295A JP29927295A JPH09117782A JP H09117782 A JPH09117782 A JP H09117782A JP 29927295 A JP29927295 A JP 29927295A JP 29927295 A JP29927295 A JP 29927295A JP H09117782 A JPH09117782 A JP H09117782A
Authority
JP
Japan
Prior art keywords
ammonia
water
noble metal
hydrogen peroxide
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29927295A
Other languages
Japanese (ja)
Other versions
JP3565637B2 (en
Inventor
Yoshiro Yuasa
芳郎 湯浅
Susumu Izumitani
進 泉谷
Koji Kagawa
公司 香川
Tomoyuki Asada
智之 淺田
Toshiji Nakahara
敏次 中原
Yasuhiko Takabayashi
泰彦 高林
Isao Joko
勲 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kurita Water Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kurita Water Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP29927295A priority Critical patent/JP3565637B2/en
Publication of JPH09117782A publication Critical patent/JPH09117782A/en
Application granted granted Critical
Publication of JP3565637B2 publication Critical patent/JP3565637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the total nitrogen concn. by blowing a specified gaseous oxygen into an ammonia-contg. waste water under specified pressurized conditions, bringing the water into contact with a noble metal carrying catalyst under specified heated conditions, then adding hydrogen peroxide and bringing the water into contact with a noble metal carrying catalyst under specified heated conditions. SOLUTION: The ammonia-contg. waste water is sent by a pump 2 from a raw water tank 1 under pressure, and gaseous oxygen having >=90% purity is blown from an oxygen generator 3 into the water at 3-10kg/cm<2> (gage pressure). The water is heated by the remaining heat in a heat exchanger 4, further heated to 140-180 deg.C by a heater 5 and sent to a catalytic reaction tank 6, and the ammonia is removed by the cracking reaction between ammonia and oxygen catalyzed by a noble metal carrying catalyst. Hydrogen peroxide in an amt. more than the equivalent to residual ammonia is added to the treated water leaving the reaction tank 6, and the water is sent to a catalytic reaction tank 7 and brought into contact with a noble metal carrying catalyst at 140-180 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア含有排
水の処理方法に関する。さらに詳しくは、本発明は、高
濃度にアンモニアを含有する排水を処理して、全窒素が
10mg/リットル以下の処理水とする、経済的で効率よ
く高度処理を行うことができるアンモニア含有排水の処
理方法に関する。
TECHNICAL FIELD The present invention relates to a method for treating wastewater containing ammonia. More specifically, the present invention provides an ammonia-containing wastewater that can be economically and efficiently advanced treated by treating wastewater containing a high concentration of ammonia to obtain treated water having a total nitrogen of 10 mg / liter or less. Regarding processing method.

【0002】[0002]

【従来の技術】肥料工場排水、染料工場排水、半導体工
場排水や発電所排水などには、アンモニアがかなりの量
含まれている。アンモニアは、閉鎖性水域において富栄
養化の源となるので、排水処理によって除去しなければ
ならない。排水中のアンモニアの除去方法として、従来
より、高温高圧下における空気酸化方法、ゼオライトを
用いた吸着処理方法、亜硝酸アンモニウムとして熱分解
処理する方法、生物学的硝化脱窒法などが知られてい
る。高温高圧下における空気酸化方法は、50kg/cm2
以上の高圧下でアンモニア含有排水に空気を吹き込み、
アンモニアを分解して窒素ガスとして除去する方法であ
る。この方法は、高圧を必要とするために、設備が高価
なものとなる上に、爆発の危険を伴い、反応容器が腐食
しやすくなるという欠点がある。ゼオライトを用いた吸
着処理方法は、ゼオライトの有するイオン交換能を利用
し、ゼオライトにより排水中のアンモニアを吸着して除
去する方法であるが、イオン交換平衡に達したゼオライ
トを再生する際、高濃度のアンモニア含有廃水が排出さ
れるため、再度その処理が必要となる欠点がある。亜硝
酸アンモニウムとして熱分解処理する方法は、アンモニ
アを含有する排水に亜硝酸塩を添加して亜硝酸アンモニ
ウムとしたのち、加温条件下で貴金属触媒と接触して分
解し窒素ガスとして処理する方法である。この方法で
は、アンモニア性窒素にに対し当量の亜硝酸性窒素を加
える必要があり、排水中に存在するアンモニアと当量の
亜硝酸が必要となるため、アンモニアを高濃度に含有す
る排水についてはランニングコストが高くなるという欠
点がある。生物学的硝化脱窒素法は、硝化細菌によりア
ンモニアを亜硝酸性又は硝酸性窒素に酸化したのち、脱
窒素細菌により窒素ガスに還元する方法である。この方
法は、微生物反応であるため、種々の変動要因に対して
分解活性が不安定である上、反応速度が遅く滞留時間を
長くとる必要があり、装置の設置面積が広くなり、かつ
汚泥の後処理が必要であるなどの欠点を有している。
2. Description of the Related Art Fertilizer factory wastewater, dye factory wastewater, semiconductor factory wastewater and power plant wastewater contain a considerable amount of ammonia. Ammonia is a source of eutrophication in closed waters and must be removed by wastewater treatment. Conventionally known methods for removing ammonia in wastewater include an air oxidation method under high temperature and high pressure, an adsorption treatment method using zeolite, a thermal decomposition treatment method using ammonium nitrite, and a biological nitrification denitrification method. Air oxidation method under high temperature and high pressure is 50kg / cm 2
Blow air into the ammonia-containing wastewater under the above high pressure,
This is a method of decomposing ammonia and removing it as nitrogen gas. Since this method requires high pressure, the equipment is expensive, and there is a drawback that there is a danger of explosion and the reaction vessel is easily corroded. The adsorption treatment method using zeolite is a method of adsorbing and removing the ammonia in the wastewater by the zeolite by utilizing the ion exchange capacity of the zeolite, but at the time of regenerating the zeolite that has reached the ion exchange equilibrium, a high concentration Since the ammonia-containing waste water is discharged, there is a drawback that the treatment is required again. The method of thermally decomposing as ammonium nitrite is a method of adding nitrite to ammonia-containing wastewater to make ammonium nitrite, and then contacting with a noble metal catalyst under heating conditions to decompose and treat as nitrogen gas. In this method, it is necessary to add an equivalent amount of nitrite nitrogen to ammoniacal nitrogen, and ammonia present in the wastewater and an equivalent amount of nitrous acid are required.Therefore, for wastewater containing a high concentration of ammonia, running It has the disadvantage of high cost. The biological nitrification and denitrification method is a method in which ammonia is oxidized to nitrite or nitrate nitrogen by nitrifying bacteria and then reduced to nitrogen gas by denitrifying bacteria. Since this method is a microbial reaction, its decomposition activity is unstable with respect to various fluctuation factors, and the reaction rate is slow and it is necessary to take a long residence time. It has drawbacks such as the need for post-treatment.

【0003】[0003]

【発明が解決しようとする課題】本発明は、再処理が必
要な副生物の発生がなく、小型の反応装置により処理を
行い、処理水中の全窒素濃度を10mg/リットル以下に
することができる、経済的に有利なアンモニア含有排水
の処理方法を提供することを目的としてなされたもので
ある。
According to the present invention, there is no generation of by-products that need to be reprocessed, and the process can be carried out by a small reactor so that the total nitrogen concentration in the treated water is 10 mg / liter or less. The purpose of the present invention is to provide an economically advantageous method for treating wastewater containing ammonia.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、アンモニア含有
排水に加圧下に高純度の酸素ガスを吹き込んで加温接触
分解したのち、さらに処理水に過酸化水素を添加して加
温接触分解することにより、排水中のアンモニアを効率
よく処理し得ることを見いだし、この知見に基づいて本
発明を完成するに至った。すなわち、本発明は、(1)
アンモニア含有排水に、3〜10kg/cm2(ゲージ圧)の
加圧条件下で純度90%以上の酸素ガスを吹き込み、1
40〜180℃の加温条件下で貴金属担持触媒と接触さ
せたのち、処理水に過酸化水素を添加し、140〜18
0℃の加温条件下で貴金属担持触媒と接触させることを
特徴とするアンモニア含有排水の処理方法、を提供する
ものである。さらに、本発明の好ましい態様として、
(2)純度90%以上の酸素ガスが、PSA(Pres
sure SwingAdsorption)方式で空
気中から分離した酸素ガスである第(1)項記載のアンモ
ニア含有排水の処理方法、(3)貴金属担持触媒が、多
孔質担体に白金を0.05〜10重量%担持させたもの
である第(1)項又は第(2)項記載のアンモニア含有排水
の処理方法、及び、(4)多孔質担体が、比表面積10
〜100m2/gのチタニア粒状物である第(3)項記載
のアンモニア含有排水の処理方法、を挙げることができ
る。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have succeeded in injecting high purity oxygen gas under pressure into ammonia-containing wastewater to decompose it under heating and catalytic decomposition. Further, they have found that ammonia in waste water can be efficiently treated by adding hydrogen peroxide to treated water and subjecting it to thermal catalytic decomposition, and based on this finding, the present invention has been completed. That is, the present invention provides (1)
Blowing ammonia-containing wastewater with oxygen gas having a purity of 90% or more under a pressurized condition of 3 to 10 kg / cm 2 (gauge pressure), 1
After contact with the noble metal-supported catalyst under a heating condition of 40 to 180 ° C., hydrogen peroxide is added to the treated water,
The present invention provides a method for treating ammonia-containing wastewater, which comprises contacting with a precious metal-supported catalyst under a heating condition of 0 ° C. Further, as a preferred embodiment of the present invention,
(2) PSA (Pres
The method for treating wastewater containing ammonia according to item (1), which is oxygen gas separated from the air by the Sure Swing Adsorption method, and (3) the noble metal-supported catalyst carries 0.05 to 10% by weight of platinum on the porous carrier. The method for treating ammonia-containing wastewater according to (1) or (2) above, and (4) the porous carrier having a specific surface area of 10
The treatment method of the ammonia-containing wastewater according to the item (3), which is a titania granular material of -100 m 2 / g.

【0005】[0005]

【発明の実施の形態】本発明方法を適用することができ
るアンモニア含有排水としては、例えば、染料工場の排
水、肥料工場の排水、半導体工場の排水、発電所の排水
などを挙げることができる。本発明方法は、アンモニア
性窒素を500〜2,000mg/リットルのように高濃
度に含有するアンモニア含有排水の処理に適している。
本発明方法においては、第1段のアンモニアの分解を、
3〜10kg/cm2(ゲージ圧)の加圧条件下に純度90%
以上の酸素ガスをアンモニア含有排水に吹き込み、14
0〜180℃の加温条件下で貴金属担持触媒と接触させ
ることにより行う。本発明方法において、酸素ガス吹き
込みの圧力は3〜10kg/cm2(ゲージ圧)であり、より
好ましくは5〜10kg/cm2(ゲージ圧)である。従来の
アンモニア含有排水の空気酸化処理は、通常50kg/cm
2以上の高圧下で行うため、爆発の危険や反応容器の腐
食の問題が避けられなかった。また、強いて10kg/cm
2以下の低圧下で空気酸化を行おうとすると、アンモニ
アの分解効率が悪く、装置が極端に大型化するため現実
的ではなかった。本発明方法においては、純度90%以
上の酸素ガスを吹き込み、加温条件下に接触分解するこ
とにより低圧下でのアンモニアの接触酸化分解が可能と
なった。本発明方法においては、純度90%以上の酸素
ガスを使用する。酸素ガスの純度が90%未満になる
と、吹き込むべき気体の容量が増加し、反応槽内におけ
る液に対する気体容積が増大して、酸素、液、触媒の3
者の接触効率が低下し、アンモニアの分解効率が低下す
るおそれがある。本発明方法において使用する酸素ガス
源に特に制限はなく、酸素ボンベ、液体酸素などを使用
することができるが、PSA方式による酸素発生装置を
設けることにより、容易に空気より酸素ガスを分離し
て、経済性よく使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the ammonia-containing wastewater to which the method of the present invention can be applied include wastewater of a dye factory, wastewater of a fertilizer factory, wastewater of a semiconductor factory, wastewater of a power plant, and the like. The method of the present invention is suitable for treating ammonia-containing wastewater containing ammoniacal nitrogen at a high concentration such as 500 to 2,000 mg / liter.
In the method of the present invention, the decomposition of ammonia in the first stage
90% purity under pressure conditions of 3 to 10 kg / cm 2 (gauge pressure)
The above oxygen gas was blown into the ammonia-containing wastewater,
It is carried out by contacting with a noble metal-supported catalyst under a heating condition of 0 to 180 ° C. In the method of the present invention, the pressure for blowing oxygen gas is 3 to 10 kg / cm 2 (gauge pressure), and more preferably 5 to 10 kg / cm 2 (gauge pressure). Conventional air oxidation treatment of ammonia-containing wastewater is usually 50 kg / cm
Since it is carried out under a high pressure of 2 or more, the problems of explosion and corrosion of the reaction vessel were unavoidable. Also, the maximum is 10 kg / cm.
Attempting to perform air oxidation under a low pressure of 2 or less was not realistic because the decomposition efficiency of ammonia was poor and the device became extremely large. In the method of the present invention, by blowing oxygen gas having a purity of 90% or more and catalytically decomposing under a heating condition, catalytic oxidative decomposition of ammonia under low pressure becomes possible. In the method of the present invention, oxygen gas having a purity of 90% or more is used. When the purity of oxygen gas is less than 90%, the volume of gas to be blown increases, and the gas volume with respect to the liquid in the reaction tank increases, so that oxygen, liquid and catalyst are
There is a possibility that the contact efficiency of the person will decrease and the decomposition efficiency of ammonia will decrease. The oxygen gas source used in the method of the present invention is not particularly limited, and an oxygen cylinder, liquid oxygen, or the like can be used. However, by providing an oxygen generator of the PSA system, oxygen gas can be easily separated from air. It can be used economically.

【0006】本発明方法においては、酸素ガスを吹き込
んだアンモニア含有排水を、140〜180℃の加温条
件下で貴金属担持触媒と接触して分解を行う。アンモニ
アは式(1)のごとく酸素と反応し、窒素ガスと水が生
成する。 4NH3+3O2 → 2N2+6H2O …(1) 触媒を用いることにより反応が促進され、反応温度14
0〜180℃の温度域でアンモニアの酸化分解が可能と
なる。接触分解の温度が140℃未満であると、アンモ
ニアの分解効率が低下し、反応時間が長くなり反応槽が
大型化する。接触分解の温度が180℃を超えると、反
応槽内の液を液状に維持するためには圧力を高める必要
があり、設備費が高価になる。本発明方法において使用
する貴金属担持触媒には特に制限はないが、貴金属を多
孔質担体に担持した触媒を好適に使用することができ
る。貴金属としては、例えば、白金、ルテニウム、パラ
ジウム、イリジウム、ロジウム、金などの貴金属を挙げ
ることができるが、これらの中で白金が活性が高いので
特に好適に使用することができる。多孔質担体として
は、例えば、チタニア、アルミナ、シリカ、シリカ−ア
ルミナなどを挙げることができるが、これらの中でチタ
ニア粒状物を特に好適に使用することができる。チタニ
アは、耐久性、耐薬品性がよいばかりでなく、アンモニ
アとの親和性がよく、触媒近辺にアンモニアを引きつけ
触媒反応を受けやすくする。貴金属の担体への担持量
は、0.05〜10重量%であることが好ましく、0.1
〜1重量%であることがより好ましい。貴金属の担体へ
の担持量が0.05重量%未満であると、アンモニアの
分解に必要な触媒活性が不足するおそれがある。貴金属
の担体への担持量が10重量%を超えると、触媒のコス
トが高くなり、実用的でなくなる。多孔質担体の比表面
積は10〜100m2/gであることが好ましい。多孔
質担体の比表面積が10m2/g未満であると、十分な
触媒活性が得られないおそれがある。多孔質担体の比表
面積が100m2/gを超えると、多孔質担体の強度が
低下し、破損しやすくなるおそれがある。本発明方法に
おいて、酸素ガスを吹き込んだアンモニア含有排水の反
応槽への供給速度は、SV0.1〜5h-1とすることが
好ましく、SV0.5〜3h-1とすることがより好まし
い。供給速度がSV0.1h-1未満であると、反応時間
が長くなり反応槽が大型化する。供給速度がSV5h-1
を超えると、アンモニアの分解が十分に進まず、第2段
の接触分解で添加する過酸化水素の量が多くなるおそれ
がある。本発明方法においては、第1段の酸素ガスの吹
き込みによる接触分解により、通常排水中のアンモニア
の70%以上が分解除去される運転条件を設定すること
が好ましい。
In the method of the present invention, the ammonia-containing wastewater in which oxygen gas is blown is contacted with the noble metal-supported catalyst under the heating condition of 140 to 180 ° C. for decomposition. Ammonia reacts with oxygen as in formula (1) to produce nitrogen gas and water. 4NH 3 + 3O 2 → 2N 2 + 6H 2 O (1) The reaction is promoted by using the catalyst, and the reaction temperature is 14
It becomes possible to oxidize and decompose ammonia in the temperature range of 0 to 180 ° C. When the temperature of catalytic decomposition is lower than 140 ° C, the decomposition efficiency of ammonia decreases, the reaction time becomes long, and the reaction tank becomes large. When the temperature of catalytic decomposition exceeds 180 ° C., it is necessary to increase the pressure in order to maintain the liquid in the reaction tank in a liquid state, which increases the equipment cost. The noble metal-supported catalyst used in the method of the present invention is not particularly limited, but a catalyst in which a noble metal is supported on a porous carrier can be preferably used. Examples of the noble metal include platinum, ruthenium, palladium, iridium, rhodium, gold, and other noble metals. Among these, platinum is particularly preferable because of its high activity. Examples of the porous carrier include titania, alumina, silica, silica-alumina, and the like, and of these, titania particles can be particularly preferably used. Titania not only has good durability and chemical resistance, but also has a good affinity with ammonia, and attracts ammonia in the vicinity of the catalyst to facilitate the catalytic reaction. The amount of the noble metal supported on the carrier is preferably 0.05 to 10% by weight, and 0.1
It is more preferably ˜1 wt%. If the amount of the noble metal supported on the carrier is less than 0.05% by weight, the catalytic activity necessary for decomposing ammonia may be insufficient. If the amount of the noble metal supported on the carrier exceeds 10% by weight, the cost of the catalyst becomes high and it becomes impractical. The specific surface area of the porous carrier is preferably 10 to 100 m 2 / g. If the specific surface area of the porous carrier is less than 10 m 2 / g, sufficient catalytic activity may not be obtained. When the specific surface area of the porous carrier is more than 100 m 2 / g, the strength of the porous carrier is lowered and the porous carrier may be easily broken. In the method of the present invention, the feed rate to the reaction vessel sparged ammonia-containing waste water the oxygen gas is preferably set to SV0.1~5H -1, and more preferably a SV0.5~3h -1. If the feed rate is less than SV 0.1 h -1 , the reaction time becomes long and the reaction tank becomes large. Supply speed is SV5h -1
If it exceeds, the decomposition of ammonia may not proceed sufficiently and the amount of hydrogen peroxide added in the second stage catalytic decomposition may increase. In the method of the present invention, it is preferable to set operating conditions under which 70% or more of the ammonia in the normal wastewater is decomposed and removed by the catalytic cracking by blowing oxygen gas in the first stage.

【0007】本発明方法においては、第1段の酸素ガス
の吹き込みによる接触分解を終了した処理水に、過酸化
水素を添加してさらに残留するアンモニアを酸化分解す
る。過酸化水素とアンモニアは式(2)のごとく反応す
るので、残留するアンモニアと反応当量の過酸化水素の
量を計算により求め、その量を超える過酸化水素を添加
する。 2NH3+3H22 → N2+6H2O …(2) 本発明方法において、第2段の過酸化水素によるアンモ
ニアの酸化接触分解は、140〜180℃の加温条件下
で貴金属担持触媒と接触させることにより行う。触媒を
用いることにより反応が促進され、反応温度140〜1
80℃の温度域でアンモニアの酸化分解が可能となる。
接触分解の温度が140℃未満であると、アンモニアの
分解効率が低下し、反応時間が長くなり反応槽が大型化
する。接触分解の温度が180℃を超えると、反応槽内
の液を液状に維持するためには圧力を高める必要があ
り、設備費が高価になる。本発明方法において使用する
貴金属担持触媒には特に制限はないが、貴金属を多孔質
担体に担持した触媒を好適に使用することができる。貴
金属としては、例えば、白金、ルテニウム、パラジウ
ム、イリジウム、ロジウム、金などの貴金属を挙げるこ
とができるが、これらの中で白金が活性が高いので特に
好適に使用することができる。多孔質担体としては、例
えば、チタニア、アルミナ、シリカ、シリカ−アルミナ
などを挙げることができるが、これらの中でチタニア粒
状物を特に好適に使用することができる。チタニアは、
耐久性、耐薬品性がよいばかりでなく、アンモニアとの
親和性がよく、触媒近辺にアンモニアを引きつけ触媒反
応を受けやすくする。貴金属の担体への担持量は、0.
05〜10重量%であることが好ましく、0.1〜1重
量%であることがより好ましい。貴金属の担体への担持
量が0.05重量%未満であると、アンモニアの分解に
必要な触媒活性が不足するおそれがある。貴金属の担体
への担持量が10重量%を超えると、触媒のコストが高
くなり、実用的でなくなる。多孔質担体の比表面積は1
0〜100m2/gであることが好ましい。多孔質担体
の比表面積が10m2/g未満であると、十分な触媒活
性が得られないおそれがある。多孔質担体の比表面積が
100m2/gを超えると、多孔質担体の強度が低下
し、破損しやすくなるおそれがある。本発明方法におい
て、過酸化水素を添加した処理水の反応槽への供給速度
は、SV1〜50h-1とすることが好ましく、SV5〜
30h-1とすることがより好ましい。供給速度がSV1
-1未満であると、反応時間が長くなり反応槽が大型化
する。供給速度がSV50h-1を超えると、アンモニア
の分解除去が完全に行われないおそれがある。本発明方
法においては、第1段の酸素ガスの吹き込みによる接触
分解及び第2段の過酸化水素の添加による接触分解によ
り、通常最初のアンモニア含有排水中のアンモニアの9
9%以上が分解除去される。
In the method of the present invention, hydrogen peroxide is added to the treated water which has undergone the catalytic cracking by blowing oxygen gas in the first stage to oxidize and decompose the residual ammonia. Since hydrogen peroxide and ammonia react as in formula (2), the amount of hydrogen peroxide equivalent to the amount of residual ammonia and reaction is calculated, and hydrogen peroxide in excess of that amount is added. 2NH 3 + 3H 2 O 2 → N 2 + 6H 2 O (2) In the method of the present invention, the oxidative catalytic decomposition of ammonia with hydrogen peroxide in the second step is carried out by heating the noble metal-supported catalyst under a heating condition of 140 to 180 ° C. This is done by bringing them into contact. The reaction is promoted by using a catalyst, and the reaction temperature is 140 to 1
Oxidative decomposition of ammonia becomes possible in the temperature range of 80 ° C.
When the temperature of catalytic decomposition is lower than 140 ° C, the decomposition efficiency of ammonia decreases, the reaction time becomes long, and the reaction tank becomes large. When the temperature of catalytic decomposition exceeds 180 ° C., it is necessary to increase the pressure in order to maintain the liquid in the reaction tank in a liquid state, which increases the equipment cost. The noble metal-supported catalyst used in the method of the present invention is not particularly limited, but a catalyst in which a noble metal is supported on a porous carrier can be preferably used. Examples of the noble metal include platinum, ruthenium, palladium, iridium, rhodium, gold, and other noble metals. Among these, platinum is particularly preferable because of its high activity. Examples of the porous carrier include titania, alumina, silica, silica-alumina, and the like, and of these, titania particles can be particularly preferably used. Titania is
Not only has good durability and chemical resistance, it also has a good affinity for ammonia and attracts ammonia in the vicinity of the catalyst to make it more susceptible to catalytic reactions. The amount of noble metal loaded on the carrier is 0.
It is preferably from 05 to 10% by weight, more preferably from 0.1 to 1% by weight. If the amount of the noble metal supported on the carrier is less than 0.05% by weight, the catalytic activity necessary for decomposing ammonia may be insufficient. If the amount of the noble metal supported on the carrier exceeds 10% by weight, the cost of the catalyst becomes high and it becomes impractical. The specific surface area of the porous carrier is 1
It is preferably 0 to 100 m 2 / g. If the specific surface area of the porous carrier is less than 10 m 2 / g, sufficient catalytic activity may not be obtained. When the specific surface area of the porous carrier is more than 100 m 2 / g, the strength of the porous carrier is lowered and the porous carrier may be easily broken. In the method of the present invention, the supply rate of the treated water to which hydrogen peroxide is added to the reaction tank is preferably SV1 to 50 h −1, and SV5 to
More preferably, it is 30 h -1 . Supply speed is SV1
When it is less than h -1 , the reaction time becomes long and the reaction tank becomes large. If the supply rate exceeds SV50h -1 , the decomposition and removal of ammonia may not be performed completely. In the method of the present invention, the first step of catalytic cracking by blowing oxygen gas and the second step of catalytic cracking by addition of hydrogen peroxide are usually carried out to remove 9% of the ammonia in the first ammonia-containing wastewater.
9% or more is decomposed and removed.

【0008】図1は、本発明方法の一態様の工程系統図
である。アンモニア含有排水は、原水槽1からポンプ2
により圧送され、酸素発生機3から酸素が排水中に吹き
込まれる。排水は熱交換器4で余熱の回収により予熱さ
れたのち、さらにヒーター5で所定の温度まで加温さ
れ、触媒反応槽A6に送られて、アンモニアと酸素の接
触分解反応によりアンモニアが除去される。触媒反応槽
Aから流出する処理水には、残留アンモニアと反応当量
以上の過酸化水素が添加され、触媒反応槽B7へ送ら
れ、アンモニアと過酸化水素の反応により残留アンモニ
アがほぼ完全に除去される。触媒反応槽Bを出た処理水
は、熱交換器で余熱の回収を行ったのちpH調製などの次
工程に送られる。本発明方法は、酸素ガスによる触媒分
解と過酸化水素による触媒分解を接続することにより、
低圧処理であってもアンモニアを高い除去率で分解し、
アンモニア含有排水の効率的な処理を可能とするもので
ある。過酸化水素は酸素より酸化力が強く、性能的には
酸化剤として好ましいが、酸素ガスに比べコストが高
く、過酸化水素のみによる1段分解処理方法は経済性が
悪い。本発明方法は、酸素ガスによりアンモニアの大部
分を除去したのち、残留アンモニアのみを過酸化水素で
除去することにより、過酸化水素の使用量を少量にとど
め、しかも過酸化水素の高酸化力を活用して処理水中の
アンモニア濃度を低減することができる。本発明方法に
よれば、水中のアンモニアを無害な窒素ガスと水に分解
除去することができ、再処理が必要な副生物は発生しな
い。また、アンモニアの酸化分解に必要な酸素を、空気
中からPSA方式で分離して使用することにより、オン
サイトで簡単に必要な酸素を供給することができる。P
SA方式で分離した酸素ガスを酸化剤に用いると、アン
モニアの酸化に必要な酸化剤としてのコストは、一般に
亜硝酸ナトリウムを用いる場合の1/10以下、また、
過酸化水素のみを用いる場合の1/20以下となる。本
発明方法においては、貴金属担持触媒を用いて反応を促
進するため、反応効率が高くなり、処理装置を小型化す
ることができる。また、酸素ガスを用いるため、空気を
用いる場合に比べて、対象とする排水に吹き込むガス量
は理論的には1/5に低減できる。そのため、触媒反応
槽内での処理対象排水と触媒の接触効率が改善される。
FIG. 1 is a process flow chart of one embodiment of the method of the present invention. Wastewater containing ammonia is pumped from the raw water tank 1 to the pump 2
Is sent by pressure, and oxygen is blown into the waste water from the oxygen generator 3. The waste water is preheated in the heat exchanger 4 by recovering the residual heat, then further heated to a predetermined temperature by the heater 5 and sent to the catalytic reaction tank A6 to remove ammonia by the catalytic decomposition reaction of ammonia and oxygen. . To the treated water flowing out from the catalytic reaction tank A, hydrogen peroxide in an amount equal to or more than the reaction amount of residual ammonia is added and sent to the catalytic reaction tank B7, and the residual ammonia is almost completely removed by the reaction of ammonia and hydrogen peroxide. It The treated water that has left the catalytic reaction tank B is sent to the next step such as pH adjustment after recovering residual heat with a heat exchanger. The method of the present invention, by connecting the catalytic decomposition by oxygen gas and the catalytic decomposition by hydrogen peroxide,
Ammonia is decomposed at a high removal rate even with low-pressure treatment,
It enables efficient treatment of wastewater containing ammonia. Although hydrogen peroxide has a stronger oxidizing power than oxygen and is preferable as an oxidant in terms of performance, it is more expensive than oxygen gas, and the one-step decomposition treatment method using hydrogen peroxide alone is not economical. The method of the present invention removes most of the ammonia with oxygen gas and then removes only the residual ammonia with hydrogen peroxide to keep the amount of hydrogen peroxide used to a small amount and to increase the high oxidizing power of hydrogen peroxide. It can be utilized to reduce the ammonia concentration in the treated water. According to the method of the present invention, ammonia in water can be decomposed and removed into harmless nitrogen gas and water, and by-products that require reprocessing are not generated. Also, by using oxygen necessary for oxidative decomposition of ammonia by separating it from the air by the PSA method, it is possible to easily supply the necessary oxygen on-site. P
When oxygen gas separated by the SA method is used as an oxidant, the cost as an oxidant required for the oxidation of ammonia is generally 1/10 or less of the case of using sodium nitrite,
It becomes 1/20 or less of the case where only hydrogen peroxide is used. In the method of the present invention, since the reaction is promoted by using the noble metal-supported catalyst, the reaction efficiency is increased and the processing apparatus can be downsized. Further, since oxygen gas is used, the amount of gas blown into the target drainage can be theoretically reduced to 1/5 as compared with the case where air is used. Therefore, the contact efficiency between the wastewater to be treated and the catalyst in the catalytic reaction tank is improved.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 アンモニア性窒素982mg/リットルを含有し、pHが
4.9である発電所排水の処理を行った。この排水に、
7kg/cm2(ゲージ圧)の加圧条件で酸素ガスを排水1リ
ットル当たり17リットル(標準状態)吹き込み、155
〜160℃に加温したのち、1.5mmφのチタニア担体
(比表面積55m2/g)に白金0.5重量%を担持した
触媒70mlを充填した触媒反応槽に70ml/h(SV=
1h-1)の流速で通液処理した。触媒反応槽より流出す
る処理水中の窒素成分は、アンモニア性窒素220mg/
リットル、亜硝酸性窒素1mg/リットル、硝酸性窒素1
mg/リットル以下、全窒素221mg/リットルであり、
この処理による窒素の除去率は77%であった。なお、
処理水のpHは2.1であった。次いで、この処理水に過
酸化水素を濃度が900mg/リットルになるよう添加
し、155〜160℃に加熱したのち、上記の白金担持
触媒40mlを充填した触媒反応槽に400ml/h(SV
=10h-1)の流速で通液処理した。触媒反応槽より流
出する処理水中の窒素成分は、アンモニア性窒素1mg/
リットル、亜硝酸性窒素1mg/リットル、硝酸性窒素1
mg/リットル以下、全窒素2mg/リットルであり、最初
の発電所排水に対する窒素の除去率は99.8%であっ
た。なお、処理水のpHは2.0であった。以上の結果か
ら、酸素ガスを吹き込んでアンモニア性窒素を接触分解
したのち、処理水に過酸化水素を添加して接触分解する
本発明の処理方法により、小型の装置によるアンモニア
含有排水の高度処理が可能であることが確認された。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Wastewater from a power plant containing 982 mg / liter of ammonia nitrogen and having a pH of 4.9 was treated. In this drainage,
Oxygen gas is blown in 17 liters per 1 liter of drainage (standard condition) under a pressure of 7 kg / cm 2 (gauge pressure), 155
After heating to ~ 160 ° C, a catalyst reaction tank filled with 70 ml of a catalyst supporting 0.5% by weight of platinum on a 1.5 mmφ titania carrier (specific surface area 55 m 2 / g) is 70 ml / h (SV =
The liquid was passed through at a flow rate of 1 h -1 ). The nitrogen component in the treated water flowing out from the catalytic reaction tank is ammonia nitrogen 220 mg /
Liter, nitrite nitrogen 1 mg / liter, nitrate nitrogen 1
mg / liter or less, total nitrogen 221 mg / liter,
The removal rate of nitrogen by this treatment was 77%. In addition,
The pH of the treated water was 2.1. Then, hydrogen peroxide was added to the treated water to a concentration of 900 mg / liter, and the mixture was heated to 155 to 160 ° C., and then 400 ml / h (SV) was added to the catalytic reaction tank filled with 40 ml of the platinum-supported catalyst.
= 10 h −1 ). The nitrogen component in the treated water flowing out from the catalytic reaction tank is ammonia nitrogen 1 mg /
Liter, nitrite nitrogen 1 mg / liter, nitrate nitrogen 1
The total nitrogen content was 2 mg / liter or less, and the nitrogen removal rate from the first power plant wastewater was 99.8%. The pH of the treated water was 2.0. From the above results, after the catalytic decomposition of ammonia nitrogen by blowing oxygen gas, the treatment method of the present invention of catalytic decomposition by adding hydrogen peroxide to the treated water, advanced treatment of ammonia-containing wastewater by a small device It was confirmed that it was possible.

【0010】[0010]

【発明の効果】本発明方法は、酸素ガスによるアンモニ
アの接触分解と過酸化水素によるアンモニアの接触分解
を接続したものであり、副生物の発生を伴わず、小型の
装置により、アンモニア含有排水を効率的に処理して、
全窒素濃度の低い処理水とすることができる。
Industrial Applicability The method of the present invention connects catalytic decomposition of ammonia with oxygen gas and catalytic decomposition of ammonia with hydrogen peroxide, and produces ammonia-containing wastewater with a small device without generation of by-products. Process it efficiently,
Treated water having a low total nitrogen concentration can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明方法の一態様の工程系統図であ
る。
FIG. 1 is a process flow chart of one embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 原水槽 2 ポンプ 3 酸素発生機 4 熱交換器 5 ヒーター 6 触媒反応槽A 7 触媒反応槽B 1 Raw water tank 2 Pump 3 Oxygen generator 4 Heat exchanger 5 Heater 6 Catalytic reaction tank A 7 Catalytic reaction tank B

───────────────────────────────────────────────────── フロントページの続き (72)発明者 香川 公司 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 淺田 智之 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 中原 敏次 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 高林 泰彦 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 上甲 勲 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kagawa Corporation 3-3-22 Nakanoshima, Kita-ku, Osaka City Kansai Electric Power Co., Inc. (72) Inventor Tomoyuki Asada 3-3-22 Nakanoshima, Kita-ku, Osaka Kansai Electric Power Co., Ltd. (72) Inventor Toshiji Nakahara 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) In-house Yasuhiko Takabayashi 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Kogyo Kogyo Co., Ltd. (72) Inventor Isao Kou 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アンモニア含有排水に、3〜10kg/cm
2(ゲージ圧)の加圧条件下で純度90%以上の酸素ガス
を吹き込み、140〜180℃の加温条件下で貴金属担
持触媒と接触させたのち、処理水に過酸化水素を添加
し、140〜180℃の加温条件下で貴金属担持触媒と
接触させることを特徴とするアンモニア含有排水の処理
方法。
1. Ammonia-containing wastewater is 3 to 10 kg / cm.
Oxygen gas with a purity of 90% or more is blown under a pressurized condition of 2 (gauge pressure) and brought into contact with a noble metal-supported catalyst under a heating condition of 140 to 180 ° C., and then hydrogen peroxide is added to the treated water, A method for treating ammonia-containing wastewater, which comprises contacting with a noble metal-supported catalyst under heating conditions of 140 to 180 ° C.
JP29927295A 1995-10-23 1995-10-23 Treatment of wastewater containing ammonia Expired - Fee Related JP3565637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29927295A JP3565637B2 (en) 1995-10-23 1995-10-23 Treatment of wastewater containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29927295A JP3565637B2 (en) 1995-10-23 1995-10-23 Treatment of wastewater containing ammonia

Publications (2)

Publication Number Publication Date
JPH09117782A true JPH09117782A (en) 1997-05-06
JP3565637B2 JP3565637B2 (en) 2004-09-15

Family

ID=17870403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29927295A Expired - Fee Related JP3565637B2 (en) 1995-10-23 1995-10-23 Treatment of wastewater containing ammonia

Country Status (1)

Country Link
JP (1) JP3565637B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2774675A1 (en) * 1997-12-04 1999-08-13 Stephane Vanlaer Continuous water treatment procedure using hydrogen peroxide as oxidizing agent
WO2000047520A1 (en) * 1999-02-10 2000-08-17 Ebara Corporation Apparatus and method for hydrothermal electrolysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2774675A1 (en) * 1997-12-04 1999-08-13 Stephane Vanlaer Continuous water treatment procedure using hydrogen peroxide as oxidizing agent
WO2000047520A1 (en) * 1999-02-10 2000-08-17 Ebara Corporation Apparatus and method for hydrothermal electrolysis
US6939458B1 (en) 1999-02-10 2005-09-06 Ebara Corporation Apparatus and method for hydrothermal electrolysis

Also Published As

Publication number Publication date
JP3565637B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP3565637B2 (en) Treatment of wastewater containing ammonia
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
JP3507553B2 (en) Treatment method for ammoniacal nitrogen-containing water
JPH09276881A (en) Treatment of nitrogen compound-containing water
JP4187845B2 (en) Method for treating ammonia-containing water
JPH091165A (en) Treatment of ammonia-containing waste water
JP3822520B2 (en) Nitrogen compound-containing water treatment method
JP3739452B2 (en) Power plant wastewater treatment method containing amine compounds
JP3401844B2 (en) Ammonia-containing water treatment method
JP3568298B2 (en) Method for treating power plant wastewater containing amine compounds
JP2001009481A (en) Treatment of waste water containing metal and ammonia
JP3420697B2 (en) Method for treating ethanolamine-containing water
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JPH11128958A (en) Water denitrification treatment apparatus
JP3238741B2 (en) Method of treating ammonium fluoride-containing water
JP3614186B2 (en) Ammonia nitrogen-containing water treatment method
JPH0910780A (en) Treatment of alkanolamine containing waste water
JP4390357B2 (en) Method for treating ammonia-containing water
JP3630352B2 (en) Method for treating urea-containing water
JPH07265870A (en) Treatment of dithionate ion-containing water
JP2000301173A (en) Treatment of ammonia-containing water
JPH07265877A (en) Treatment of ammonia-containing waste water
JP3492413B2 (en) Wastewater treatment method
JPH09304591A (en) Condensate processing method
JP2000312890A (en) Method for treating inorganic wastewater containing ammonia

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110618

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees