JPH06269776A - Device for removing ammoniacal nitrogen in water - Google Patents

Device for removing ammoniacal nitrogen in water

Info

Publication number
JPH06269776A
JPH06269776A JP8147093A JP8147093A JPH06269776A JP H06269776 A JPH06269776 A JP H06269776A JP 8147093 A JP8147093 A JP 8147093A JP 8147093 A JP8147093 A JP 8147093A JP H06269776 A JPH06269776 A JP H06269776A
Authority
JP
Japan
Prior art keywords
tank
regeneration treatment
liquid
water
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8147093A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kawasaki
喜孝 川崎
Hiroshi Yonetani
宏史 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP8147093A priority Critical patent/JPH06269776A/en
Publication of JPH06269776A publication Critical patent/JPH06269776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To provide a device for removing ammoniacal nitrogen in water in which an ion exchange adsorption method superior in the treating speed and stability of the treating capacity is adopted, a problem of retreatment of an inorganic ion exchange body being resolved, a harmful substance is not generated and ammoniacal nitrogen is removed efficiently. CONSTITUTION:Raw water treating flow-passages consisting of a raw water supply path 2 and a treated-water discharge path 3 communicates with adsorption treating tanks 1A, 1B packed with an adsorbent consisting of zeolite, and also communicates with the recovering treatment flow passage where an adsorbent recovering treating liquid consisting of NaCl solution is fed from an adjustment tank 6 and fed back to the adjustment tank 6 through an electrolytic cell 7. In the electrolytic cell 7, the liquid is brought into contact with an anode packed with an activated coal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生活排水や産業排水等
の排水、河川や湖沼等の汚染水からアンモニア性窒素を
除去するための水中のアンモニア性窒素除去装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for removing ammoniacal nitrogen in water for removing ammoniacal nitrogen from wastewater such as domestic wastewater and industrial wastewater, and contaminated water such as rivers and lakes.

【0002】[0002]

【従来の技術】近年、河川や湖沼或いは海域等の汚染が
問題になっている。産業排水や下水処理場放流水中には
アンモニア性窒素(以下NH4 −Nと記す)が多量に含
まれている。これらの放流によって、魚介類への有害や
富栄養化の問題になっている。富栄養化の原因は、リン
と窒素によるとされており、従来、以下の如き各種のN
4 −N除去法が提案されている。 エアストリッピング法−pH10以上のアルカリ性にし
て瀑気し、アンモニアガスとして放出する方法。 塩素注入法−塩素酸化力で窒素に酸化する方法。 生物学的硝化脱室法−亜硝化菌、硝化菌によりNH4
+ がNO2 - ,NO3 -に酸化硝化させ、更に脱室菌に
より窒素ガスとする方法。 イオン交換吸着法−無機イオン交換体にNH4 −Nを
吸着させる方法。
2. Description of the Related Art In recent years, pollution of rivers, lakes and marshes or sea areas has become a problem. A large amount of ammoniacal nitrogen (hereinafter referred to as NH 4 —N) is contained in industrial wastewater and sewage treatment plant discharge water. These releases pose a problem of harmfulness to fish and eutrophication. It is said that the cause of eutrophication is due to phosphorus and nitrogen. Conventionally, various N such as
H 4 -N removal methods have been proposed. Air stripping method-A method in which the pH is adjusted to alkaline of 10 or more, and the gas is deaerated and released as ammonia gas. Chlorine injection method-A method of oxidizing to nitrogen by chlorine oxidizing power. Biological nitrification dechambering method-Nitrous bacteria, nitrifying bacteria produce NH 4
A method in which + is oxidized into NO 2 and NO 3 to be nitrified, and nitrogen gas is further generated by dechambering bacteria. Ion exchange adsorption method-a method of adsorbing NH 4 -N on an inorganic ion exchanger.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の各種N
4 −N除去法の内、エアストリッピング法や、塩素注
入法では使用する薬品量が多く、コスト高となるととも
に塩素注入法では残留塩素により二次公害が懸念される
という問題がある。また生物学的硝化脱室法において
は、処理に長時間を要するという問題がある。
[Problems to be Solved by the Invention] Various conventional N described above
Among the H 4 —N removal methods, the air stripping method and the chlorine injection method use a large amount of chemicals, resulting in high cost, and the chlorine injection method has a problem that residual chlorine may cause secondary pollution. Further, the biological nitrification and dechambering method has a problem that it takes a long time to process.

【0004】一方イオン交換吸着法は、近年注目を集め
ている方法であり、処理速度や処理能力の安定性におい
て優れている。無機イオン交換体としてはゼオライトが
注目されている。しかし、この従来のイオン交換吸着法
では、NH4 −Nを飽和吸着して吸着能が低下したゼオ
ライトは再生し、循環使用しなければならない。このゼ
オライトの再生方法には熱再生法と各種塩類を用いる方
法がある。熱再生法はNa+ 等を含む水溶液を添加し、
600度前後で30分焼成する方法であるが、再生回数
が増すに従って交換速度及び除去率が低下する欠点があ
る。また各種塩類を用いる方法はNaCl等の水溶液を
接触させ、イオン交換反応によってNH4 + を脱離さ
せ、ゼオライトの再生を行う方法であり、この方法は再
生液のNH4 + の処理が更に必要である。再生液のNH
4 + の除去には前述した〜の方法があるが、これら
には前述の如き問題がある。
On the other hand, the ion-exchange adsorption method is a method that has been drawing attention in recent years and is excellent in the stability of processing speed and processing capacity. Zeolites have been attracting attention as inorganic ion exchangers. However, in this conventional ion-exchange adsorption method, the zeolite whose NH 4 —N is saturatedly adsorbed and whose adsorption capacity is lowered must be regenerated and reused. Regeneration methods of this zeolite include a heat regeneration method and a method using various salts. In the heat regeneration method, an aqueous solution containing Na + etc. is added,
Although this method is a method of firing at about 600 degrees for 30 minutes, it has a drawback that the exchange rate and the removal rate decrease as the number of regenerations increases. The method using various salts is a method of contacting an aqueous solution of NaCl or the like and desorbing NH 4 + by an ion exchange reaction to regenerate the zeolite. This method requires further treatment of NH 4 + in the regenerating solution. Is. Regeneration liquid NH
There are the above-mentioned methods (1) to ( 4 ) to remove 4 + , but these have the above-mentioned problems.

【0005】本発明は上述の如き従来の問題にかんが
み、処理速度や処理能力の安定性において優れているイ
オン交換吸着法を採用し、無機イオン交換体の再処理の
問題を解決し、有害物質の発生がなく、効率良くNH4
−N除去がなされる水中のNH4 −N除去装置の提供を
目的としたものである。
In view of the above-mentioned conventional problems, the present invention adopts the ion exchange adsorption method, which is excellent in the stability of the processing speed and the processing capacity, solves the problem of reprocessing the inorganic ion exchanger, and eliminates the harmful substances. NH 4 with no generation of
It is intended to provide an apparatus for removing NH 4 —N in water that removes —N.

【0006】[0006]

【課題を達成するための手段】上述の如き目的を達成す
るための本発明の特徴は、無機イオン交換体等のNH4
−N吸着剤を充填した吸着処理槽と、該吸着処理槽に被
処理原水を供給する原水供給路と、処理済水を排出させ
る処理済水排出路とをそれぞれ開閉自在に備えてなる水
中のNH4 −N除去装置において、前記吸着処理槽に吸
着剤再生処理液を供給する再生処理液供給路と、該再生
処理液を調整して前記再生処理液供給路に供給する再生
処理液調整槽と、前記吸着処理槽から吸着剤再生処理後
の再生処理液を排出する開閉自在な再生処理液排出路
と、該再生処理液排出路からの再生処理液を電解処理に
よって再生し、前記再生処理液調整槽に送り込む電解処
理槽とを備えたこと(請求項1)にある。この装置にお
いて、無機イオン交換体としてゼオライトを使用すると
ともに電解処理槽の陽極側と陰極側とを透水性のある仕
切板をもって仕切り、該仕切板より陽極側に活性炭を充
填し、吸着処理槽からの再生処理液を前記陰極側に送り
込み陽極側から排出させるようにすることが好適である
(請求項2)。
The features of the present invention for achieving the above-mentioned object are that NH 4 such as an inorganic ion exchanger is used.
-N adsorbent treatment tank filled with an adsorbent, a raw water supply channel for supplying raw water to be treated to the adsorption treatment tank, and a treated water discharge channel for discharging treated water In the NH 4 —N removing apparatus, a regeneration treatment liquid supply path for supplying an adsorption agent regeneration treatment liquid to the adsorption treatment tank, and a regeneration treatment liquid adjusting tank for adjusting the regeneration treatment liquid and supplying it to the regeneration treatment liquid supply path. An openable and closable regeneration treatment liquid discharge path for discharging the regeneration treatment fluid after the adsorbent regeneration treatment from the adsorption treatment tank, and the regeneration treatment liquid from the regeneration treatment solution discharge passage is regenerated by electrolytic treatment, It is provided with an electrolytic treatment tank for feeding into the liquid adjusting tank (Claim 1). In this device, using zeolite as an inorganic ion exchanger and partitioning the anode side and the cathode side of the electrolytic treatment tank with a partition plate having water permeability, and filling the activated carbon on the anode side from the partition plate, from the adsorption treatment tank It is preferable that the regenerating treatment liquid is sent to the cathode side and discharged from the anode side (claim 2).

【0007】[0007]

【作用】原水供給路からり吸着処理槽に送り込まれた被
処理原水中のNH4 −Nは吸着処理槽内のゼオライト槽
を通過することにより該ゼオライトに吸着され、処理済
水は処理水排出路より排出される。
The NH 4 -N in the raw water to be treated sent from the raw water supply passage to the adsorption treatment tank is adsorbed by the zeolite by passing through the zeolite tank in the adsorption treatment tank, and the treated water is discharged as treated water. It is discharged from the road.

【0008】ゼオライトが飽和吸着状態近くに達した際
に原水供給路及び処理済水排出路を閉鎖し、次いで吸着
処理槽内へ再生処理液調整槽から再生処理液を供給す
る。再生処理液として0.1N程度のNaCl溶液を使
用する。これによってゼオライトに吸着されているNH
4 + はNa+ に交換され、再生処理液に移行する。ゼオ
ライト再生処理後の再生処理液は電解処理槽に送り込ま
れ、電解処理される。
When the zeolite has reached a saturated adsorption state, the raw water supply passage and the treated water discharge passage are closed, and then the regeneration treatment liquid is fed into the adsorption treatment tank from the regeneration treatment liquid adjusting tank. A NaCl solution of about 0.1 N is used as a regeneration treatment liquid. By this, NH adsorbed on the zeolite
4 + is exchanged for Na + and transferred to the regeneration treatment solution. The regenerated treatment liquid after the zeolite regeneration treatment is sent to the electrolytic treatment tank and subjected to electrolytic treatment.

【0009】電解処理槽内では陽極側から再生処理液が
送り込まれることにより、その陽極側では塩素ガスが発
生する。該塩素ガスは次式の如く反応し、次亜塩素酸と
なる。
In the electrolytic treatment tank, chlorine gas is generated on the anode side by feeding the regeneration treatment liquid from the anode side. The chlorine gas reacts according to the following equation to form hypochlorous acid.

【0010】2Cl- →Cl2 ↑+2e- Cl2 +H2 O→HCl+HClO 次亜塩素酸は次式のように分解し、強い酸化力を示す。2Cl → Cl 2 ↑ + 2e Cl 2 + H 2 O → HCl + HClO Hypochlorous acid decomposes as shown by the following formula and exhibits a strong oxidizing power.

【0011】2HClO→2HCl+O2 ↑ このときNH4 + は窒素に酸化される。2HClO → 2HCl + O 2 ↑ At this time, NH 4 + is oxidized to nitrogen.

【0012】NH4 → 1/2N2 + 3/2H2 +H+ 仕切板を設けることによって、陽極側は酸性となり、次
亜塩素酸は酸性側(pH3〜6)で強い酸化力を示すの
で、上記反応が有効に行われる。
By providing a partition plate of NH 4 → 1 / 2N 2 + 3 / 2H 2 + H + , the anode side becomes acidic, and hypochlorous acid shows a strong oxidizing power on the acidic side (pH 3 to 6). The above reaction is effectively performed.

【0013】また電解処理槽の陽極側に活性炭を充填す
ることによって、電極面積が増大し、反応が増加すると
ともに活性炭は塩素ガスを吸着するため、発生塩素ガス
の放出を防ぐ。
Further, by filling the anode side of the electrolytic treatment tank with activated carbon, the electrode area increases, the reaction increases, and the activated carbon adsorbs chlorine gas, so that the emission of chlorine gas generated is prevented.

【0014】陰極側において次式の如き反応により水素
ガスが発生する。
Hydrogen gas is generated on the cathode side by a reaction represented by the following equation.

【0015】2H2 O+2e- →2OH- +H2 ↑ 電流量1ファラデー当り11.2リットルの水素ガスが
発生する。陰極付近ではアルカリ性(pH12)でバブリ
ングされるため、NH4 + がガスで放出されるという効
果が加わる。電解は電流1A/l程度で30分の滞留時
間とする。
2H 2 O + 2e → 2OH + H 2 ↑ 11.2 liters of hydrogen gas is generated per Faraday of current amount. Since bubbling is alkaline (pH 12) in the vicinity of the cathode, the effect of releasing NH 4 + as a gas is added. The electrolysis is performed at a current of about 1 A / l for a residence time of 30 minutes.

【0016】[0016]

【実施例】次に本発明の実施例を図面について説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0017】図1は本発明装置の概略をブロック図にて
示している。図中1A,1Bは同じ構造の吸着処理槽で
あり、内部に粒状もしくは粉状のゼオライトからなる吸
着剤が充填されている。各吸着処理槽1A,1Bにはそ
れぞれの下端側に被処理原水を送り込む原水供給路2が
開閉弁2a,2bを介して連通され、上端側に処理済水
を排出する処理済水排出路3が開閉弁3a,3bを介し
て連通されている。
FIG. 1 is a block diagram showing the outline of the device of the present invention. In the figure, 1A and 1B are adsorption treatment tanks having the same structure, and are filled with an adsorbent made of granular or powdery zeolite. A raw water supply passage 2 for sending raw water to be treated to the lower end side of each of the adsorption treatment tanks 1A and 1B is connected via open / close valves 2a and 2b, and a treated water discharge passage 3 for discharging the treated water to the upper end side. Are communicated with each other via the on-off valves 3a and 3b.

【0018】また両吸着処理槽1A,1Bの上端側に
は、再生処理液供給路4が開閉弁4a,4bを介して連
通されているとともに、下端側には再処理液排出路5が
開閉弁5a,5bを介して連通されている。
A regeneration treatment liquid supply passage 4 is connected to the upper ends of the adsorption treatment tanks 1A and 1B through open / close valves 4a and 4b, and a retreatment liquid discharge passage 5 is opened and closed to the lower ends thereof. The valves 5a and 5b communicate with each other.

【0019】再処理液供給路4は、再生処理液調整槽6
に連通され、該調整槽6より0.1N程度のNaCl溶
液からなる再生処理液が供給されるようになっている。
また調整槽6では、送り出される再生処理液が一定の濃
度になるようにNaClからなる調整液を適宜補充す
る。
The reprocessing liquid supply passage 4 is provided with a reprocessing liquid adjusting tank 6
And a regeneration treatment liquid consisting of a NaCl solution of about 0.1 N is supplied from the adjusting tank 6.
Further, in the adjusting tank 6, the adjusting solution made of NaCl is appropriately replenished so that the regenerated processing solution to be sent out has a constant concentration.

【0020】再生処理液排出路5は、電解処理槽7に連
通されている。電解処理槽7は、吸着処理槽1A,1B
から送り込まれる再生処理液を再度使用可能に電解処理
するものであり、図2に示すように内部が下部に通水孔
8を有する仕切板9によって陽極槽10と、陰極槽11
とに仕切られ、陽極槽10に陽極板12が、陰極槽11
に陰極板13がそれぞれ挿入されている。また仕切板9
から陽極槽10内には活性炭14が充填されている。陽
極板12には、炭素や白金等の不活性電極材料を使用し
ており、これに活性炭14が接することにより活性炭1
4全体が陽極となるようにしている。そして、陽極槽1
0の上部に再生処理液排出路5が開口され、陰極槽11
の上部に送液路15が連通開口され、該送液路15を通
して電解処理済の再生処理液を調整槽6に送り込み、再
使用するようになっている。
The regeneration treatment liquid discharge passage 5 is communicated with the electrolytic treatment tank 7. The electrolytic treatment tank 7 is an adsorption treatment tank 1A, 1B.
The regeneration treatment liquid sent from the electrolytic treatment is used again so that it can be reused. As shown in FIG. 2, a partition plate 9 having a water passage hole 8 in the lower portion is used to form an anode tank 10 and a cathode tank 11.
And the anode plate 12 is divided into the anode tank 10 and the cathode tank 11
Cathode plate 13 is inserted in each. Also partition plate 9
The anode tank 10 is filled with activated carbon 14. The anode plate 12 is made of an inert electrode material such as carbon or platinum, and when the activated carbon 14 is brought into contact with it, the activated carbon 1
The whole 4 serves as an anode. And anode tank 1
0, the regeneration treatment liquid discharge passage 5 is opened at the upper part of
A liquid feed passage 15 is opened to communicate with the upper part of the container, and the electrolytically treated regenerated treatment liquid is fed into the adjusting tank 6 through the liquid feed passage 15 for reuse.

【0021】次に上述の如き構成される装置による処理
工程について説明する。この装置は、吸着処理槽1A,
1BにNH4 −Nを含んだ被処理原水を送り込み、吸着
剤にて処理吸着処理させる水処理工程と、飽和吸着した
吸着剤を再生処理する再生処理工程とを再吸着処理槽1
A,1Bにて交互に行わせるものであり、一方の吸着処
理槽1A内の吸着剤が飽和吸着状態に達すると、他方の
吸着処理槽1Bにて吸着処理を開始するとともに、一方
側で再生処理を開始する。これを交互に行って連続した
水処理を行う。
Next, the processing steps performed by the apparatus configured as described above will be described. This device is equipped with an adsorption treatment tank 1A,
A re-adsorption treatment tank 1 includes a water treatment process in which raw water to be treated containing NH 4 —N is fed to 1B and treated by an adsorbent for adsorption treatment, and a regeneration treatment process for regenerating a saturated adsorbent.
When the adsorbent in one of the adsorption treatment tanks 1A reaches a saturated adsorption state, the adsorption treatment is started in the other adsorption treatment tank 1B and is regenerated on one side. Start processing. This is alternately performed for continuous water treatment.

【0022】まず水処理工程において、被処理原水中の
NH4 −Nは吸着処理槽1A又は1B内を通過すること
によって吸着剤に吸着除去され、処理済水となり、処理
済水は排出路3から排出される。
First, in the water treatment step, NH 4 -N in the raw water to be treated is adsorbed and removed by the adsorbent by passing through the adsorption treatment tank 1A or 1B to become treated water, and the treated water is discharged through the discharge path 3. Emitted from.

【0023】吸着剤の再生処理は調整槽6より0.1N
程度のNaCl溶液の再生処理液を吸着処理槽1A又は
1Bに通過させて行う。これによって吸着剤に吸着され
たNH4 + はNa+ に交換され、再生処理液に移行す
る。再生処理に移行された液のNH4 + は、電解処理槽
7にて電解処理することによって除去される。除去後は
再び再生処理液として循環使用する。再生処理液で消費
されるNaClは調整槽6へ補充し、一定の濃度の再生
処理液として送り出す。
The regeneration process of the adsorbent is 0.1N from the adjusting tank 6.
This is carried out by passing a regenerating treatment solution of a NaCl solution to a degree through the adsorption treatment tank 1A or 1B. As a result, NH 4 + adsorbed on the adsorbent is exchanged for Na + and transferred to the regeneration treatment liquid. NH 4 + of the liquid transferred to the regeneration treatment is removed by electrolytic treatment in the electrolytic treatment tank 7. After removal, it is reused as a regeneration treatment liquid again. The NaCl consumed by the regeneration treatment liquid is replenished to the adjusting tank 6 and sent out as a regeneration treatment liquid having a constant concentration.

【0024】再生処理液の電解処理は以下の工程によっ
てなされる。陽極槽10の上部に流入された再生処理液
は活性炭14内を通り、仕切板9の下部から陰極槽11
の上部より流出される。このとき、陽極槽10において
塩素ガスが発生し、塩素ガスは次式の如く反応して次亜
塩素酸となる。
The electrolytic treatment of the regeneration treatment liquid is performed by the following steps. The regeneration treatment liquid that has flowed into the upper part of the anode tank 10 passes through the activated carbon 14 and from the lower part of the partition plate 9 to the cathode tank 11
Is spilled from above. At this time, chlorine gas is generated in the anode tank 10, and the chlorine gas reacts according to the following equation to become hypochlorous acid.

【0025】2Cl- →Cl2 ↑+2e- Cl2 +H2 O→HCl+HClO 次亜鉛素酸は次式のように分解し、強い酸化力を示す。[0025] 2Cl - → Cl 2 ↑ + 2e - Cl 2 + H 2 O → HCl + HClO hypochlorite decomposes as follows, showing a strong oxidizing power.

【0026】2HClO→2HCl+O2 ↑ このときNH4 + は窒素に酸化される。2HClO → 2HCl + O 2 ↑ At this time, NH 4 + is oxidized to nitrogen.

【0027】NH4 + → 1/2N2 + 3/2H2 +H+ 仕切板9の存在によって、陽極側は酸性となり、次亜鉛
素酸は酸性側(pH3〜6)で強い酸化力を示すので、
上記反応が有効に行われる。また活性炭は塩素ガスを吸
着するため、発生塩素ガスの放出を防ぐ効果がある。
The presence of NH 4 + → 1 / 2N 2 + 3 / 2H 2 + H + partition plate 9 makes the anode side acidic, and hypozinc acid has a strong oxidizing power on the acidic side (pH 3 to 6). ,
The above reaction is effectively performed. Further, since activated carbon adsorbs chlorine gas, it has an effect of preventing the release of generated chlorine gas.

【0028】陰極槽11においては次式の反応によって
水素ガスが発生する。
In the cathode chamber 11, hydrogen gas is generated by the reaction of the following equation.

【0029】2H2 O+2e- →2OH- +H2 ↑ 電流量1ファラデー当り11.2リットルの水素ガスが
発生する。陰極板付近ではアルカリ性(pH12)でバブ
リングされるため、NH4 + がガスで放出されるという
効果が加わる。
2H 2 O + 2e → 2OH + H 2 ↑ 11.2 liters of hydrogen gas is generated per Faraday of current amount. Since bubbling is alkaline (pH 12) in the vicinity of the cathode plate, an effect of adding NH 4 + as a gas is added.

【0030】なお電解は電流1A/リットル程度で30
分の滞留時間とする。
The electrolysis is performed at a current of about 1 A / liter for 30 times.
The residence time is minutes.

【0031】[0031]

【発明の効果】上述したように本発明の水中のアンモニ
ア性窒素除去装置においては、吸着剤の再生処理に際す
る電解処理槽において、陽極側が酸性、陰極がアルカリ
性になる。次亜塩素酸は酸性で最も強い酸化力を示す。
このため、陽極側においてNH4 + が窒素ガスに有効に
酸化される。陰極側においては、陽極側で除去できなか
った一部のNH4 + がアンモニアガスとして放出され
る。従ってエアストリッピング法も併用することとな
り、NH4 + の除去効果が高い。
As described above, in the apparatus for removing ammoniacal nitrogen in water according to the present invention, the anode side is acidic and the cathode is alkaline in the electrolytic treatment tank for the regeneration treatment of the adsorbent. Hypochlorous acid is acidic and exhibits the strongest oxidizing power.
Therefore, NH 4 + is effectively oxidized into nitrogen gas on the anode side. On the cathode side, a part of NH 4 + which could not be removed on the anode side is released as ammonia gas. Therefore, the air stripping method is also used, and the NH 4 + removal effect is high.

【0032】また陽極に活性炭を充填して使用すること
により、その活性炭の吸着能力により発生塩素ガスの放
出が少なく、塩素を有効利用できる。更に再生処理液に
含まれる有機物や発生する塩素化合物は活性炭に吸着さ
れ、酸化分解されるので、有害物質の発生がない等の効
果がある。
When the anode is filled with activated carbon for use, the adsorbing capacity of the activated carbon causes less emission of chlorine gas generated, and chlorine can be effectively used. Furthermore, since the organic substances contained in the regeneration treatment liquid and the chlorine compounds generated are adsorbed on the activated carbon and oxidatively decomposed, there is an effect that no harmful substances are generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成を示すブロック図である。FIG. 1 is a block diagram showing an overall configuration of the present invention.

【図2】同上の電解処理槽の断面図である。FIG. 2 is a cross-sectional view of the electrolytic treatment tank of the above.

【符号の説明】[Explanation of symbols]

1A,1B 吸着処理槽 2 原水供給路 2a,2b,5a,5b 開閉弁 3 処理済水排出路 3a,3b 開閉弁 4 再生処理液供給路 5 再生処理液排出路 6 再生処理液調整槽 7 電解処理槽 8 通水孔 9 仕切板 10 陽極槽 11 陰極槽 12 陽極板 13 陰極板 14 活性炭 15 送液路 1A, 1B Adsorption treatment tank 2 Raw water supply passage 2a, 2b, 5a, 5b Open / close valve 3 Treated water discharge passage 3a, 3b Open / close valve 4 Regeneration treatment liquid supply passage 5 Regeneration treatment liquid discharge passage 6 Regeneration treatment liquid adjustment tank 7 Electrolysis Treatment tank 8 Water passage hole 9 Partition plate 10 Anode tank 11 Cathode tank 12 Anode plate 13 Cathode plate 14 Activated carbon 15 Liquid transfer path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無機イオン交換体等のアンモニア性窒素
吸着剤を充填した吸着処理槽と、該吸着処理槽に被処理
原水を供給する原水供給路と、処理済水を排出させる処
理済水排出路とをそれぞれ開閉自在に備えてなる水中の
アンモニア性窒素除去装置において、前記吸着処理槽に
吸着剤再生処理液を供給する再生処理液供給路と、該再
生処理液を調整して前記再生処理液供給路に供給する再
生処理液調整槽と、前記吸着処理槽から吸着剤再生処理
後の再生処理液を排出する開閉自在な再生処理液排出路
と、該再生処理液排出路からの再生処理液を電解処理に
よって再生し、前記再生処理液調整槽に送り込む電解処
理槽とを備えたことを特徴としてなる水中のアンモニア
性窒素除去装置。
1. An adsorption treatment tank filled with an ammoniacal nitrogen adsorbent such as an inorganic ion exchanger, a raw water supply passage for supplying raw water to be treated to the adsorption treatment tank, and a treated water discharge for discharging treated water. In the apparatus for removing ammoniacal nitrogen in water, each of which is provided with a passage and a passage which can be opened and closed, a regeneration treatment liquid supply passage for supplying an adsorption agent regeneration treatment liquid to the adsorption treatment tank, and the regeneration treatment by adjusting the regeneration treatment liquid. A regeneration treatment liquid adjusting tank to be supplied to the liquid supply passage, an openable / closable regeneration treatment liquid discharge passage for discharging the regeneration treatment liquid after the adsorbent regeneration treatment from the adsorption treatment tank, and a regeneration treatment from the regeneration treatment liquid discharge passage. A device for removing ammoniacal nitrogen in water, comprising: an electrolytic treatment tank for regenerating a liquid by electrolytic treatment and sending the liquid to the regeneration treatment liquid adjusting tank.
【請求項2】 無機イオン交換体としてゼオライトを使
用するとともに電解処理槽の陽極側と陰極側とを透水性
のある仕切板をもって仕切り、該仕切板より陽極側に活
性炭を充填し、吸着処理槽からの再生処理液を前記陽極
側に送り込み陰極側から排出させるようにしてなる請求
項1に記載の水中のアンモニア性窒素除去装置。
2. An adsorption treatment tank, wherein zeolite is used as an inorganic ion exchanger, and the anode side and the cathode side of the electrolytic treatment tank are partitioned by a partition plate having water permeability, and the anode side of the partition plate is filled with activated carbon. The apparatus for removing ammoniacal nitrogen in water according to claim 1, wherein the regeneration treatment liquid from is fed to the anode side and discharged from the cathode side.
JP8147093A 1993-03-16 1993-03-16 Device for removing ammoniacal nitrogen in water Pending JPH06269776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8147093A JPH06269776A (en) 1993-03-16 1993-03-16 Device for removing ammoniacal nitrogen in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8147093A JPH06269776A (en) 1993-03-16 1993-03-16 Device for removing ammoniacal nitrogen in water

Publications (1)

Publication Number Publication Date
JPH06269776A true JPH06269776A (en) 1994-09-27

Family

ID=13747296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8147093A Pending JPH06269776A (en) 1993-03-16 1993-03-16 Device for removing ammoniacal nitrogen in water

Country Status (1)

Country Link
JP (1) JPH06269776A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282853A (en) * 2001-03-28 2002-10-02 Asahi Soft Drinks Co Ltd Water treatment equipment
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
US7722773B2 (en) 2007-04-09 2010-05-25 Hitachi, Ltd. Method of treating organic compounds in wastewater
JP2010162543A (en) * 2010-03-19 2010-07-29 Asahi Soft Drinks Co Ltd Water treatment apparatus
CN101891316A (en) * 2010-07-07 2010-11-24 太原理工大学 Process for treating nitrogen-containing wastewater by ion exchange and reclaiming ammonium nitrate
JP2013237039A (en) * 2013-01-22 2013-11-28 Kurita Water Ind Ltd Water recovery apparatus for closed system space
CN105314704A (en) * 2014-07-11 2016-02-10 上海博丹环境工程技术股份有限公司 Ammonia-nitrogen wastewater processing method and system, and sodium modified zeolite regeneration method
CN108358271A (en) * 2018-03-16 2018-08-03 上海力脉环保设备有限公司 A kind of ammonia nitrogen absorption zeolite fluid bed reproducible and its application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282853A (en) * 2001-03-28 2002-10-02 Asahi Soft Drinks Co Ltd Water treatment equipment
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
US7722773B2 (en) 2007-04-09 2010-05-25 Hitachi, Ltd. Method of treating organic compounds in wastewater
US7993529B2 (en) 2007-04-09 2011-08-09 Hitachi, Ltd. Treatment apparatus of organic compounds included in waste water, and a treatment system of organic compounds included in waste water
JP2010162543A (en) * 2010-03-19 2010-07-29 Asahi Soft Drinks Co Ltd Water treatment apparatus
CN101891316A (en) * 2010-07-07 2010-11-24 太原理工大学 Process for treating nitrogen-containing wastewater by ion exchange and reclaiming ammonium nitrate
JP2013237039A (en) * 2013-01-22 2013-11-28 Kurita Water Ind Ltd Water recovery apparatus for closed system space
CN105314704A (en) * 2014-07-11 2016-02-10 上海博丹环境工程技术股份有限公司 Ammonia-nitrogen wastewater processing method and system, and sodium modified zeolite regeneration method
CN108358271A (en) * 2018-03-16 2018-08-03 上海力脉环保设备有限公司 A kind of ammonia nitrogen absorption zeolite fluid bed reproducible and its application

Similar Documents

Publication Publication Date Title
EP1405827A1 (en) Process and apparatus for treating nitrogen compound containing water
EP1062989A2 (en) Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
JPH10174976A (en) Method for treating water containing nitrogen compound
US3929600A (en) Process of removing ammoniacal nitrogen from waste water
CN106630009A (en) High-concentration ammonia-nitrogen wastewater ion exchange-electrolytic regeneration treatment process device and method
WO2015165234A1 (en) Method for decontamination treatment and utilization as resource of ion exchange resin desorption solution
US5702587A (en) Chemical and electrochemical regeneration of active carbon
JPH06269776A (en) Device for removing ammoniacal nitrogen in water
US4217191A (en) Process for regenerating contaminated activated carbon
JP3984414B2 (en) NH3-containing wastewater treatment apparatus and treatment method
CN108439540A (en) A kind of reverse osmosis concentrated saline water treatment device of cold rolling wastewater and method
CN108751325A (en) A kind of ammonia nitrogen waste water processing system and ammonia nitrogen waste water treatment method
CN204644026U (en) A kind of device adopting PhotoelectrochemicalTechnique Technique to remove ammonia nitrogen in water
CN104891717B (en) A kind of PhotoelectrochemicalTechnique Technique removes the method and apparatus of ammonia nitrogen in water
JPS6244995B2 (en)
JP2002346566A (en) Apparatus and method for water treatment
RU2207982C2 (en) Water treatment method
JP5142462B2 (en) Water purification device and water purification method
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
JPH10230291A (en) Biological denitrification method of water and device therefor
JPS6036835B2 (en) How to purify human waste water
JPS5816953B2 (en) Electrolysis method to remove wastewater pollutants
JP3601673B2 (en) Electrolytic treatment method for water containing oxidizable pollutants and electrode for electrolytic treatment
CN218232089U (en) Ammonia nitrogen adsorbs water treatment system of desorption and degradation
JP2003326264A (en) Method for concentrating and decomposing harmful substance