JP2015160202A - Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water - Google Patents

Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water Download PDF

Info

Publication number
JP2015160202A
JP2015160202A JP2014039075A JP2014039075A JP2015160202A JP 2015160202 A JP2015160202 A JP 2015160202A JP 2014039075 A JP2014039075 A JP 2014039075A JP 2014039075 A JP2014039075 A JP 2014039075A JP 2015160202 A JP2015160202 A JP 2015160202A
Authority
JP
Japan
Prior art keywords
dioxane
aeration tank
treatment
sludge
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014039075A
Other languages
Japanese (ja)
Inventor
葛 甬生
Yosei Katsu
甬生 葛
正人 西脇
Masato Nishiwaki
正人 西脇
祐司 塚本
Yuji Tsukamoto
祐司 塚本
竜哉 古市
Tatsuya Furuichi
竜哉 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2014039075A priority Critical patent/JP2015160202A/en
Publication of JP2015160202A publication Critical patent/JP2015160202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide method and apparatus for a biological treatment of 1,4-dioxane-containing organic waste water, by which 1,4-dioxane in waste water can be stably decomposition-treated in a shorter period of time while maintaining high activity of 1,4-dioxane decomposition bacteria.SOLUTION: A biological treatment method for 1,4-dioxane-containing organic waste water includes: a first treatment process of obtaining a first treatment solution 3 by treating 1,4-dioxane-containing organic waste water 1 in a first aeration tank 2 containing active sludge; a second treatment process of obtaining a second treatment solution 5 by loading the first treatment solution 3 into a second aeration tank 4 containing a microorganism carrier carrying microorganism for decomposing 1,4-dioxane and active sludge so as to decompose the 1,4-dioxane in the first treatment solution 3 by the microorganism carrier in the presence of the active sludge; a solid-liquid separation process of obtaining treatment water 7 and concentrated sludge 8 by subjecting the second treatment solution 5 to solid-liquid separation; and a return process of returning the concentrated sludge 8 into the first aeration tank 2.

Description

本発明は、1,4−ジオキサン含有有機性廃水の生物処理方法及びその処理装置に関し、特に、化学製品や半導体等の製造工場廃水、ごみ埋立て処分場の浸出水、下水などの1,4−ジオキサンを含有する有機性廃水を、微生物を用いて生物処理可能な1,4−ジオキサン含有有機性廃水の生物処理方法及びその処理装置に関する。   The present invention relates to a biological treatment method and treatment apparatus for 1,4-dioxane-containing organic wastewater, and in particular, 1,4 such as wastewater from manufacturing plants for chemical products and semiconductors, leachate from landfills, sewage, etc. -It is related with the biological treatment method of 1, 4- dioxane containing organic wastewater which can biologically process the organic wastewater containing a dioxane using microorganisms, and its processing apparatus.

1,4−ジオキサンは、発がん性の疑いのある物質とされており、水道水基準や環境基準としては既にその基準値が0.05mg/L以下となるように規制がされている。廃水規準としても、平成24年度に0.5mg/L以下と制定されている。1,4−ジオキサンの発生源としては、主に、1,4−ジオキサン製造工程、1,4−ジオキサンを溶剤として用いた半導体工業製品製造工程、化学製品製造工程等において発生する副生成物等が挙げられる。   1,4-dioxane is a substance suspected of having carcinogenicity, and has already been regulated so that the standard value thereof is 0.05 mg / L or less as a tap water standard and an environmental standard. As a wastewater standard, it was established in 2012 as 0.5 mg / L or less. As a generation source of 1,4-dioxane, by-products generated mainly in 1,4-dioxane production process, semiconductor industrial product production process using 1,4-dioxane as a solvent, chemical product production process, etc. Is mentioned.

1,4−ジオキサンは、生物学的難分解性物質である。従来の廃水処理施設では、生物処理や凝沈処理、砂ろ過処理等が中心であることから、1,4−ジオキサンの除去効果はほとんど得られない。1,4−ジオキサンを分解除去できる有効な処理方法としては、オゾン処理やオゾンと過酸化水素処理、オゾンと紫外線処理の組み合わせによる促進酸化処理、所謂AOP処理が知られている(例えば、特許文献1及び2参照)。   1,4-Dioxane is a biologically degradable substance. In conventional wastewater treatment facilities, biological treatment, coagulation treatment, sand filtration treatment, etc. are the main, and therefore, 1,4-dioxane removal effect is hardly obtained. As an effective treatment method capable of decomposing and removing 1,4-dioxane, ozone treatment, ozone and hydrogen peroxide treatment, accelerated oxidation treatment by a combination of ozone and ultraviolet treatment, so-called AOP treatment is known (for example, Patent Documents). 1 and 2).

しかし、AOP処理は、一般的にオゾン中心とした促進酸化反応により酸化力の強いヒドロキシルラジカルが生成し、1,4−ジオキサンを含む被処理水中の有機物を分解する。そのため、有機物濃度の高い廃水では、1,4−ジオキサン以外の有機物も分解されるため、必要オゾン注入量や薬品量が多くなり、高い処理コストが必要となるという課題が残る。   However, AOP treatment generally generates hydroxyl radicals with strong oxidizing power by an accelerated oxidation reaction centered on ozone, and decomposes organic matter in the water to be treated containing 1,4-dioxane. Therefore, in wastewater with a high concentration of organic matter, organic matter other than 1,4-dioxane is also decomposed, so that there is a problem that the required ozone injection amount and the amount of chemicals are increased and high treatment costs are required.

近年AOP処理よりも低いランニングコストで処理できる生物処理法も検討されてきている。例えば、1,4−ジオキサンを分解する微生物(以下「1,4−ジオキサン分解菌」という)を用いた1,4−ジオキサン含有処理水の処理方法が開示されている(例えば、特許文献3及び4参照)。   In recent years, biological treatment methods that can be treated at a lower running cost than AOP treatment have been studied. For example, a method for treating 1,4-dioxane-containing treated water using a microorganism that decomposes 1,4-dioxane (hereinafter referred to as “1,4-dioxane-degrading bacteria”) is disclosed (for example, Patent Document 3 and 4).

特開2005−103401号公報JP-A-2005-103401 特開2005−58854号公報JP 2005-58854 A 特開2012−161737号公報JP 2012-161737 A 特開2012−179590号公報JP 2012-179590 A

特許文献3及び4に記載された処理方法では、1,4−ジオキサン分解菌の活性を安定して維持するために、実際に処理を開始する前に、予め1,4−ジオキサン分解菌を培養する。そして培養した1,4−ジオキサン分解菌を担体に包括固定化して曝気槽内に流動させることで、1,4−ジオキサンの分解処理を行っている。   In the treatment methods described in Patent Documents 3 and 4, in order to stably maintain the activity of 1,4-dioxane-decomposing bacteria, 1,4-dioxane-degrading bacteria are cultured in advance before actually starting the treatment. To do. The cultured 1,4-dioxane degrading bacteria are entrapped and immobilized on a carrier and flowed into an aeration tank, whereby 1,4-dioxane is decomposed.

しかしながら、特許文献3及び4に記載されるような、予め培養した1,4−ジオキサン分解菌を含む包括固定化担体を用いる方法は、培養処理のための時間を要する上、培養処理した1,4−ジオキサン分解菌を実際に曝気槽内に投入して処理装置を安定化させるための時間も更に必要となるため、処理時間が長くなる。   However, the method using the entrapping immobilization support containing 1,4-dioxane degrading bacteria previously cultured as described in Patent Documents 3 and 4 requires time for the culture treatment, and the culture treated 1, Since further time is required to stabilize the processing apparatus by actually introducing 4-dioxane-degrading bacteria into the aeration tank, the processing time becomes longer.

更に、特許文献3及び4に記載された処理方法では、培養した環境と実際の処理に使用される環境条件が異なる場合も多く、環境条件の変化により1,4−ジオキサン分解菌の活性を安定して維持することが困難になる場合がある。例えば、生物化学的酸素要求量(BOD)の高い廃水が曝気槽内に流入するなどして流入廃水の有機物濃度が大きく変動した場合、包括固定化担体の分解活性が著しく低下し、廃水中の1,4−ジオキサンを安定的に処理できない場合がある。   Furthermore, in the treatment methods described in Patent Documents 3 and 4, the cultured environment and the environmental conditions used for actual treatment are often different, and the activity of 1,4-dioxane-degrading bacteria is stabilized by changes in the environmental conditions. And may be difficult to maintain. For example, when the organic matter concentration of inflow wastewater greatly fluctuates, for example, when wastewater with a high biochemical oxygen demand (BOD) flows into the aeration tank, the decomposition activity of the entrapping immobilization support significantly decreases, In some cases, 1,4-dioxane cannot be stably treated.

上記課題を鑑み、本発明は、1,4−ジオキサン分解菌の活性を高く維持しながら、廃水中の1,4−ジオキサンをより短時間で安定的に分解処理可能な1,4−ジオキサン含有有機性廃水の生物処理方法及びその処理装置を提供する。   In view of the above problems, the present invention contains 1,4-dioxane that can stably decompose 1,4-dioxane in wastewater in a shorter time while maintaining high activity of 1,4-dioxane degrading bacteria. A biological treatment method for organic wastewater and a treatment apparatus therefor are provided.

本発明者らは、実廃水を用いた実験検討の結果、1,4−ジオキサン含有有機性廃水を第2曝気槽内で処理する場合に、1,4−ジオキサンを分解するための微生物担体を活性汚泥と共存させ、活性汚泥の共存下で廃水中の1,4−ジオキサンの分解反応を進行させるとともに第2曝気槽で得られた処理液から濃縮される濃縮汚泥を第1曝気槽へ返送させることによって、廃水中の1,4−ジオキサンをより短時間で安定的に分解処理可能な1,4−ジオキサン含有有機性廃水の生物処理方法及びその処理装置が得られることを見出した。   As a result of experimental studies using actual wastewater, the present inventors have found a microbial carrier for decomposing 1,4-dioxane when 1,4-dioxane-containing organic wastewater is treated in the second aeration tank. Coexist with activated sludge, proceed with 1,4-dioxane decomposition reaction in the wastewater in the presence of activated sludge and return the concentrated sludge concentrated from the treatment liquid obtained in the second aeration tank to the first aeration tank It was found that a biological treatment method of 1,4-dioxane-containing organic wastewater and a treatment apparatus thereof capable of stably decomposing 1,4-dioxane in wastewater in a shorter time can be obtained.

以上の知見を基礎として完成した本発明は一側面において、1,4−ジオキサン含有有機性廃水を、活性汚泥を含む第1曝気槽内で処理して第1処理液を得る第1処理工程と、第1処理液を、1,4−ジオキサンを分解する微生物を担持した微生物担体と活性汚泥とを含む第2曝気槽内に導入し、活性汚泥の存在下で微生物担体によって第1処理液中の1,4−ジオキサンを分解させて第2処理液を得る第2処理工程と、第2処理液を固液分離し、処理水と濃縮汚泥とを得る固液分離工程と、濃縮汚泥を第1曝気槽内へ返送する返送工程とを含む1,4−ジオキサン含有有機性廃水の生物処理方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, a first treatment step of obtaining a first treatment liquid by treating 1,4-dioxane-containing organic wastewater in a first aeration tank containing activated sludge. The first treatment liquid is introduced into a second aeration tank containing a microorganism carrier supporting microorganisms that decompose 1,4-dioxane and activated sludge, and the first treatment liquid is contained in the first treatment liquid by the microorganism carrier in the presence of activated sludge. A second treatment step for decomposing 1,4-dioxane to obtain a second treatment solution, a solid-liquid separation step for obtaining a treated water and concentrated sludge by solid-liquid separation of the second treatment solution, 1 is a biological treatment method of 1,4-dioxane-containing organic wastewater including a returning step of returning to an aeration tank.

本発明に係る処理方法は一実施態様において、1,4−ジオキサン含有有機性廃水の一部を第1曝気槽内へ供給する前に分注し、第2曝気槽に供給する分注工程を含む。   In one embodiment, the treatment method according to the present invention includes a dispensing step of dispensing a portion of 1,4-dioxane-containing organic waste water before supplying it into the first aeration tank and supplying it to the second aeration tank. Including.

本発明に係る処理方法は別の一実施態様において、濃縮汚泥の一部を第1曝気槽内へ返送する前に分注し、第2曝気槽内へ返送する分注返送工程を含む。   In another embodiment, the treatment method according to the present invention includes a dispensing and returning step of dispensing a part of the concentrated sludge before returning it to the first aeration tank and returning it to the second aeration tank.

本発明に係る処理方法は更に別の一実施態様において、微生物担体は、1,4−ジオキサンを分解する微生物を担体の表面上に付着固定させた結合固定化担体を含む。   In still another embodiment of the treatment method according to the present invention, the microbial carrier includes a binding immobilization carrier in which a microorganism that decomposes 1,4-dioxane is adhered and fixed on the surface of the carrier.

本発明に係る処理方法は更に別の一実施態様において、第1処理工程は、第1曝気槽のBOD汚泥負荷が0.1〜0.5kg/kg/dで処理することを含み、第2処理工程は、第2曝気槽のBOD汚泥負荷が0.1kg/kg/d以下で処理することを含む。   In still another embodiment of the treatment method according to the present invention, the first treatment step includes treatment at a BOD sludge load of the first aeration tank of 0.1 to 0.5 kg / kg / d, The treatment step includes treatment at a BOD sludge load of the second aeration tank of 0.1 kg / kg / d or less.

本発明に係る処理方法は更に別の一実施態様において、第2曝気槽内に新規担体を供給し、第1処理液をBOD汚泥負荷0.05kg/kg/d以下で処理することにより1,4−ジオキサンを分解する微生物を第2曝気槽内で増殖させ、増殖した微生物を新規担体の表面上に付着させる微生物付着工程を更に含む。   In still another embodiment of the treatment method according to the present invention, a novel carrier is supplied into the second aeration tank, and the first treatment liquid is treated with a BOD sludge load of 0.05 kg / kg / d or less, The method further includes the step of attaching a microorganism that decomposes 4-dioxane in the second aeration tank, and depositing the grown microorganism on the surface of the new carrier.

本発明は別の一側面において、1,4−ジオキサン含有有機性廃水中の有機物を活性汚泥により分解して第1処理液を得る第1曝気槽と、活性汚泥の存在下で1,4−ジオキサンを分解する微生物を担持した微生物担体により第1処理液中の1,4−ジオキサンを分解して第2処理液を得る第2曝気槽と、第2処理液を固液分離し、処理水と濃縮汚泥とを得る固液分離装置と、濃縮汚泥を固液分離装置から第1曝気槽へ返送する濃縮汚泥返送ラインとを備える1,4−ジオキサン含有有機性廃水の生物処理装置である。   In another aspect of the present invention, a first aeration tank that obtains a first treatment liquid by decomposing organic matter in 1,4-dioxane-containing organic wastewater with activated sludge, and 1,4-dioxane in the presence of activated sludge. A second aeration tank that obtains a second treatment liquid by decomposing 1,4-dioxane in the first treatment liquid using a microorganism carrier that supports microorganisms that decompose dioxane, and a second treatment liquid is subjected to solid-liquid separation, and treated water And a solid-liquid separator for obtaining concentrated sludge, and a biological treatment apparatus for organic wastewater containing 1,4-dioxane comprising a concentrated sludge return line for returning the concentrated sludge from the solid-liquid separator to the first aeration tank.

本発明によれば、1,4−ジオキサン分解菌の活性を高く維持しながら、廃水中の1,4−ジオキサンをより短時間で安定的に分解処理可能な1,4−ジオキサン含有有機性廃水の生物処理方法及びその処理装置が提供できる。   According to the present invention, 1,4-dioxane-containing organic wastewater that can stably decompose 1,4-dioxane in wastewater in a shorter time while maintaining high activity of 1,4-dioxane-degrading bacteria. The biological treatment method and the treatment apparatus thereof can be provided.

本発明の実施の形態に係る生物処理フローの一例を表す概略図である。It is the schematic showing an example of the biological treatment flow which concerns on embodiment of this invention. 図1の生物処理フローの第1変形例を表す概略図である。It is the schematic showing the 1st modification of the biological treatment flow of FIG. 図1の生物処理フローの第2変形例を表す概略図である。It is the schematic showing the 2nd modification of the biological treatment flow of FIG. 従来の生物処理フローを表す概略図である。It is the schematic showing the conventional biological treatment flow.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は各装置の構造、配置等を下記のものに特定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments exemplify devices and methods for embodying the technical idea of the present invention. The technical idea of the present invention specifies the structure, arrangement, etc. of each device as follows. Not what you want.

(生物処理装置)
本発明の実施の形態に係る水処理装置は、図1に示すように、1,4−ジオキサン含有有機性廃水1(以下「原水」ともいう)中の有機物を活性汚泥により分解して第1処理液3を得る第1曝気槽2と、活性汚泥の存在下で1,4−ジオキサンを分解する微生物を担持した微生物担体により第1処理液3中の1,4−ジオキサンを分解して第2処理液5を得る第2曝気槽4と、第2処理液5を固液分離し、処理水7と濃縮汚泥8とを得る固液分離装置6と、濃縮汚泥8を固液分離装置6から第1曝気槽2へ返送する濃縮汚泥返送ライン11とを備える。
(Biological treatment equipment)
As shown in FIG. 1, the water treatment apparatus according to the embodiment of the present invention decomposes the organic matter in 1,4-dioxane-containing organic waste water 1 (hereinafter also referred to as “raw water”) with activated sludge. The first aeration tank 2 for obtaining the treatment liquid 3 and the microorganism carrier carrying the microorganisms for decomposing 1,4-dioxane in the presence of activated sludge decompose the 1,4-dioxane in the first treatment liquid 3 for the first time. 2 The second aeration tank 4 for obtaining the treatment liquid 5, the solid-liquid separation device 6 for separating the second treatment liquid 5 into solid-liquid separation to obtain the treated water 7 and the concentrated sludge 8, And a concentrated sludge return line 11 for returning to the first aeration tank 2.

1,4−ジオキサン含有有機性廃水1としては1,4−ジオキサンを含む廃水であれば特に制限されないが、例えば、化学製品や半導体等の製造工場廃水、ごみ埋立て処分場の浸出水、下水などの1,4−ジオキサンを含有する有機性廃水などが処理可能である。1,4−ジオキサン含有有機性廃水1の1,4−ジオキサン濃度としては、以下に制限されないが、例えば10〜400mg/Lの1,4−ジオキサン濃度を有する廃水が好適に処理可能であり、より具体的には20〜150mg/L、更に具体的には40〜120mg/Lの1,4−ジオキサン濃度を有する廃水が処理可能である。   The 1,4-dioxane-containing organic wastewater 1 is not particularly limited as long as it is a wastewater containing 1,4-dioxane. For example, wastewater from manufacturing plants such as chemical products and semiconductors, leachate from landfills, and sewage Organic wastewater containing 1,4-dioxane such as can be treated. The 1,4-dioxane concentration of the 1,4-dioxane-containing organic wastewater 1 is not limited to the following, but for example, wastewater having a 1,4-dioxane concentration of 10 to 400 mg / L can be suitably treated, More specifically, wastewater having a 1,4-dioxane concentration of 20 to 150 mg / L, more specifically 40 to 120 mg / L can be treated.

第1曝気槽2としては、公知の好気性生物処理装置が用いられる。第1曝気槽2内には活性汚泥が収容されており、微生物の代謝によって、1,4−ジオキサン含有有機性廃水1中の易分解性有機物、とりわけBODのほとんどが分解除去される。   A known aerobic biological treatment apparatus is used as the first aeration tank 2. Activated sludge is accommodated in the first aeration tank 2, and most easily decomposable organic substances, particularly BOD, in the 1,4-dioxane-containing organic wastewater 1 are decomposed and removed by the metabolism of microorganisms.

例えば、第1曝気槽2内に1,4−ジオキサン含有有機性廃水1を100〜300L/dで供給して処理する場合、第1曝気槽2のBOD汚泥負荷は0.1〜0.5kg/kg/d、より好ましくは0.2〜0.4kg/kg/dとし、活性汚泥浮遊物質濃度(MLSS)1000〜8000mg/L、より好ましくは4000〜5500mg/Lで処理することができる。   For example, in the case where 1,4-dioxane-containing organic waste water 1 is supplied to the first aeration tank 2 at a rate of 100 to 300 L / d for treatment, the BOD sludge load of the first aeration tank 2 is 0.1 to 0.5 kg. / Kg / d, more preferably 0.2 to 0.4 kg / kg / d, and activated sludge suspended solids concentration (MLSS) 1000 to 8000 mg / L, more preferably 4000 to 5500 mg / L.

第2曝気槽4には、1,4−ジオキサンを分解処理するための1,4−ジオキサン分解菌を担持した微生物担体が収容されている。1,4−ジオキサン分解菌としては1,4−ジオキサン含有有機性廃水1の廃水処理に用いられる公知の微生物が利用可能である。中でも特に、本実施形態では、微生物担体として、1,4−ジオキサンを分解する微生物を担体の表面上に付着固定させた結合固定化担体を用いることが好ましい。「結合固定化担体」とは、担体の表面上に微生物を徐々に付着又は成長させる結合固定化法によって微生物を固定化した担体を意味する。結合固定化担体を用いることで、基質の微生物への輸送効率が上昇し、反応速度の向上が期待できる。   The second aeration tank 4 contains a microbial carrier carrying 1,4-dioxane degrading bacteria for decomposing 1,4-dioxane. As 1,4-dioxane-degrading bacteria, known microorganisms used for wastewater treatment of 1,4-dioxane-containing organic wastewater 1 can be used. In particular, in the present embodiment, it is preferable to use a bond-immobilized carrier in which a microorganism that decomposes 1,4-dioxane is adhered and fixed on the surface of the carrier as the microorganism carrier. The “bound immobilization carrier” means a carrier on which microorganisms are immobilized by a binding immobilization method in which microorganisms gradually adhere or grow on the surface of the carrier. By using the bound immobilization carrier, the efficiency of transporting the substrate to the microorganism is increased, and an improvement in the reaction rate can be expected.

また、後述する生物処理方法において詳しく説明するが、本実施形態で用いられる結合固定化担体は、第2曝気槽4内に表面に微生物が付着していない新規担体を供給し、第2曝気槽4内に処理対象とする1,4−ジオキサン含有有機性廃水1を供給して新規担体の表面上に1,4−ジオキサン分解菌を徐々に付着固定させる方法により作製される。そのため、例えば特許文献3及び4に記載されるような、予め微生物を樹脂などで包括し、樹脂の内部に微生物を取り込み固定化する包括固定化法により生物処理装置とは別機構で作製された包括固定化担体を用いる場合に比べて、生物処理装置の安定化に要する時間が短縮化できる。更に、本実施形態に係る結合固定化担体によれば、原水性状により馴致した1,4−ジオキサン分解菌が高密度に付着固定する。このため、1,4−ジオキサンを安定して分解除去でき、従来の包括固定化担体に比べて、流入廃水の有機物濃度の変動があった場合でも、1,4−ジオキサン分解菌の活性を高く維持しながら、廃水中の1,4−ジオキサンをより短時間で安定的に分解処理可能となる。   Further, as will be described in detail in the biological treatment method described later, the bound and immobilized carrier used in the present embodiment supplies a new carrier in which microorganisms are not attached to the surface in the second aeration tank 4, and the second aeration tank 4 is produced by supplying 1,4-dioxane-containing organic waste water 1 to be treated into 4 and gradually attaching and fixing 1,4-dioxane-degrading bacteria on the surface of the new carrier. Therefore, for example, as described in Patent Documents 3 and 4, the microorganisms are preliminarily encapsulated with a resin or the like, and are produced by a mechanism separate from the biological treatment apparatus by an entrapment immobilization method in which the microorganisms are taken in and fixed inside the resin. Compared to the case of using the entrapping immobilization support, the time required for stabilization of the biological treatment apparatus can be shortened. Furthermore, according to the binding immobilization carrier according to the present embodiment, 1,4-dioxane degrading bacteria accustomed to the raw aqueous state adhere and fix at high density. Therefore, 1,4-dioxane can be stably decomposed and removed, and the activity of 1,4-dioxane-degrading bacteria is increased even when there is a change in the concentration of organic matter in the influent wastewater, compared to conventional entrapping immobilization carriers. While maintaining, 1,4-dioxane in wastewater can be stably decomposed in a shorter time.

第2曝気槽4は主に1,4−ジオキサンを分解除去する反応槽であるため、投入される生物担体が1,4−ジオキサン分解菌が安定して付着固定できるものが好ましい。第2曝気槽4内に投入される担体の材料としては、ポリエチレングリコール(PEG)やポリビニルアルコール(PVA)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリポロピレン等からなる担体、ポリエステル、ポリオレフィン、レーヨン、セルロースからなるスポンジや不織布担体が挙げられる。また、活性炭やアンスラサイト等の無機物主成分の担体を用いることも可能である。   Since the second aeration tank 4 is a reaction tank mainly for decomposing and removing 1,4-dioxane, it is preferable that the biocarrier to be charged can stably adhere and fix 1,4-dioxane degrading bacteria. As the material of the carrier put into the second aeration tank 4, synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyacrylamide, and photocurable resin, and polymers such as carrageenan and sodium alginate are used. Examples include gel carriers used, carriers made of polyethylene, polyurethane, polypropylene, etc., sponges made of polyester, polyolefin, rayon, cellulose, and nonwoven fabric carriers. It is also possible to use a carrier based on an inorganic substance such as activated carbon or anthracite.

第2曝気槽4内に投入される担体の形状としては、球形、四角形、円筒形の何れも使用可能であり、その有効径は、第2曝気槽4の出口に設けられたスクリーンにより安定して分離できる2〜20mmであり、より好ましくは3〜15mm、更に好ましくは3〜10mmが好ましい。担体の比重は曝気状態において均一に流動可能となる1.01〜1.15、より好ましくは1.01〜1.10、更に好ましくは曝気槽混合汚泥の比重に近い1.01〜1.03であるものが好ましい。担体充填量は、均一に混合流動可能となる5〜30V%であるのが好ましく、より好ましくは10〜20V%である。   As the shape of the carrier charged into the second aeration tank 4, any of a spherical shape, a square shape, and a cylindrical shape can be used, and its effective diameter is stabilized by a screen provided at the outlet of the second aeration tank 4. 2 to 20 mm, more preferably 3 to 15 mm, and still more preferably 3 to 10 mm. The specific gravity of the carrier is 1.01 to 1.15, more preferably 1.01 to 1.10, and more preferably 1.01 to 1.03 which is close to the specific gravity of the aeration tank mixed sludge. Are preferred. The carrier filling amount is preferably from 5 to 30 V%, more preferably from 10 to 20 V%, which enables uniform flow of mixing.

中でも、表面若しくは全体において、網目構造を有するポリエチレンやポリウレタン、ポリポロピレン等からなるスポンジ担体が好ましい。また、ポリエチレングリコール(PEG)やポリビニルアルコール(PVA)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体としても、担体表面若しくは全体において、微小な細孔や網目構造を有するものが好ましい。   Among these, a sponge carrier made of polyethylene, polyurethane, polypropylene or the like having a network structure on the surface or the whole is preferable. In addition, a gel carrier using a synthetic polymer such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyacrylamide, or photocurable resin, or a polymer such as carrageenan or sodium alginate may be fine on the surface of the carrier or on the whole. Those having a fine pore or network structure are preferred.

スポンジ担体の場合は有効径が5〜20mm、槽内流動が均一となるように曝気槽に対する容積充填率で10〜30%であることが好ましい。スポンジ担体の網目構造として内部細孔50〜5000μmのものを用いる。好ましくは、100〜1000μmのものを用いる。スポンジ担体以外のゲル担体等の場合は有効径が3〜10mm、槽内流動が均一となるように曝気槽に対する容積充填率で5〜20%であることが好ましい。担体は表面に微小な細孔を有するものを用いる。細孔径としては、5〜500μmのものを用いる。好ましくは、5〜100μmのものを用いる。   In the case of a sponge carrier, the effective diameter is preferably 5 to 20 mm, and the volume filling rate with respect to the aeration tank is preferably 10 to 30% so that the flow in the tank is uniform. A sponge carrier having a network structure with internal pores of 50 to 5000 μm is used. Preferably, the thing of 100-1000 micrometers is used. In the case of a gel carrier other than the sponge carrier, the effective diameter is preferably 3 to 10 mm, and the volume filling rate with respect to the aeration tank is preferably 5 to 20% so that the flow in the tank is uniform. A carrier having fine pores on the surface is used. A pore diameter of 5 to 500 μm is used. Preferably, the thing of 5-100 micrometers is used.

第2曝気槽4では、微生物担体と活性汚泥とを共存させることが望ましい。活性汚泥の共存により、第2曝気槽4に流入する原水の水質が変動しても、活性汚泥処理による平均化が可能である。そのため、担体に対する1,4−ジオキサン分解菌付着及び1,4−ジオキサン分解菌による分解処理への影響がほとんど無く、安定した生物処理が行える。   In the 2nd aeration tank 4, it is desirable to make microbial carrier and activated sludge coexist. Even if the quality of the raw water flowing into the second aeration tank 4 fluctuates due to the coexistence of the activated sludge, it can be averaged by the activated sludge treatment. Therefore, 1,4-dioxane-decomposing bacteria adhere to the carrier and there is almost no influence on the decomposition treatment by 1,4-dioxane-degrading bacteria, and stable biological treatment can be performed.

第2曝気槽4に供給される第1処理液3は、第1曝気槽2内での処理によってBODが大きく低減されている。この第1処理液3を、微生物担体と活性汚泥とが共存した第2曝気槽4に導入して処理すると、第1曝気槽2で若干残留したBODが第2曝気槽4の活性汚泥により分解除去されるとともに、第1処理液3中の1,4−ジオキサンが担体付着の1,4−ジオキサン分解菌によって分解除去される。   The BOD of the first treatment liquid 3 supplied to the second aeration tank 4 is greatly reduced by the treatment in the first aeration tank 2. When the first treatment liquid 3 is introduced into the second aeration tank 4 where the microorganism carrier and the activated sludge coexist, the BOD slightly remaining in the first aeration tank 2 is decomposed by the activated sludge in the second aeration tank 4. While being removed, 1,4-dioxane in the first treatment liquid 3 is decomposed and removed by 1,4-dioxane degrading bacteria attached to the carrier.

第2曝気槽4内は、分解対象の有機物成分がほとんど1,4−ジオキサンであることから、第2曝気槽4内に充填された担体の表面上に1,4−ジオキサン分解菌を徐々に付着固定化することができる。このとき、活性汚泥を共存させることで、活性汚泥中のBOD酸化菌から生成される菌体外ポリマーや菌体外酵素の働きにより、担体表面に1,4−ジオキサン分解菌が安定して付着する。   In the second aeration tank 4, the organic component to be decomposed is almost 1,4-dioxane. Therefore, 1,4-dioxane-degrading bacteria are gradually put on the surface of the carrier filled in the second aeration tank 4. Adhesion can be fixed. At this time, by coexisting activated sludge, 1,4-dioxane-degrading bacteria adhere stably to the surface of the carrier due to the action of extracellular polymers and extracellular enzymes produced from BOD oxidizing bacteria in the activated sludge. To do.

例えば第2曝気槽4内に第1処理液3を100〜300L/dで供給して1,4−ジオキサンの分解処理を行う場合、第2曝気槽4のBOD汚泥負荷は0.1kg/kg/d以下、より好ましくは0.03〜0.07kg/kg/d、更に好ましくは0.03〜0.05kg/kg/dとし、活性汚泥浮遊物質濃度(MLSS)1000〜8000mg/L、より好ましくは4000〜5500mg/Lで処理することができる。   For example, when the 1st process liquid 3 is supplied in the 2nd aeration tank 4 at 100-300 L / d and the decomposition process of 1, 4- dioxane is performed, the BOD sludge load of the 2nd aeration tank 4 is 0.1 kg / kg. / D or less, more preferably 0.03 to 0.07 kg / kg / d, still more preferably 0.03 to 0.05 kg / kg / d, and activated sludge suspended solids concentration (MLSS) 1000 to 8000 mg / L, Preferably it can be processed at 4000-5500 mg / L.

なお、第2曝気槽4内に未使用の新規担体を添加した直後は、第2曝気槽4内に1,4−ジオキサン分解菌を増殖させて新規担体の表面上への1,4−ジオキサン分解菌の付着を促進させるために、第2曝気槽4のBOD汚泥負荷を0.05kg/kg/d以下に調整することが好ましい。   Immediately after adding an unused new carrier in the second aeration tank 4, 1,4-dioxane-degrading bacteria are grown in the second aeration tank 4 and 1,4-dioxane on the surface of the new carrier. In order to promote the attachment of degrading bacteria, it is preferable to adjust the BOD sludge load of the second aeration tank 4 to 0.05 kg / kg / d or less.

固液分離装置(沈殿池)6では、例えば、第2処理液5中に含まれる活性汚泥を沈降分離させることにより、処理水7と濃縮汚泥8とを得る。固液分離装置6で得られた濃縮汚泥8は返送ライン11を介して第1曝気槽2内へ供給させる。濃縮汚泥8を第1曝気槽2へ供給させることにより第1曝気槽2のMLSSを安定して維持するという効果が得られる。なお、固液分離装置6で発生する余剰汚泥9は系外へ排出させて汚泥処理設備へ供給することができる。   In the solid-liquid separation device (sedimentation basin) 6, for example, the treated water 7 and the concentrated sludge 8 are obtained by settling and separating the activated sludge contained in the second treatment liquid 5. The concentrated sludge 8 obtained by the solid-liquid separator 6 is supplied into the first aeration tank 2 via the return line 11. By supplying the concentrated sludge 8 to the first aeration tank 2, an effect of stably maintaining the MLSS of the first aeration tank 2 is obtained. The excess sludge 9 generated in the solid-liquid separator 6 can be discharged out of the system and supplied to the sludge treatment facility.

(生物処理方法)
次に、本発明の実施の形態に係る生物処理方法を説明する。本実施形態に係る生物処理方法は、1,4−ジオキサン含有有機性廃水1を、活性汚泥を含む第1曝気槽2内で処理して第1処理液3を得る第1処理工程と、第1処理液3を、1,4−ジオキサンを分解する微生物を担持した微生物担体と活性汚泥とを含む第2曝気槽4内に導入し、活性汚泥の存在下で微生物担体によって第1処理液3中の1,4−ジオキサンを分解させて第2処理液5を得る第2処理工程と、第2処理液5を固液分離し、処理水7と濃縮汚泥8とを得る固液分離工程と、濃縮汚泥8を第1曝気槽2内へ返送する返送工程を含む。
(Biological treatment method)
Next, the biological treatment method according to the embodiment of the present invention will be described. The biological treatment method according to the present embodiment includes a first treatment step in which 1,4-dioxane-containing organic wastewater 1 is treated in a first aeration tank 2 containing activated sludge to obtain a first treatment liquid 3; 1 treatment liquid 3 is introduced into a second aeration tank 4 containing a microorganism carrier carrying microorganisms that decompose 1,4-dioxane and activated sludge, and the first treatment liquid 3 is added by the microorganism carrier in the presence of activated sludge. A second treatment step for decomposing 1,4-dioxane therein to obtain a second treatment liquid 5, and a solid-liquid separation step for obtaining a treated water 7 and concentrated sludge 8 by solid-liquid separation of the second treatment liquid 5; And a returning step of returning the concentrated sludge 8 into the first aeration tank 2.

特に、本実施形態では、第2曝気槽4内に微生物が固定化されていない新規担体を供給し、微生物を新規担体の表面上に付着させて、1,4−ジオキサンを分解する微生物を担体の表面上に付着固定させた結合固定化担体を作製する微生物付着工程を含むことが好ましい。   In particular, in the present embodiment, a new carrier in which microorganisms are not immobilized is supplied into the second aeration tank 4, the microorganisms are attached to the surface of the new carrier, and the microorganisms that decompose 1,4-dioxane are used as carriers. It is preferable to include a microorganism attaching step for producing a binding immobilization carrier adhered and fixed on the surface of the substrate.

微生物付着工程は、1,4−ジオキサン含有有機性廃水1の実負荷運転が開始される前に生物処理装置を安定化させるための予備工程、所謂立ち上げ中に行うことができる。そのため、従来のように予め1,4−ジオキサン分解菌を培養して包括固定化させた包括固定化担体を使用する場合に比べて、実負荷運転に到達するまでの菌体培養を含めた立上げ時間を短縮できる。更には、実際に処理すべき1,4−ジオキサン含有有機性廃水1を用いて微生物担体を作製することで、より活性の高い1,4−ジオキサン菌を担体に安定的に保持させることができる。   The microorganism attaching step can be performed during a so-called start-up, that is, a preliminary step for stabilizing the biological treatment apparatus before the actual load operation of the 1,4-dioxane-containing organic wastewater 1 is started. Therefore, as compared with the conventional case where a entrapping immobilization support in which 1,4-dioxane-degrading bacteria are cultured and immobilized in advance is used as in the prior art, the culturing including the cell culture until reaching the actual load operation is performed. The raising time can be shortened. Furthermore, by producing a microbial carrier using 1,4-dioxane-containing organic wastewater 1 to be actually treated, 1,4-dioxane bacteria having higher activity can be stably held on the carrier. .

微生物付着工程では、第1曝気槽2で得られた第1処理液3を、活性汚泥と微生物が付着していない未使用の新規担体を収容した第2曝気槽4内へ供給し、第1処理液3をBOD汚泥負荷0.05kg/kg/d以下で処理する。これにより1,4−ジオキサンを分解する微生物を第2曝気槽4内で増殖させる。増殖した1,4−ジオキサン分解微生物は、新規担体の表面上に徐々に付着する。微生物付着工程は、微生物付着効果の観点から、第2曝気槽4内の水温20℃以上、pH5.8〜8.7、溶存酸素濃度2mg/L以上で処理することが好ましい。微生物付着に要する期間は、条件によって異なるが、通水開始から7〜14日程度である。   In the microorganism attaching step, the first treatment liquid 3 obtained in the first aeration tank 2 is supplied into the second aeration tank 4 containing the unused new carrier to which activated sludge and microorganisms are not attached. Treatment liquid 3 is treated with a BOD sludge load of 0.05 kg / kg / d or less. As a result, microorganisms that decompose 1,4-dioxane are grown in the second aeration tank 4. Proliferated 1,4-dioxane degrading microorganisms gradually adhere on the surface of the new carrier. From the viewpoint of the microorganism adhesion effect, the microorganism adhesion step is preferably performed at a water temperature of 20 ° C. or higher in the second aeration tank 4, pH 5.8 to 8.7, and a dissolved oxygen concentration of 2 mg / L or higher. Although the period required for microorganisms attachment changes with conditions, it is about 7 to 14 days from the start of water flow.

第2曝気槽4内で所望の微生物担体が得られた後の第1曝気槽2及び第2曝気槽4の一般的な処理条件としては水温を15〜35℃とすることが好ましい。第1曝気槽2及び第2曝気槽4のpHは、流入原水性状による変動があるため、5.8〜8.7、好ましくは、6.0〜8.0とすることが好ましい。特に第2曝気槽4では、担体に1,4−ジオキサン分解菌が付着しやすくなるように、pH6.5〜8.0に維持することが好ましい。   As general processing conditions for the first aeration tank 2 and the second aeration tank 4 after the desired microorganism carrier is obtained in the second aeration tank 4, the water temperature is preferably 15 to 35 ° C. Since the pH of the first aeration tank 2 and the second aeration tank 4 varies depending on the inflow raw water state, it is preferably 5.8 to 8.7, and preferably 6.0 to 8.0. In particular, in the second aeration tank 4, it is preferable to maintain the pH at 6.5 to 8.0 so that 1,4-dioxane-degrading bacteria can easily adhere to the carrier.

第1曝気槽2及び第2曝気槽4の溶存酸素濃度(DO)は、第1曝気槽2で1mg/L以上とすればよい。一方、担体添加した第2曝気槽4では、DOを2mg/L以上、好ましくは、2.5〜4.0mg/Lとすることが好ましい。特に1,4−ジオキサン流入負荷が高い場合には第2曝気槽DOを3mg/L以上高くすると1,4−ジオキサン分解菌付着担体の活性が高く得られ、良好な分解効率が得られる。   The dissolved oxygen concentration (DO) of the first aeration tank 2 and the second aeration tank 4 may be 1 mg / L or more in the first aeration tank 2. On the other hand, in the 2nd aeration tank 4 which added the support | carrier, DO is 2 mg / L or more, Preferably, it is preferable to set it as 2.5-4.0 mg / L. In particular, when the 1,4-dioxane inflow load is high, if the second aeration tank DO is increased by 3 mg / L or more, the activity of the 1,4-dioxane-decomposing bacteria-adhering carrier is high, and good decomposition efficiency is obtained.

(第1変形例)
第1変形例に係る生物処理装置及び生物処理方法は、図2に示すように、1,4−ジオキサン含有有機性廃水1の一部を第1曝気槽2内へ供給する前に分注する分注ライン21を介して1,4−ジオキサン含有有機性廃水1の一部を第2曝気槽4に供給する分注工程を更に含む点が、図1に示す生物処理装置及び生物処理方法と異なる。
(First modification)
As shown in FIG. 2, the biological treatment apparatus and biological treatment method according to the first modification dispense a part of the 1,4-dioxane-containing organic waste water 1 before supplying it into the first aeration tank 2. The biological treatment apparatus and biological treatment method shown in FIG. 1 further includes a dispensing step of supplying a part of the 1,4-dioxane-containing organic waste water 1 to the second aeration tank 4 via the dispensing line 21. Different.

分注ライン21は、第1曝気槽2の上流側の配管に接続された分注器20に接続されている。分注器20において、1,4−ジオキサン含有有機性廃水1が所定の比率で分注される。第2曝気槽4へ供給する1,4−ジオキサン含有有機性廃水1の比率としては、総水量の5〜50%、より好ましくは10〜30%、更に好ましくは15〜20%とする。第2曝気槽4内に1,4−ジオキサン含有有機性廃水1の一部を直接供給することにより、第2曝気槽4内において活性汚泥中に含まれるBOD酸化菌から生成する菌体外ポリマー及び菌体外酵素の働きが活発となる。これにより、担体表面への1,4−ジオキサン分解菌の付着が促進されるとともに、1,4−ジオキサンの分解除去を安定して行うことができる。   The dispensing line 21 is connected to a dispenser 20 that is connected to a pipe on the upstream side of the first aeration tank 2. In the dispenser 20, the 1,4-dioxane-containing organic waste water 1 is dispensed at a predetermined ratio. The ratio of the 1,4-dioxane-containing organic waste water 1 supplied to the second aeration tank 4 is 5 to 50% of the total water amount, more preferably 10 to 30%, and still more preferably 15 to 20%. Extracellular polymer produced from BOD oxidizing bacteria contained in activated sludge in the second aeration tank 4 by directly supplying a part of the 1,4-dioxane-containing organic waste water 1 into the second aeration tank 4 And the function of the extracellular enzyme becomes active. As a result, adhesion of 1,4-dioxane degrading bacteria to the surface of the carrier is promoted, and 1,4-dioxane can be stably decomposed and removed.

(第2変形例)
第2変形例に係る生物処理装置及び生物処理方法は、図3に示すように、濃縮汚泥8の一部を第1曝気槽2内へ返送する前に分注し、第2曝気槽4内へ返送する分注返送ライン31を介して濃縮汚泥8の一部を第2曝気槽4内へ返送する分注返送工程を更に含む点が、図2に示す生物処理装置及び生物処理方法と異なる。
(Second modification)
As shown in FIG. 3, the biological treatment apparatus and biological treatment method according to the second modification dispense a part of the concentrated sludge 8 before returning it to the first aeration tank 2, and then in the second aeration tank 4. 2 differs from the biological treatment apparatus and biological treatment method shown in FIG. 2 in that it further includes a dispensing and returning step of returning a part of the concentrated sludge 8 into the second aeration tank 4 via the dispensing and returning line 31 that is returned to .

分注返送ライン31は、返送ライン11の配管の途中に設けられた分注器30に接続されている。分注器30において、濃縮汚泥8が所定の比率で分注される。第2曝気槽4へ供給する濃縮汚泥8の比率としては、返送すべき全濃縮汚泥量の5〜50%、より好ましくは10〜30%、更に好ましくは15〜20%とする。第2曝気槽4内に濃縮汚泥8の一部を直接供給することにより、第2曝気槽4内のBOD汚泥負荷を所定値以下にすることができ、これにより担体表面への1,4−ジオキサン分解菌の付着が促進されるとともに、1,4−ジオキサンの分解除去を安定して行うことができる。   The dispensing return line 31 is connected to a dispenser 30 provided in the middle of the piping of the return line 11. In the dispenser 30, the concentrated sludge 8 is dispensed at a predetermined ratio. The ratio of the concentrated sludge 8 supplied to the second aeration tank 4 is 5 to 50%, more preferably 10 to 30%, still more preferably 15 to 20% of the total concentrated sludge amount to be returned. By directly supplying a part of the concentrated sludge 8 into the second aeration tank 4, the BOD sludge load in the second aeration tank 4 can be reduced to a predetermined value or less. Adhesion of dioxane-degrading bacteria is promoted, and 1,4-dioxane can be decomposed and removed stably.

(その他の実施形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments and operational techniques will be apparent to those skilled in the art.

本実施形態では、1,4−ジオキサン含有有機性廃水1を2つの曝気槽(第1曝気槽2及び第2曝気槽4)を用いて処理する例を開示しているが、処理対象とする1,4−ジオキサン含有有機性廃水1の特性に応じて種々の装置を追加してもよいことは勿論である。   In this embodiment, although the example which processes the 1, 4- dioxane containing organic waste water 1 using two aeration tanks (the 1st aeration tank 2 and the 2nd aeration tank 4) is made into a process target. It goes without saying that various devices may be added according to the characteristics of the 1,4-dioxane-containing organic wastewater 1.

例えば、第1曝気槽2の後段に第1処理液を汚泥と上澄み液とに分離するための汚泥沈降槽を設けてもよい。第1曝気槽2及び第2曝気槽4に対し、更に凝集沈殿処理装置、活性炭吸着装置、砂濾過処理装置、MF処理装置からなる群から選ばれる1以上の装置を組み合わせてもよい。第1曝気槽2と第2曝気槽4は、いずれも好気条件下の処理であることから、1の反応槽内に仕切りを設けて両者を1の反応槽内に配置することも可能である。   For example, you may provide the sludge settling tank for isolate | separating a 1st process liquid into sludge and a supernatant liquid in the back | latter stage of the 1st aeration tank 2. FIG. For the first aeration tank 2 and the second aeration tank 4, one or more devices selected from the group consisting of a coagulation sedimentation processing device, an activated carbon adsorption device, a sand filtration processing device, and an MF processing device may be combined. Since both the first aeration tank 2 and the second aeration tank 4 are processed under aerobic conditions, it is possible to provide a partition in one reaction tank and arrange both in the one reaction tank. is there.

本実施形態では、微生物担体として結合固定化担体を使用する例を示している。しかしながら、1,4−ジオキサン分解菌の増殖速度を高めるために、第2曝気槽4内に1,4−ジオキサン分解菌の種菌を投入してもよい。1,4−ジオキサン分解菌の密度を高めるために、公知の包括固定化担体を更に加えることも可能である。第1曝気槽2に1,4−ジオキサン分解菌の担体を供給してもよい。   In the present embodiment, an example in which a bound and immobilized carrier is used as a microorganism carrier is shown. However, in order to increase the growth rate of 1,4-dioxane-decomposing bacteria, inoculum of 1,4-dioxane-decomposing bacteria may be introduced into the second aeration tank 4. In order to increase the density of 1,4-dioxane degrading bacteria, a known entrapping immobilization carrier can be further added. A carrier for 1,4-dioxane degrading bacteria may be supplied to the first aeration tank 2.

図1〜図3に示す生物処理装置によっても1,4−ジオキサンを分解除去しきれない場合は、処理水7を更にAOP分解処理装置に導入し、処理水7中の1,4−ジオキサン濃度を分解処理してもよい。このように本発明はここでは記載していない様々な実施の形態等を含むことは勿論であり、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によって定められる。   When 1,4-dioxane cannot be decomposed and removed even by the biological treatment apparatus shown in FIGS. 1 to 3, the treated water 7 is further introduced into the AOP decomposition treatment apparatus, and the 1,4-dioxane concentration in the treated water 7 May be decomposed. Thus, it goes without saying that the present invention includes various embodiments and the like not described herein, and the technical scope of the present invention is determined by the invention specific matters according to the appropriate claims from the above description. It is done.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

(実施例1)
図1に示す生物処理装置を用いて1,4−ジオキサン含有有機性廃水(原水)を処理した。表1に実施例1の処理条件を示す。表1に示すように、原水全量200L/dを第1曝気槽に連続供給し、BOD汚泥負荷を0.3kg/kg/dとした。また、第2曝気槽のBOD汚泥負荷を0.04kg/kg/dとした。第1曝気槽には活性汚泥を供給しそのMLSSを4500〜5000mg/Lとした。第2曝気槽には平均粒径4mm、比重1.025、ポリビニルアルコール主体の高分子ゲル担体(以下PVA担体)を20V%添加し、第1曝気槽で得られた第1処理液を第2曝気槽内で処理しながらPVA担体の表面に1,4−ジオキサン分解菌を付着させた。第2曝気槽のMLSS濃度は第1曝気槽と同様で4500〜5000mg/Lであった。沈殿池から第1曝気槽への汚泥返送率は100%とした。なお、表1の「汚泥返送率」とは、第1曝気槽に流入する原水の水量に対する濃縮汚泥の返送量の比率を示す。即ち、実施例1では、汚泥返送量が原水量と同じく200L/dとしたので、表1の汚泥返送率が100%となっている。
Example 1
1,4-Dioxane containing organic waste water (raw water) was processed using the biological treatment apparatus shown in FIG. Table 1 shows the processing conditions of Example 1. As shown in Table 1, the total amount of raw water 200 L / d was continuously supplied to the first aeration tank, and the BOD sludge load was 0.3 kg / kg / d. Moreover, the BOD sludge load of the second aeration tank was set to 0.04 kg / kg / d. Activated sludge was supplied to the first aeration tank, and its MLSS was adjusted to 4500 to 5000 mg / L. To the second aeration tank, 20 V% of a polymer gel carrier (hereinafter referred to as PVA carrier) mainly composed of polyvinyl alcohol having an average particle diameter of 4 mm and a specific gravity of 1.025 is added, and the first treatment liquid obtained in the first aeration tank is second While treating in an aeration tank, 1,4-dioxane-degrading bacteria were attached to the surface of the PVA carrier. The MLSS concentration in the second aeration tank was 4500 to 5000 mg / L as in the first aeration tank. The sludge return rate from the sedimentation basin to the first aeration tank was 100%. The “sludge return rate” in Table 1 indicates the ratio of the returned amount of concentrated sludge to the amount of raw water flowing into the first aeration tank. That is, in Example 1, since the sludge return amount was set to 200 L / d similarly to the raw water amount, the sludge return rate in Table 1 was 100%.

表2に原水の水質とその処理結果を示す。表2の「第1曝気槽」は、図1の第1曝気槽2で得られた第1処理液3を沈降分離して得られた上澄み液の水質を評価した場合の結果を示す。表2の「処理水」とは、図1の沈殿池6で固液分離した後の処理水7の水質を示す。   Table 2 shows the quality of raw water and its treatment results. The “first aeration tank” in Table 2 shows the results when the water quality of the supernatant liquid obtained by sedimentation and separation of the first treatment liquid 3 obtained in the first aeration tank 2 of FIG. 1 is evaluated. The “treated water” in Table 2 indicates the quality of the treated water 7 after solid-liquid separation in the sedimentation basin 6 of FIG.

表2に示すように、BODは原水で850mg/Lであったのに対し、第1曝気槽処理液は60mg/Lにまで低下した。さらに第2曝気槽を経た処理水では10mg/L以下となった。COD及びTOCは原水でそれぞれ450mg/Lと420mg/Lであったのに対し、第1曝気槽処理液のCOD及びTOCは68mg/Lと98mg/Lとなり、有機物の大部分が第1曝気槽で分解除去された。一方、1,4−ジオキサンは原水で103mg/Lに対し、第1曝気槽処理液で88mg/Lとなり、大部分が残留している。これに対し、第2曝気槽を経た処理水では、1,4−ジオキサンが0.5mg/Lに低下し、PVA担体付着の1,4−ジオキサン分解菌による除去効果が確認できた。また、処理水CODが28mg/L、TOCが18mg/Lに低下し、残留BOD除去とともにCOD、TOCも分解除去できた。   As shown in Table 2, the BOD was 850 mg / L for raw water, whereas the first aeration tank treatment liquid was reduced to 60 mg / L. Furthermore, in the treated water which passed through the 2nd aeration tank, it became 10 mg / L or less. COD and TOC were 450 mg / L and 420 mg / L for raw water, respectively, whereas COD and TOC of the first aeration tank treatment liquid were 68 mg / L and 98 mg / L, and most of the organic matter was in the first aeration tank. Was removed by decomposition. On the other hand, 1,4-dioxane is 88 mg / L in the first aeration tank treatment liquid with respect to 103 mg / L in the raw water, and most remains. On the other hand, in the treated water which passed through the 2nd aeration tank, 1, 4- dioxane fell to 0.5 mg / L and the removal effect by the 1, 4- dioxane decomposing bacteria of PVA carrier adhesion has been confirmed. Further, the treated water COD decreased to 28 mg / L and the TOC decreased to 18 mg / L, and COD and TOC could be decomposed and removed together with residual BOD removal.

Figure 2015160202
Figure 2015160202

Figure 2015160202
Figure 2015160202

(実施例2)
図2に示す処理フローに従って、1,4−ジオキサン含有有機性廃水(原水)を処理した。原水は実施例1と同様である。表3に実施例2の処理条件を示す。実施例2では、全原水の水量200L/dのうち、第1曝気槽2に全水量の85%となる170L/dを連続通水した。残り15%の30L/dを分注処理水として直接第2曝気槽に連続通水した。これにより、第1曝気槽及び第2曝気槽のBOD汚泥負荷はそれぞれ、0.21kg/kg/dと0.06kg/kg/dとなった。1,4−ジオキサン分解菌付着固定用のPVA担体は実施例1と同様に、第2曝気槽に20V%添加した。沈殿池で得られた濃縮汚泥は返送比率100%で第1曝気槽に返送した。第1曝気槽及び第2曝気槽のMLSSはそれぞれ5000〜5500mg/Lと4500〜5000mg/Lであった。
(Example 2)
1,4-Dioxane-containing organic waste water (raw water) was treated according to the treatment flow shown in FIG. Raw water is the same as in Example 1. Table 3 shows the processing conditions of Example 2. In Example 2, 170 L / d, which is 85% of the total water amount, was continuously passed through the first aeration tank 2 out of the total raw water amount of 200 L / d. The remaining 15%, 30 L / d, was continuously passed directly into the second aeration tank as dispensed water. Thereby, the BOD sludge load of the 1st aeration tank and the 2nd aeration tank became 0.21 kg / kg / d and 0.06 kg / kg / d, respectively. In the same manner as in Example 1, 20 V% of the PVA carrier for fixing 1,4-dioxane-degrading bacteria was fixed to the second aeration tank. The concentrated sludge obtained in the sedimentation basin was returned to the first aeration tank at a return ratio of 100%. MLSS of the 1st aeration tank and the 2nd aeration tank was 5000-5500 mg / L and 4500-5000 mg / L, respectively.

表4に原水の水質とその処理結果を示す。実施例2では、原水BODが850mg/Lに対し、第1曝気槽では、処理水BODが15mg/Lに低下した。しかし、1,4−ジオキサンが88mg/Lの残留となった。これに対し、第2曝気槽では、処理水BOD及び1,4−ジオキサンがそれぞれ、10mg/L以下と0.3mg/Lに低下した。第2曝気槽では分注原水のBODが活性汚泥により分解除去されるとともに1,4−ジオキサンが投入されたPVA担体に付着固定の1,4−ジオキサン分解菌により分解除去されたことが確認された。   Table 4 shows the quality of raw water and its treatment results. In Example 2, the raw water BOD was 850 mg / L, whereas in the first aeration tank, the treated water BOD was reduced to 15 mg / L. However, 1,4-dioxane remained at 88 mg / L. In contrast, in the second aeration tank, the treated water BOD and 1,4-dioxane were reduced to 10 mg / L or less and 0.3 mg / L, respectively. In the second aeration tank, it was confirmed that the BOD of the raw water for dispensing was decomposed and removed by activated sludge, and decomposed and removed by 1,4-dioxane-degrading bacteria adhered and fixed to the PVA carrier charged with 1,4-dioxane. It was.

Figure 2015160202
Figure 2015160202

Figure 2015160202
Figure 2015160202

(実施例3)
図3に示す生物処理装置を用いて1,4−ジオキサン含有有機性廃水(原水)を処理した。表5に実施例3の処理条件を示す。第1曝気槽及び第2曝気槽への原水の分注比率は実施例2と同一である。実施例3では、第2曝気槽に固液分離装置で得られた濃縮汚泥の返送に関し、第2曝気槽への分注を行った。表5の通り、第1曝気槽及び第2曝気槽の汚泥返送率はともに100%としたため、返送汚泥量はそれぞれ、170L/dと30L/dである。即ち、供給した濃縮汚泥の比率は全濃縮汚泥に対して第1曝気槽で85%、第2曝気槽で15%とした。その結果、BOD負荷は第1曝気槽で0.23kg/kg/d、第2曝気槽で0.04kg/kg/dとなり、実施例2より第2曝気槽のBOD負荷がさらに低下した。
(Example 3)
1,4-Dioxane containing organic waste water (raw water) was processed using the biological treatment apparatus shown in FIG. Table 5 shows the processing conditions of Example 3. The dispensing ratio of the raw water into the first aeration tank and the second aeration tank is the same as that in Example 2. In Example 3, regarding the return of the concentrated sludge obtained by the solid-liquid separator to the second aeration tank, the second aeration tank was dispensed. As shown in Table 5, since the sludge return rates of the first aeration tank and the second aeration tank were both 100%, the return sludge amounts were 170 L / d and 30 L / d, respectively. That is, the ratio of the supplied concentrated sludge was 85% in the first aeration tank and 15% in the second aeration tank with respect to the total concentrated sludge. As a result, the BOD load was 0.23 kg / kg / d in the first aeration tank and 0.04 kg / kg / d in the second aeration tank, and the BOD load in the second aeration tank was further reduced from Example 2.

表6に原水の水質とその処理結果を示す。実施例3では、原水BODが850mg/Lに対し、第1曝気槽では、処理水BODが21mg/Lに低下した。しかし、1,4−ジオキサンが89mg/Lの残留となった。一方、第2曝気槽では、処理水BOD及び1,4−ジオキサン濃度がそれぞれ、10mg/L以下と0.2mg/Lに低下した。特に処理水の1,4−ジオキサン濃度が実施例2よりさらに低下した。   Table 6 shows the quality of raw water and its treatment results. In Example 3, the raw water BOD was 850 mg / L, whereas in the first aeration tank, the treated water BOD was reduced to 21 mg / L. However, 1,4-dioxane remained at 89 mg / L. On the other hand, in the second aeration tank, the concentrations of treated water BOD and 1,4-dioxane decreased to 10 mg / L or less and 0.2 mg / L, respectively. In particular, the 1,4-dioxane concentration in the treated water was further reduced from that in Example 2.

Figure 2015160202
Figure 2015160202

Figure 2015160202
Figure 2015160202

(比較例)
図4に示す曝気槽200と固液分離装置600を備える生物処理装置を用いて1,4−ジオキサン含有有機性廃水(原水)を処理した。比較例では、実施例1と同様な原水を用いて処理水7を得た。表7に処理条件を示す。
(Comparative example)
1,4-dioxane containing organic waste water (raw water) was processed using a biological treatment apparatus provided with the aeration tank 200 and the solid-liquid separation apparatus 600 shown in FIG. In the comparative example, treated water 7 was obtained using the same raw water as in Example 1. Table 7 shows the processing conditions.

比較例の処理水量は実施例1と同じく200L/dとした。MLSSは4500〜5000mg/Lとし実施例1と同程度であった。曝気槽のBOD負荷は0.15〜0.20kg/kg/dであり、実施例1のBOD負荷とほぼ同程度であった。   The amount of treated water in the comparative example was 200 L / d as in Example 1. The MLSS was 4500 to 5000 mg / L, which was the same as that of Example 1. The BOD load of the aeration tank was 0.15 to 0.20 kg / kg / d, which was almost the same as the BOD load of Example 1.

表8に原水の水質とその処理結果を示す。比較例では、原水BODが850mg/Lに対し、処理水BODが10mg/L以下であり、BOD除去は良好であった。一方、1,4−ジオキサンが原水で103mg/Lに対し、処理水で85mg/Lであり、大部分が残留し、1,4−ジオキサンの除去効果が殆ど認められなかった。   Table 8 shows the quality of raw water and its treatment results. In the comparative example, the raw water BOD was 850 mg / L, the treated water BOD was 10 mg / L or less, and the BOD removal was good. On the other hand, 1,4-dioxane was 103 mg / L in the raw water, and 85 mg / L in the treated water. Most of the residue remained, and the removal effect of 1,4-dioxane was hardly recognized.

Figure 2015160202
Figure 2015160202

Figure 2015160202
Figure 2015160202

1…1,4−ジオキサン含有有機性廃水(原水)
2…第1曝気槽
3…第1処理液
4…第2曝気槽
5…第2処理液
6…固液分離装置(沈殿池)
7…第2処理水
8…濃縮汚泥
9…余剰汚泥
11…返送ライン
20…分注器
21…分注ライン
30…分注器
31…分注返送ライン
1 ... Organic wastewater containing 1,4-dioxane (raw water)
2 ... 1st aeration tank 3 ... 1st process liquid 4 ... 2nd aeration tank 5 ... 2nd process liquid 6 ... Solid-liquid separation apparatus (sedimentation basin)
7 ... Second treated water 8 ... Concentrated sludge 9 ... Excess sludge 11 ... Return line 20 ... Dispenser 21 ... Dispenser line 30 ... Dispenser 31 ... Dispenser return line

Claims (7)

1,4−ジオキサン含有有機性廃水を、活性汚泥を含む第1曝気槽内で処理して第1処理液を得る第1処理工程と、
前記第1処理液を、1,4−ジオキサンを分解する微生物を担持した微生物担体と活性汚泥とを含む第2曝気槽内に導入し、前記活性汚泥の存在下で前記微生物担体によって前記第1処理液中の1,4−ジオキサンを分解させて第2処理液を得る第2処理工程と、
前記第2処理液を固液分離し、処理水と濃縮汚泥とを得る固液分離工程と、
前記濃縮汚泥を前記第1曝気槽内へ返送する返送工程と
を含む1,4−ジオキサン含有有機性廃水の生物処理方法。
A first treatment step of treating 1,4-dioxane-containing organic wastewater in a first aeration tank containing activated sludge to obtain a first treatment liquid;
The first treatment liquid is introduced into a second aeration tank containing a microorganism carrier supporting microorganisms that decompose 1,4-dioxane and activated sludge, and the first microorganism is supported by the microorganism carrier in the presence of the activated sludge. A second treatment step of decomposing 1,4-dioxane in the treatment liquid to obtain a second treatment liquid;
A solid-liquid separation step for solid-liquid separation of the second treatment liquid to obtain treated water and concentrated sludge;
A biological treatment method of 1,4-dioxane-containing organic wastewater, comprising a returning step of returning the concentrated sludge into the first aeration tank.
前記1,4−ジオキサン含有有機性廃水の一部を前記第1曝気槽内へ供給する前に分注し、前記第2曝気槽に供給する分注工程を含む請求項1に記載の1,4−ジオキサン含有有機性廃水の生物処理方法。   The 1,4-dioxane-containing organic waste water is dispensed before being supplied into the first aeration tank, and includes a dispensing step of supplying the second aeration tank to the first aeration tank. Biological treatment method of 4-dioxane containing organic wastewater. 前記濃縮汚泥の一部を前記第1曝気槽内へ返送する前に分注し、前記第2曝気槽内へ返送する分注返送工程を含む請求項1又は2に記載の1,4−ジオキサン含有有機性廃水の生物処理方法。   The 1,4-dioxane according to claim 1 or 2, comprising a dispensing and returning step of dispensing a part of the concentrated sludge before returning it to the first aeration tank and returning it to the second aeration tank. Biological treatment method for organic wastewater. 前記微生物担体は、1,4−ジオキサンを分解する微生物を担体の表面上に付着固定させた結合固定化担体を含む請求項1〜3のいずれか1項に記載の1,4−ジオキサン含有有機性廃水の生物処理方法。   The 1,4-dioxane-containing organic material according to any one of claims 1 to 3, wherein the microbial carrier includes a bonded immobilized carrier in which a microorganism that decomposes 1,4-dioxane is adhered and fixed on the surface of the carrier. Of biological wastewater. 前記第1処理工程は、前記第1曝気槽のBOD汚泥負荷が0.1〜0.5kg/kg/dで処理することを含み、前記第2処理工程は、前記第2曝気槽のBOD汚泥負荷が0.1kg/kg/d以下で処理することを含む請求項1〜4のいずれか1項に記載の1,4−ジオキサン含有有機性廃水の生物処理方法。   The first treatment step includes a treatment with a BOD sludge load of the first aeration tank of 0.1 to 0.5 kg / kg / d, and the second treatment step includes a BOD sludge of the second aeration tank. The biological treatment method for 1,4-dioxane-containing organic wastewater according to any one of claims 1 to 4, comprising treatment at a load of 0.1 kg / kg / d or less. 前記第2曝気槽内に新規担体を供給し、前記第1処理液をBOD汚泥負荷0.05kg/kg/d以下で処理することにより1,4−ジオキサンを分解する微生物を前記第2曝気槽内で増殖させ、増殖した前記微生物を前記新規担体の表面上に付着させる微生物付着工程を更に含む請求項1〜5のいずれか1項に記載の1,4−ジオキサン含有有機性廃水の生物処理方法。   A new carrier is supplied into the second aeration tank, and the first treatment liquid is treated with a BOD sludge load of 0.05 kg / kg / d or less to remove microorganisms that decompose 1,4-dioxane into the second aeration tank. The biological treatment of 1,4-dioxane-containing organic wastewater according to any one of claims 1 to 5, further comprising a microorganism adhesion step for growing the microorganisms in a cell and depositing the grown microorganisms on the surface of the new carrier. Method. 1,4−ジオキサン含有有機性廃水中の有機物を活性汚泥により分解して第1処理液を得る第1曝気槽と、
活性汚泥の存在下で1,4−ジオキサンを分解する微生物を担持した微生物担体により前記第1処理液中の1,4−ジオキサンを分解して第2処理液を得る第2曝気槽と、
前記第2処理液を固液分離し、処理水と濃縮汚泥とを得る固液分離装置と、
前記濃縮汚泥を前記固液分離装置から前記第1曝気槽へ返送する濃縮汚泥返送ラインと
を備えることを特徴とする1,4−ジオキサン含有有機性廃水の生物処理装置。
A first aeration tank for decomposing organic matter in 1,4-dioxane-containing organic wastewater with activated sludge to obtain a first treatment liquid;
A second aeration tank that obtains a second treatment liquid by decomposing 1,4-dioxane in the first treatment liquid by a microorganism carrier carrying a microorganism that decomposes 1,4-dioxane in the presence of activated sludge;
A solid-liquid separation device for solid-liquid separation of the second treatment liquid to obtain treated water and concentrated sludge;
A biological treatment apparatus for 1,4-dioxane-containing organic wastewater, comprising a concentrated sludge return line for returning the concentrated sludge from the solid-liquid separator to the first aeration tank.
JP2014039075A 2014-02-28 2014-02-28 Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water Pending JP2015160202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014039075A JP2015160202A (en) 2014-02-28 2014-02-28 Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014039075A JP2015160202A (en) 2014-02-28 2014-02-28 Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water

Publications (1)

Publication Number Publication Date
JP2015160202A true JP2015160202A (en) 2015-09-07

Family

ID=54183675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039075A Pending JP2015160202A (en) 2014-02-28 2014-02-28 Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water

Country Status (1)

Country Link
JP (1) JP2015160202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103164A (en) * 2016-12-28 2018-07-05 東洋紡株式会社 Water treatment system
JP2019084498A (en) * 2017-11-07 2019-06-06 大成建設株式会社 Contaminated water treatment method
KR20230030488A (en) * 2021-08-25 2023-03-06 주식회사 씨디아이 Novel Shinella granuli CK-4 strain with high capability of 1,4-dioxane decomposition and method for treating 1,4-dioxane-containing wastewater using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103164A (en) * 2016-12-28 2018-07-05 東洋紡株式会社 Water treatment system
JP2019084498A (en) * 2017-11-07 2019-06-06 大成建設株式会社 Contaminated water treatment method
JP7300242B2 (en) 2017-11-07 2023-06-29 大成建設株式会社 Contaminated water treatment method
KR20230030488A (en) * 2021-08-25 2023-03-06 주식회사 씨디아이 Novel Shinella granuli CK-4 strain with high capability of 1,4-dioxane decomposition and method for treating 1,4-dioxane-containing wastewater using the same
KR102652220B1 (en) 2021-08-25 2024-03-29 주식회사 에코씨디아이 Novel Shinella granuli CK-4 strain with high capability of 1,4-dioxane decomposition and method for treating 1,4-dioxane-containing wastewater using the same

Similar Documents

Publication Publication Date Title
JP5176542B2 (en) Biological treatment method and biological treatment apparatus for organic wastewater
JP2014097472A (en) Treatment method and treatment apparatus for organic waste water
JP2002224688A (en) Denitrifying method and denitrifying apparatus
TW201300330A (en) Method for treatment of organic substance-containing water drainage and device for treatment of organic substance-containing water drainage
JPH0970598A (en) Ultrapure water producing device
JP2012110821A (en) Method for treatment of organic wastewater
JP2015160202A (en) Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water
JP2015128747A (en) Water treatment apparatus and water treatment method
JP6821498B2 (en) How to set up a nitrogen-containing wastewater treatment system
JP2015093258A (en) Denitrification method and apparatus
JP2013208563A (en) Anaerobic treatment method for organic waste water
JPWO2003043941A1 (en) Organic wastewater treatment apparatus and method
JP5846944B2 (en) Granular gel carrier for activating activated sludge and the like, its production method and waste water treatment method
TWI585048B (en) Wastewater containing treatment equipment
JP5523800B2 (en) Organic wastewater treatment method and treatment equipment
JP6425467B2 (en) Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment device and denitrification treatment method of organic wastewater
US7976703B2 (en) Treating unit for simultaneous removal of carbon and nitrogen from wastewater and treating apparatus having the same
JP2000218290A (en) Sewage treatment and sewage treating device
WO2020004662A1 (en) Water treatment method
JP5817177B2 (en) Organic wastewater treatment equipment
JP5126691B2 (en) Wastewater treatment method
JP2006055849A (en) Apparatus and method for treating organic waste water
JP2016190203A (en) Wastewater treatment method and wastewater treatment device
JP2015013255A (en) Sewage purification method and apparatus
Yulianto et al. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor