JP5592677B2 - Biological nitrogen treatment method of ammonia containing wastewater - Google Patents

Biological nitrogen treatment method of ammonia containing wastewater Download PDF

Info

Publication number
JP5592677B2
JP5592677B2 JP2010056034A JP2010056034A JP5592677B2 JP 5592677 B2 JP5592677 B2 JP 5592677B2 JP 2010056034 A JP2010056034 A JP 2010056034A JP 2010056034 A JP2010056034 A JP 2010056034A JP 5592677 B2 JP5592677 B2 JP 5592677B2
Authority
JP
Japan
Prior art keywords
ammonia
day
reactor
sludge
main reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010056034A
Other languages
Japanese (ja)
Other versions
JP2011189249A (en
Inventor
伸幸 兼森
俊介 新井
渉 ▲辻▼本
洋 津野
文武 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nippon Steel Corp
Original Assignee
Kyoto University
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nippon Steel and Sumitomo Metal Corp filed Critical Kyoto University
Priority to JP2010056034A priority Critical patent/JP5592677B2/en
Publication of JP2011189249A publication Critical patent/JP2011189249A/en
Application granted granted Critical
Publication of JP5592677B2 publication Critical patent/JP5592677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、アンモニア含有廃水中に含まれるアンモニア性窒素を効率良く除去する水処理方法に関する。   The present invention relates to a water treatment method for efficiently removing ammonia nitrogen contained in ammonia-containing wastewater.

アンモニア性窒素を含む廃水において、アンモニアを除去する方法として、アンモニアストリッピング法(非特許文献1、p412)が用いられている。   An ammonia stripping method (Non-patent Document 1, p412) is used as a method for removing ammonia in wastewater containing ammoniacal nitrogen.

アンモニアストリッピング法とは、消石灰や水酸化ナトリウムを用いて廃水のpHを上昇させるとともに、必要に応じて水温を調整して廃水中の遊離アンモニアの割合を増大させた後、廃水を各種の充填材を充填したストリッピング塔の上部から散水するとともに、下部から大量の空気を吹き込むことにより、廃水の遊離アンモニアを空気中に放散する方法である。処理する廃水量と吹き込む空気量との比(以下、「気液比」という。)が、アンモニアの除去率に影響を及ぼす重要な要素であり、通常、数千倍の値がとられている。   Ammonia stripping method uses slaked lime or sodium hydroxide to raise the pH of wastewater, adjust the water temperature as necessary to increase the proportion of free ammonia in the wastewater, and then fill the wastewater in various ways In this method, water is sprinkled from the upper part of the stripping tower filled with the material, and a large amount of air is blown from the lower part so that free ammonia in the wastewater is diffused into the air. The ratio of the amount of wastewater to be treated and the amount of air to be blown (hereinafter referred to as “gas-liquid ratio”) is an important factor affecting the ammonia removal rate, and is usually several thousand times higher. .

しかし、アンモニアストリッピング法には、ランニングコストが高いという問題がある。アンモニアの除去率をあげるためには、水温およびpHをかなり上昇させる必要がある。従って、アンモニアストリッピング法単独でアンモニアを含む廃水中の窒素を除去するのは、得策ではない。またさらに、アンモニアストリッピング法では、放散するアンモニアガスの処理が必要であるという問題もある。この処理方法としては、アンモニア水とした後に硫安として回収、燃焼、触媒燃焼などの方法がある。しかしながら、いずれの方法も設備費、ランニングコストの更なる上昇を招いてしまう。   However, the ammonia stripping method has a problem that the running cost is high. In order to increase the removal rate of ammonia, it is necessary to considerably increase the water temperature and pH. Therefore, it is not a good idea to remove nitrogen in wastewater containing ammonia by the ammonia stripping method alone. Further, the ammonia stripping method has a problem that it is necessary to treat the ammonia gas to be diffused. As this processing method, there are methods such as recovery, combustion, catalytic combustion, etc. as ammonium sulfate after using ammonia water. However, both methods cause further increase in equipment cost and running cost.

一方、微生物を用いる生物学的硝化−脱窒素法(非特許文献1、p413〜416)が、広く下水処理などに用いられている。微生物を用いる生物学的硝化―脱窒素法は、好気性独立栄養細菌(ニトロゾモナス、ニトロバクター等の硝化細菌)による生物学的酸化と、通性嫌気性従属栄養細菌(シュードモナス等)による生物学的還元の組合せから成っている。この原理は以下の通りである。   On the other hand, biological nitrification-denitrogenation methods using microorganisms (Non-patent Document 1, p413 to 416) are widely used for sewage treatment and the like. Biological nitrification and denitrification methods using microorganisms include biological oxidation by aerobic autotrophic bacteria (nitrifying bacteria such as nitrozomonas and nitrobacter) and biological by facultative anaerobic heterotrophic bacteria (such as Pseudomonas). Made of a combination of reductions. This principle is as follows.

まず、硝化工程は、好気槽で行なわれ、以下の反応式(1)と(2)で示される2段の反応からなっており、関与する硝化細菌の種類は異なっている。   First, the nitrification step is carried out in an aerobic tank, and consists of a two-stage reaction represented by the following reaction formulas (1) and (2), and the types of nitrifying bacteria involved are different.

2NH +3O → 2NO +2HO+4H ・・・(1)
2NO + O → 2NO ・・・(2)
2NH 4 + + 3O 2 → 2NO 2 + 2H 2 O + 4H + (1)
2NO 2 + O 2 → 2NO 3 (2)

(1)式に示す反応は、ニトロゾモナスを代表種とするアンモニア酸化細菌(亜硝酸菌)によってもたらされ、(2)式に示す反応は、ニトロバクターを代表種とする亜硝酸酸化細菌(硝化菌)によってもたらされる。   The reaction shown in the formula (1) is brought about by an ammonia oxidizing bacterium (nitrite) having nitrozomonas as a representative species, and the reaction shown in the formula (2) is a nitrite oxidizing bacterium (nitrifying) having a nitrobacter as a representative species. Caused by fungi).

次に、脱窒素工程は、嫌気槽で行なわれ、無酸素の条件下で以下の(3)式と(4)式に示す反応式に従って処理対象物が還元されて、酸化窒素ガス(NO)あるいは窒素ガス(N)となり大気中に放散される。 Next, the denitrification step is performed in an anaerobic tank, and the object to be treated is reduced according to the reaction formulas shown in the following formulas (3) and (4) under anaerobic conditions, and nitrogen oxide gas (N 2 O) or nitrogen gas (N 2 ) and diffused into the atmosphere.

2NO + 6(H) → N+2HO+2OH ・・・(3)
2NO +10(H) → N+4HO+2OH ・・・(4)
2NO 2 +6 (H) → N 2 + 2H 2 O + 2OH (3)
2NO 3 +10 (H) → N 2 + 4H 2 O + 2OH (4)

この脱窒素反応には水素供与体が必要であり、水素供与体として有機物が通常利用されている。都市下水などでは、下水中の有機物(BOD(生物化学的酸素要求量)やCOD(化学的酸素要求量)として表示される。)がそのまま用いられ、有機物を含まない廃水では、メタノールなどが外部から添加されることが多い。   This denitrogenation reaction requires a hydrogen donor, and organic substances are usually used as the hydrogen donor. In municipal sewage, organic matter in sewage (BOD (biochemical oxygen demand) or COD (chemical oxygen demand) is displayed) is used as it is, and in wastewater that does not contain organic matter, methanol etc. It is often added from.

ところで、硝化反応を行なう細菌は阻害を受けやすく、硝化反応を抑制する物質は、比較的広く調査されている(例えば、非特許文献2、特許文献1、特許文献2)。   By the way, bacteria that perform a nitrification reaction are susceptible to inhibition, and substances that suppress the nitrification reaction have been investigated relatively widely (for example, Non-Patent Document 2, Patent Document 1, and Patent Document 2).

これによると、例えば、フェノールは、わずか5.6mg/l存在するだけで、単位微生物あたりの硝化速度が75%減少することが報告されている。特許文献2では、フェノールをフェノール分解菌により除去した後に、アンモニア酸化菌にて反応を行なうバイオリアクターが用いられている。   According to this, for example, phenol is reported to be reduced by 75% in the nitrification rate per unit microorganism when only 5.6 mg / l is present. In Patent Document 2, a bioreactor is used in which phenol is removed by phenol-degrading bacteria and then reacted with ammonia-oxidizing bacteria.

またニトロバクターを代表種とする亜硝酸酸化細菌は、廃水中のアンモニア性窒素濃度が上昇し、遊離のアンモニア(NH)濃度が上昇すると、この阻害を受けやすいと言われている(非特許文献3、p298)。特にpHが高くなりすぎると、遊離のアンモニアの存在割合が高まるため亜硝酸酸化細菌が阻害を受けやすくなり、亜硝酸が蓄積しやすくなる。このような場合、硝化反応は反応式(1)で停止しやすく、水中には亜硝酸性窒素が蓄積しやすい。都市下水(アンモニア性窒素濃度:50mg/l以下)では、このような現象はほとんど生じない。しかし、アンモニア性窒素濃度が高い工場等の廃水では、亜硝酸性窒素が蓄積しやすい。亜硝酸は、CODとして測定されるため、窒素除去が必要でない場合、反応式(1)の反応が生じないような硝化抑制運転がなされている。 Nitrite-oxidizing bacteria, typically nitrobacter, are said to be susceptible to this inhibition when the concentration of ammoniacal nitrogen in the wastewater increases and the concentration of free ammonia (NH 3 ) increases (non-patented). Reference 3, p298). In particular, if the pH becomes too high, the proportion of free ammonia increases, so that nitrite-oxidizing bacteria are likely to be inhibited, and nitrite tends to accumulate. In such a case, the nitrification reaction tends to stop in the reaction formula (1), and nitrite nitrogen tends to accumulate in water. In urban sewage (ammonia nitrogen concentration: 50 mg / l or less), such a phenomenon hardly occurs. However, nitrite nitrogen tends to accumulate in wastewater from factories and the like with high ammonia nitrogen concentration. Since nitrous acid is measured as COD, when nitrogen removal is not necessary, nitrification suppression operation is performed so that the reaction of the reaction formula (1) does not occur.

廃水中のアンモニア性窒素濃度以外にも、溶存酸素(DO)(例えば、非特許文献4)、pH(例えば、非特許文献5)、水温(例えば、非特許文献6)、チオ硫酸、亜硫酸、チオシアン等の硫黄化合物(例えば、特許文献3)により、亜硝酸酸化細菌が阻害を受け、水中に亜硝酸が蓄積しやすくなることが知られている。   In addition to the ammonia nitrogen concentration in the wastewater, dissolved oxygen (DO) (for example, Non-Patent Document 4), pH (for example, Non-Patent Document 5), water temperature (for example, Non-Patent Document 6), thiosulfuric acid, sulfurous acid, It has been known that sulfur compounds such as thiocyan (for example, Patent Document 3) inhibit nitrite-oxidizing bacteria and easily accumulate nitrite in water.

このように、生物学的硝化−脱窒素法においては、微生物の反応を阻害する様々な条件が知られているが、窒素除去が必要な場合、この特性を逆に利用する方法も考えられる。特に硝化工程においては、亜硝酸酸化細菌が、活性阻害を受ける条件で運転し、上記(1)式に示されるように、アンモニア性窒素を亜硝酸までの酸化で止めて、上記(3)式に示されるように、その亜硝酸から脱窒素を行なうことが考えられる。   Thus, in the biological nitrification-denitrogenation method, various conditions that inhibit the reaction of microorganisms are known, but when nitrogen removal is necessary, a method of conversely utilizing this characteristic is also conceivable. In particular, in the nitrification process, the nitrite-oxidizing bacteria are operated under the condition of inhibiting the activity, and as shown in the above formula (1), ammonia nitrogen is stopped by oxidation to nitrite, and the above formula (3) As shown in the figure, it is conceivable to perform denitrification from the nitrous acid.

この亜硝酸生成−亜硝酸脱窒素法((1)式+(3)式)は、硝酸生成―硝酸脱窒素法((1)式+(2)式+(4)式)と比較すると、硝化工程における必要酸素量は75%、必要COD量が60%程度で済むという利点がある(特許文献4、特許文献3)。   This nitrous acid generation-nitrite denitrification method (formula (1) + (3)) is compared with nitric acid formation-nitrate denitrification method (formula (1) + (2) formula + (4)), There is an advantage that the required oxygen amount in the nitrification process is 75% and the required COD amount is about 60% (Patent Documents 4 and 3).

さらに、上記(1)式により蓄積した亜硝酸を電子受容体とし、流入廃水中のアンモニアを電子供与体として嫌気条件下で脱窒素反応を行なう嫌気性アンモニア酸化(Anammox)反応が、近年、実用化されつつあり、(5)式のように表される。(例えば、非特許文献7)   Furthermore, an anaerobic ammonia oxidation (anammox) reaction in which denitrification reaction is performed under anaerobic conditions using nitrous acid accumulated by the above formula (1) as an electron acceptor and ammonia in the influent wastewater as an electron donor has recently been put into practical use. It is expressed as (5). (For example, Non-Patent Document 7)

NH +1.32NO +0.066HCO +0.13H
→ 1.02N+0.26NO +0.066CH0.50.15+2.03H
・・・(5)
NH 4 + +1.32 NO 2 +0.066 HCO 3 + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
... (5)

この嫌気性アンモニア酸化反応では、CODを必要としないため安価であり、しかも、処理水に亜硝酸が流出しないことから、処理水のCOD上昇を抑制できるという利点がある。   This anaerobic ammonia oxidation reaction is inexpensive because it does not require COD, and since nitrous acid does not flow into the treated water, there is an advantage that the increase in COD of the treated water can be suppressed.

特開平8−141552号公報JP-A-8-141552 特開2007−160236号公報JP 2007-160236 A 特開2005−211832号公報JP-A-2005-211832 特開2004−230338号公報JP 2004-230338 A

水処理管理便覧、丸善、平成10年Water treatment management manual, Maruzen, 1998 生物学的脱窒素法の歴史的考察、用水と廃水、Vol.13、No.11、P1362〜1374、1974Historical considerations of biological denitrification, water and wastewater, Vol. 13, no. 11, P1362-1374, 1974 水処理工学(第二版)、技報堂出版、1990Water treatment engineering (2nd edition), Gihodo Publishing, 1990 Biodegradation,(2008)19:P303〜312Biodegradation, (2008) 19: P303-312. Rev Environ Sci Biotechnol(2007)6:P285〜313Rev Environ Sci Biotechnol (2007) 6: P285-313 Process Biochemistry,43(2008):P154〜160Process Biochemistry, 43 (2008): P154-160 Appl.Microbiol.Biotechnol.,(1998)50,P589〜596Appl. Microbiol. Biotechnol. , (1998) 50, P589-596.

このように、アンモニア性窒素を含む廃水の処理において、亜硝酸生成―亜硝酸脱窒素法や嫌気性アンモニア酸化法を用いることは、処理に必要な酸素量や有機物(COD)量を削減できるため有利である。しかしながら、これらの方法を行なうためには、硝化工程において硝酸の生成を制御して亜硝酸が安定して生成するように調節することが重要となるが、上述のように、アンモニア酸化細菌や亜硝酸酸化細菌の活性を阻害する条件が多数あるため、硝酸の生成を制御することができず、廃水中の窒素を効率良く除去できないという問題があった。   Thus, in the treatment of wastewater containing ammoniacal nitrogen, the use of nitrous acid generation-nitrous acid denitrification method or anaerobic ammonia oxidation method can reduce the amount of oxygen and organic matter (COD) required for the treatment. It is advantageous. However, in order to carry out these methods, it is important to control the production of nitric acid in the nitrification process so that nitrous acid is stably produced. Since there are many conditions that inhibit the activity of nitrate oxidizing bacteria, there is a problem that the production of nitric acid cannot be controlled and nitrogen in wastewater cannot be removed efficiently.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、硝酸の生成を最適に制御することにより、アンモニア性窒素を含む廃水において、廃水中の窒素を効率良く除去することが可能な、アンモニア含有廃水の生物学的窒素処理方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to optimize the production of nitric acid to reduce nitrogen in wastewater in wastewater containing ammonia nitrogen. It is an object of the present invention to provide a biological nitrogen treatment method for ammonia-containing wastewater that can be efficiently removed.

本発明者らは、上記の課題を解決すべく、アンモニア性窒素を含む廃水をより安定して効率的に処理する方法について種々の検討を行なった結果、アンモニア酸化細菌と亜硝酸酸化細菌に活性阻害を与えた場合、活性が回復するまでに要する時間がアンモニア酸化細菌と亜硝酸酸化細菌で異なることを見出し、活性阻害条件の与え方と汚泥の保持時間を最適に制御することで、亜硝酸酸化菌に比べてアンモニア酸化菌の増殖(活性回復)が促進でき、硝酸の生成を制御することに成功した。   In order to solve the above-mentioned problems, the present inventors have conducted various studies on a method for more stably and efficiently treating wastewater containing ammonia nitrogen, and as a result, it has been demonstrated that it is active against ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. When inhibition is applied, the time required for the recovery of activity differs between ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, and nitrite is controlled by optimally controlling the method of providing activity-inhibiting conditions and sludge retention time. Compared with oxidizing bacteria, it can promote the growth (recovery of activity) of ammonia oxidizing bacteria and succeeded in controlling the production of nitric acid.

本発明の要旨とするところは、次の(1)〜(5)である。
(1)主反応器を用いてアンモニア含有廃水に対して硝化工程ならびに脱窒素工程を行なった後に、最終沈殿池により処理水と活性汚泥とを分離し、活性汚泥を返送汚泥として主反応器へ返送するアンモニア含有廃水の生物学的な処理方法において、前記主反応器から活性汚泥の一部を別の反応容器Aに取り出して、当該取り出した活性汚泥の一部に対して亜硝酸酸化細菌に活性阻害を与える物質を所定濃度になるように添加した後に前記主反応器に返送し、かつ、前記別の反応容器Aに取り出す前記活性汚泥の流量Qsを、SRT(Solid Retention Time)が下記式(1)で計算される値の範囲になるように設定することを特徴とする、アンモニア含有廃水の生物学的窒素処理方法。
1/μ ≦ SRT < 1/{μ−(Qs/Q)/T} ・・・(1)
ただし、μ:アンモニア酸化細菌の比増殖速度(1/day)、μ:亜硝酸酸化細菌の比増殖速度(1/day)、Qs:主反応器から別の反応容器Aに取り出す流量(m/day)、Q:主反応器に流入する廃水量(m/day)、T:主反応器の反応時間(day)であり、上記式(1)における[1/{μ −(Qs /Q)/T}−1/μ ]>0である
(2)主反応器を用いてアンモニア含有廃水に対して硝化工程ならびに脱窒素工程を行なった後に、最終沈殿池により処理水と活性汚泥とを分離し、活性汚泥を返送汚泥として主反応器へ返送するアンモニア含有廃水の生物学的な処理方法において、前記返送汚泥の一部を別の反応容器Bに取り出して、当該取り出した返送汚泥の一部に対して亜硝酸酸化細菌に活性阻害を与える物質を所定濃度になるように添加した後に前記主反応器に返送し、かつ、前記別の反応容器Bに取り出す前記返送汚泥の流量Qsを、SRT(Solid Retention Time)が下記式(2)で計算される値の範囲になるように設定することを特徴とする、アンモニア含有廃水の生物学的窒素処理方法。
1/μ ≦ SRT < 1/{μ−(Qs/Q)・(M/M)/T}
・・・(2)
ただし、μ:アンモニア酸化細菌の比増殖速度(1/day)、μ:亜硝酸酸化細菌の比増殖速度(1/day)、Qs:返送汚泥の一部を別の反応器Bに取り出す量(m/day)、Q:主反応器に流入する廃水量(m/day)、T:主反応器の反応時間(day)、M:主反応器中の活性汚泥濃度(mg/l)、M:返送活性汚泥濃度(mg/l)であり、上記式(2)における[1/{μ −(Qs /Q)・(M /M)/T}−1/μ ]>0である
(3)主反応器を用いてアンモニア含有廃水に対して硝化工程ならびに脱窒素工程を行なった後に、最終沈殿池により処理水と活性汚泥とを分離し、活性汚泥を返送汚泥として主反応器へ返送するアンモニア含有廃水の生物学的な処理方法において、前記主反応器の上流側に予備反応器が設けられ、アンモニア含有廃水を予備反応器に供給するとともに、前記返送汚泥の一部を前記予備反応器に返送し、当該廃水と返送汚泥の一部を予備反応器で接触させながら、亜硝酸酸化細菌に活性阻害を与える物質を所定濃度になるように当該予備反応器に添加した後、前記主反応器に供給し、かつ、前記予備反応器へ返送する前記返送汚泥の量Qsを、SRT(Solid Retention Time)が下記式(3)になるように設定することを特徴とする、アンモニア含有廃水の生物学的窒素処理方法。
1/μ ≦ SRT < 1/{μ−(Qs/Q)・(M/M)/T}
・・・(3)
ただし、μ:アンモニア酸化細菌の比増殖速度(1/day)、μ:亜硝酸酸化細菌の比増殖速度(1/day)、Qs:返送汚泥の一部を予備反応器に導入する量(m/day)、Q:予備反応器に流入する廃水量(m/day)、T:主反応器の反応時間(day)、M:主反応器中の活性汚泥濃度(mg/l)、M:返送活性汚泥濃度(mg/l)であり、上記式(3)における[1/{μ −(Qs /Q)・(M /M)/T}−1/μ ]>0である
(4)前記主反応器において、前記硝化工程に亜硝酸生成法を用い、前記脱窒素工程に亜硝酸脱窒素法を用いること、あるいは前記硝化工程に亜硝酸生成法を用い、前記脱窒素工程に嫌気性アンモニア酸化反応法を用いることを特徴とする、(1)〜(3)のいずれか1項に記載のアンモニア含有廃水の生物学的窒素処理方法。
(5)前記活性阻害を与える物質が、硫黄化合物、フェノール、廃水に添加後の濃度が60mg/l以上のアンモニア性窒素、の少なくとも1つ以上であることを特徴とする(1)〜(4)のいずれか1項に記載のアンモニア含有廃水の生物学的窒素処理方法。
The gist of the present invention is the following (1) to (5).
(1) After performing nitrification and denitrification processes on ammonia-containing wastewater using the main reactor, the treated water and activated sludge are separated in the final sedimentation basin, and the activated sludge is returned to the main reactor as return sludge. In the biological treatment method of the ammonia-containing wastewater to be returned, a part of the activated sludge is taken out from the main reactor into another reaction vessel A, and the part of the removed activated sludge is converted into nitrite oxidizing bacteria. After adding a substance that inhibits activity to a predetermined concentration, it is returned to the main reactor, and the flow rate Qs 1 of the activated sludge taken out to the other reaction vessel A is SRT (Solid Retention Time) A biological nitrogen treatment method for ammonia-containing wastewater, characterized in that it is set so as to fall within a range of values calculated by formula (1).
1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 1 / Q) / T} (1)
However, μ 1 : Specific growth rate of ammonia oxidizing bacteria (1 / day), μ 2 : Specific growth rate of nitrite oxidizing bacteria (1 / day), Qs 1 : Flow rate taken out from main reactor to another reaction vessel A (m 3 / day), Q : amount of waste water flowing into the main reactor (m 3 / day), T : Ri reaction time (day) der the main reactor, [1 / {mu in the formula (1) 2 − (Qs 1 / Q) / T} −1 / μ 1 ]> 0 .
(2) After performing the nitrification process and denitrification process on the ammonia-containing wastewater using the main reactor, the treated water and the activated sludge are separated in the final sedimentation basin, and the activated sludge is returned to the main reactor as the returned sludge. In the biological treatment method of the ammonia-containing wastewater to be returned, a part of the returned sludge is taken out in another reaction vessel B, and the nitrite oxidizing bacteria are inhibited from activity against the part of the returned return sludge. After the substance is added to a predetermined concentration, it is returned to the main reactor, and the flow rate Qs 2 of the return sludge taken out to the other reaction vessel B is expressed by the following equation (2) as SRT (Solid Retention Time) A biological nitrogen treatment method for ammonia-containing wastewater, characterized in that it is set so as to fall within a range of values calculated in (1).
1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 2 / Q) · (M r / M) / T}
... (2)
However, μ 1 : Specific growth rate of ammonia-oxidizing bacteria (1 / day), μ 2 : Specific growth rate of nitrite-oxidizing bacteria (1 / day), Qs 2 : A part of the returned sludge is sent to another reactor B Amount to be taken out (m 3 / day), Q: Amount of waste water flowing into the main reactor (m 3 / day), T: Reaction time of the main reactor (day), M: Concentration of activated sludge in the main reactor (mg / l), M r: Ri return activated sludge concentration (mg / l) der, the formula (2) in [1 / {μ 2 - ( Qs 2 / Q) · (M r / M) / T} - 1 / μ 1 ]> 0 .
(3) After performing the nitrification process and denitrification process on the ammonia-containing wastewater using the main reactor, the treated water and the activated sludge are separated in the final sedimentation basin, and the activated sludge is returned to the main reactor as the returned sludge. In the biological treatment method of ammonia-containing wastewater to be returned, a preliminary reactor is provided upstream of the main reactor, and the ammonia-containing wastewater is supplied to the preliminary reactor, and a part of the return sludge is supplied to the preliminary reactor. After returning to the reactor, the waste water and a part of the returned sludge are brought into contact with the preliminary reactor, and a substance that inhibits the activity of nitrite oxidizing bacteria is added to the preliminary reactor to a predetermined concentration. fed into the main reactor, and the amount Qs 3 of the return sludge to be returned to the pre-reactor, SRT (Solid Retention Time) is set to be in the following formula (3) Wherein, the biological nitrogen treatment method wastewater containing ammonium.
1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 3 / Q) · (M r / M) / T}
... (3)
However, μ 1 : Specific growth rate of ammonia-oxidizing bacteria (1 / day), μ 2 : Specific growth rate of nitrite-oxidizing bacteria (1 / day), Qs 3 : Part of the return sludge is introduced into the preliminary reactor. Amount (m 3 / day), Q: amount of wastewater flowing into the pre-reactor (m 3 / day), T: reaction time (day) of the main reactor, M: concentration of activated sludge in the main reactor (mg / l), M r: Ri return activated sludge concentration (mg / l) der, the formula (3) in [1 / {μ 2 - ( Qs 3 / Q) · (M r / M) / T} -1 / Μ 1 ]> 0 .
(4) In the main reactor, using the nitrite generation method for the nitrification step and using the nitrous acid denitrification method for the denitrification step, or using the nitrous acid generation method for the nitrification step, The biological nitrogen treatment method of ammonia-containing wastewater according to any one of (1) to (3), wherein an anaerobic ammonia oxidation reaction method is used.
(5) The substance that inhibits the activity is at least one of a sulfur compound, phenol, and ammoniacal nitrogen having a concentration after addition to wastewater of 60 mg / l or more (1) to (4) The biological nitrogen treatment method of ammonia-containing wastewater as described in any one of 1).

以上説明したように本発明によれば、アンモニア性窒素を含む廃水を安定して効率良く処理することが可能となる。   As described above, according to the present invention, it is possible to stably and efficiently treat waste water containing ammoniacal nitrogen.

本発明に基づく実施形態1を示す説明図である。It is explanatory drawing which shows Embodiment 1 based on this invention. 本発明に基づく実施形態2を示す説明図である。It is explanatory drawing which shows Embodiment 2 based on this invention. 本発明に基づく実施形態3を示す説明図である。It is explanatory drawing which shows Embodiment 3 based on this invention. 本発明の実施形態1において、余剰汚泥の引き抜き量と好気槽の三態窒素濃度の関係を示すグラフ図である。In Embodiment 1 of this invention, it is a graph which shows the relationship between the amount of surplus sludge drawing-out, and the 3 state nitrogen concentration of an aerobic tank. 本発明の実施形態2において、別反応器へ導入する返送汚泥の量と好気槽の三態窒素濃度の関係を示すグラフ図である。In Embodiment 2 of this invention, it is a graph which shows the relationship between the quantity of the return sludge introduce | transduced into another reactor, and the three state nitrogen concentration of an aerobic tank. 本発明の実施形態3において、別反応器へ流入させる返送汚泥の量と好気槽の三態窒素濃度の関係を示すグラフ図である。In Embodiment 3 of this invention, it is a graph which shows the relationship between the quantity of the returned sludge made to flow into another reactor, and the tri-nitrogen concentration of an aerobic tank.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図1に、本発明の実施形態1に係るアンモニア性窒素を含む廃水の生物学的処理方法のフローシートを示す。
まず、アンモニア性窒素を含む廃水1を、生物学的窒素除去能力を有する主反応器2に流入させる。主反応器2は、硝化工程(好気条件)でアンモニア性窒素を硝化細菌により硝酸性窒素に変換した後、脱窒素工程で脱窒細菌を用いて硝酸性窒素を流入廃水中の有機物を用いて窒素ガスとして除去を行なう。ここで、1つの反応器内で硝化工程と脱窒素工程を並立させても良いし、工程毎に反応器を分けて複数の反応器を使用しても構わない。
In FIG. 1, the flow sheet of the biological treatment method of the wastewater containing ammonia nitrogen which concerns on Embodiment 1 of this invention is shown.
First, waste water 1 containing ammonia nitrogen is caused to flow into a main reactor 2 having biological nitrogen removal ability. Main reactor 2 converts ammonia nitrogen into nitrate nitrogen by nitrifying bacteria in the nitrification process (aerobic condition), and then uses the nitrogenous nitrogen inflow wastewater organic matter in the denitrification process. To remove as nitrogen gas. Here, the nitrification step and the denitrification step may be arranged in one reactor, or a plurality of reactors may be used by dividing the reactor for each step.

このとき、本実施形態では、主反応器2内の活性汚泥の一部6を別反応器(A)7へ連続的に抜き出し、亜硝酸酸化細菌の活性阻害物質8を与えた後、主反応器2へ連続的に返送する。   At this time, in the present embodiment, a part 6 of the activated sludge in the main reactor 2 is continuously extracted into the separate reactor (A) 7 to give the nitrite-oxidizing bacteria activity inhibitory substance 8, and then the main reaction. Return continuously to device 2.

この方法により、亜硝酸酸化細菌の一部に活性阻害を与えるだけで、主反応器2内ではアンモニア酸化細菌を優先的に保持することができ、主反応器2内の硝化工程を亜硝酸性窒素でとめる制御が可能となることがわかった。   By this method, it is possible to preferentially hold ammonia-oxidizing bacteria in the main reactor 2 only by inhibiting the activity of a part of the nitrite-oxidizing bacteria. It was found that control with nitrogen was possible.

アンモニア性窒素を含む廃水1を主反応器2にて反応させた後、最終沈殿池3にて活性汚泥と処理水4とを固液分離し、分離した活性汚泥は、返送汚泥5として主反応器2へ返送する。増殖した活性汚泥は、最終沈殿池3より余剰汚泥9として系外へ引き抜く。このように、本実施形態では、主反応器2から活性汚泥の一部を別反応器(A)7に抜き出して、活性阻害物質8を添加した後に主反応器2へ返送するプロセスと、主反応器2から最終沈殿池3に流入した活性汚泥及び処理水4を固液分離する処理とが、同時平行で実施される。   After the waste water 1 containing ammonia nitrogen is reacted in the main reactor 2, the activated sludge and the treated water 4 are solid-liquid separated in the final sedimentation basin 3, and the separated activated sludge is the main reaction as the return sludge 5. Return to vessel 2. The activated sludge thus proliferated is drawn out of the system as surplus sludge 9 from the final sedimentation basin 3. Thus, in the present embodiment, a process of extracting a part of the activated sludge from the main reactor 2 to the separate reactor (A) 7, adding the activity inhibitor 8 and returning it to the main reactor 2, The activated sludge and the treated water 4 that have flowed into the final sedimentation basin 3 from the reactor 2 are subjected to solid-liquid separation in parallel.

本発明者らは、この処理方法について詳細な検討を行なった結果、別反応器(A)7で与える亜硝酸酸化細菌の活性阻害物質8は、アンモニア酸化細菌に対しても活性阻害を与えるが、亜硝酸酸化細菌とアンモニア酸化細菌では、活性阻害を受けた後の活性回復に要する時間に差異があることを見出した。   As a result of detailed examination of this treatment method, the present inventors have found that the activity inhibitor 8 of nitrite oxidizing bacteria provided in the separate reactor (A) 7 also inhibits the activity of ammonia oxidizing bacteria. We found that nitrite-oxidizing bacteria and ammonia-oxidizing bacteria differ in the time required for recovery of activity after being inhibited.

活性阻害物質8として、例えば、フェノールや硫黄化合物、添加後の廃水中の濃度が60mg/l以上となる量に相当するアンモニア性窒素を添加すると、亜硝酸酸化細菌とアンモニア酸化細菌の両方が活性阻害を受ける。ここで、この活性阻害物質8は、硝化工程における好気条件により、短時間で分解して除去されるため、活性阻害物質8が取り除かれると、亜硝酸酸化細菌よりもアンモニア酸化細菌の方が、活性が早く回復する。   As the activity inhibiting substance 8, for example, when phenolic or sulfur compounds and ammonia nitrogen corresponding to an amount of 60 mg / l or more in the waste water after addition are added, both nitrite-oxidizing bacteria and ammonia-oxidizing bacteria are active. Inhibited. Here, since this activity inhibiting substance 8 is decomposed and removed in a short time due to aerobic conditions in the nitrification step, when the activity inhibiting substance 8 is removed, ammonia oxidizing bacteria are more preferred than nitrite oxidizing bacteria. The activity recovers quickly.

このように、亜硝酸酸化細菌の活性阻害物質により、アンモニア酸化細菌も一時的に活性阻害を受けるが、その後の活性回復に要する時間に差異があることから、本発明では、主反応器2内のアンモニア酸化細菌の活性を優先的に保持するために、Solid Retention Time(汚泥滞留時間、以下、SRTと記述する。)をアンモニア酸化細菌の増殖時間と同じかそれより長く、活性阻害を受けた亜硝酸酸化細菌の増殖時間より短く調整することとした。   As described above, the ammonia-oxidizing bacteria are also temporarily inhibited by the activity-inhibiting substance of the nitrite-oxidizing bacteria. However, since there is a difference in the time required for the subsequent recovery of the activity, in the present invention, in the main reactor 2 In order to preferentially retain the activity of the ammonia-oxidizing bacteria, the solid retention time (sludge retention time, hereinafter referred to as SRT) was the same as or longer than the growth time of the ammonia-oxidizing bacteria, and the activity was inhibited. The adjustment time was shorter than the growth time of nitrite-oxidizing bacteria.

尚、本発明においては、活性阻害を受けた微生物そのものが活性を取り戻すことで廃水の処理能力が回復する場合と、活性阻害を受けていない微生物が増殖することで廃水の処理能力が回復する場合の両方があるが、それらの詳細は未解明のため、これらを総称して活性が回復したと呼ぶ。   In the present invention, the wastewater treatment capacity is restored by recovering the activity of the microorganism that has been inhibited by the activity, and the wastewater treatment capacity is restored by the growth of the microorganism that has not been inhibited by the activity. However, since details of these are not yet elucidated, these are collectively referred to as recovery of activity.

このSRTは、別反応器(A)7へ抜き出す活性汚泥の量6をQs(m/day)、主反応器に流入する廃水量をQ(m/day)、アンモニア酸化細菌の比増殖速度をμ(1/day)、亜硝酸酸化細菌の比増殖速度をμ(1/day)、主反応器の反応時間をT(day)と表すとすると、以下の式(1)のように表現できる。 In this SRT, the amount 6 of activated sludge to be extracted to another reactor (A) 7 is Qs 1 (m 3 / day), the amount of waste water flowing into the main reactor is Q (m 3 / day), and the ratio of ammonia oxidizing bacteria When the growth rate is expressed as μ 1 (1 / day), the specific growth rate of nitrite-oxidizing bacteria is expressed as μ 2 (1 / day), and the reaction time of the main reactor is expressed as T (day), the following equation (1) It can be expressed as

1/μ ≦ SRT < 1/{μ−(Qs/Q)/T} ・・・式(1) 1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 1 / Q) / T} (1)

ここで、SRTは、微生物が系内に滞留している平均日数を示すもので、以下の式(a)により算出される値である。なお、以下の式(a)で表されるSRTの値は、余剰汚泥の引き抜き量を変化させることで調整可能である。   Here, SRT indicates the average number of days that microorganisms stay in the system, and is a value calculated by the following equation (a). In addition, the value of SRT represented by the following formula | equation (a) can be adjusted by changing the extraction amount of excess sludge.

SRT(day)=反応器内汚泥量(kg)÷(余剰汚泥量(kg/day)+処理水中のSS量(kg/day)) ・・・式(a)   SRT (day) = reactor sludge amount (kg) ÷ (excess sludge amount (kg / day) + SS amount in treated water (kg / day)) Equation (a)

本発明においては、まず、SRTをアンモニア酸化細菌の増殖に必要な時間と同じかそれ以上とする必要があることから、SRTとアンモニア酸化細菌の比増殖速度μの逆数を用いて(1)式の最左辺を導出した。尚、比増殖速度とは単位微生物濃度あたりの増殖速度であり、1/μはアンモニア酸化細菌の増殖に必要な時間を示す。 In the present invention, first, since the SRT needs to be equal to or longer than the time required for the growth of the ammonia-oxidizing bacteria, the reciprocal of the specific growth rate μ 1 between the SRT and the ammonia-oxidizing bacteria is used (1) The leftmost side of the formula was derived. The specific growth rate is the growth rate per unit microorganism concentration, and 1 / μ 1 represents the time required for the growth of ammonia-oxidizing bacteria.

アンモニア酸化細菌の一部は、別反応器(A)において、活性阻害物質8の添加により活性阻害を受けた後、主反応器内で活性阻害物質の影響を受けなくなった時点より増殖(活性を回復)しはじめる。この際、本発明で用いる活性阻害物質8は主反応器内で比較的短時間のうちに酸化されるため、活性阻害を受けたアンモニア酸化細菌の比増殖速度に与える影響は小さく無視できることから、本発明におけるアンモニア酸化細菌の増殖に必要な時間は1/μとして問題ないことを確認している。 A part of the ammonia-oxidizing bacterium is proliferated (activated from the time when it is not affected by the activity inhibitor in the main reactor after being inhibited by the addition of the activity inhibitor 8 in the separate reactor (A). Start recovering). At this time, since the activity-inhibiting substance 8 used in the present invention is oxidized in a relatively short time in the main reactor, the influence on the specific growth rate of the ammonia-oxidizing bacteria subjected to the activity inhibition is small and can be ignored. It has been confirmed that the time required for the growth of ammonia-oxidizing bacteria in the present invention is 1 / μ 1 and there is no problem.

次に、本発明では、SRTを亜硝酸酸化細菌の増殖に必要な時間未満に設定する必要がある。反応時間がTの主反応器内の活性汚泥に対し、Qs/Qの比率で活性阻害を与えるとすると、活性汚泥内に存在する亜硝酸酸化細菌の比増殖速度は[μ−(Qs/Q)/T]と表現できる。つまり、その逆数が本実施形態における亜硝酸酸化細菌の増殖に必要な時間を示すことから、本実施形態では、SRTが本実施形態における亜硝酸酸化細菌の比増殖速度の逆数未満になるよう(1)式の最右辺を導出した。 Next, in the present invention, it is necessary to set SRT to be less than the time required for the growth of nitrite-oxidizing bacteria. Assuming that activity inhibition is given to the activated sludge in the main reactor whose reaction time is T at a ratio of Qs 1 / Q, the specific growth rate of nitrite-oxidizing bacteria present in the activated sludge is [μ 2 − (Qs 1 / Q) / T]. That is, since the reciprocal indicates the time required for the growth of the nitrite-oxidizing bacteria in the present embodiment, the SRT is less than the reciprocal of the specific growth rate of the nitrite-oxidizing bacteria in the present embodiment ( 1) The rightmost side of the equation was derived.

すなわち、本実施形態では、余剰汚泥の引き抜き量や別反応器へ抜き出す活性汚泥の量Qs、主反応器に流入する廃水量Q、主反応器の反応時間Tを変化させて(1)式を満足するような値に設定することで、主反応器2内にアンモニア酸化細菌が優先的となり、アンモニア性窒素の酸化を亜硝酸性窒素で止めることが可能となる。 That is, in this embodiment, the amount of surplus sludge drawn, the amount of activated sludge Qs 1 to be extracted to another reactor, the amount of waste water Q flowing into the main reactor, and the reaction time T of the main reactor are changed (1) Is set to a value that satisfies the above, ammonia-oxidizing bacteria are preferential in the main reactor 2, and the oxidation of ammonia nitrogen can be stopped with nitrite nitrogen.

尚、微生物毎の比増殖速度は、対数増殖期において、以下のように表されることから、培養容器内に十分な量の基質と必要な無機塩類を添加して対象とする微生物を培養し、その微生物濃度Xを片対数目盛で経過時間tに対してプロットした時の傾きとして求めることができる。   The specific growth rate for each microorganism is expressed as follows in the logarithmic growth phase. Therefore, a sufficient amount of substrate and necessary inorganic salts are added to the culture vessel to culture the target microorganism. Then, the microorganism concentration X can be obtained as a slope when plotted against the elapsed time t on a semi-log scale.

dX/dt = μX

ここで、X:微生物濃度(mg/l)、t:時間(day)、μ:比増殖速度(1/day)である。
dX / dt = μX

Here, X: microorganism concentration (mg / l), t: time (day), and μ: specific growth rate (1 / day).

本発明の実施形態2に係るアンモニア性窒素を含む廃水の生物学的処理方法を、図2に示す。
図2に示した本実施形態では、亜硝酸酸化細菌の活性阻害物質8を、最終沈殿池3から主反応器2へ返送される返送汚泥5の一部に与える。返送汚泥5の一部6を別反応器(B)7に抜き出し、この一部抜き出した亜硝酸酸化細菌に活性阻害物質8を与えた後、主反応器2へ返送することにより、亜硝酸酸化細菌の増殖が抑制でき、アンモニア酸化細菌を主反応器2内に優先的に保持することが可能となることがわかった。
The biological treatment method for wastewater containing ammonia nitrogen according to Embodiment 2 of the present invention is shown in FIG.
In the present embodiment shown in FIG. 2, the activity inhibitor 8 of nitrite oxidizing bacteria is given to a part of the returned sludge 5 returned from the final sedimentation basin 3 to the main reactor 2. A part 6 of the returned sludge 5 is extracted into a separate reactor (B) 7, and the nitrite oxidizing bacteria 8 are given to the extracted nitrite oxidizing bacteria, and then returned to the main reactor 2, thereby oxidizing nitrite. It was found that bacterial growth can be suppressed and ammonia oxidizing bacteria can be preferentially retained in the main reactor 2.

このとき、SRTは、別反応器(B)7へ抜き出す活性汚泥の量6をQs(m/day)、主反応器に流入する廃水量をQ(m/day)、アンモニア酸化細菌の比増殖速度μ(1/day)、亜硝酸酸化細菌の比増殖速度μ(1/day)、主反応器の反応時間T(day)、M:主反応器中の活性汚泥濃度(mg/l)、M:返送活性汚泥濃度(mg/l)と表すとすると、以下の式(2)のように表現できる。 At this time, the SRT uses Qs 2 (m 3 / day) as the amount 6 of activated sludge to be extracted to the separate reactor (B) 7, Q (m 3 / day) as the amount of waste water flowing into the main reactor, and ammonia-oxidizing bacteria. Specific growth rate μ 1 (1 / day), specific growth rate μ 2 (1 / day) of nitrite-oxidizing bacteria, reaction time T (day) of the main reactor, M: concentration of activated sludge in the main reactor ( If expressed as mg / l), Mr : return activated sludge concentration (mg / l), it can be expressed as the following equation (2).

1/μ ≦ SRT < 1/{μ−(Qs/Q)・(M/M)/T}
・・・式(2)
1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 2 / Q) · (M r / M) / T}
... Formula (2)

(2)式の導出の考え方は(1)式と同様であるが、図2に示した実施形態においては、活性阻害物質8を与える別反応器(B)7内の活性汚泥濃度と主反応器2内の活性汚泥濃度が異なることから、Qs/Qに各々の活性汚泥濃度の値を乗じたものを用いる。本実施形態では、余剰汚泥の引き抜き量や別反応器へ抜き出す活性汚泥の量Qs、主反応器に流入する廃水量Q、主反応器の反応時間Tを変化させて(2)式を満足するような値に設定することで、主反応器2内にアンモニア酸化細菌が優先的となり、アンモニア性窒素の酸化を亜硝酸性窒素で止めることが可能となる。 The derivation of equation (2) is the same as equation (1), but in the embodiment shown in FIG. 2, the activated sludge concentration and main reaction in the separate reactor (B) 7 that gives the activity inhibiting substance 8. Since the activated sludge concentration in the vessel 2 is different, Qs 2 / Q multiplied by the value of each activated sludge concentration is used. In the present embodiment, the amount of excess sludge withdrawn, the amount of activated sludge Qs 2 withdrawn to another reactor, the amount of waste water Q flowing into the main reactor, and the reaction time T of the main reactor are changed to satisfy equation (2). By setting to such a value, ammonia oxidizing bacteria are preferential in the main reactor 2, and it becomes possible to stop the oxidation of ammonia nitrogen with nitrite nitrogen.

本発明の実施形態3に係るアンモニア性窒素を含む廃水の生物学的処理方法を、図3に示す。
図3に示した本実施形態では、廃水1を、まず、予備反応器の一例である別反応器(C)7に流入させる。別反応器(C)7には、返送汚泥の一部6を返送するとともに、亜硝酸酸化細菌の活性阻害物質8を与える。別反応器(C)7で反応の後、主反応器2にて硝化工程および脱窒素工程を経て、最終沈殿池5にて活性汚泥と処理水とに固液分離し、活性汚泥は返送汚泥5として別反応器(C)7および主反応器2へ返送する。別反応器(C)7は、亜硝酸酸化細菌に活性阻害を与えれば良く、好気性、嫌気性のいずれでも構わない。
The biological treatment method for wastewater containing ammonia nitrogen according to Embodiment 3 of the present invention is shown in FIG.
In this embodiment shown in FIG. 3, the waste water 1 is first caused to flow into another reactor (C) 7 which is an example of a preliminary reactor. In another reactor (C) 7, a part 6 of the returned sludge is returned and an activity inhibitory substance 8 of nitrite oxidizing bacteria is given. After the reaction in the separate reactor (C) 7, the main reactor 2 undergoes a nitrification step and a denitrification step, and then the solid sludge is separated into activated sludge and treated water in the final sedimentation basin 5. The activated sludge is returned sludge. 5 is returned to the separate reactor (C) 7 and the main reactor 2. The separate reactor (C) 7 only needs to give activity inhibition to nitrite-oxidizing bacteria, and may be aerobic or anaerobic.

また、図3に示す実施形態においては、廃水1が亜硝酸酸化細菌の活性阻害物質を含む場合には、廃水1中の活性阻害物質をそのまま使用することができ、別反応器7において亜硝酸酸化細菌の活性阻害物質8を与えることを中断しても良い。   In the embodiment shown in FIG. 3, when the wastewater 1 contains an activity inhibiting substance of nitrite oxidizing bacteria, the activity inhibiting substance in the wastewater 1 can be used as it is, and the nitrite is separated in the separate reactor 7. You may interrupt | providing the activity inhibitory substance 8 of oxidation bacteria.

このとき、SRTは、別反応器7へ抜き出す活性汚泥の量6をQs(m/day)、主反応器に流入する廃水量をQ(m/day)、アンモニア酸化細菌の比増殖速度μ(1/day)、亜硝酸酸化細菌の比増殖速度μ(1/day)、主反応器の反応時間T(day)、M:主反応器中の活性汚泥濃度(mg/l)、M:返送汚泥濃度(mg/l)と表すとすると、以下の式(3)のように表現できる。 At this time, the SRT uses Qs 3 (m 3 / day) as the amount of activated sludge extracted to the separate reactor 7, Q (m 3 / day) as the amount of wastewater flowing into the main reactor, and specific growth of ammonia-oxidizing bacteria. Rate μ 1 (1 / day), specific growth rate of nitrite-oxidizing bacteria μ 2 (1 / day), reaction time T (day) of the main reactor, M: concentration of activated sludge in the main reactor (mg / l ), Mr : Return sludge concentration (mg / l), it can be expressed as the following formula (3).

1/μ ≦ SRT < 1/{μ−(Qs/Q)・(M/M)/T}
・・・式(3)
1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 3 / Q) · (M r / M) / T}
... Formula (3)

(3)式の導出の考え方は(2)式と同様であり、本実施形態では、余剰汚泥の引き抜き量や別反応器へ抜き出す活性汚泥の量Qs、主反応器に流入する廃水量Q、主反応器の反応時間Tを変化させて(3)式を満足するような値に設定することで、主反応器2内にアンモニア酸化細菌が優先的となり、アンモニア性窒素の酸化を亜硝酸性窒素で止めることが可能となる。 The way of deriving the equation (3) is the same as the equation (2). In this embodiment, the amount of excess sludge withdrawn, the amount of activated sludge to be extracted to another reactor Qs 3 , the amount of waste water Q flowing into the main reactor By changing the reaction time T of the main reactor and setting it to a value that satisfies the equation (3), ammonia oxidizing bacteria are preferential in the main reactor 2, and the oxidation of ammoniacal nitrogen is reduced to nitrous acid. It is possible to stop with active nitrogen.

ここで、図1、図2、図3の各実施形態に示す方法により硝化工程では亜硝酸性窒素が安定して蓄積することから、主反応器2の脱窒素工程には、亜硝酸脱窒素法あるいは嫌気性アンモニア酸化反応法を用いることができる。   Here, nitrite nitrogen is stably accumulated in the nitrification step by the method shown in each embodiment of FIG. 1, FIG. 2, and FIG. Or an anaerobic ammonia oxidation reaction method can be used.

主反応器において、硝化工程に亜硝酸生成法を用い、脱窒素工程に亜硝酸脱窒素法を用いる場合には、主反応器として嫌気槽と好気槽を用い、流入する廃水1中の有機物を電子受容体として活用するために、初めに廃水を嫌気槽へ投入した後に好気槽へ搬入し、好気槽の処理水の一部を嫌気槽へ循環する。本発明の各実施形態に係る方法を用いると、好気槽内でアンモニア酸化細菌が優先的となり、好気槽の硝化工程を亜硝酸生成工程で止めることができ、硝化工程に必要な酸素量を25%程度削減可能となる。その結果、好気槽で生成した亜硝酸を嫌気槽へ循環することから、脱窒素工程は亜硝酸脱窒素反応となり、脱窒素工程に必要な有機物量が、硝酸脱窒素反応の場合に比べて40%程度少なくて済むため、廃水中の有機物量が不十分な場合であっても、添加するメタノール等の有機物が少なくて済み、効率良く廃水中のアンモニア性窒素を除去できる。   In the main reactor, when the nitrite generation method is used for the nitrification process and the nitrous acid denitrification method is used for the denitrification process, an anaerobic tank and an aerobic tank are used as the main reactor, and the organic matter in the inflowing waste water 1 is used. In order to utilize as an electron acceptor, waste water is first introduced into an anaerobic tank and then carried into an aerobic tank, and a part of the treated water in the aerobic tank is circulated to the anaerobic tank. When the method according to each embodiment of the present invention is used, ammonia-oxidizing bacteria are given priority in the aerobic tank, and the nitrification process of the aerobic tank can be stopped in the nitrite production process, and the amount of oxygen necessary for the nitrification process Can be reduced by about 25%. As a result, since the nitrous acid produced in the aerobic tank is circulated to the anaerobic tank, the denitrification process becomes a nitrous acid denitrification reaction, and the amount of organic substances required for the denitrification process is smaller than that in the case of the nitric acid denitrification reaction. Since about 40% is sufficient, even when the amount of organic matter in the wastewater is insufficient, the amount of organic matter such as methanol to be added is small, and ammonia nitrogen in the wastewater can be efficiently removed.

一方、硝化工程に亜硝酸生成法を用い、脱窒素工程に嫌気性アンモニア酸化反応法を用いる場合にも、主反応器として好気槽と嫌気槽を用い、初めに廃水を好気槽へ投入した後に嫌気槽へ搬入する。本発明の各実施形態に係る方法を用いると、好気槽内にアンモニア酸化細菌が優先的となり、好気槽のアンモニアは亜硝酸に変換される。その後段の嫌気槽に好気槽で生成した亜硝酸と未反応のアンモニアを流入させて、嫌気性アンモニア酸化反応を行う。このとき、アンモニアと亜硝酸の濃度は1:1.32程度の比が好ましく、この値になるように、亜硝酸生成工程においてpH、DO、ORP(酸化還元電位)、水温等を制御して亜硝酸の生成量を調節する。このように、流入する廃水中のアンモニア性窒素の一部を亜硝酸性窒素に変換して嫌気性アンモニア酸化反応を行なうことから、亜硝酸性窒素の生成量を上記の方法で調節することにより、任意の窒素除去量に調節することも可能となる。この好気槽において、アンモニア性窒素を硝酸性窒素まで酸化せずに亜硝酸性窒素で止めることから、好気槽内の硝化工程における必要酸素量を25%程度削減可能である。   On the other hand, when using the nitrite generation method in the nitrification process and the anaerobic ammonia oxidation reaction process in the denitrification process, an aerobic tank and an anaerobic tank are used as the main reactor, and the waste water is first introduced into the aerobic tank. And then carry it into the anaerobic tank. When the method according to each embodiment of the present invention is used, ammonia-oxidizing bacteria are preferential in the aerobic tank, and ammonia in the aerobic tank is converted into nitrous acid. Nitrous acid produced in the aerobic tank and unreacted ammonia are allowed to flow into the anaerobic tank in the subsequent stage to perform an anaerobic ammonia oxidation reaction. At this time, the concentration of ammonia and nitrous acid is preferably a ratio of about 1: 1.32, and the pH, DO, ORP (oxidation-reduction potential), water temperature, etc. are controlled in the nitrous acid production step so that this value is obtained. Adjust the amount of nitrous acid produced. In this way, a part of the ammonia nitrogen in the inflowing wastewater is converted to nitrite nitrogen and an anaerobic ammonia oxidation reaction is performed. Therefore, by adjusting the amount of nitrite nitrogen produced by the above method, It is also possible to adjust to an arbitrary nitrogen removal amount. In this aerobic tank, ammonia nitrogen is not oxidized to nitrate nitrogen but is stopped with nitrite nitrogen, so that the required oxygen amount in the nitrification process in the aerobic tank can be reduced by about 25%.

ここで、本発明の各実施形態に用いる亜硝酸酸化細菌の活性阻害物質としては、例えば、硫黄化合物、フェノール、廃水中の濃度が60mg/l以上になる量に相当するアンモニア性窒素、の少なくとも1つ以上を添加して与える。廃水の性状によっては、複数の阻害条件を同時に与えても構わない。   Here, as the activity inhibitor of nitrite-oxidizing bacteria used in each embodiment of the present invention, for example, at least sulfur compound, phenol, ammonia nitrogen corresponding to an amount of 60 mg / l or more in wastewater, Add one or more to give. Depending on the properties of the wastewater, a plurality of inhibition conditions may be given simultaneously.

本発明の各実施形態においては、フェノールを活性阻害物質として与える場合には、例えば20mg/l以上で200mg/l以下の濃度になるように添加・調整することで、本発明の効果を得ることができる。また、硫黄化合物としては、亜硫酸、チオ硫酸、チオシアンが好適であり、40mg−硫黄/l以上で200mg−硫黄/l以下になるように添加・調整することで、本発明の効果を得ることが可能となる。また、アンモニア性窒素は60mg−N/l以上で700mg/l以下になるように添加・調整することで、本発明の効果を得ることが可能となる。   In each embodiment of the present invention, when phenol is given as an activity inhibitor, for example, the effect of the present invention can be obtained by adding and adjusting so that the concentration is 20 mg / l or more and 200 mg / l or less. Can do. Moreover, as a sulfur compound, sulfurous acid, thiosulfuric acid, and thiocyan are suitable, and the effect of the present invention can be obtained by adding and adjusting so that it is 40 mg-sulfur / l or more and 200 mg-sulfur / l or less. It becomes possible. Moreover, it becomes possible to acquire the effect of this invention by adding and adjusting ammonia nitrogen so that it may become 60 mg-N / l or more and 700 mg / l or less.

ここで、上記の添加量は一例であり、廃水の成分や微生物の種類によっても異なり、また複数の活性阻害物質が共存する場合にも値が変化する。そのため、以下のような方法を用いることで、活性阻害を生ずる値を確認することができる。   Here, the amount of addition described above is an example, and varies depending on the components of the wastewater and the type of microorganism, and the value also changes when a plurality of activity inhibitory substances coexist. Therefore, the value which causes activity inhibition can be confirmed by using the following method.

500mlのビーカーを複数個用意して、アンモニア酸化細菌と亜硝酸酸化細菌を含む活性汚泥と(NHSOとNaNOと無機塩類とを含む培地を加えて500mlとし、曝気条件で回分式実験を行う。各ビーカー毎に、阻害物質の添加濃度を変えて実験を行い、実験開始後のアンモニア性窒素濃度と酸化態窒素の濃度変化を観察する。実験開始から例えば20時間後に、各ビーカーを静置して上澄みを取り除いた後、沈殿した活性汚泥を別の500mlビーカーに移して上記と同じ培地を加え、阻害因子や阻害物質を添加しない条件に保持して、活性の回復有無を観察する。この方法により、阻害物質がアンモニア酸化細菌と亜硝酸酸化細菌に作用する条件を確認することができる。 Prepare multiple 500 ml beakers, add activated sludge containing ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, and a medium containing (NH 4 ) 2 SO 4 , NaNO 2 and inorganic salts to make 500 ml. Perform a formula experiment. For each beaker, the experiment is performed by changing the concentration of the inhibitor to be added, and the changes in ammonia nitrogen concentration and oxidized nitrogen concentration after the start of the experiment are observed. For example, after 20 hours from the start of the experiment, each beaker is allowed to stand and the supernatant is removed. Then, the precipitated activated sludge is transferred to another 500 ml beaker, and the same medium as described above is added, and no inhibitor or inhibitor is added. Hold and observe for activity recovery. By this method, conditions under which the inhibitor acts on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria can be confirmed.

亜硝酸酸化細菌の活性阻害条件としては、フェノールや硫黄化合物、高濃度のアンモニア性窒素の添加以外に、pH、溶存酸素濃度、水温などがあり、例えばpHであれば7.5〜8.5、溶存酸素濃度の場合には0.5mg/l未満、水温の場合には25℃以上で活性阻害を生ずるが、pHや溶存酸素濃度、水温による活性阻害の場合、それらの阻害条件が無くなると直ちに亜硝酸酸化細菌の活性が回復するため、本発明の活性阻害条件としては有効ではなく、本発明の活性を阻害する物質の対象としない。   The conditions for inhibiting the activity of nitrite-oxidizing bacteria include pH, dissolved oxygen concentration, water temperature, etc. in addition to the addition of phenol, sulfur compounds and high-concentration ammoniacal nitrogen. For example, pH is 7.5 to 8.5. In the case of dissolved oxygen concentration, activity inhibition occurs at less than 0.5 mg / l, and in the case of water temperature at 25 ° C. or higher, but in the case of activity inhibition due to pH, dissolved oxygen concentration, water temperature, those inhibition conditions disappear. Since the activity of nitrite-oxidizing bacteria is immediately recovered, it is not effective as an activity inhibition condition of the present invention, and is not a target of a substance that inhibits the activity of the present invention.

一方、別の反応容器に添加したフェノールや硫黄化合物は、別の反応容器より主反応器へ流入した際に主反応器内の好気槽で比較的短時間に酸化分解され、また、アンモニア性窒素の場合には、主反応器内の好気槽で硝化反応により亜硝酸性窒素に変換されるため、主反応器内のアンモニア酸化細菌の活性には影響を与えずに、連続的にアンモニア性窒素を含む廃水の生物学的処理が可能となる。   On the other hand, phenol and sulfur compounds added to another reaction vessel are oxidized and decomposed in a relatively short time in an aerobic tank in the main reactor when flowing into the main reactor from another reaction vessel. In the case of nitrogen, since it is converted to nitrite nitrogen by nitrification in the aerobic tank in the main reactor, ammonia is continuously added without affecting the activity of ammonia oxidizing bacteria in the main reactor. Biological treatment of wastewater containing natural nitrogen becomes possible.

本発明で処理する廃水は、廃水の排出基準値を超過する濃度のアンモニア性窒素を含む廃水の全てにおいて適用可能であるが、高濃度のアンモニア性窒素を含む廃水に適用する場合、特に有効である。   The wastewater treated in the present invention can be applied to all wastewater containing ammonia nitrogen at a concentration exceeding the wastewater discharge standard value, but is particularly effective when applied to wastewater containing high concentration ammoniacal nitrogen. is there.

よって、本発明は、製鉄所のコークス工場で発生する安水、化学工場や食品工場から発生する高濃度アンモニア性窒素を含む廃水の生物学的な処理に好適である。特に、コークス工場で発生する安水に適用する場合には、廃水中にフェノールや硫黄化合物など、亜硝酸酸化細菌の活性阻害物質を含んでいるため、それらの活性阻害物質を有効に活用することが可能である。   Therefore, the present invention is suitable for biological treatment of wastewater containing low-concentration water generated in a coke factory of a steel mill, high-concentration ammoniacal nitrogen generated from a chemical factory or a food factory. In particular, when it is applied to low water generated at a coke plant, waste water contains phenol, sulfur compounds, and other nitrite-oxidizing bacteria activity inhibitors, so these activity inhibitors should be used effectively. Is possible.

以下、本発明の実施例を示すが、本発明は実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the examples.

(実施例1)
図1に示す実施形態の実施例を示す。
対象廃水には、人工下水を用いた。また亜硝酸酸化細菌の活性阻害物質として、フェノールを添加した。廃水の性状と活性阻害条件を、以下に示す。
Example 1
2 shows an example of the embodiment shown in FIG.
Artificial sewage was used as the target wastewater. In addition, phenol was added as an activity inhibitor of nitrite oxidizing bacteria. The wastewater properties and activity inhibition conditions are shown below.

<廃水の性状>
BOD : 120mg/l
NH−N : 40mg/l
T−P : 5mg/l
フェノールの添加量 : 80mg/l
<Properties of wastewater>
BOD: 120mg / l
NH 4 -N: 40 mg / l
TP: 5 mg / l
Amount of phenol added: 80 mg / l

主反応器では、亜硝酸生成−亜硝酸脱窒素法を用いて連続処理を行った。装置の概要と処理条件を、以下に示す。   In the main reactor, continuous treatment was performed using nitrite production-nitrite denitrification method. An outline of the apparatus and processing conditions are shown below.

<装置の概要と処理条件>
主反応器
嫌気槽 200L
好気槽 300L
MLSS 平均 3,460mg/l
別反応器 50L
別反応器へ抜き出す活性汚泥の量 Qs 43L/day
主反応器に流入する廃水量 Q 792L/day
アンモニア酸化細菌の比増殖速度 μ 0.6 1/day
亜硝酸酸化細菌の比増殖速度 μ 0.312 1/day
汚泥返送率 100%(=792L/day)
混合液循環率 200%
処理水SS 平均 360mg/l
余剰汚泥濃度 平均 8,280mg/l
余剰汚泥の引き抜き量 任意に設定
<Outline of device and processing conditions>
Main reactor Anaerobic tank 200L
Aerobic tank 300L
MLSS average 3,460mg / l
Separate reactor 50L
Amount of activated sludge withdrawn to another reactor Qs 1 43 L / day
Waste water flowing into the main reactor Q 792L / day
Specific growth rate of ammonia oxidizing bacteria μ 1 0.6 1 / day
Specific growth rate of nitrite-oxidizing bacteria μ 2 0.312 1 / day
Sludge return rate 100% (= 792L / day)
Mixing liquid circulation rate 200%
Treated water SS average 360mg / l
Excess sludge concentration average 8,280mg / l
Excess sludge extraction amount Set arbitrarily

余剰汚泥の引き抜き量を調節してSRTを変化させた場合の好気槽における三態窒素濃度の測定結果を、図4に示す。尚、上記の運転条件においては、1/μは1.67dayとなり、1/{μ−(Qs/Q)/T}は4.42dayとなる。 FIG. 4 shows the measurement results of the tristate nitrogen concentration in the aerobic tank when the SRT is changed by adjusting the amount of excess sludge withdrawn. In the above operating conditions, 1 / μ 1 is 1.67 day and 1 / {μ 2 − (Qs 1 / Q) / T} is 4.42 day.

図4より、余剰汚泥の汚泥引抜量が14L/day〜90L/dayの範囲で運転したところ、亜硝酸酸化細菌に活性阻害を与え、好気槽に亜硝酸性窒素を蓄積することができた。余剰汚泥引抜量14L/dayは、SRT=4.3dayに相当し、90L/dayは、SRT=1.7dayに相当することから、汚泥引抜量を調整して、SRTを1/μと1/{μ−(Qs/Q)/T}の間に設定することで、好気槽での硝化反応を亜硝酸性窒素までで止めることができた。また、この方法により、好気槽での曝気量を25%程度削減できた。 As shown in FIG. 4, when the sludge extraction amount of the excess sludge was operated in the range of 14 L / day to 90 L / day, the nitrite oxidizing bacteria were inhibited, and nitrite nitrogen could be accumulated in the aerobic tank. . The excess sludge extraction amount 14 L / day corresponds to SRT = 4.3 day, and 90 L / day corresponds to SRT = 1.7 day. Therefore, the SRT is adjusted to 1 / μ 1 and 1 by adjusting the sludge extraction amount. / {Μ 2 − (Qs 1 / Q) / T}, the nitrification reaction in the aerobic tank could be stopped up to nitrite nitrogen. In addition, this method reduced the amount of aeration in the aerobic tank by about 25%.

また、図4に示したように、余剰汚泥引抜量が90L/day超過となる範囲では、亜硝酸性窒素の濃度が減少し、硝酸性窒素の濃度が増加している。また余剰汚泥引抜量が14L/day以下となる範囲では、亜硝酸性窒素の濃度が減少している。この結果から明らかなように、SRTが上記式(1)の範囲外となる場合には、好気槽での硝化反応を亜硝酸性窒素までで止めることができないことがわかった。   Further, as shown in FIG. 4, in the range where the excess sludge extraction amount exceeds 90 L / day, the concentration of nitrite nitrogen decreases and the concentration of nitrate nitrogen increases. In addition, the concentration of nitrite nitrogen is reduced in the range where the excess sludge extraction amount is 14 L / day or less. As is apparent from this result, it has been found that when the SRT is outside the range of the above formula (1), the nitrification reaction in the aerobic tank cannot be stopped by nitrite nitrogen.

(実施例2)
図2に示す実施形態の実施例を示す。
廃水は、実施例1と同じものを用いた。実施例2における装置の概要と処理条件を以下に示す。
(Example 2)
The example of embodiment shown in FIG. 2 is shown.
The same waste water as in Example 1 was used. The outline of the apparatus and processing conditions in Example 2 are shown below.

<処理条件>
主反応器
嫌気槽 200L
好気槽 300L
MLSS 7,560mg/l
別反応器 50L
別反応器へ抜き出す返送汚泥の量 Qs 任意に設定
主反応器に流入する廃水量 Q 792L/day
アンモニア酸化細菌の比増殖速度 μ 0.6 1/day
亜硝酸酸化細菌の比増殖速度 μ 0.312 1/day
汚泥返送率 100%(=792L/day)
混合液循環率 200%
処理水SS 平均 288mg/l
余剰汚泥濃度(=返送汚泥濃度) 平均 15,640mg/l
余剰汚泥の引き抜き量 10L/day
<Processing conditions>
Main reactor Anaerobic tank 200L
Aerobic tank 300L
MLSS 7,560mg / l
Separate reactor 50L
Amount of returned sludge withdrawn to another reactor Qs 2 arbitrarily set Amount of wastewater flowing into the main reactor Q 792 L / day
Specific growth rate of ammonia oxidizing bacteria μ 1 0.6 1 / day
Specific growth rate of nitrite-oxidizing bacteria μ 2 0.312 1 / day
Sludge return rate 100% (= 792L / day)
Mixing liquid circulation rate 200%
Treated water SS average 288mg / l
Surplus sludge concentration (= returned sludge concentration) Average 15,640 mg / l
Pull out excess sludge: 10L / day

亜硝酸酸化細菌に活性阻害を与えるために別反応器に抜き出す返送汚泥量Qsを調節して1/{μ−(Qs/Q)・(M/M)/T}の値を変化させた場合の好気槽における三態窒素濃度の測定結果を、図5に示す。尚、上記の運転条件においては、SRTは9.8day、1/μは1.67dayとなる。 In order to inhibit the activity of nitrite-oxidizing bacteria, the amount of return sludge Qs 2 withdrawn to another reactor is adjusted to obtain a value of 1 / {μ 2 − (Qs 2 / Q) · (M r / M) / T}. FIG. 5 shows the measurement results of the trinitrogen concentration in the aerobic tank when changed. Under the above operating conditions, SRT is 9.8 day, and 1 / μ 1 is 1.67 day.

図5より、別反応器へ導入する返送汚泥量を53L/day以上の範囲で運転したところ、亜硝酸酸化細菌の活性阻害が顕著となり、好気槽に亜硝酸性窒素を蓄積することができた。別反応器へ導入する返送汚泥量の53L/dayは1/{μ−(Qs/Q)・(M/M)/T}で10.8dayに相当し、活性阻害を与える返送汚泥量を調整して、SRT<1/{μ−(Qs/Q)・(M/M)/T}に設定することで、好気槽での硝化反応を亜硝酸性窒素までで止めることができた。またこの方法により、好気槽での曝気量を25%程度削減できた。
As shown in FIG. 5, when the amount of returned sludge to be introduced into another reactor is operated within the range of 53 L / day or more, the activity inhibition of nitrite oxidizing bacteria becomes remarkable, and nitrite nitrogen can be accumulated in the aerobic tank. It was. The amount of returned sludge to be introduced into another reactor, 53 L / day, corresponds to 10.8 day of 1 / {μ 2 − (Qs 2 / Q) · (M r / M) / T}, and the returned sludge that gives activity inhibition. By adjusting the amount and setting SRT <1 / {μ 2 − (Qs 1 / Q) · (M r / M) / T}, the nitrification reaction in the aerobic tank can be reduced to nitrite nitrogen. I was able to stop. In addition, this method reduced the amount of aeration in the aerobic tank by about 25%.

また、図5に示したように、別反応器へ導入する返送汚泥量が53L/day未満となる範囲では、亜硝酸性窒素の濃度が減少し、硝酸性窒素の濃度が増加している。一方、別反応器へ導入する返送汚泥量Qsを40L/dayとした状態で、余剰汚泥の引き抜き量を10L/dayから140L/dayへ変更したところ、SRTは1.56dayとなり、排水中のアンモニア性窒素の濃度減少が無くなり、硝化反応が進まなくなった。これらの結果から明らかなように、SRTが上記式(2)の範囲外となる場合には、好気槽での硝化反応を亜硝酸性窒素までで止めることができないことがわかった。 Further, as shown in FIG. 5, the concentration of nitrite nitrogen decreases and the concentration of nitrate nitrogen increases in the range where the amount of returned sludge introduced into another reactor is less than 53 L / day. On the other hand, when the amount of surplus sludge withdrawn from the 10 L / day was changed from 10 L / day to 140 L / day with the return sludge amount Qs 2 to be introduced into another reactor being 40 L / day, the SRT was 1.56 day, The concentration of ammonia nitrogen disappeared and the nitrification reaction did not proceed. As is clear from these results, it has been found that when the SRT falls outside the range of the above formula (2), the nitrification reaction in the aerobic tank cannot be stopped by nitrite nitrogen.

(実施例3)
図3に示す実施形態の実施例を示す。
廃水は、コークス工場の安水を用いた。実施例3における装置の概要と廃水水質ならびに処理条件を以下に示す。
(Example 3)
4 shows an example of the embodiment shown in FIG.
The wastewater used was the coke plant's low water. The outline of the apparatus, waste water quality and treatment conditions in Example 3 are shown below.

<廃水の性状>
COD : 400〜500mg/l
NH−N : 400〜700mg/l
NO−N : <0.1mg/l
NO−N : <0.1mg/l
T−P : <0.1mg/l
フェノール : 60〜180mg/l
2− : 90〜150mg/l
SCN : 60〜80mg/l
<Properties of wastewater>
COD: 400 to 500 mg / l
NH 4 -N: 400 to 700 mg / l
NO 2 -N: <0.1mg / l
NO 3 -N: <0.1mg / l
TP: <0.1 mg / l
Phenol: 60-180 mg / l
S 2 O 3 2− : 90 to 150 mg / l
SCN: 60-80 mg / l

<処理条件>
主反応器
嫌気槽 200L
好気槽 300L
MLSS 5,200mg/l
別反応器 50L
別反応器へ流入させる返送汚泥の量 Qs 任意に設定
主反応器に流入する廃水量 Q 720L/day
アンモニア酸化細菌の比増殖速度 μ 0.6 1/day
亜硝酸酸化細菌の比増殖速度 μ 0.312 1/day
汚泥返送率 100%
混合液循環率 200%
処理水SS 平均 170mg/l
余剰汚泥濃度(=返送汚泥濃度) 平均 11,800mg/l
余剰汚泥の引き抜き量 30L/day
<Processing conditions>
Main reactor Anaerobic tank 200L
Aerobic tank 300L
MLSS 5,200mg / l
Separate reactor 50L
Amount of returned sludge flowing into another reactor Qs 3 arbitrarily set Amount of wastewater flowing into main reactor Q 720 L / day
Specific growth rate of ammonia oxidizing bacteria μ 1 0.6 1 / day
Specific growth rate of nitrite-oxidizing bacteria μ 2 0.312 1 / day
Sludge return rate 100%
Mixing liquid circulation rate 200%
Treated water SS average 170mg / l
Excess sludge concentration (= Return sludge concentration) Average 11,800mg / l
Pull out excess sludge 30L / day

亜硝酸酸化細菌に活性阻害を与えるために別反応器へ流入させる返送汚泥量Qsを調節して1/{μ−(Qs/Q)・(M/M)/T}の値を変化させた場合の好気槽における三態窒素濃度の測定結果を、図6に示す。尚、上記の運転条件においては、SRTは5.5day、1/μは1.67dayとなる。 A value of 1 / {μ 2 − (Qs 3 / Q) · (M r / M) / T} by adjusting the amount of returned sludge Qs 3 flowing into another reactor in order to inhibit the activity of nitrite oxidizing bacteria FIG. 6 shows the measurement results of the tri-state nitrogen concentration in the aerobic tank when the pressure is changed. Under the above operating conditions, SRT is 5.5 days, and 1 / μ 1 is 1.67 days.

図6より、別反応器へ流入させる返送汚泥量を30L/day以上の範囲で運転したところ亜硝酸酸化細菌の活性阻害が顕著となり、好気槽に亜硝酸性窒素を蓄積することができた。別反応器へ流入させる返送汚泥量の30L/dayは1/{μ−(Qs/Q)・(M/M)/T}で5.7dayに相当し、活性阻害を与える返送汚泥量を調整して、SRT<1/{μ−(Qs/Q)・(M/M)/T}に設定することで、好気槽での硝化反応を亜硝酸性窒素までで止めることができた。またこの方法により、好気槽での曝気量を25%程度削減できた。 As shown in FIG. 6, when the amount of returned sludge flowing into another reactor was operated in the range of 30 L / day or more, the activity inhibition of nitrite oxidizing bacteria became remarkable, and nitrite nitrogen could be accumulated in the aerobic tank. . The amount of return sludge that flows into another reactor is 30 L / day, which corresponds to 1 / {μ 2 − (Qs 3 / Q) · (M r / M) / T}, which is 5.7 day. By adjusting the amount and setting SRT <1 / {μ 2 − (Qs 3 / Q) · (M r / M) / T}, the nitrification reaction in the aerobic tank can be reduced to nitrite nitrogen. I was able to stop. In addition, this method reduced the amount of aeration in the aerobic tank by about 25%.

また、図6に示したように、返送汚泥量が30L/day未満となる範囲では、亜硝酸性窒素の濃度が減少し、硝酸性窒素の濃度が増加している。一方、別反応器へ導入する返送汚泥量Qs3を20L/dayとした状態で、余剰汚泥の引き抜き量を30L/dayから130L/dayへ変更したところ、SRTは1.57dayとなり、排水中のアンモニア性窒素の濃度減少が無くなり、硝化反応が止まってしまった。これらの結果から明らかなように、SRTが上記式(3)の範囲外となる場合には、好気槽での硝化反応を亜硝酸性窒素までで止めることができないことがわかった。 Moreover, as shown in FIG. 6, in the range in which the amount of returned sludge is less than 30 L / day, the concentration of nitrite nitrogen decreases and the concentration of nitrate nitrogen increases. On the other hand, in a state where the return sludge amount Qs 3 was 20L / day to be introduced into another reactor, where the withdrawal of excess sludge was changed from 30L / day to 130L / day, SRT is next 1.57Day, in the waste water The decrease in ammonia nitrogen concentration disappeared and the nitrification reaction stopped. As is clear from these results, it has been found that when the SRT is outside the range of the above formula (3), the nitrification reaction in the aerobic tank cannot be stopped by nitrite nitrogen.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1 廃水
2 主反応器
3 最終沈殿池
4 処理水
5 返送汚泥
6 別反応器への抜き出し
7 別反応器
8 亜硝酸酸化細菌の活性阻害物質
9 余剰汚泥の引き抜き
DESCRIPTION OF SYMBOLS 1 Waste water 2 Main reactor 3 Final sedimentation tank 4 Treated water 5 Return sludge 6 Extraction to another reactor 7 Separate reactor 8 Activity inhibitor of nitrite oxidation bacteria 9 Extraction of excess sludge

Claims (5)

主反応器を用いてアンモニア含有廃水に対して硝化工程ならびに脱窒素工程を行なった後に、最終沈殿池により処理水と活性汚泥とを分離し、活性汚泥を返送汚泥として主反応器へ返送するアンモニア含有廃水の生物学的な処理方法において、
前記主反応器から活性汚泥の一部を別の反応容器Aに取り出して、当該取り出した活性汚泥の一部に対して亜硝酸酸化細菌に活性阻害を与える物質を所定濃度になるように添加した後に前記主反応器に返送し、かつ、前記別の反応容器Aに取り出す前記活性汚泥の流量Qsを、SRT(Solid Retention Time)が下記式(1)で計算される値の範囲になるように設定することを特徴とする、アンモニア含有廃水の生物学的窒素処理方法。

1/μ ≦ SRT < 1/{μ−(Qs/Q)/T} ・・・式(1)

ただし、
μ:アンモニア酸化細菌の比増殖速度(1/day)
μ:亜硝酸酸化細菌の比増殖速度(1/day)
Qs:主反応器から別の反応容器Aに取り出す流量(m/day)
Q:主反応器に流入する廃水量(m/day)
T:主反応器の反応時間(day)
であり、上記式(1)における[1/{μ −(Qs /Q)/T}−1/μ ]>0である
After the nitrification process and denitrification process are performed on the ammonia-containing wastewater using the main reactor, the treated water and activated sludge are separated in the final sedimentation basin, and the activated sludge is returned to the main reactor as return sludge. In the biological treatment method of contained wastewater,
A part of the activated sludge is taken out from the main reactor into another reaction vessel A, and a substance that inhibits the activity of nitrite oxidizing bacteria is added to the part of the extracted activated sludge so as to have a predetermined concentration. The activated sludge flow rate Qs 1 which is later returned to the main reactor and taken out to the other reaction vessel A is set so that the SRT (Solid Retention Time) is within the range of values calculated by the following equation (1). A biological nitrogen treatment method for ammonia-containing wastewater, characterized in that

1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 1 / Q) / T} (1)

However,
μ 1 : Specific growth rate of ammonia-oxidizing bacteria (1 / day)
μ 2 : Specific growth rate of nitrite-oxidizing bacteria (1 / day)
Qs 1 : Flow rate (m 3 / day) taken out from the main reactor to another reaction vessel A
Q: Amount of waste water flowing into the main reactor (m 3 / day)
T: reaction time of the main reactor (day)
Der is, the formula (1) in [1 / {μ 2 - ( Qs 1 / Q) / T} -1 / μ 1]> 0.
主反応器を用いてアンモニア含有廃水に対して硝化工程ならびに脱窒素工程を行なった後に、最終沈殿池により処理水と活性汚泥とを分離し、活性汚泥を返送汚泥として主反応器へ返送するアンモニア含有廃水の生物学的な処理方法において、
前記返送汚泥の一部を別の反応容器Bに取り出して、当該取り出した返送汚泥の一部に対して亜硝酸酸化細菌に活性阻害を与える物質を所定濃度になるように添加した後に前記主反応器に返送し、かつ、前記別の反応容器Bに取り出す前記返送汚泥の流量Qsを、SRT(Solid Retention Time)が下記式(2)で計算される値の範囲になるように設定することを特徴とする、アンモニア含有廃水の生物学的窒素処理方法。

1/μ ≦ SRT < 1/{μ−(Qs/Q)・(M/M)/T}
・・・式(2)

ただし、
μ:アンモニア酸化細菌の比増殖速度(1/day)
μ:亜硝酸酸化細菌の比増殖速度(1/day)
Qs:返送汚泥の一部を別の反応器Bに取り出す量(m/day)
Q:主反応器に流入する廃水量(m/day)
T:主反応器の反応時間(day)
M:主反応器中の活性汚泥濃度(mg/l)
:返送活性汚泥濃度(mg/l)
であり、上記式(2)における[1/{μ −(Qs /Q)・(M /M)/T}−1/μ ]>0である
After the nitrification process and denitrification process are performed on the ammonia-containing wastewater using the main reactor, the treated water and activated sludge are separated in the final sedimentation basin, and the activated sludge is returned to the main reactor as return sludge. In the biological treatment method of contained wastewater,
A part of the returned sludge is taken out into another reaction vessel B, and a substance that inhibits the activity of nitrite oxidizing bacteria is added to the part of the returned returned sludge to a predetermined concentration, and then the main reaction is performed. The flow rate Qs 2 of the return sludge that is returned to the vessel and taken out to the other reaction vessel B is set so that the SRT (Solid Retention Time) falls within the range of values calculated by the following equation (2) A method for biological nitrogen treatment of ammonia-containing wastewater.

1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 2 / Q) · (M r / M) / T}
... Formula (2)

However,
μ 1 : Specific growth rate of ammonia-oxidizing bacteria (1 / day)
μ 2 : Specific growth rate of nitrite-oxidizing bacteria (1 / day)
Qs 2 : Amount of part of the returned sludge to be taken out to another reactor B (m 3 / day)
Q: Amount of waste water flowing into the main reactor (m 3 / day)
T: reaction time of the main reactor (day)
M: concentration of activated sludge in the main reactor (mg / l)
M r : Return activated sludge concentration (mg / l)
Der is, the formula (2) in [1 / {μ 2 - ( Qs 2 / Q) · (M r / M) / T} -1 / μ 1]> 0.
主反応器を用いてアンモニア含有廃水に対して硝化工程ならびに脱窒素工程を行なった後に、最終沈殿池により処理水と活性汚泥とを分離し、活性汚泥を返送汚泥として主反応器へ返送するアンモニア含有廃水の生物学的な処理方法において、
前記主反応器の上流側に予備反応器が設けられ、アンモニア含有廃水を予備反応器に供給するとともに、前記返送汚泥の一部を前記予備反応器に返送し、当該廃水と返送汚泥の一部を予備反応器で接触させながら、亜硝酸酸化細菌に活性阻害を与える物質を所定濃度になるように当該予備反応器に添加した後、前記主反応器に供給し、かつ、前記予備反応器へ返送する前記返送汚泥の量Qsを、SRT(Solid Retention Time)が下記式(3)になるように設定することを特徴とする、アンモニア含有廃水の生物学的窒素処理方法。

1/μ ≦ SRT < 1/{μ−(Qs/Q)・(M/M)/T}
・・・式(3)

ただし、
μ:アンモニア酸化細菌の比増殖速度(1/day)
μ:亜硝酸酸化細菌の比増殖速度(1/day)
Qs:返送汚泥の一部を予備反応器に導入する量(m/day)
Q:予備反応器に流入する廃水量(m/day)
T:主反応器の反応時間(day)
M:主反応器中の活性汚泥濃度(mg/l)
:返送活性汚泥濃度(mg/l)
であり、上記式(3)における[1/{μ −(Qs /Q)・(M /M)/T}−1/μ ]>0である
After the nitrification process and denitrification process are performed on the ammonia-containing wastewater using the main reactor, the treated water and activated sludge are separated in the final sedimentation basin, and the activated sludge is returned to the main reactor as return sludge. In the biological treatment method of contained wastewater,
A preliminary reactor is provided on the upstream side of the main reactor, and ammonia-containing wastewater is supplied to the preliminary reactor, and a part of the return sludge is returned to the preliminary reactor, and the waste water and a part of the return sludge are returned. Is added to the preliminary reactor so that the concentration of the substance that inhibits the activity of the nitrite-oxidizing bacteria is reduced to a predetermined concentration, and then supplied to the main reactor, and to the preliminary reactor. A biological nitrogen treatment method for ammonia-containing wastewater, characterized in that the amount Qs 3 of the returned sludge to be returned is set so that SRT (Solid Retention Time) is represented by the following formula (3).

1 / μ 1 ≦ SRT <1 / {μ 2 − (Qs 3 / Q) · (M r / M) / T}
... Formula (3)

However,
μ 1 : Specific growth rate of ammonia-oxidizing bacteria (1 / day)
μ 2 : Specific growth rate of nitrite-oxidizing bacteria (1 / day)
Qs 3 : Amount of part of the returned sludge introduced into the pre-reactor (m 3 / day)
Q: Amount of waste water flowing into the pre-reactor (m 3 / day)
T: reaction time of the main reactor (day)
M: concentration of activated sludge in the main reactor (mg / l)
M r : Return activated sludge concentration (mg / l)
Der is, the equation (3) in [1 / {μ 2 - ( Qs 3 / Q) · (M r / M) / T} -1 / μ 1]> 0.
前記主反応器において、
前記硝化工程に亜硝酸生成法を用い、前記脱窒素工程に亜硝酸脱窒素法を用いること、あるいは、前記硝化工程に亜硝酸生成法を用い、前記脱窒素工程に嫌気性アンモニア酸化反応法を用いることを特徴とする、請求項1〜3のいずれか1項に記載のアンモニア含有廃水の生物学的窒素処理方法。
In the main reactor,
A nitrous acid generation method is used for the nitrification step, a nitrous acid denitrification method is used for the denitrification step, or a nitrous acid generation method is used for the nitrification step, and an anaerobic ammonia oxidation reaction method is used for the denitrification step. The biological nitrogen treatment method according to any one of claims 1 to 3, wherein the ammonia-containing wastewater is used.
前記活性阻害を与える物質が、硫黄化合物、フェノール、廃水に添加後の濃度が60mg/l以上のアンモニア性窒素、の少なくとも1つ以上であることを特徴とする、請求項1〜4のいずれか1項に記載のアンモニア含有廃水の生物学的窒素処理方法。

5. The substance according to claim 1, wherein the substance that inhibits the activity is at least one of a sulfur compound, phenol, and ammonia nitrogen having a concentration after addition to wastewater of 60 mg / l or more. A biological nitrogen treatment method for ammonia-containing wastewater according to item 1.

JP2010056034A 2010-03-12 2010-03-12 Biological nitrogen treatment method of ammonia containing wastewater Expired - Fee Related JP5592677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056034A JP5592677B2 (en) 2010-03-12 2010-03-12 Biological nitrogen treatment method of ammonia containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056034A JP5592677B2 (en) 2010-03-12 2010-03-12 Biological nitrogen treatment method of ammonia containing wastewater

Publications (2)

Publication Number Publication Date
JP2011189249A JP2011189249A (en) 2011-09-29
JP5592677B2 true JP5592677B2 (en) 2014-09-17

Family

ID=44794746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056034A Expired - Fee Related JP5592677B2 (en) 2010-03-12 2010-03-12 Biological nitrogen treatment method of ammonia containing wastewater

Country Status (1)

Country Link
JP (1) JP5592677B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066230A1 (en) * 2017-09-30 2019-04-04 주식회사 부강테크 Device and method for shortcut nitrogen removal and nitrite-oxidizing bacteria activity inhibition
KR20190119253A (en) * 2018-04-12 2019-10-22 주식회사 부강테크 Apparatus and Method for Inhibiting Activity of Nitrite Oxidation Bacteria

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722087B2 (en) * 2010-03-12 2015-05-20 新日鐵住金株式会社 Biological nitrogen treatment method of ammonia containing wastewater
DE102011001962A1 (en) * 2011-04-11 2012-10-11 Thyssenkrupp Uhde Gmbh Process and plant for biological treatment of coking plant wastewater
CN102502950B (en) * 2011-11-02 2013-07-17 青岛理工大学 Method for improving activity of nitrification function microorganisms in activated sludge by directly adding Fe ions
JP5782415B2 (en) * 2012-09-20 2015-09-24 株式会社神鋼環境ソリューション Method and apparatus for treating water to be treated
JP5782416B2 (en) * 2012-09-20 2015-09-24 株式会社神鋼環境ソリューション Method and apparatus for treating water to be treated
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method
JP6801415B2 (en) * 2016-02-05 2020-12-16 三菱ケミカル株式会社 Wastewater treatment equipment and wastewater treatment method
JP2018118209A (en) * 2017-01-25 2018-08-02 株式会社日立製作所 Nitrogen treatment method
KR101875024B1 (en) * 2017-12-14 2018-08-02 경기도 Apparatus and Method for Parial Nitrification of Ammonia from Ammonia Containing Sewage and Wastewater
CN109205930A (en) * 2018-09-17 2019-01-15 北京交通大学 A kind of technique of Combined Treatment coking wastewater
WO2023095399A1 (en) * 2021-11-29 2023-06-01 メタウォーター株式会社 Biological treatment method and biological treatment system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204294A (en) * 1981-06-10 1982-12-14 Kubota Ltd Denitrification of water
JPS5992096A (en) * 1982-11-19 1984-05-28 Fuji Electric Co Ltd Biological nitrification of waste water
JPH02198695A (en) * 1989-01-25 1990-08-07 Kurita Water Ind Ltd Nitrite type nitrification method
JPH03275196A (en) * 1990-03-23 1991-12-05 Kurita Water Ind Ltd Nitrous acid type nitrifying and denitrifying treatment device
JPH04161299A (en) * 1990-10-22 1992-06-04 Meidensha Corp Treatment of waste water
JPH08108195A (en) * 1994-10-14 1996-04-30 Meidensha Corp Method and apparatus for removing nitrogen in water
JP2001252690A (en) * 2000-03-09 2001-09-18 Kurita Water Ind Ltd Nitrite forming method
JP5292658B2 (en) * 2001-07-04 2013-09-18 栗田工業株式会社 A method for nitrification of ammonia nitrogen-containing water
JP5292659B2 (en) * 2001-07-16 2013-09-18 栗田工業株式会社 A method for nitrification of ammonia nitrogen-containing water
JP4882175B2 (en) * 2001-07-17 2012-02-22 栗田工業株式会社 Nitrification method
JP4106203B2 (en) * 2001-08-17 2008-06-25 新日本製鐵株式会社 How to remove nitrogen from water
JP2003326297A (en) * 2002-05-09 2003-11-18 Hitachi Plant Eng & Constr Co Ltd Nitrification method for waste water
JP2004230338A (en) * 2003-01-31 2004-08-19 Nippon Steel Corp Method for removing ammonia nitrogen compound from waste water
EP1595852B1 (en) * 2003-02-21 2016-02-10 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen
JP4392262B2 (en) * 2003-02-25 2009-12-24 株式会社神鋼環境ソリューション Organic wastewater treatment system and treatment method
JP2004298841A (en) * 2003-04-01 2004-10-28 Kurita Water Ind Ltd Method for treating nitrogen-containing wastewater
JP2005013813A (en) * 2003-06-24 2005-01-20 Katsuhiro Yamaya Sewage treating method and system, and continuous expansion culturing apparatus used for the system
JP3100096U (en) * 2003-06-24 2004-04-30 山家 克弘 Sewage treatment system and continuous expansion culture device used for the system
JP4570069B2 (en) * 2004-01-30 2010-10-27 新日本製鐵株式会社 Method for removing ammonia nitrogen from wastewater
JP2006088057A (en) * 2004-09-24 2006-04-06 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP5211675B2 (en) * 2007-12-17 2013-06-12 新日鐵住金株式会社 Method for removing ammoniacal nitrogen and COD components from ammonia water
JP5722087B2 (en) * 2010-03-12 2015-05-20 新日鐵住金株式会社 Biological nitrogen treatment method of ammonia containing wastewater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066230A1 (en) * 2017-09-30 2019-04-04 주식회사 부강테크 Device and method for shortcut nitrogen removal and nitrite-oxidizing bacteria activity inhibition
CN111094194A (en) * 2017-09-30 2020-05-01 (株)富康科技 Device and method for short-range denitrification and inhibition of nitrous acid oxidation microbial activity
US11053148B2 (en) 2017-09-30 2021-07-06 Bkt Co., Ltd. Device and method for shortcut nitrogen removal and nitrite-oxidizing bacteria activity inhibition
US20210292200A1 (en) * 2017-09-30 2021-09-23 Bkt Co., Ltd. Nitrite-oxidizing bacteria activity inhibitor and method
US11685677B2 (en) * 2017-09-30 2023-06-27 Bkt Co., Ltd. Nitrite-oxidizing bacteria activity inhibitor and method
KR20190119253A (en) * 2018-04-12 2019-10-22 주식회사 부강테크 Apparatus and Method for Inhibiting Activity of Nitrite Oxidation Bacteria
KR102111059B1 (en) * 2018-04-12 2020-05-14 주식회사 부강테크 Apparatus and Method for Inhibiting Activity of Nitrite Oxidation Bacteria

Also Published As

Publication number Publication date
JP2011189249A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5592677B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
Rosenwinkel et al. Deammonification in the moving‐bed process for the treatment of wastewater with high ammonia content
JP5211675B2 (en) Method for removing ammoniacal nitrogen and COD components from ammonia water
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
KR20130111920A (en) Optimized nutrient removal from wastewater
JP6210883B2 (en) Operation method of waste water treatment equipment
US8323487B2 (en) Waste water treatment apparatus
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
WO2006129132A1 (en) Biological nitrogen removal from wastewater in a sbr reactor without nitrate production
JP4106203B2 (en) How to remove nitrogen from water
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP2005211832A (en) Method for removing ammonia nitrogen from waste water
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP5722087B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP3958900B2 (en) How to remove nitrogen from wastewater
JP2000308900A (en) Treatment of ammonia-containing waste water
JP6919304B2 (en) Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method
JP2002172399A (en) Denitrification treatment method
JP2006088057A (en) Method for treating ammonia-containing water
KR100783790B1 (en) Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same
JP2003053382A (en) Nitrification-denitrification treatment method
JP7251526B2 (en) Method for treating coke oven wastewater
JP4604708B2 (en) (Sub-) Nitrate nitrogen and polyvalent inorganic ion-containing wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5592677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees