JPH04161299A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH04161299A
JPH04161299A JP28397990A JP28397990A JPH04161299A JP H04161299 A JPH04161299 A JP H04161299A JP 28397990 A JP28397990 A JP 28397990A JP 28397990 A JP28397990 A JP 28397990A JP H04161299 A JPH04161299 A JP H04161299A
Authority
JP
Japan
Prior art keywords
sulfide
tank
nitrite
bacteria
return sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28397990A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
松永 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP28397990A priority Critical patent/JPH04161299A/en
Publication of JPH04161299A publication Critical patent/JPH04161299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To treat waste water with high capacity, to conserve the power cost of a blower and to reduce the volume of a denitrification tank by a method wherein return sludge is temporarily stored and sulfide is injected in and mixed with return sludge and the concn. of dissolved sulfide is controlled to keep nitrite type nitration due to nitrite bacteria. CONSTITUTION:In a waste water treatment method treating inflow water by biological nitration and denitrification, return sludge is temporarily stored in a storage tank 1 and sulfide (e.g. CaS) is injected in and mixed with the return sludge from an injection apparatus 3 and the activity of the return sludge is lowered by obstructing nitrate bacteria contained in the sludge by dissolved sulfide. The activated sludge lowered in activity is guided to a nitration tank 4 to keep nitrite type nitration in the tank 4. At this time, the concn. of dissolved sulfide in inflow water is set to a level generating selective obstruction to nitrate bacteria to keep nitrite type nitration due to nitrite bacteria. The waste water treated in the nitration tank 4 is guided to a denitrification tank 5 to perform mixing and circulation. As a result, waste water can be treated with high capacity and the power cost of a blower can be saved and the volume of the denitrification tank can be reduced.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は廃水処理装置に係り、特に廃水中の窒素除去を
目的とした生物学的硝化脱窒処理および窒素、リンの同
時処理を行う廃水処理方法およびその装置に関するもの
である。
[Detailed Description of the Invention] A. Industrial Application Field The present invention relates to a wastewater treatment device, and particularly to wastewater that undergoes biological nitrification and denitrification treatment for the purpose of removing nitrogen from wastewater and simultaneous treatment of nitrogen and phosphorus. The present invention relates to a processing method and an apparatus therefor.

B1発明の概要 本発明は、生物学的硝化脱出法、または生物学的窒素・
リン除去法であるA20法なとにおいて、返送汚泥を一
時貯留し、硫化物を注入混和し、溶存硫化物濃度を制御
することにより、亜硝酸菌による亜硝酸型硝化を維持さ
せる。
B1 Overview of the invention The present invention provides a biological nitrification escape method or a biological nitrogen
In the A20 method, which is a phosphorus removal method, returned sludge is temporarily stored, sulfide is injected and mixed, and the dissolved sulfide concentration is controlled to maintain nitrite-type nitrification by nitrite bacteria.

C1従来の技術 生物学的硝化・脱窒プロセスニおいて、硝化反応を亜硝
酸型で運転できれば、硝化工程でのプロワ動力費の低減
および脱窒工程での電子供与体(有機物や還元硫黄化合
物)などの供給量の節減ができるだけでなく、脱窒速度
が高まるので脱窒槽の容積を縮少できるなどの利点が生
じる。
C1 Conventional technology In biological nitrification and denitrification processes, if the nitrification reaction could be operated in the nitrous acid form, it would reduce blower power costs in the nitrification process and eliminate electron donors (organic substances and reduced sulfur compounds) in the denitrification process. ), the denitrification rate increases, and the volume of the denitrification tank can be reduced.

しかし、現在、亜硝酸型硝化を安定して維持するための
運転条件、あるいは硝酸菌による亜硝酸酸化を持続的に
抑制できる特異的阻害剤は明確になっていない。
However, at present, operating conditions for stably maintaining nitrite-type nitrification or specific inhibitors that can sustainably suppress nitrite oxidation by nitrate bacteria have not been clarified.

亜硝酸型硝化を達成する試みとして窒素負荷率とDO濃
度をコントロールしてNO2−濃度を硝酸菌阻害レベル
まで増加させる方法がある。窒素負荷率を高くして、D
Oを低濃度にコントロールすると亜硝酸が蓄積されるが
亜硝酸菌はNO2−に全く影響を受けずN O2−N 
3000119/ lでも硝化活性がほとんど低下しな
かったのに対し、硝酸菌の場合はPHにより異なるが、
比較的低濃度のN02−(100〜1000冨g/l 
)でも阻害される。このように硝化により生成したNO
2−自身の選択的阻害性により亜硝酸硝化は安定して維
持される。
As an attempt to achieve nitrite-type nitrification, there is a method in which the nitrogen loading rate and DO concentration are controlled to increase the NO2 concentration to a level that inhibits nitrate bacteria. D by increasing the nitrogen loading rate
When O is controlled to a low concentration, nitrite accumulates, but nitrite bacteria are not affected by NO2- at all and N O2-N
3000119/l showed almost no decrease in nitrification activity, whereas in the case of nitrate bacteria, although it differs depending on the pH,
Relatively low concentration of N02- (100-1000g/l
) is also inhibited. NO generated by nitrification in this way
2-Nitrite nitrification is stably maintained due to its own selective inhibitory properties.

D0発明が解決しようとする課題 生物学的硝化脱窒プロセスは次のような過程を経て行わ
れる。
Problems to be Solved by the D0 Invention The biological nitrification and denitrification process is carried out through the following steps.

(1)有機態窒素のアンモニア化 (2)アンモニアの亜硝酸化 亜硝酸菌(Nitrosomonas)NH4”+1.
502−NO2−+H20+2H″″・・・(2)(3
)亜硝酸態窒素の硝酸化 (4)脱窒素反応 2NO3−+10H→ N2+4H20; 20H−・
・・(5)窒素除去プロセスを要約すれば次のようにな
る。
(1) Ammonification of organic nitrogen (2) Nitrosomonas oxidizing ammonia NH4”+1.
502-NO2-+H20+2H''''...(2)(3
) Nitration of nitrite nitrogen (4) Denitrification reaction 2NO3-+10H→ N2+4H20; 20H-・
(5) The nitrogen removal process can be summarized as follows.

硝化反応して亜硝酸菌(Ni trosomonas)
によるアンモニアの亜硝酸化(2)が反応の律速因子と
なる。一般的な処理条件では硝化反応液にはNO□−1
N O3−が共存することが多く、反応時間が長くなる
とNO2−はNO3−に転換する。NH4″″→NO2
−において窒素ll1gあたり酸素3.4tng、 N
H4“→NO3−において窒素lagあたり酸素4 、
6 mg必要である。したがってNO□−→NO3−を
抑制すれば、酸素必要量は25%節減できる。
Nitrification reaction causes nitrite bacteria (Ni trosomonas)
The nitrite oxidation of ammonia (2) is the rate-limiting factor of the reaction. Under general treatment conditions, the nitrification reaction solution contains NO□-1
NO3- often coexists, and as the reaction time increases, NO2- is converted to NO3-. NH4″″→NO2
-3.4tng of oxygen per 1g of nitrogen, N
Oxygen 4 per nitrogen lag in H4"→NO3-,
6 mg is required. Therefore, by suppressing NO□-→NO3-, the required amount of oxygen can be reduced by 25%.

NO3−の脱窒反応はNO2−が中間産物として生成さ
れるが、NO2−の還元速度はNO2−が蓄積できない
ほど速やかである。したがって脱窒反応においてはNO
3−−No、−すなわち硝酸還元が律速因子と言われて
いる。また脱窒反応において必要な電子供与体(水素供
与体)の量は、NO2−はNO3−の60%である。亜
硝酸型硝化に抑制すると、脱窒反応の速度が速くなるこ
とおよび有機物や還元硫黄などの電子供与体の供給量を
40%節減できる。
In the denitrification reaction of NO3-, NO2- is produced as an intermediate product, but the reduction rate of NO2- is so rapid that NO2- cannot be accumulated. Therefore, in the denitrification reaction, NO
3--No.--That is, nitrate reduction is said to be the rate-limiting factor. Further, the amount of electron donor (hydrogen donor) required in the denitrification reaction is 60% of NO2- than NO3-. Suppression to nitrite type nitrification increases the rate of denitrification reaction and reduces the supply amount of electron donors such as organic matter and reduced sulfur by 40%.

前述したNO2−濃度を硝酸菌阻害レベルまで高めて硝
化を亜硝酸型に抑制した実験報告は合成無機廃水を対象
としたものであり、実際の下水の活性汚泥処理において
、NO2−濃度が硝酸菌に阻害を起こすような濃度まで
高くなることは現実には起こり得ないことであり、適用
不可能であると考えられる。
The above-mentioned experimental report in which nitrification was suppressed to the nitrite type by increasing the NO2- concentration to a level inhibiting nitrate bacteria was targeted at synthetic inorganic wastewater; In reality, increasing the concentration to such a level as to cause inhibition is not possible and is therefore considered inapplicable.

本発明は上述の問題点に鑑みてなされたもので、その目
的は、返送汚泥を一時貯留させ、硫化物を注入混和する
ことにより、高性能な廃水処理方法を提供することであ
る。
The present invention was made in view of the above-mentioned problems, and its purpose is to provide a high-performance wastewater treatment method by temporarily storing returned sludge and injecting and mixing sulfide.

E3課題を解決するための手段と作用 本発明は、上記目的を達成するために、流入水を生物学
的硝化脱出法により処理する廃水処理方法において、返
送汚泥を一時貯留させ、この返送汚泥に硫化物を注入混
和し、前記流入水の溶存硫化物濃度を硝酸菌に対する選
択的阻害を起こすレベルとし亜硝酸菌による亜硝型酸化
を持続させる。
E3 Means and operation for solving the problem In order to achieve the above object, the present invention, in a wastewater treatment method in which inflow water is treated by a biological nitrification escape method, returns sludge is temporarily stored, and the returned sludge is Sulfide is injected and mixed to bring the concentration of dissolved sulfide in the inflow water to a level that selectively inhibits nitrate bacteria, thereby sustaining nitrite oxidation by nitrite bacteria.

また、本発明は流入水を生物学的硝化脱出法により処理
する廃水処理方法において、返送汚泥を一時貯留させ、
この返送汚泥に硫化物を注入混和し、前記流入水の溶存
硫化物濃度を硝酸菌に対する選択的阻害を起こすレベル
とし亜硝酸菌による亜硝型酸化を持続させるとともに、
硫化物と溶存酸素の反応を用いて嫌気槽のDOとORP
を下げてリン除去能の維持に必要な嫌気槽の嫌気性度を
制御する。
Further, the present invention provides a wastewater treatment method in which inflow water is treated by biological nitrification escape method, in which returned sludge is temporarily stored,
Sulfide is injected and mixed into this returned sludge, and the concentration of dissolved sulfide in the inflow water is set to a level that selectively inhibits nitrate bacteria, and nitrite oxidation by nitrite bacteria is sustained.
DO and ORP in an anaerobic tank using the reaction of sulfide and dissolved oxygen
The anaerobic degree of the anaerobic tank is controlled by lowering the anaerobic temperature required to maintain the phosphorus removal ability.

亜硝酸菌(Nitrosomonas)と硝酸菌(Ni
 trobacter)を合わせて硝化菌と呼ぶが硝化
菌は基質中の溶存硫化物によって阻害を受ける。その阻
害作用はNi trobacterに対してより亀裂で
あり、ごく低濃度(10mg//)の硫化物の存在によ
って致命的な打撃を受ける。Nitrosomonas
は硫化物に対してかなり抵抗性があり、PHが低い場合
は160mg#でも活性阻害を受けないことが知られて
いる。したがって適量の溶存硫化物を与えればアンモニ
アの亜硝酸化は進行するが亜硝酸の硝酸化は阻害され、
硝化を亜硝酸型に抑制することが可能である。
Nitrite bacteria (Nitrosomonas) and nitrate bacteria (Ni
trobacter) are collectively called nitrifying bacteria, but nitrifying bacteria are inhibited by dissolved sulfide in the substrate. Its inhibitory effect is more severe against Ni trobacter and is fatally affected by the presence of very low concentrations (10 mg//) of sulfide. Nitrosomonas
It is known that it is quite resistant to sulfide and its activity is not inhibited even at 160 mg # when the pH is low. Therefore, if an appropriate amount of dissolved sulfide is given, the nitrite oxidation of ammonia will proceed, but the nitrification of nitrite will be inhibited.
It is possible to suppress nitrification to the nitrite type.

硝酸菌に対する選択阻害物質となる溶存硫化物を与える
薬剤として硫化カルシウムおよび硫化ナトリウムがある
。これらの硫化物は溶存酸素と反応して硫黄に酸化され
るので溶存酸素濃度が高い硝化槽に直接注入すると注入
量を多くしなければならず不経済である。
Calcium sulfide and sodium sulfide are agents that provide dissolved sulfide, which acts as a selective inhibitor against nitrate bacteria. These sulfides react with dissolved oxygen and are oxidized to sulfur, so if they are directly injected into a nitrification tank where the dissolved oxygen concentration is high, the amount of injection must be increased, which is uneconomical.

そこで生物学的硝化・脱窒プロセスあるいは生物学的窒
素・リン同時除去プロセスなどにおいて返送汚泥の一時
貯留槽を設置するとともに硫化物を注入混和して亜硝酸
型硝化を接続するシステムを考案した。
Therefore, we devised a system that connects nitrite-type nitrification by installing a temporary storage tank for returned sludge in biological nitrification/denitrification processes or biological nitrogen/phosphorus simultaneous removal processes, and injecting and mixing sulfide.

F、実施例 以下に本発明の実施例を第1図〜第2図を参照しながら
説明する。
F. EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、本発明の第1実施例による廃水処理装置を示
すもので、単段循環法に適用した亜硝酸型硝化システム
である。
FIG. 1 shows a wastewater treatment apparatus according to a first embodiment of the present invention, which is a nitrous acid type nitrification system applied to a single-stage circulation method.

第1図において1は返送汚泥を一時貯留する返送汚泥−
時貯留槽、2は撹拌機、3は硫化カルシウムまたは硫化
ナトリウム等の硫化物を注入する硫化物注入機、4は硝
化槽、5は脱窒槽、6は沈澱槽、7はNo、−、N、0
2−計である。なお、第1図において、4は脱窒槽とし
、5を硝化槽としても良い。
In Figure 1, 1 is the return sludge where the return sludge is temporarily stored.
2 is a stirrer, 3 is a sulfide injector for injecting sulfides such as calcium sulfide or sodium sulfide, 4 is a nitrification tank, 5 is a denitrification tank, 6 is a settling tank, 7 is No, -, N ,0
2-total. In addition, in FIG. 1, 4 may be a denitrification tank, and 5 may be a nitrification tank.

第1図の廃水処理装置によれば、硝化槽4に流入廃水か
導かれ硝化処理される。硝化槽4で硝化処理された流入
廃水は脱窒槽5に導かれ脱窒処理される。脱窒槽5で脱
窒処理された流入廃水は、沈澱槽6に導かれる。沈澱槽
6て沈澱した汚泥は、余剰汚泥として系外に排出される
と共に、汚泥返送部8を通して返送汚泥−時貯留槽1に
導かれる。
According to the wastewater treatment apparatus shown in FIG. 1, inflowing wastewater is introduced into the nitrification tank 4 and subjected to nitrification treatment. The inflow wastewater that has been nitrified in the nitrification tank 4 is led to the denitrification tank 5 and subjected to denitrification treatment. The inflow wastewater that has been denitrified in the denitrification tank 5 is led to the sedimentation tank 6. The sludge settled in the settling tank 6 is discharged outside the system as surplus sludge, and is also led to the return sludge storage tank 1 through the sludge return section 8.

返送汚泥は、返送汚泥−時貯留槽1において、硫化物注
入器3から注入された硫化物と混和され、返送汚泥に・
含まれる硝酸菌か溶存硫化物による阻害を受けて活性が
低下される。活性が低下された活性汚泥は硝化槽4に導
かれ、この硝化槽4において亜硝酸硝化か維持されるこ
とになる。硫化物の注入率はS2−イオンとして10i
+g/A!、硫化力ルンウム(固体)の場合は22. 
5rng/I 、硫化ナトリウム(固体)の場合は24
.4tttg/Iである。硝化槽4で処理された廃水は
脱窒槽5に導かれるとともに混液循環が行われる。
The return sludge is mixed with sulfide injected from the sulfide injector 3 in the return sludge storage tank 1, and the return sludge is mixed with sulfide injected from the sulfide injector 3.
The activity is reduced due to inhibition by the nitrate bacteria contained and dissolved sulfide. The activated sludge whose activity has been reduced is led to the nitrification tank 4, where nitrite nitrification is maintained. The sulfide injection rate is 10i as S2- ions.
+g/A! , 22. for sulfuric acid (solid).
5rng/I, 24 for sodium sulfide (solid)
.. 4tttg/I. The wastewater treated in the nitrification tank 4 is led to the denitrification tank 5, where mixed liquid circulation is performed.

硝化菌は増殖速度が遅いので硫化物の注入は連続的に行
う必要はない。混液のN O2−、N O3−濃度をN
 O3−、N O2−計7で測定し、NO2−にNO3
−が相対的に高くなった場合に硫化物の注入を行う。
Since nitrifying bacteria have a slow growth rate, it is not necessary to continuously inject sulfide. The N O2-, N O3- concentration of the mixed liquid is
O3-, NO2- Measured in total 7, NO3 to NO2-
Inject sulfide when - becomes relatively high.

第2図は本発明の第2実施例による廃水処理装置を示す
もので、第1図のものと同−又は相当部分には同一符号
か付されている。第2図において、9は嫌気槽、10お
よび11はこの嫌気槽9に配設されたDO計およびOR
P計である。
FIG. 2 shows a wastewater treatment apparatus according to a second embodiment of the present invention, in which the same or equivalent parts as those in FIG. 1 are given the same reference numerals. In FIG. 2, 9 is an anaerobic tank, 10 and 11 are DO meters and ORs installed in this anaerobic tank 9.
It is a P meter.

第2図の廃水処理装置においては、嫌気槽9に流入され
た廃水のDO濃度をDO計10で測定すると共に、OR
P濃度をORP計11で測定する。
In the wastewater treatment apparatus shown in FIG. 2, the DO concentration of wastewater flowing into the anaerobic tank 9 is measured with a DO meter 10, and
The P concentration is measured with an ORP meter 11.

硫化物の注入は雨水の流入などによりDO濃度が上昇し
た場合に適用すると、硫化物がDO濃度を低下させ、リ
ンの除去性能の低下を防止する効果か期待てきる。そこ
で、嫌気槽9内のORP濃度を測定し、DO濃度の上昇
によりORP濃度が低下した場合に硫化物の注入を行え
ば良い。つまり、亜硝酸型硝化の接続と嫌気性の○RP
制御によりリン除去能の接続という2つの効果を狙って
硫化物の注入を行う。
When sulfide injection is applied when the DO concentration increases due to inflow of rainwater, it is expected that the sulfide will reduce the DO concentration and prevent the deterioration of phosphorus removal performance. Therefore, the ORP concentration in the anaerobic tank 9 may be measured, and if the ORP concentration decreases due to an increase in the DO concentration, sulfide may be injected. In other words, the connection between nitrite type nitrification and anaerobic ○RP
Sulfide injection is performed with the aim of controlling the two effects of increasing phosphorus removal ability.

G1発明の効果 本発明は上述の如くであって、次のような効果か得られ
る。
G1 Effects of the Invention The present invention is as described above, and provides the following effects.

(1)生物学的硝化脱窒においては亜硝酸型硝化の持続
か可能となりブロワ−の動力費か節減できる。
(1) In biological nitrification and denitrification, it is possible to sustain nitrite-type nitrification, and the power cost of the blower can be reduced.

(2)脱窒反応に必要な有機物や還元硫黄化合物の量を
40%節減できる。また、脱窒速度が速くなるので脱窒
槽の容積を縮少できる。
(2) The amount of organic substances and reduced sulfur compounds required for denitrification reactions can be reduced by 40%. Furthermore, since the denitrification rate becomes faster, the volume of the denitrification tank can be reduced.

(3)生物学的窒素・リン同時除去においてA20法な
どに適用すれば嫌気槽の嫌気性度を維持して、DO、O
RPの上昇などによるリン除去性能の低下を防止できる
(3) If the A20 method is applied to biological nitrogen and phosphorus simultaneous removal, the anaerobic degree of the anaerobic tank can be maintained and DO, O
It is possible to prevent a decrease in phosphorus removal performance due to an increase in RP.

(4)硫化物を直接、硝化槽に注入する場合より、溶存
酸素と反応して無効になる分がないので、硫化物注入量
が少なくて済む。
(4) Compared to the case where sulfide is directly injected into the nitrification tank, there is no amount of sulfide that reacts with dissolved oxygen and becomes ineffective, so the amount of sulfide injected can be smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例による廃水処理方法を示す
単段循環法に適用した亜硝酸型硝化システムのブロック
図、第2図は本発明の第2実施例による廃水処理方法を
示すA20法に適用した亜硝酸型硝化システムのブロッ
ク図である。 ■・・・返送汚泥−時貯留槽、2・・・撹拌機、3・・
・硫化物(CaSまたはNa25)注入機、4・・・硝
化槽、5・・・脱窒槽、6・・・沈澱槽、7・・・No
3−、No2−計、8・・・汚泥返送部、9・・・嫌気
槽、10・・・DO計、11・・・ORP計。 第1図 第1起施例 1 返送汚泥−時貯留槽 2 攪拌機 3 k化物(CaSi2−は凡has)if人装置4 
硝化槽まf−は脱9!槽 、I 脱窒槽1を−は硝化槽 6 沈#槽 7 Nす+、NO+11 g  s;y返送部
Fig. 1 is a block diagram of a nitrous acid type nitrification system applied to a single-stage circulation method showing a wastewater treatment method according to a first embodiment of the present invention, and Fig. 2 shows a wastewater treatment method according to a second embodiment of the present invention. FIG. 2 is a block diagram of a nitrite-type nitrification system applied to the A20 method. ■...Return sludge - time storage tank, 2...Agitator, 3...
・Sulfide (CaS or Na25) injection machine, 4... Nitrification tank, 5... Denitrification tank, 6... Sedimentation tank, 7... No
3-, No. 2-meter, 8... sludge return section, 9... anaerobic tank, 10... DO meter, 11... ORP meter. Fig. 1 Example 1 Returned sludge - Time storage tank 2 Stirrer 3 Potassium compound (CaSi2- has generally been used) equipment 4
Nitrification tank maf- is out of 9! Tank, I denitrification tank 1 - is nitrification tank 6 sedimentation tank 7 N +, NO + 11 g s; y return section

Claims (2)

【特許請求の範囲】[Claims] (1)流入水を生物学的硝化脱出法により処理する廃水
処理方法において、返送汚泥を一時貯留させ、この返送
汚泥に硫化物を注入混和し、前記流入水の溶存硫化物濃
度を硝酸菌に対する選択的阻害を起こすレベルとし亜硝
酸菌による亜硝型酸化を持続させることを特徴とする廃
水処理方法。
(1) In a wastewater treatment method in which inflow water is treated by biological nitrification escape method, return sludge is temporarily stored, sulfide is injected and mixed into the return sludge, and the concentration of dissolved sulfide in the inflow water is adjusted against nitrate bacteria. A wastewater treatment method characterized by sustaining nitrite-type oxidation by nitrite bacteria at a level that causes selective inhibition.
(2)流入水を生物学的硝化脱出法により処理する廃水
処理方法において、返送汚泥を一時貯留させ、この返送
汚泥に硫化物を注入混和し、前記流入水の溶存硫化物濃
度を硝酸菌に対する選択的阻害を起こすレベルとし亜硝
酸菌による亜硝型酸化を持続させるとともに、硫化物と
溶存酸素の反応を用いて嫌気槽のDOとORPを下げて
リン除去能の維持に必要な嫌気槽の嫌気性度を制御する
ことを特徴とする廃水処理方法。
(2) In a wastewater treatment method in which inflow water is treated by biological nitrification escape method, return sludge is temporarily stored, sulfide is injected and mixed into the return sludge, and the concentration of dissolved sulfide in the inflow water is adjusted against nitrate bacteria. In addition to sustaining nitrite-type oxidation by nitrite bacteria at a level that causes selective inhibition, the DO and ORP of the anaerobic tank are lowered by using the reaction between sulfide and dissolved oxygen to maintain the phosphorus removal ability of the anaerobic tank. A wastewater treatment method characterized by controlling the anaerobic degree.
JP28397990A 1990-10-22 1990-10-22 Treatment of waste water Pending JPH04161299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28397990A JPH04161299A (en) 1990-10-22 1990-10-22 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28397990A JPH04161299A (en) 1990-10-22 1990-10-22 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPH04161299A true JPH04161299A (en) 1992-06-04

Family

ID=17672715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28397990A Pending JPH04161299A (en) 1990-10-22 1990-10-22 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPH04161299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211832A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp Method for removing ammonia nitrogen from waste water
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method
JP2011189249A (en) * 2010-03-12 2011-09-29 Nippon Steel Corp Biological nitrogen treatment method for ammonia-containing waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211832A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp Method for removing ammonia nitrogen from waste water
JP4570069B2 (en) * 2004-01-30 2010-10-27 新日本製鐵株式会社 Method for removing ammonia nitrogen from wastewater
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method
JP2011189249A (en) * 2010-03-12 2011-09-29 Nippon Steel Corp Biological nitrogen treatment method for ammonia-containing waste water

Similar Documents

Publication Publication Date Title
AU2010321102B2 (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
AU2011347092B2 (en) Method and facility for treating water by nitritation/denitritation comprising at least one aerated step and one step for controlling the oxygen input during the aerated step
US11685677B2 (en) Nitrite-oxidizing bacteria activity inhibitor and method
US11919791B2 (en) Partial nitritation using sequencing batch reactor with media inputted thereinto, and apparatus and system for shortcut nitrogen removal using same
US11820688B2 (en) Water treatment method for simultaneous abatement of carbon, nitrogen and phosphorus, implemented in a sequencing batch moving bed biofilm reactor
JPH04161299A (en) Treatment of waste water
JP2003033784A (en) Method and device for denitrification
JP2000308900A (en) Treatment of ammonia-containing waste water
JP5812277B2 (en) Nitrogen removal method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3270652B2 (en) Wastewater nitrogen removal method
KR20210085153A (en) Wastewater Treatment Method Using Partial Nitritation Process
JP2001137890A (en) Biological nitrogen removing method
JP2005000715A (en) Method for controlling operation of aerating stirrer
JP2003053382A (en) Nitrification-denitrification treatment method
KR102536845B1 (en) Apparatus for Effectively Inhibiting Nitrite Oxidizing Bacteria and Removing Nitrogen from Wastewater and Method for Controlling the Same
JP7181078B2 (en) Water treatment method and water treatment equipment
JPH09141294A (en) Biological nitrogen removing method
KR100721682B1 (en) A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)
JP2594733B2 (en) Sewage nitrification denitrification method
JPS6015399B2 (en) Biological denitrification method for ammonia-containing wastewater
JPH06154783A (en) Waste water treatment device
JP2023093216A (en) Treatment method of coke oven waste water
JPS6242796A (en) Treatment of waste water and method for acclimatizing activated sludge
CN117923694A (en) Wastewater treatment system and method