JP7465545B2 - Nitrite bacteria immobilized polymer gel, method for producing the nitrite bacteria immobilized polymer gel, and water treatment method - Google Patents

Nitrite bacteria immobilized polymer gel, method for producing the nitrite bacteria immobilized polymer gel, and water treatment method Download PDF

Info

Publication number
JP7465545B2
JP7465545B2 JP2020176279A JP2020176279A JP7465545B2 JP 7465545 B2 JP7465545 B2 JP 7465545B2 JP 2020176279 A JP2020176279 A JP 2020176279A JP 2020176279 A JP2020176279 A JP 2020176279A JP 7465545 B2 JP7465545 B2 JP 7465545B2
Authority
JP
Japan
Prior art keywords
polymer gel
monomer
nitrite bacteria
nitrite
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020176279A
Other languages
Japanese (ja)
Other versions
JP2021070821A (en
Inventor
健彦 後藤
智規 金田一
智司 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Publication of JP2021070821A publication Critical patent/JP2021070821A/en
Application granted granted Critical
Publication of JP7465545B2 publication Critical patent/JP7465545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、亜硝酸菌固定化高分子ゲル、亜硝酸菌固定化高分子ゲルの製造方法及び水処理方法に関する。 The present invention relates to a nitrite bacteria immobilized polymer gel, a method for producing the nitrite bacteria immobilized polymer gel, and a water treatment method.

河川や海に窒素化合物が含まれた排水が流入すると、いわゆる水の富栄養化が起こり、微生物が異常に増殖することによって水中の酸素が消費され、魚介類を死滅させる。そのため、工場排水や畜産廃水、下水などでは、排水中の窒素化合物が一定のレベルまで取り除かれることが必要である。 When wastewater containing nitrogen compounds flows into rivers or the ocean, it causes what is known as eutrophication of the water, and the oxygen in the water is consumed by the abnormal proliferation of microorganisms, causing the death of fish and shellfish. For this reason, it is necessary to remove nitrogen compounds from industrial wastewater, livestock wastewater, sewage, etc. to a certain level.

このような排水の処理施設などでは、排水中に存在する窒素化合物の除去に際し、一般的に、硝化脱窒法と呼ばれる硝化菌(亜硝酸菌(アンモニア酸化細菌)、硝酸菌(亜硝酸酸化細菌))による作用でアンモニア性窒素を亜硝酸性窒素、硝酸性窒素に変換し、脱窒菌による作用で窒素に変換する生物学的方法が用いられている。 In wastewater treatment facilities like this, the nitrogen compounds present in the wastewater are generally removed using a biological method known as nitrification/denitrification, in which ammonia nitrogen is converted to nitrite nitrogen and nitrate nitrogen by the action of nitrifying bacteria (nitrite bacteria (ammonia oxidizing bacteria), nitrate bacteria (nitrite oxidizing bacteria)), and then converted back to nitrogen by the action of denitrifying bacteria.

また、近年では、アナモックス菌を利用した生物学的方法が注目されている(例えば、特許文献1~3)。アナモックス菌は、亜硝酸性窒素とアンモニア性窒素という無機窒素化合物同士のカップリングで窒素ガスに変換する。アナモックス菌を利用した方法では、硝化の際に部分的亜硝酸化でよいため曝気量が少なくてすむこと、脱窒に有機物が不要であることなど、これまでの硝化脱窒法と比較して処理コストの大幅な削減が期待されている。 In recent years, biological methods using anammox bacteria have been attracting attention (for example, Patent Documents 1 to 3). Anammox bacteria convert inorganic nitrogen compounds, such as nitrite nitrogen and ammonia nitrogen, into nitrogen gas by coupling them together. Methods using anammox bacteria are expected to significantly reduce processing costs compared to conventional nitrification-denitrification methods, as only partial nitritation is required during nitrification, so less aeration is required, and no organic matter is required for denitrification.

特開2019-104009号公報JP 2019-104009 A 特開2017-77509号公報JP 2017-77509 A 特開2015-229131号公報JP 2015-229131 A

しかしながら、アナモックス菌を利用した水処理方法では、排水中のアンモニア性窒素のおよそ半分を亜硝酸性窒素まで酸化できればよいものの、硝化の際に利用される活性汚泥などには亜硝酸菌と硝酸菌のどちらも生存していることから、生成した亜硝酸性窒素はほどなく硝酸菌によって硝酸性窒素に酸化されてしまう。亜硝酸性窒素で留めるためには、処理槽内を硝酸菌の活性を抑え得るpHに制御するなど、容易に行えるものではない。 However, in water treatment methods using anammox bacteria, while it is sufficient to oxidize roughly half of the ammoniacal nitrogen in wastewater to nitrite nitrogen, the activated sludge used in nitrification contains both nitrite and nitrate bacteria, and the nitrite nitrogen produced is soon oxidized to nitrate nitrogen by nitrate bacteria. In order to retain nitrite nitrogen, it is necessary to control the pH inside the treatment tank to a level that suppresses the activity of nitrate bacteria, which is not an easy task.

本発明は上記事項に鑑みてなされたものであり、その目的とするところは、アンモニア性窒素を亜硝酸性窒素に変換する際に有用な亜硝酸菌固定化高分子ゲル、亜硝酸菌固定化高分子ゲルの製造方法及び水処理方法を提供することにある。 The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to provide a nitrite bacteria immobilized polymer gel that is useful in converting ammonia nitrogen to nitrite nitrogen, a method for producing the nitrite bacteria immobilized polymer gel, and a water treatment method.

本発明の第1の観点に係る亜硝酸菌固定化高分子ゲルは、
末端のアミノ基とアクリルアミド基、メタクリルアミド基、アクリル基又はメタクリル基との間に炭素数が2以上のアルキレン鎖を有するアクリルアミドモノマー、メタクリルアミドモノマー、アクリレートモノマー又はメタクリレートモノマーが重合し、末端のアミノ基に炭酸イオン、重炭酸イオン又は水酸化物イオンが付加している高分子ゲルに亜硝酸菌が付着している、
ことを特徴とする。
The nitrite bacteria-immobilized polymer gel according to the first aspect of the present invention comprises:
Nitrite bacteria are attached to a polymer gel in which an acrylamide monomer, a methacrylamide monomer, an acrylate monomer, or a methacrylate monomer, which has an alkylene chain having two or more carbon atoms between the terminal amino group and an acrylamide group, a methacrylamide group, an acryl group, or a methacryl group, is polymerized, and a carbonate ion, a bicarbonate ion, or a hydroxide ion is added to the terminal amino group.
It is characterized by:

また、前記高分子ゲルは、高分子主鎖中に式5~式8のいずれかで表される構造を備える、

Figure 0007465545000001

(式5~式8中、mは正の実数、nは2以上の整数、Anは炭酸イオン、重炭酸イオン又は水酸化物イオンを表す。)
ことが好ましい。 The polymer gel has a structure represented by any one of formulas 5 to 8 in a polymer main chain.
Figure 0007465545000001

(In Formulas 5 to 8, m is a positive real number, n is an integer of 2 or more, and An represents a carbonate ion, a bicarbonate ion, or a hydroxide ion.)
It is preferred.

また、前記高分子ゲルが多孔質状であることが好ましい。 It is also preferable that the polymer gel is porous.

本発明の第2の観点に係る亜硝酸菌固定化高分子ゲルの製造方法は、
末端のアミノ基とアクリルアミド基、メタクリルアミド基、アクリル基又はメタクリル基との間に炭素数が2以上のアルキレン鎖を有するアクリルアミドモノマー、メタクリルアミドモノマー、アクリレートモノマー又はメタクリレートモノマーが重合し、末端のアミノ基に炭酸イオン、重炭酸イオン又は水酸化物イオンが付加している高分子ゲルと亜硝酸菌を含有する液体とを混合し、前記高分子ゲルの内部にて亜硝酸菌を培養する、
ことを特徴とする。
A method for producing a nitrite bacteria-immobilized polymer gel according to a second aspect of the present invention comprises the steps of:
a polymer gel in which an acrylamide monomer, a methacrylamide monomer, an acrylate monomer or a methacrylate monomer having an alkylene chain with two or more carbon atoms between a terminal amino group and an acrylamide group, a methacrylamide group, an acryl group or a methacryl group is polymerized, and a carbonate ion, a bicarbonate ion or a hydroxide ion is added to the terminal amino group is mixed with a liquid containing nitrite bacteria, and the nitrite bacteria are cultivated inside the polymer gel;
It is characterized by:

また、前記アクリルアミドモノマー、前記メタクリルアミドモノマー、前記アクリレートモノマー又は前記メタクリレートモノマーと非イオン性モノマーとが共重合した前記高分子ゲルを用いてもよい。 The polymer gel may also be used, which is a copolymer of the acrylamide monomer, the methacrylamide monomer, the acrylate monomer, or the methacrylate monomer with a nonionic monomer.

本発明の第3の観点に係る亜硝酸菌固定化高分子ゲルの製造方法は、
末端のアミノ基とアクリルアミド基、メタクリルアミド基、アクリル基又はメタクリル基との間に炭素数が2以上のアルキレン鎖を有するアクリルアミドモノマー、メタクリルアミドモノマー、アクリレートモノマー又はメタクリレートモノマーを、亜硝酸菌を介在する液体中で重合し、末端のアミノ基に水酸化物イオンが付加しているとともに、亜硝酸菌が付着した亜硝酸菌固定化高分子ゲルを得る、
ことを特徴とする。
A method for producing a nitrite bacteria-immobilized polymer gel according to a third aspect of the present invention comprises the steps of:
an acrylamide monomer, methacrylamide monomer, acrylate monomer or methacrylate monomer having an alkylene chain having two or more carbon atoms between a terminal amino group and an acrylamide group, methacrylamide group, acrylic group or methacryl group is polymerized in a liquid containing nitrite bacteria to obtain a nitrite bacteria immobilized polymer gel in which hydroxide ions are added to the terminal amino group and in which nitrite bacteria are attached;
It is characterized by:

また、前記アクリルアミドモノマー、前記メタクリルアミドモノマー、前記アクリレートモノマー又は前記メタクリレートモノマーと非イオン性モノマーとを共重合させて前記亜硝酸菌固定化高分子ゲルを合成してもよい。 The nitrite bacteria immobilized polymer gel may also be synthesized by copolymerizing the acrylamide monomer, methacrylamide monomer, acrylate monomer, or methacrylate monomer with a nonionic monomer.

本発明の第4の観点に係る水処理方法は、
アンモニア性窒素を含有する被処理水を第1の被処理水と第2の被処理水に分離し、
前記第1の被処理水と本発明の第1の観点に係る亜硝酸菌固定化高分子ゲルとを接触させてアンモニア性窒素を亜硝酸性窒素に変換し、
前記第1の被処理水、前記第2の被処理水及びアナモックス菌を接触させてアンモニア性窒素及び亜硝酸性窒素から窒素ガスを生成させる、
ことを特徴とする。
A water treatment method according to a fourth aspect of the present invention comprises:
The water to be treated containing ammonia nitrogen is separated into a first water to be treated and a second water to be treated;
contacting the first treated water with the nitrite bacteria-immobilized polymer gel according to the first aspect of the present invention to convert ammonia nitrogen into nitrite nitrogen;
The first treated water, the second treated water, and anammox bacteria are contacted to generate nitrogen gas from ammonia nitrogen and nitrite nitrogen.
It is characterized by:

本発明によれば、アンモニア性窒素を亜硝酸性窒素に変換する際に有用な亜硝酸菌固定化高分子ゲル、亜硝酸菌固定化高分子ゲルの製造方法及び水処理方法を提供できる。 The present invention provides a nitrite bacteria immobilized polymer gel that is useful for converting ammonia nitrogen to nitrite nitrogen, a method for producing the nitrite bacteria immobilized polymer gel, and a water treatment method.

水処理方法の被処理水の流れを示す図である。FIG. 2 is a diagram showing the flow of water to be treated in the water treatment method. 実施例における高分子ゲルの内部pHを示すグラフである。1 is a graph showing the internal pH of a polymer gel in an example. 実施例における溶液中の亜硝酸イオン濃度の変化を示すグラフ(図3(A))、硝酸イオン濃度の変化を示すグラフ(図3(B))である。FIG. 3(A) is a graph showing a change in nitrite ion concentration in a solution in an example, and FIG. 3(B) is a graph showing a change in nitrate ion concentration in a solution in an example. 図4(A)~(C)は、それぞれDMAPAA-Qゲルを添加した溶液、HCO 置換DMAPAA-Qゲルを添加した溶液、CO 2-置換DMAPAA-Qゲルを添加した溶液中のアンモニウムイオン濃度、亜硝酸イオン濃度、硝酸イオン濃度及びpHの変化を示すグラフである。Figures 4(A) to (C) are graphs showing the changes in ammonium ion concentration, nitrite ion concentration, nitrate ion concentration, and pH in a solution to which DMAPAA-Q gel has been added, a solution to which HCO 3 -substituted DMAPAA-Q gel has been added, and a solution to which CO 3 2- substituted DMAPAA-Q gel has been added, respectively. 図5(A)~(C)は、それぞれDMAPAAゲルを添加した溶液、ヒドロキシルアミン置換AMPSゲルを添加した溶液、高分子ゲルを添加しない溶液中のアンモニウムイオン濃度、亜硝酸イオン濃度、硝酸イオン濃度及びpHの変化を示すグラフである。5(A) to (C) are graphs showing the changes in ammonium ion concentration, nitrite ion concentration, nitrate ion concentration, and pH in a solution to which DMAPAA gel was added, a solution to which hydroxylamine-substituted AMPS gel was added, and a solution to which no polymer gel was added, respectively. 高分子ゲル内の内部pHを示すグラフである。1 is a graph showing the internal pH in a polymer gel. 図7(A)~(C)は、それぞれ高分子ゲル(G25、G75、G125、G500)を培地に投入して反復回分培養を行った際の培地中のNH 濃度、NO 濃度、pHを示すグラフである。7(A) to (C) are graphs showing the NH 4 + concentration, NO 2 concentration, and pH in the medium when polymer gels (G25, G75, G125, G500) were added to the medium and repeated batch culture was performed. 培養後の高分子ゲルについて、硝化細菌検出キットを用い、蛍光顕微鏡にて亜硝酸菌を検出した写真(図8(A))、及び、硝酸菌を検出した写真(図8(B))である。FIG. 8(A) shows a photograph of the polymer gel after culture in which nitrite bacteria were detected by a fluorescence microscope using a nitrifying bacteria detection kit, and FIG. 8(B) shows a photograph of the polymer gel in which nitrite bacteria were detected by a fluorescence microscope using a nitrifying bacteria detection kit.

(亜硝酸菌固定化高分子ゲル及び亜硝酸菌固定化高分子ゲルの製造方法)
亜硝酸菌固定化高分子ゲルは、主として、アンモニア性窒素を含有する工場排水や畜産廃水、下水などの水処理方法において、亜硝酸菌の作用によって水中のアンモニウムイオンを亜硝酸イオンに変換する工程にて利用される。
(Nitrite bacteria immobilized polymer gel and method for producing the nitrite bacteria immobilized polymer gel)
Nitrite bacteria-immobilized polymer gels are primarily used in the process of converting ammonium ions in water to nitrite ions by the action of nitrite bacteria in water treatment methods for industrial wastewater, livestock wastewater, sewage, and the like that contain ammonia nitrogen.

亜硝酸菌固定化高分子ゲルは、末端のアミノ基とアクリルアミド基、メタクリルアミド基、アクリル基又はメタクリル基との間に炭素数が2以上のアルキレン鎖を有するアクリルアミドモノマー、メタクリルアミドモノマー、アクリレートモノマー又はメタクリレートモノマーが重合し、末端のアミノ基に炭酸イオン、重炭酸イオン又は水酸化物イオンが付加している高分子ゲルであって、高分子ゲルの内部ネットワーク空間内に亜硝酸菌が固定化(保持)されている。 Nitrite bacteria immobilized polymer gel is a polymer gel in which an acrylamide monomer, methacrylamide monomer, acrylate monomer, or methacrylate monomer having an alkylene chain with two or more carbon atoms between the terminal amino group and the acrylamide group, methacrylamide group, acrylic group, or methacryl group is polymerized, and carbonate ions, bicarbonate ions, or hydroxide ions are added to the terminal amino groups, and nitrite bacteria are immobilized (held) within the internal network space of the polymer gel.

上記の主モノマーとして、例えば、式1~4で表される化合物が挙げられる。式1~式4中のnは2以上の整数、好ましくは3~6である。 Examples of the main monomer include compounds represented by formulas 1 to 4. In formulas 1 to 4, n is an integer of 2 or more, preferably 3 to 6.

Figure 0007465545000002
Figure 0007465545000002

水酸化物イオンが付加している高分子ゲルを得る場合、式1、式2で表される主モノマーを用いて重合することで得られる。式1、式2で表される主モノマーを重合して得られた高分子ゲルでは、アミノ基は水中で水分子と反応することでアミノ基がプロトン化し、水酸化物イオンが付加するため、これらの主モノマーを用いて重合するだけで、水酸化物イオンが付加している高分子ゲルが得られる。 A polymer gel with hydroxide ions added can be obtained by polymerization using the main monomers represented by formula 1 and formula 2. In the polymer gel obtained by polymerization of the main monomers represented by formula 1 and formula 2, the amino groups react with water molecules in water, causing the amino groups to become protonated and hydroxide ions to be added, so a polymer gel with hydroxide ions added can be obtained simply by polymerization using these main monomers.

なお、上記の高分子ゲルにおけるアミノ基のプロトン化は、アミノ基の窒素原子の孤立電子対がプロトン(H)に共有されることによって起こる。この孤立電子対はsp混成軌道に入っており、窒素の原子核からの引力がsp軌道、sp混成軌道より弱いので、カルボニル基が近くにあるとHはカルボニル基に流れ込みやすい。そのため、アルキレン鎖(-(CH-)の長さが短いと(n=0,1)、NがNHになりにくい。nが2以上の場合であり、溶液が酸性でHが豊富に介在する場合では、Hがアミノ基の窒素に作用しやすくなりアミノ基のプロトン化が可能になる。更に、nが3以上であれば、水などの中性溶液においてもアミノ基のプロトン化が生じる。そして、付加した水酸化物イオンは、イオン化した高分子鎖のアミノ基とのイオン性相互作用により、高分子ゲルの外部に拡散しない(Donnan平衡)。このため、高分子ゲル内部が塩基性に保たれる。 The protonation of the amino group in the above polymer gel occurs when the lone electron pair of the nitrogen atom of the amino group is shared by the proton (H + ). This lone electron pair is in the sp 3 hybrid orbital, and the attractive force from the nitrogen nucleus is weaker than that of the sp orbital and the sp 2 hybrid orbital, so if a carbonyl group is nearby, H + easily flows into the carbonyl group. Therefore, if the length of the alkylene chain (-(CH 2 ) n -) is short (n = 0, 1), N is unlikely to become NH + . When n is 2 or more and the solution is acidic and abundant H + is present, H + easily acts on the nitrogen of the amino group, making it possible to protonate the amino group. Furthermore, when n is 3 or more, protonation of the amino group occurs even in a neutral solution such as water. The added hydroxide ion does not diffuse outside the polymer gel due to ionic interaction with the amino group of the ionized polymer chain (Donnan equilibrium). Therefore, the inside of the polymer gel is kept basic.

炭酸イオン、重炭酸イオンが付加している高分子ゲルを得る場合、上記のアミノ基がプロトン化した高分子ゲルや式3、式4で表される主モノマーを重合して得られるアミノ基に塩化物イオンが付加している高分子ゲルを炭酸イオン、重炭酸イオンを含有する液体に介在させる。高分子ゲル中のアミノ基に付加している水酸化物イオン、塩化物イオンが炭酸イオン、重炭酸イオンに置換され、炭酸イオン、重炭酸イオンが付加している高分子ゲルが得られる。また、アミノ基がプロトン化した高分子ゲル、塩化物イオンが付加している高分子ゲルを水に浸漬させ、炭酸ガスを吹き込む方法で行っても得られる。 To obtain a polymer gel with carbonate ions and bicarbonate ions added, the above-mentioned polymer gel with protonated amino groups or a polymer gel with chloride ions added to amino groups obtained by polymerizing the main monomers represented by formulas 3 and 4 is placed in a liquid containing carbonate ions and bicarbonate ions. The hydroxide ions and chloride ions added to the amino groups in the polymer gel are replaced with carbonate ions and bicarbonate ions, and a polymer gel with carbonate ions and bicarbonate ions added is obtained. Alternatively, the polymer gel with protonated amino groups or the polymer gel with chloride ions added can be immersed in water and carbon dioxide gas is blown in to obtain the product.

上記の式1~式4で表される主モノマーを重合し、上述した各種陰イオンが付加している高分子ゲルの例として、高分子主鎖中に、式5~式8で表される骨格を備える高分子ゲルが挙げられる。式中、Anは、水酸化物イオン、炭酸イオン、又は、重炭酸イオンを表す。また、mは正の実数を表し、nは上記式1~式4と同義である。なお、高分子ゲルは、架橋剤を用いて重合されていてもよく、例えば、ランダム共重合体、交互共重合体、ブロック共重合体などの共重合体であってもよい。また、高分子ゲルの強度を上げるために、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)、ポリエチレンイミンなどの親水性高分子を合成時にモノマー溶液に10重量パーセント混合しても良い。 Examples of polymer gels obtained by polymerizing the main monomers represented by the above formulas 1 to 4 and adding the various anions described above include polymer gels having skeletons represented by the formulas 5 to 8 in the polymer main chain. In the formulas, An- represents a hydroxide ion, a carbonate ion, or a bicarbonate ion. Furthermore, m represents a positive real number, and n has the same meaning as in the above formulas 1 to 4. The polymer gel may be polymerized using a crosslinking agent, and may be a copolymer such as a random copolymer, an alternating copolymer, or a block copolymer. In order to increase the strength of the polymer gel, a hydrophilic polymer such as polyvinyl alcohol (PVA), polyethylene glycol (PEG), or polyethyleneimine may be mixed into the monomer solution at 10 weight percent during synthesis.

Figure 0007465545000003
Figure 0007465545000003

亜硝酸菌固定化高分子ゲルは、上述した高分子ゲルの内部に亜硝酸菌が付着している。亜硝酸菌の固定化は、例えば、以下のようにすることで行い得る。上述した高分子ゲルに水を吸収させて膨潤させた後、亜硝酸菌を含有する液体に介在させて培養することにより、高分子ゲルの内部に亜硝酸菌を固定化させることができる。また、乾燥状態の高分子ゲルを、亜硝酸菌を含有する活性汚泥等に介在させて培養することでも、高分子ゲルの内部に亜硝酸菌を固定化させることができる。 In the nitrite bacteria immobilized polymer gel, nitrite bacteria are attached inside the above-mentioned polymer gel. The nitrite bacteria can be immobilized, for example, as follows. After the above-mentioned polymer gel is caused to absorb water and swell, it is placed in a liquid containing nitrite bacteria and cultured, thereby immobilizing the nitrite bacteria inside the polymer gel. Nitrite bacteria can also be immobilized inside the polymer gel by placing a dry polymer gel in activated sludge or the like containing nitrite bacteria and culturing it.

上述した高分子ゲルでは、内部のpHは、硝酸菌の活性が抑えられる一方、亜硝酸菌の活性を促すpHに維持される。このため、高分子ゲルの内部にて、硝酸菌の増殖が抑えられる一方で、亜硝酸菌の増殖が促進されるので、高分子ゲルの内部に亜硝酸菌が選択的に集積培養され、亜硝酸菌が高濃度に付着した亜硝酸菌固定化高分子ゲルが得られる。 In the above-mentioned polymer gel, the internal pH is maintained at a pH that suppresses the activity of nitrate bacteria while promoting the activity of nitrite bacteria. Therefore, inside the polymer gel, the growth of nitrate bacteria is suppressed while the growth of nitrite bacteria is promoted, so that nitrite bacteria are selectively enriched and cultured inside the polymer gel, and a nitrite bacteria-immobilized polymer gel with a high concentration of nitrite bacteria attached is obtained.

なお、亜硝酸菌としてNitrosomonas属、Nitrosococcus属など種々の微生物が知られており、亜硝酸菌を含有する液体としては、活性汚泥など公知の亜硝酸菌を含有する液体が利用可能である。また、土壌や活性汚泥等から単離した亜硝酸菌を含有する液体を用いてもよい。 Various microorganisms such as those of the Nitrosomonas and Nitrosococcus genera are known as nitrite bacteria, and liquids containing known nitrite bacteria, such as activated sludge, can be used as liquids containing nitrite bacteria. Liquids containing nitrite bacteria isolated from soil, activated sludge, etc. may also be used.

亜硝酸菌が固定化される高分子ゲルは、より多くの亜硝酸菌が付着するよう多孔質状であってもよい。多孔質状の高分子ゲルは、たとえば、以下のようにして得られる。上記で合成した高分子ゲルを-5℃以下に保持することで、高分子ゲル中の水分が氷結し、生じた氷によって高分子ゲル中に孔が生じる。次いで高分子ゲルを昇温することによって氷が溶解すると、多孔質状の高分子ゲルが得られる。或いは、上記の高分子ゲルを合成する工程において、重合反応を-5℃以下で行うことにより、氷晶の生成と高分子の重合が同時に起こり、多孔質の高分子ゲルが得られる。このような高分子ゲルを用い、上記方法にて亜硝酸菌を多量に付着させた亜硝酸菌固定化高分子ゲルが得られる。 The polymer gel in which the nitrite bacteria are immobilized may be porous so that more nitrite bacteria can adhere to it. A porous polymer gel can be obtained, for example, as follows. By keeping the polymer gel synthesized as described above at -5°C or below, the water in the polymer gel freezes, and the resulting ice creates holes in the polymer gel. The polymer gel is then heated to melt the ice, resulting in a porous polymer gel. Alternatively, in the process of synthesizing the above polymer gel, the polymerization reaction can be carried out at -5°C or below, so that ice crystal formation and polymer polymerization occur simultaneously, resulting in a porous polymer gel. Using such a polymer gel, a nitrite bacteria immobilized polymer gel can be obtained, to which a large amount of nitrite bacteria are attached, by the above method.

上記では、水酸化物イオンが付加した高分子ゲルを合成する行程、高分子ゲルに亜硝酸菌を固定化させる行程の2工程で亜硝酸菌固定化高分子ゲルを得る方法について説明したが、高分子ゲルを合成する工程において、上記の式1又は2で表される主モノマーの重合を、亜硝酸菌を含有する液体中にて行うことでも、末端のアミノ基に水酸化物イオンが付加しているとともに亜硝酸菌が付着した亜硝酸菌固定化高分子ゲルを得ることができる。 The above describes a method for obtaining a nitrite bacteria-immobilized polymer gel in two steps: a step for synthesizing a polymer gel with hydroxide ions added, and a step for immobilizing nitrite bacteria in the polymer gel. However, in the step of synthesizing the polymer gel, a nitrite bacteria-immobilized polymer gel in which hydroxide ions are added to the amino groups at the ends and in which nitrite bacteria are attached can also be obtained by carrying out the polymerization of the main monomer represented by the above formula 1 or 2 in a liquid containing nitrite bacteria.

炭酸イオン、重炭酸イオンが付加した亜硝酸菌固定化高分子ゲルは、この水酸化物イオンが付加した亜硝酸菌固定化高分子ゲルを炭酸イオン、重炭酸イオンを含有する液体に介在させることで得られる。また、亜硝酸菌を含有する液体中で、上記の式3又は4で表される主モノマーの重合を行い、塩化物イオンが付加しているとともに亜硝酸菌が付着した亜硝酸菌固定化高分子ゲルを合成し、この亜硝酸菌固定化高分子ゲルを炭酸イオン、重炭酸イオンを含有する液体に介在させることでも得られる。 The nitrite bacteria immobilized polymer gel with carbonate ions and bicarbonate ions added can be obtained by placing this nitrite bacteria immobilized polymer gel with hydroxide ions added in a liquid containing carbonate ions and bicarbonate ions. It can also be obtained by polymerizing the main monomer represented by the above formula 3 or 4 in a liquid containing nitrite bacteria to synthesize a nitrite bacteria immobilized polymer gel with chloride ions added and nitrite bacteria attached, and then placing this nitrite bacteria immobilized polymer gel in a liquid containing carbonate ions and bicarbonate ions.

また、2種以上のモノマーの配合比を変え、共重合させて高分子ゲル(又は亜硝酸菌固定化高分子ゲル)を合成してもよい。非イオン性モノマーを用い、配合比によって得られる高分子ゲルの内部pHを変えることができる。即ち、高分子ゲルの内部pHを調整することができ、内部pHを亜硝酸菌の至適pHに近づけることにより、亜硝酸菌の活性を高め、高分子ゲル内において亜硝酸菌を集積培養させることができる。なお、非イオン性モノマーは、ジメチルアクリルアミドやN,N-ジメチルメタクリルアミド等、非イオン性のアクリルアミドモノマー、メタクリルアミドモノマー、アクリレートモノマー又はメタクリレートモノマーであればよい。 In addition, the blending ratio of two or more monomers may be changed and copolymerized to synthesize a polymer gel (or a nitrite bacteria immobilized polymer gel). The internal pH of the resulting polymer gel can be changed by using a non-ionic monomer and changing the blending ratio. In other words, the internal pH of the polymer gel can be adjusted, and by bringing the internal pH closer to the optimal pH for the nitrite bacteria, the activity of the nitrite bacteria can be increased and the nitrite bacteria can be enriched and cultured within the polymer gel. The non-ionic monomer may be a non-ionic acrylamide monomer, methacrylamide monomer, acrylate monomer, or methacrylate monomer, such as dimethylacrylamide or N,N-dimethylmethacrylamide.

(水処理方法)
続いて、亜硝酸菌固定化高分子ゲルを用いた水処理方法について説明する。水処理方法は、工場排水や畜産廃水、下水などアンモニア性窒素を含有する水から窒素化合物を除去する処理方法である。
(Water treatment method)
Next, a water treatment method using the nitrite bacteria immobilized polymer gel will be described. The water treatment method is a treatment method for removing nitrogen compounds from water containing ammonia nitrogen, such as industrial wastewater, livestock wastewater, and sewage.

具体的には、図1に被処理水の流れを示しているように、まず、アンモニア性窒素を含有する被処理水を分離する。 Specifically, as shown in Figure 1, the flow of the water to be treated is first separated from the water to be treated that contains ammonia nitrogen.

分離した一方の被処理水を硝化槽に流入させる。硝化槽には、上述した亜硝酸菌固定化高分子ゲルが投入されており、被処理水と亜硝酸菌固定化高分子ゲルが接触するので、亜硝酸菌固定化高分子ゲルの内部にて、亜硝酸菌の作用によりアンモニア性窒素が亜硝酸性窒素に変換される。 One of the separated water streams is fed into the nitrification tank. The nitrification tank contains the above-mentioned nitrite bacteria immobilized polymer gel, and the water comes into contact with the nitrite bacteria immobilized polymer gel. Inside the nitrite bacteria immobilized polymer gel, ammonia nitrogen is converted to nitrite nitrogen by the action of the nitrite bacteria.

次いで、硝化槽から排出された被処理水と硝化槽を通らない被処理水の双方を脱窒槽に流入させる。脱窒槽には、アナモックス菌が介在しており、アンモニア性窒素、亜硝酸性窒素及びアナモックス菌が接触し、アナモックス菌の作用により、窒素ガスに変換される。 Next, both the treated water discharged from the nitrification tank and the treated water that does not pass through the nitrification tank are fed into the denitrification tank. Anammox bacteria are present in the denitrification tank, and ammonia nitrogen, nitrite nitrogen, and anammox bacteria come into contact with each other and are converted into nitrogen gas by the action of the anammox bacteria.

アナモックス菌は、嫌気条件下でアンモニア性窒素を亜硝酸性窒素で酸化することにより、エネルギーを得ている独立栄養生物であるため、酸素や有機物を必要としない。また、アナモックス菌を利用することにより、硝化の際に部分的亜硝酸化でよいため、硝化の際に要する酸素消費量も抑えられる。 Anammox bacteria are autotrophs that obtain energy by oxidizing ammonia nitrogen with nitrite nitrogen under anaerobic conditions, so they do not require oxygen or organic matter. In addition, by using anammox bacteria, only partial nitrification is required during nitrification, which reduces the amount of oxygen consumed during nitrification.

一方で、通常の活性汚泥を利用した硝化工程では、亜硝酸菌と硝酸菌が生存しているため、部分的亜硝酸化を行うには、硝酸菌の増殖を抑え、亜硝酸菌を増殖させるべく、pH制御が必要となる。したがって、pHセンサー及びpH調整剤供給装置が必要になり処理装置の複雑化を招き、製造コスト及びランニングコストの増大につながる。 On the other hand, in a typical nitrification process using activated sludge, nitrite and nitrate bacteria are alive, so to perform partial nitritation, pH control is required to suppress the growth of nitrate bacteria and promote the growth of nitrite bacteria. This requires a pH sensor and a pH adjuster supply device, which complicates the treatment device and leads to increased manufacturing and running costs.

本実施の形態に係る水処理方法では、硝化の際に、高分子ゲル内部に亜硝酸菌が高濃度に付着した亜硝酸菌固定化高分子ゲルを用いるため、アンモニア性窒素は亜硝酸性窒素への変換に留まり、硝酸性窒素への変換が抑えられる。このため、水処理に要するコストの低減が可能となり、非常に有用である。 In the water treatment method according to this embodiment, a nitrite bacteria immobilized polymer gel in which nitrite bacteria are attached at high concentrations inside the polymer gel is used during nitrification, so that ammonia nitrogen is only converted to nitrite nitrogen, and conversion to nitrate nitrogen is suppressed. This makes it possible to reduce the cost required for water treatment, which is extremely useful.

なお、アナモックス菌は、アンモニア性窒素と亜硝酸性窒素とのモル比が大凡1:1の割合で消費するので、被処理水の分離は、大凡1:1とすることが好ましい。 In addition, since anammox bacteria consume ammonia nitrogen and nitrite nitrogen in a molar ratio of approximately 1:1, it is preferable to separate the treated water in a ratio of approximately 1:1.

表1に示す水溶液1(30mL)、水溶液2(5mL)各々を氷水で冷却しながら窒素曝気(30分間)を行った。モノマーとして、DMAPAA-Q(登録商標)([3-(アクリロイルアミノ)プロピル]トリメチルアミニウム・クロリド)、AMPS(2-アクリルアミド-2-メチルプロパンスルホン酸)、DMAPAA(登録商標)([3-(アクリロイルアミノ)プロピル]ジメチルアミン)の3種を用い、それぞれのモノマーを用いた水溶液1を調製した。 Aqueous solution 1 (30 mL) and Aqueous solution 2 (5 mL) shown in Table 1 were each cooled with ice water and aerated with nitrogen (30 minutes). Three types of monomers were used: DMAPAA-Q (registered trademark) ([3-(acryloylamino)propyl]trimethylaminium chloride), AMPS (2-acrylamido-2-methylpropanesulfonic acid), and DMAPAA (registered trademark) ([3-(acryloylamino)propyl]dimethylamine), and aqueous solution 1 was prepared using each monomer.

水溶液1と水溶液2とを混合し、内径6mmのポリテトラフルオロエチレン製のチューブに注入した。このチューブを-18℃の冷凍庫に入れ、24時間重合させた。なお、チューブ内において、ラジカル重合反応で高分子ゲルが合成されるとともに、氷結が起こり、生成した氷晶により、得られる高分子ゲルは多孔質化する。 Aqueous solution 1 and aqueous solution 2 were mixed and poured into a polytetrafluoroethylene tube with an inner diameter of 6 mm. This tube was placed in a freezer at -18°C and polymerized for 24 hours. Note that within the tube, a polymer gel was synthesized by a radical polymerization reaction and freezing occurred, and the resulting ice crystals made the resulting polymer gel porous.

重合が完了した後、チューブから高分子ゲルを取り出し、6mmの長さに切断した。得られた高分子ゲルをそれぞれDMAPAA-Qゲル、AMPSゲル、DMAPAAゲルと記す。 After the polymerization was completed, the polymer gel was removed from the tube and cut to a length of 6 mm. The resulting polymer gels are referred to as DMAPAA-Q gel, AMPS gel, and DMAPAA gel, respectively.

DMAPAA-Qゲル(0.02g)を炭酸水素ナトリウム水溶液(0.1mol/L,10mL)に浸漬し、DMAPAA-Qゲルに付加している塩素イオンを炭酸イオンに交換した。この高分子ゲルをHCO 置換DMAPAA-Qゲルと記す。 DMAPAA-Q gel (0.02 g) was immersed in an aqueous solution of sodium hydrogen carbonate (0.1 mol/L, 10 mL) to exchange the chloride ions added to the DMAPAA-Q gel for carbonate ions. This polymer gel is referred to as HCO 3 -substituted DMAPAA-Q gel.

また、DMAPAA-Qゲル(0.02g)を重炭酸ナトリウム水溶液(0.1mol/L,10mL)に浸漬し、DMAPAA-Qゲルに付加している塩素イオンを重炭酸イオンに交換した。この高分子ゲルをCO 2-置換DMAPAA-Qゲルと記す。 In addition, the DMAPAA-Q gel (0.02 g) was immersed in an aqueous sodium bicarbonate solution (0.1 mol/L, 10 mL) to exchange the chloride ions added to the DMAPAA-Q gel for bicarbonate ions. This polymer gel is referred to as CO 3 2- substituted DMAPAA-Q gel.

また、AMPSゲル(0.02g)をNHOH・HCl(ヒドロキシルアミン塩酸塩)(0.1mol/L,10mL)に浸漬し、水素イオンをヒドロキシルアミンに交換した。この高分子ゲルをヒドロキシルアミン置換AMPSゲルと記す。 Furthermore, AMPS gel (0.02 g) was immersed in NH 2 OH.HCl (hydroxylamine hydrochloride) (0.1 mol/L, 10 mL) to exchange hydrogen ions for hydroxylamine. This polymer gel is referred to as hydroxylamine-substituted AMPS gel.

そして、DMAPAA-Qゲル、DMAPAAゲル、HCO 置換DMAPAA-Qゲル、CO 2-置換DMAPAA-Qゲル、ヒドロキシルアミン置換AMPSゲルそれぞれの内部pHを測定した。 Then, the internal pH of each of the DMAPAA-Q gel, the DMAPAA gel, the HCO 3 -substituted DMAPAA-Q gel, the CO 3 2- substituted DMAPAA-Q gel, and the hydroxylamine-substituted AMPS gel was measured.

Figure 0007465545000004
Figure 0007465545000004

(培養実験)
活性汚泥(50mL)を入れた邪魔板付フラスコに、滅菌した5種類の高分子ゲル(DMAPAA-Qゲル、DMAPAAゲル、HCO 置換DMAPAA-Qゲル、CO 2-置換DMAPAA-Qゲル、ヒドロキシルアミン置換AMPSゲル)をそれぞれ投入した。そして、3日間培養を行い、高分子ゲル内部のpH、溶液(活性汚泥)中のNH 濃度、NO 濃度、NO 濃度を測定した。
(Culture experiment)
Five types of sterilized polymer gels (DMAPAA-Q gel, DMAPAA gel, HCO 3 -substituted DMAPAA-Q gel, CO 3 2- substituted DMAPAA-Q gel, and hydroxylamine-substituted AMPS gel) were each placed in a baffled flask containing activated sludge (50 mL). Cultivation was carried out for three days, and the pH inside the polymer gels, and the NH 4 + , NO 2 - , and NO 3 - concentrations in the solution (activated sludge) were measured.

なお、コントロール実験(対照実験)として、高分子ゲルを投入せずに活性汚泥単独の培養も行った。 As a control experiment, activated sludge was also cultured alone without adding the polymer gel.

図2に、各高分子ゲルの内部pHを示す。水酸化物イオン、炭酸イオン、重炭酸イオンがそれぞれ付加している高分子ゲル(DMAPAAゲル、HCO 置換DMAPAA-Qゲル、CO 2-置換DMAPAA-Qゲル)では、内部のpHが8.5~12程度の弱アルカリ性であり、亜硝酸菌の至適pHあたりになっている。また、塩化物イオンが付加しているDMAPAA-Qゲルでは、亜硝酸菌の至適pHよりも低くなっている。 The internal pH of each polymer gel is shown in Figure 2. In the polymer gels to which hydroxide ions, carbonate ions, and bicarbonate ions are respectively added (DMAPAA gel, HCO 3 -substituted DMAPAA-Q gel, and CO 3 2- substituted DMAPAA-Q gel), the internal pH is weakly alkaline at about 8.5 to 12, which is approximately the optimum pH for nitrite bacteria. In addition, in the DMAPAA-Q gel to which chloride ions are added, the pH is lower than the optimum pH for nitrite bacteria.

図3(A)、(B)に、各高分子ゲルを添加した溶液中のNO 濃度、NO 濃度の変化をそれぞれ示す。また、図4(A)~(C)、図5(A)~(C)に、各高分子ゲルを添加した溶液中のNH 濃度、NO 濃度、NO 濃度及びpHの変化を示す。 Figures 3(A) and 3(B) show the changes in NO 2 - and NO 3 - concentrations in the solutions to which each polymer gel was added, respectively, while Figures 4(A) to 4(C) and Figures 5(A) to 5(C) show the changes in NH 4 + , NO 2 - , NO 3 - concentrations, and pH in the solutions to which each polymer gel was added.

pHが最も低かったヒドロキシルアミン置換AMPSゲルでは、NO 濃度、NO 濃度が変化していない。これは、ヒドロキシルアミン置換AMPSゲルのpHが低く、アンモニアを硝化する硝酸菌、亜硝酸菌がほぼ活動していないことを示している。 In the hydroxylamine-substituted AMPS gel, which had the lowest pH, the NO 2 - and NO 3 - concentrations did not change. This indicates that the pH of the hydroxylamine-substituted AMPS gel is low, and the nitrate and nitrite bacteria that nitrify ammonia are almost inactive.

また、内部pHがほぼ中性のDMAPAA-Qゲルでは、高分子ゲルを添加していない汚泥と同様のNO 濃度、汚泥より高いNO 濃度を示している。これは、亜硝酸菌、硝酸菌が汚泥と同様にアンモニアを硝化しており、更に汚泥のみの場合よりも硝酸菌の活性が高いことを示している。 Furthermore, the DMAPAA-Q gel, which has an almost neutral internal pH, exhibits a similar NO 2 - concentration to the sludge to which no polymer gel was added, and a higher NO 3 - concentration than the sludge to which no polymer gel was added. This indicates that the nitrite and nitrate bacteria nitrify ammonia in the same way as the sludge, and further that the activity of the nitrate bacteria is higher than in the case of sludge alone.

また、高分子ゲルのpHがアルカリ性を示したDMAPAAゲル、HCO 置換DMAPAA-Qゲル、CO 2-置換DMAPAA-Qゲルでは、汚泥のみの場合よりも、亜硝酸濃度は高いものの、硝酸濃度は低くなっている。これは、亜硝酸菌の活性が高い一方、硝酸菌の活性が低いことを示している。即ち、これらの高分子ゲルでは、内部pHが亜硝酸菌の至適pHに維持され、亜硝酸菌の活性を高くするとともに、硝酸菌の活性が抑えられており、亜硝酸菌が集積培養されて高濃度に亜硝酸菌が付着していることがわかる。 Furthermore, in the DMAPAA gel, HCO 3 -substituted DMAPAA-Q gel, and CO 3 2- substituted DMAPAA-Q gel, in which the polymer gel pH was alkaline, the nitrite concentration was higher than in the case of sludge alone, but the nitrate concentration was lower. This indicates that the activity of nitrite bacteria was high while the activity of nitrate bacteria was low. In other words, it can be seen that in these polymer gels, the internal pH is maintained at the optimum pH for nitrite bacteria, increasing the activity of nitrite bacteria while suppressing the activity of nitrite bacteria, and the nitrite bacteria are enriched and cultured, adhering to a high concentration.

続いて、亜硝酸菌を含有する液体中にて、高分子ゲルの重合を行った。また、併せて、2種のモノマーを用い、その配合比を変えて高分子ゲルの重合を行った。 Next, the polymer gel was polymerized in a liquid containing nitrite bacteria. In addition, two types of monomers were used and the polymer gel was polymerized by changing the mixing ratio.

モノマーとしてDMAPAA(登録商標)、DMAA(登録商標)(アクリロイルジメチルアミン)、促進剤としてメチレンビスアクリルアミド、架橋剤としてテトラエチルメチレンジアミンを20mLの蒸留水に溶解させモノマー溶液を調製した。このモノマー溶液に100μLの汚泥を加え攪拌した。そして、過硫酸アンモニウムを5mLの蒸留水に溶解させた開始剤溶液を加えて混合し、合成温度10℃で3時間合成を行い、亜硝酸菌が付着した高分子ゲルを作製した。 A monomer solution was prepared by dissolving DMAPAA (registered trademark), DMAA (registered trademark) (acryloyldimethylamine) as a monomer, methylenebisacrylamide as an accelerator, and tetraethylmethylenediamine as a crosslinking agent in 20 mL of distilled water. 100 μL of sludge was added to this monomer solution and stirred. An initiator solution in which ammonium persulfate was dissolved in 5 mL of distilled water was then added and mixed, and synthesis was carried out at a synthesis temperature of 10°C for 3 hours to produce a polymer gel with nitrite bacteria attached.

なお、表2に示すように、DMAPAA(登録商標)とDMAA(登録商標)の配合比を変え、10種の高分子ゲル(G0、G25、G50、G75、G100、G125、G150、G200、G500、G1000)をそれぞれ作製した。 As shown in Table 2, the compounding ratio of DMAPAA (registered trademark) and DMAA (registered trademark) was changed to produce 10 types of polymer gels (G0, G25, G50, G75, G100, G125, G150, G200, G500, and G1000).

Figure 0007465545000005
Figure 0007465545000005

それぞれの高分子ゲルについて、水中における高分子ゲル内のpHを測定した。その結果を図6に示す。モノマーの配合比によって、内部pHが異なる高分子ゲルが得られることがわかった。 The pH inside each polymer gel in water was measured. The results are shown in Figure 6. It was found that polymer gels with different internal pHs could be obtained depending on the monomer mixing ratio.

pHが7.5、8.0、9.0、9.5の高分子ゲル(G25、G75、G125、G500)を表3に示す組成の培地にそれぞれ投入し、25℃、130rpmで振盪させながら、5~6日を目安に培地を交換する反復回分培養を行った。経時的に培地のpHを測定するとともに、培地中の窒素源の濃度をイオンクロマトグラフィーで測定することで高分子ゲルの硝化活性を比較した。 Polymer gels (G25, G75, G125, G500) with pH values of 7.5, 8.0, 9.0, and 9.5 were added to the media with the compositions shown in Table 3, and repeated batch culture was performed at 25°C and 130 rpm with the media replaced approximately every 5 to 6 days. The pH of the media was measured over time, and the concentration of the nitrogen source in the media was measured by ion chromatography to compare the nitrification activity of the polymer gels.

Figure 0007465545000006
Figure 0007465545000006

その結果を図7(A)、(B)、(C)に示す。図7(A)を見ると、培地を交換する前後でグラフの傾きが変わっていることがわかる。培地を交換することで、硝化速度が速くなっていることから、ゲル内にて亜硝酸菌が増殖されていると考えられる。 The results are shown in Figures 7 (A), (B), and (C). Figure 7 (A) shows that the slope of the graph changes before and after changing the medium. By changing the medium, the nitrification rate increases, which suggests that nitrite bacteria are proliferating within the gel.

図7(B)から、いずれのゲルにおいても亜硝酸の蓄積が見られた。G500では、他のゲルに比べて硝化の立ち上がりが悪かったが、時間が経つと他のゲルよりも亜硝酸の蓄積量が多くなった。よって、ゲルの内部pHが高いゲルの方が亜硝酸の蓄積に有利なことが確認できた。 Figure 7 (B) shows that nitrite accumulation was observed in all gels. Although G500 showed a slower start of nitrification than the other gels, over time it accumulated more nitrite than the other gels. This confirms that gels with a higher internal pH are more favorable for nitrite accumulation.

また、図7(C)から、硝化が進行すると、培地のpHが硝酸菌の至適pH付近に低下している。しかし、亜硝酸の蓄積が維持されていることから、高分子ゲルに亜硝酸菌を固定化することで、外部のpHの影響をあまり受けず、NOBの活性が抑制されたものと考えられる。 Also, as shown in Figure 7 (C), as nitrification progresses, the pH of the medium drops to near the optimum pH for nitrate bacteria. However, since the accumulation of nitrite is maintained, it is believed that by immobilizing the nitrite bacteria in the polymer gel, the activity of NOB is suppressed without being significantly affected by the external pH.

このように、亜硝酸菌を含有する液体中にて高分子ゲルの合成を行うことによっても、亜硝酸菌固定化高分子ゲルを得られることがわかった。また、主モノマーの配合比を変えて共重合させて高分子ゲルを合成することにより、高分子ゲルの内部pHを亜硝酸菌の至適pHに近づけることができることがわかった。 In this way, it was found that a nitrite bacteria-immobilized polymer gel can be obtained by synthesizing a polymer gel in a liquid containing nitrite bacteria. It was also found that by synthesizing a polymer gel by copolymerizing the main monomers at different mixing ratios, the internal pH of the polymer gel can be brought closer to the optimal pH for nitrite bacteria.

また、培養後の高分子ゲル(G500)をスライスし、硝化細菌検出キットを用いて、高分子ゲル表面の菌体を蛍光顕微鏡で検出した。図8(A)、(B)にそれぞれ亜硝酸菌を染色した写真、硝酸菌を染色した写真を示している。高分子ゲル内に亜硝酸菌は検出された一方、硝酸菌はほぼ検出されていないことがわかる。高分子ゲル内において、硝酸菌の活性が抑えられる一方、亜硝酸菌の活性が高く保たれ、亜硝酸菌が高濃度に集積培養され、固定化されていることが立証された。 After cultivation, the polymer gel (G500) was sliced, and a nitrifying bacteria detection kit was used to detect the bacteria on the surface of the polymer gel under a fluorescent microscope. Figures 8 (A) and (B) show photographs stained with nitrite bacteria and nitrate bacteria, respectively. It can be seen that nitrite bacteria were detected within the polymer gel, while nitrite bacteria were almost not detected. It was demonstrated that, while the activity of nitrite bacteria was suppressed within the polymer gel, the activity of nitrite bacteria was maintained at a high level, and that nitrite bacteria were enriched and cultured at a high concentration and immobilized.

工場排水や畜産廃水、下水などアンモニア性窒素を含有する種々の水処理に利用可能である。 It can be used to treat various types of water that contains ammonia nitrogen, such as industrial wastewater, livestock wastewater, and sewage.

Claims (8)

末端のアミノ基とアクリルアミド基、メタクリルアミド基、アクリル基又はメタクリル基との間に炭素数が2以上のアルキレン鎖を有するアクリルアミドモノマー、メタクリルアミドモノマー、アクリレートモノマー又はメタクリレートモノマーが重合し、末端のアミノ基に炭酸イオン、重炭酸イオン又は水酸化物イオンが付加している高分子ゲルに亜硝酸菌が付着している、
ことを特徴とする亜硝酸菌固定化高分子ゲル。
Nitrite bacteria are attached to a polymer gel in which an acrylamide monomer, a methacrylamide monomer, an acrylate monomer, or a methacrylate monomer, which has an alkylene chain having two or more carbon atoms between the terminal amino group and an acrylamide group, a methacrylamide group, an acryl group, or a methacryl group, is polymerized, and a carbonate ion, a bicarbonate ion, or a hydroxide ion is added to the terminal amino group.
2. A nitrite bacteria-immobilized polymer gel comprising:
前記高分子ゲルは、高分子主鎖中に式5~式8のいずれかで表される構造を備える、
Figure 0007465545000007

(式5~式8中、mは正の実数、nは2以上の整数、Anは炭酸イオン、重炭酸イオン又は水酸化物イオンを表す。)
ことを特徴とする請求項1に記載の亜硝酸菌固定化高分子ゲル。
The polymer gel has a structure represented by any one of formulas 5 to 8 in a polymer main chain.
Figure 0007465545000007

(In Formulas 5 to 8, m is a positive real number, n is an integer of 2 or more, and An represents a carbonate ion, a bicarbonate ion, or a hydroxide ion.)
2. The nitrite bacteria-immobilized polymer gel according to claim 1.
前記高分子ゲルが多孔質状である、
ことを特徴とする請求項1又は2に記載の亜硝酸菌固定化高分子ゲル。
The polymer gel is porous.
3. The nitrite bacteria-immobilized polymer gel according to claim 1 or 2.
末端のアミノ基とアクリルアミド基、メタクリルアミド基、アクリル基又はメタクリル基との間に炭素数が2以上のアルキレン鎖を有するアクリルアミドモノマー、メタクリルアミドモノマー、アクリレートモノマー又はメタクリレートモノマーが重合し、末端のアミノ基に炭酸イオン、重炭酸イオン又は水酸化物イオンが付加している高分子ゲルと亜硝酸菌を含有する液体とを混合し、前記高分子ゲルの内部にて亜硝酸菌を培養する、
ことを特徴とする亜硝酸菌固定化高分子ゲルの製造方法。
a polymer gel in which an acrylamide monomer, a methacrylamide monomer, an acrylate monomer or a methacrylate monomer having an alkylene chain with two or more carbon atoms between a terminal amino group and an acrylamide group, a methacrylamide group, an acryl group or a methacryl group is polymerized, and a carbonate ion, a bicarbonate ion or a hydroxide ion is added to the terminal amino group is mixed with a liquid containing nitrite bacteria, and the nitrite bacteria are cultivated inside the polymer gel;
2. A method for producing a nitrite bacteria-immobilized polymer gel comprising the steps of:
前記アクリルアミドモノマー、前記メタクリルアミドモノマー、前記アクリレートモノマー又は前記メタクリレートモノマーと非イオン性モノマーとが共重合した前記高分子ゲルを用いる、
ことを特徴とする請求項4に記載の亜硝酸菌固定化高分子ゲルの製造方法。
using the polymer gel in which the acrylamide monomer, the methacrylamide monomer, the acrylate monomer or the methacrylate monomer is copolymerized with a nonionic monomer;
The method for producing the nitrite bacteria-immobilized polymer gel according to claim 4 .
末端のアミノ基とアクリルアミド基、メタクリルアミド基、アクリル基又はメタクリル基との間に炭素数が2以上のアルキレン鎖を有するアクリルアミドモノマー、メタクリルアミドモノマー、アクリレートモノマー又はメタクリレートモノマーを、亜硝酸菌が介在する液体中で重合し、末端のアミノ基に水酸化物イオンが付加しているとともに、亜硝酸菌が付着した亜硝酸菌固定化高分子ゲルを得る、
ことを特徴とする亜硝酸菌固定化高分子ゲルの製造方法。
an acrylamide monomer, methacrylamide monomer, acrylate monomer or methacrylate monomer having an alkylene chain having two or more carbon atoms between a terminal amino group and an acrylamide group, methacrylamide group, acrylic group or methacryl group is polymerized in a liquid in which nitrite bacteria are present, thereby obtaining a nitrite bacteria immobilized polymer gel in which hydroxide ions are added to the terminal amino group and in which nitrite bacteria are attached;
2. A method for producing a nitrite bacteria-immobilized polymer gel comprising the steps of:
前記アクリルアミドモノマー、前記メタクリルアミドモノマー、前記アクリレートモノマー又は前記メタクリレートモノマーと非イオン性モノマーとを共重合させて前記亜硝酸菌固定化高分子ゲルを合成する、
ことを特徴とする請求項6に記載の亜硝酸菌固定化高分子ゲルの製造方法。
The acrylamide monomer, the methacrylamide monomer, the acrylate monomer or the methacrylate monomer is copolymerized with a nonionic monomer to synthesize the nitrite bacteria-immobilized polymer gel.
The method for producing the nitrite bacteria-immobilized polymer gel according to claim 6 .
アンモニア性窒素を含有する被処理水を第1の被処理水と第2の被処理水に分離し、
前記第1の被処理水と請求項1乃至3のいずれか一項に記載の亜硝酸菌固定化高分子ゲルとを接触させてアンモニア性窒素を亜硝酸性窒素に変換し、
前記第1の被処理水、前記第2の被処理水及びアナモックス菌を接触させてアンモニア性窒素及び亜硝酸性窒素から窒素ガスを生成させる、
ことを特徴とする水処理方法。
The water to be treated containing ammonia nitrogen is separated into a first water to be treated and a second water to be treated;
The first treated water is brought into contact with the nitrite bacteria-immobilized polymer gel according to any one of claims 1 to 3 to convert ammonia nitrogen into nitrite nitrogen;
The first treated water, the second treated water, and anammox bacteria are contacted to generate nitrogen gas from ammonia nitrogen and nitrite nitrogen.
A water treatment method comprising the steps of:
JP2020176279A 2019-10-25 2020-10-20 Nitrite bacteria immobilized polymer gel, method for producing the nitrite bacteria immobilized polymer gel, and water treatment method Active JP7465545B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193931 2019-10-25
JP2019193931 2019-10-25

Publications (2)

Publication Number Publication Date
JP2021070821A JP2021070821A (en) 2021-05-06
JP7465545B2 true JP7465545B2 (en) 2024-04-11

Family

ID=75712628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020176279A Active JP7465545B2 (en) 2019-10-25 2020-10-20 Nitrite bacteria immobilized polymer gel, method for producing the nitrite bacteria immobilized polymer gel, and water treatment method

Country Status (1)

Country Link
JP (1) JP7465545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115999521A (en) * 2023-02-28 2023-04-25 陕西科技大学 Efficient adsorption material for ammonia nitrogen in wastewater, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320831A (en) 2005-05-18 2006-11-30 Hitachi Plant Technologies Ltd Apparatus for treating ammonia-containing liquid
JP2010017639A (en) 2008-07-10 2010-01-28 Metawater Co Ltd Organic raw water denitrification method by control of nitrite-type nitrification
JP2019118909A (en) 2017-12-27 2019-07-22 国立大学法人広島大学 High polymer gel and metal recovery method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320831A (en) 2005-05-18 2006-11-30 Hitachi Plant Technologies Ltd Apparatus for treating ammonia-containing liquid
JP2010017639A (en) 2008-07-10 2010-01-28 Metawater Co Ltd Organic raw water denitrification method by control of nitrite-type nitrification
JP2019118909A (en) 2017-12-27 2019-07-22 国立大学法人広島大学 High polymer gel and metal recovery method

Also Published As

Publication number Publication date
JP2021070821A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
Wei et al. Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievement, performance and microbial community
CN110510739B (en) Device and method for realizing semi-short-range coupling anaerobic ammonia oxidation of continuous flow AOA (argon oxygen decarburization) biomembrane through hydroxylamine
TW200642969A (en) A method for improving flux in a membrane bioreactor
JP7465545B2 (en) Nitrite bacteria immobilized polymer gel, method for producing the nitrite bacteria immobilized polymer gel, and water treatment method
CN110819564A (en) Autotrophic denitrification and denitrification microbial inoculum and preparation method thereof
Zeng et al. Improving a compact biofilm reactor to realize efficient nitrogen removal performance: step-feed, intermittent aeration, and immobilization technique
CN106904732A (en) A kind of method that membrane bioreactor quickly starts short distance nitration
CN110921824B (en) Culture method for denitrification capacity of anaerobic ammonia oxidation sludge
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
JP4817057B2 (en) Batch treatment of nitrogen-containing water
CN104176893A (en) Canned fungus processing wastewater treatment system
CN116282543A (en) Composite biological directional conversion system and method for purifying inorganic nitrogen in mariculture tail water
Feng et al. Nitrogen removal characteristics in a biofilm system for recirculating aquaculture wastewater treatment under high-salinity conditions and oligotrophic stress
Xiao et al. Systematic evaluation of PDA/PAM/MAH-modified basalt fibre as biofilm carrier for wastewater treatment
JP2007000838A (en) Method for treating waste water containing ammonia
KISHIDA et al. Challenge for formation of aerobic granular sludge in a continuous-flow reactor
CN105692874B (en) A kind of method of half short-cut nitrification technology of quick startup
JP2003235554A (en) Microorganism-immobilized carrier and method for producing the same
CN112520841A (en) Polyurethane sponge biological filler and preparation method thereof
JP3858271B2 (en) Wastewater treatment method and apparatus
JP6651298B2 (en) Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration
CN106745697B (en) Method for controlling nitration reaction process in sewage biochemical treatment process
JP2016083628A (en) Inclusion immobilization carrier and waste water treatment device using the same
JP4596533B2 (en) Wastewater treatment method
LU501565B1 (en) Method for efficiently removing nitrate nitrogen from aquaculture water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7465545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150