JP2014200747A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2014200747A
JP2014200747A JP2013079653A JP2013079653A JP2014200747A JP 2014200747 A JP2014200747 A JP 2014200747A JP 2013079653 A JP2013079653 A JP 2013079653A JP 2013079653 A JP2013079653 A JP 2013079653A JP 2014200747 A JP2014200747 A JP 2014200747A
Authority
JP
Japan
Prior art keywords
treatment
sulfur
denitrification
anaerobic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013079653A
Other languages
Japanese (ja)
Other versions
JP6116975B2 (en
Inventor
永森 泰彦
Yasuhiko Nagamori
泰彦 永森
卓巳 小原
Takumi Obara
卓巳 小原
時本 寛幸
Hiroyuki Tokimoto
寛幸 時本
実 藤沢
Minoru Fujisawa
実 藤沢
伸行 足利
Nobuyuki Ashikaga
伸行 足利
唯夫 本木
Tadao Motoki
唯夫 本木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013079653A priority Critical patent/JP6116975B2/en
Publication of JP2014200747A publication Critical patent/JP2014200747A/en
Application granted granted Critical
Publication of JP6116975B2 publication Critical patent/JP6116975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus and a water treatment method capable of achieving a high nitrogen removal ratio while keeping treatment costs low.SOLUTION: The water treatment apparatus provided by an embodiment includes: an anaerobic treatment tank for decomposing some of an organic matter in treatment target water including the organic matter and ammoniac nitrogen; an aerobic treatment tank for decomposing the remainder of the organic matter within the anaerobically treated water including the remainder of the organic matter and treated within the anaerobic treatment tank and for converting the ammoniac nitrogen into nitrate nitrogen; a sulfur denitrifying tank for causing contact of hydrogen sulfide generated from the anaerobic treatment tank, the aerobically treated water generated as a result of the treatment within the aerobic treatment tank, and sulfur denitrifying bacteria to thereby partially denitrify the nitrate nitrogen by using the hydrogen sulfide as a reductant; and a heterotrophic denitrifying tank for causing contact of the sulfur-denitrified water generated as a result of the treatment within the sulfur denitrifying tank, the anaerobically treated water generated as a result of the treatment within the anaerobic treatment tank, and heterotrophic denitrifying bacteria to thereby denitrify the remainder of the nitrate nitrogen by using the remainder of the organic matter within the anaerobically treated water as a reductant.

Description

本発明の実施形態は、例えば下水や工場排水などから窒素を除去可能な水処理装置および水処理方法に関する。   Embodiments of the present invention relate to a water treatment apparatus and a water treatment method capable of removing nitrogen from, for example, sewage or factory waste water.

下水や工場排水などの有機物を含む排水の処理では、生物学的処理が多く用いられている。生物学的処理法は、嫌気性微生物を使用した嫌気性処理法と、好気性微生物による好気性処理法に分類することが出来る。嫌気性処理法は、酸素の供給が必要ないため動力費が少ないこと、汚泥の発生量が少ない、可燃性ガスであるメタンガスを主成分としたバイオガスを回収できると言ったメリットがあるが、好気性処理と比較して有機物の除去性能が悪く、そのままでは河川等に放流することは困難となっている。また被処理水に硫酸などの硫黄成分が入っている場合には、嫌気性微生物のひとつである硫酸還元菌の作用により硫化水素が生成し、その硫化水素はバイオガス中に混入するため、バイオガスの有効利用を行う際には、何らかの脱硫処理を行う必要がある。   Biological treatment is often used in the treatment of wastewater containing organic matter such as sewage and industrial wastewater. Biological treatment methods can be classified into anaerobic treatment methods using anaerobic microorganisms and aerobic treatment methods using aerobic microorganisms. The anaerobic treatment method has the advantage that the supply of oxygen is not required, so the power cost is low, the generation amount of sludge is small, and the biogas mainly composed of flammable gas, methane gas, can be recovered. Compared with aerobic treatment, the removal performance of organic substances is poor, and as it is, it is difficult to discharge it into a river or the like. In addition, when the water to be treated contains sulfur components such as sulfuric acid, hydrogen sulfide is generated by the action of sulfate-reducing bacteria, one of the anaerobic microorganisms, and the hydrogen sulfide is mixed into biogas. In order to effectively use the gas, it is necessary to perform some kind of desulfurization treatment.

一方、好気性処理法は、河川放流可能な処理水質を得ることが出来るメリットがあるが、好気性微生物により処理を行うため、酸素の供給が必要となり、そのための動力が必要であること、また嫌気性微生物に比較して汚泥の発生量が多いと言ったデメリットを有している。   On the other hand, the aerobic treatment method has the merit that it can obtain the treated water quality that can be discharged into the river, but since it is treated with aerobic microorganisms, it is necessary to supply oxygen, and the power for that is necessary. Compared to anaerobic microorganisms, it has a demerit that it produces more sludge.

そのため、上流側で嫌気性処理を行い、下流側で好気性処理を行う水処理プロセスが、処理水質、動力費、汚泥発生量のバランスに優れた方法として、有機物除去を目的とした工場排水処理において実用化されている。   For this reason, a water treatment process that performs anaerobic treatment on the upstream side and aerobic treatment on the downstream side is a method that has an excellent balance of treated water quality, power costs, and sludge generation amount, and is intended to remove organic substances. Has been put to practical use.

また、単純な嫌気性処理槽と好気性処理槽の組み合わせでは、富栄養化対策として除去することが求められている窒素の除去が行えないことから、後段の好気性処理法を窒素除去が可能な循環式硝化脱窒法などを用いた方式も採用されてきている。   In addition, the combination of a simple anaerobic treatment tank and an aerobic treatment tank cannot remove nitrogen, which is required to be removed as a measure for eutrophication. A method using a circulatory nitrification denitrification method has also been adopted.

循環式硝化脱窒法を用いた方法では、被処理水は嫌気性処理槽により有機物の除去が行われた後、脱窒槽、好気槽の順に導かれる。被処理水中の窒素成分は、好気槽にて硝酸態、あるいは亜硝酸態窒素に酸化され、硝化液循環ポンプにて脱窒槽に導かれ、脱窒菌の作用により窒素ガスに還元され、系外に排出される。循環式硝化脱窒法では、従属栄養的脱窒菌の作用により、有機物を還元剤として脱窒反応が進行する。酢酸を有機物とした従属栄養的脱窒の反応式を式(1)に示す。   In the method using the circulation type nitrification denitrification method, the water to be treated is guided in the order of the denitrification tank and the aerobic tank after the organic matter is removed by the anaerobic treatment tank. Nitrogen components in the water to be treated are oxidized to nitrate or nitrite nitrogen in the aerobic tank, guided to the denitrification tank by the nitrification liquid circulation pump, and reduced to nitrogen gas by the action of the denitrifying bacteria. To be discharged. In the circulatory nitrification denitrification method, the denitrification reaction proceeds using organic substances as a reducing agent by the action of heterotrophic denitrifying bacteria. The reaction formula of heterotrophic denitrification using acetic acid as an organic substance is shown in Formula (1).

5CHCOO+8NO +8H
→ 5CO+5HCO +4N+4HO … 式(1)
式(1)から、硝酸態窒素を還元するためには有機物が必要で、完全脱窒にはBOD/N比が2.8以上となるように調整する必要がある。被処理水の水質および嫌気性処理槽のBOD除去性能によっては上記BOD/N比を満足することが出来なくなるため、被処理水の一部を嫌気性処理槽をバイパスさせることにより、脱窒槽のBOD/N比を調整する。
5CH 3 COO + 8NO 3 + 8H +
→ 5CO 2 + 5HCO 3 + 4N 2 + 4H 2 O Formula (1)
From formula (1), organic substances are required to reduce nitrate nitrogen, and it is necessary to adjust the BOD / N ratio to be 2.8 or more for complete denitrification. Depending on the quality of the water to be treated and the BOD removal performance of the anaerobic treatment tank, the BOD / N ratio cannot be satisfied. Therefore, by bypassing the anaerobic treatment tank with a part of the treated water, Adjust the BOD / N ratio.

循環式硝化脱窒法では、被処理水の水質によっては嫌気性処理槽のバイパス量が増加するため、嫌気性処理のメリットが十分に発揮できず、運転コストの増大の原因となっている。   In the circulatory nitrification denitrification method, the bypass amount of the anaerobic treatment tank increases depending on the quality of the water to be treated, so that the merit of the anaerobic treatment cannot be fully exhibited, causing an increase in operating cost.

上記課題を解決する方法の一つとして、硫黄を硝酸態窒素の還元剤として使用する硫黄脱窒を用いた窒素除去方法が提案されている(特許文献1〜5)。硫化物を還元剤とした硫黄脱窒の反応式を式(2)に示す。   As one of the methods for solving the above problems, nitrogen removal methods using sulfur denitrification using sulfur as a reducing agent for nitrate nitrogen have been proposed (Patent Documents 1 to 5). The reaction formula of sulfur denitrification using sulfide as a reducing agent is shown in Formula (2).

5HS+8NO +3H → 5SO 2−+4N+4HO …式(2)
硫黄脱窒は、硫化物、単体硫黄、チオ硫酸、等が硫酸まで酸化されると同時に硝酸が窒素まで還元される反応であり、特許文献1および3〜5ではバイオガス中の硫化水素、特許文献2では硫黄成分を主体とする硫黄処理剤が使用されている。
5HS + 8NO 3 + 3H + → 5SO 4 2− + 4N 2 + 4H 2 O (2)
Sulfur denitrification is a reaction in which sulfide, elemental sulfur, thiosulfuric acid, etc. are oxidized to sulfuric acid and at the same time nitric acid is reduced to nitrogen. In Patent Documents 1 and 3-5, hydrogen sulfide in biogas, patent In Document 2, a sulfur treating agent mainly composed of a sulfur component is used.

特開2000−189995号公報JP 2000-189995 A 特開2008−49251号公報JP 2008-49251 A 特開2010−42327号公報JP 2010-42327 A 特開2011−189286号公報JP2011-189286A 特開2012−66186号公報JP 2012-66186 A

池本、山下、金子:環境工学研究論文集,第44巻 (2007)Ikemoto, Yamashita, Kaneko: Environmental Engineering Research Papers, Vol. 44 (2007)

発明者らは、従属栄養脱窒と硫黄脱窒が共存する脱窒プロセスについて図1の装置を使用して図2の2つの条件にて連続試験を行った。条件1では流入水の硝酸態窒素濃度が6.25mg/Lとなるように好気性処理水を硝酸カリウムで調整した。また、流入水のS/N比が0.4となるように嫌気性処理水を硫化ナトリウムで調整した。条件2では条件1に加えて、流入水のBOD/N比が2となるように嫌気性処理水を酢酸で調製した。   The inventors conducted a continuous test for the denitrification process in which heterotrophic denitrification and sulfur denitrification coexist, using the apparatus of FIG. 1 under the two conditions of FIG. In condition 1, the aerobic treated water was adjusted with potassium nitrate so that the concentration of nitrate nitrogen in the influent water was 6.25 mg / L. Moreover, the anaerobic treated water was adjusted with sodium sulfide so that the S / N ratio of the influent water was 0.4. In condition 2, in addition to condition 1, anaerobic treated water was prepared with acetic acid so that the BOD / N ratio of the influent water was 2.

すなわち、条件1では、硫黄脱窒で流入水の硝酸態窒素が最大40%除去可能なS/N比とした。条件2では、さらに従属栄養脱窒で流入水の硝酸態窒素が最大約75%除去可能なBOD/N比とし、合わせて100%除去可能とした。 That is, in the condition 1, the S / N ratio was set such that nitrate nitrogen in the influent water could be removed up to 40% by sulfur denitrification. In condition 2, the BOD / N ratio that allows removal of about 75% of nitrate nitrogen in the influent water by heterotrophic denitrification was made 100% in total.

そして、いずれも嫌気性処理水と好気性処理水の滞留時間を4時間とする処理量で約5ヶ月の連続運転を行い、硝酸態窒素除去率と運転終了時の脱窒槽の微生物量および脱窒槽内で単体硫黄として析出、付着して、蓄積した硫黄量について調査した。   In both cases, continuous operation for about 5 months is performed with a treatment amount of 4 hours for anaerobic treated water and aerobic treated water, the nitrate nitrogen removal rate, the amount of microorganisms in the denitrification tank at the end of operation and the removal The amount of sulfur deposited and deposited as single sulfur in the nitrogen tank was investigated.

その結果、図3に示すように、条件1ではおおよそS/N比に見合った硝酸態窒素除去率が得られたものの、条件2ではS/N比とBOD/N比の合計(最大115%)よりも低い硝酸態窒素除去率となった。運転終了時の脱窒槽内の硫黄蓄積量は、条件1に対して条件2が多いことから、条件2では供給した硫化物が硫酸まで酸化されずに単体硫黄の形態で蓄積されており、硫化物の硝酸態窒素還元剤としての利用率が条件1よりも低く、硫黄脱窒による硝酸態窒素除去率への寄与分が低いことが示唆された。 As a result, as shown in FIG. 3, although the nitrate nitrogen removal rate roughly corresponding to the S / N ratio was obtained under the condition 1, the total of the S / N ratio and the BOD / N ratio (maximum 115%) was obtained under the condition 2. The nitrate nitrogen removal rate was lower than Since the amount of sulfur accumulated in the denitrification tank at the end of the operation is greater in condition 2 than in condition 1, the supplied sulfide is accumulated in the form of elemental sulfur without being oxidized to sulfuric acid. It was suggested that the utilization rate of the product as a nitrate nitrogen reducing agent was lower than that in Condition 1, and the contribution to the nitrate nitrogen removal rate by sulfur denitrification was low.

さらに条件2の脱窒槽内では単体硫黄が担体表面に固着しており、担体充填層の閉塞要因となることが懸念された。また、担体から剥離した単体硫黄が固形物として脱窒槽内に沈殿堆積し、脱窒槽の閉塞要因となることが懸念された。閉塞防止のため、この単体硫黄を主成分とする固形物を取り出すと、それは固形廃棄物となり、その処分費によって処理コストが増加することが懸念された。   Furthermore, in the denitrification tank of condition 2, there was a concern that elemental sulfur adhered to the surface of the carrier, which would be a cause of blocking the carrier packed bed. Moreover, there was a concern that the elemental sulfur peeled off from the carrier was precipitated and deposited in the denitrification tank as a solid substance, which would cause the denitrification tank to be blocked. In order to prevent clogging, when this solid substance containing simple sulfur as a main component is taken out, it becomes solid waste, and there is a concern that the processing cost increases due to the disposal cost.

本発明は、上記課題に対して考案されたものであり、脱窒処理槽における単体硫黄の蓄積を抑制し、硫黄脱窒処理槽の閉塞や廃棄固形物の増加を防止することを目的とする。   This invention is devised with respect to the said subject, and it aims at suppressing the accumulation | storage of single-piece | unit sulfur in a denitrification processing tank, and preventing the obstruction | occlusion of a sulfur denitrification processing tank, and the increase of waste solid substance. .

上記の非特許文献1によれば、硫黄脱窒においてS/N比が1.0以上では、硫黄粒が脱窒槽内に蓄積され、S/N比が0.5以下になると蓄積された硫黄粒が脱窒に利用されることが示されている。   According to Non-Patent Document 1 described above, when the S / N ratio is 1.0 or more in sulfur denitrification, sulfur particles are accumulated in the denitrification tank, and when the S / N ratio is 0.5 or less, the accumulated sulfur. It has been shown that the grains are used for denitrification.

条件1では非特許文献に示されたとおり、脱窒槽内での硫黄の蓄積は観察されなかった。一方、条件2ではS/N比は0.5以下であったものの脱窒槽内での硫黄の蓄積が観察された。このことから従属栄養脱窒と硫黄脱窒では従属栄養脱窒が優先して(もしくは速く)進行し、従属栄養脱窒により75%の硝酸態窒素が除去された残りの25%(約1.56mg/L)の硝酸態窒素に対して硫黄脱窒が行われ、その場合S/N比は1.6となり、1.0を超えたことから脱窒槽内で硫黄が蓄積したものと推察された。   In condition 1, as shown in non-patent literature, accumulation of sulfur in the denitrification tank was not observed. On the other hand, in condition 2, although the S / N ratio was 0.5 or less, accumulation of sulfur in the denitrification tank was observed. Therefore, heterotrophic denitrification and sulfur denitrification proceeded with preference (or faster), and the remaining 25% (about 1.2) from which 75% nitrate nitrogen was removed by heterotrophic denitrification. 56 mg / L) of nitrate nitrogen was subjected to sulfur denitrification. In that case, the S / N ratio was 1.6, and since it exceeded 1.0, it was assumed that sulfur accumulated in the denitrification tank. It was.

そこで図4に示す窒素除去方法および装置を考案した。   Accordingly, the nitrogen removal method and apparatus shown in FIG. 4 have been devised.

実施形態の水処理装置は、有機物とアンモニア性窒素とを含んだ被処理水中の前記有機物の一部を分解する嫌気性処理槽と、前記有機物の残部を含む前記嫌気性処理槽で処理された嫌気性処理水中の、前記有機物の残部を分解すると共に前記アンモニア性窒素を硝酸態窒素にする好気性処理槽と、前記嫌気性処理槽から発生した硫化水素と、前記好気性処理槽で処理された好気性処理水と、硫黄脱窒菌と、を接触させて、前記硫化水素を還元剤として前記硝酸態窒素の一部を脱窒する硫黄脱窒処理槽と、前記硫黄脱窒処理槽で処理された硫黄脱窒処理水と前記嫌気性処理槽で処理された嫌気性処理水と従属栄養脱窒菌とを接触させて、前記嫌気性処理水中の前記有機物の残部を還元剤として、前記硝酸態窒素の残部を脱窒する従属栄養脱窒処理槽と、を備える。   The water treatment apparatus of the embodiment was treated in the anaerobic treatment tank that decomposes a part of the organic matter in the water to be treated containing organic matter and ammonia nitrogen, and the anaerobic treatment tank that contains the remainder of the organic matter. The aerobic treatment tank decomposes the remainder of the organic matter and converts the ammoniacal nitrogen into nitrate nitrogen, hydrogen sulfide generated from the anaerobic treatment tank, and the aerobic treatment tank. The aerobic treated water and a sulfur denitrifying bacterium are brought into contact with each other, and the sulfur denitrification treatment tank for denitrifying a part of the nitrate nitrogen using the hydrogen sulfide as a reducing agent, and the treatment in the sulfur denitrification treatment tank The sulfur denitrification treated water, the anaerobic treated water treated in the anaerobic treatment tank and the heterotrophic denitrifying bacteria are brought into contact, and the remaining organic matter in the anaerobic treated water is used as a reducing agent, and the nitrate state Heterotrophic denitrification to denitrify the remainder of nitrogen Comprising a vessel, a.

硫黄脱窒と従属栄養脱窒による窒素除去試験装置の概要図。Schematic diagram of a nitrogen removal test apparatus using sulfur denitrification and heterotrophic denitrification. 図1に示す窒素除去試験装置の試験条件を示した表。The table | surface which showed the test conditions of the nitrogen removal test apparatus shown in FIG. 図1に示す窒素除去試験装置の試験結果を示した表。The table | surface which showed the test result of the nitrogen removal test apparatus shown in FIG. 実施形態の水処理装置の全体構造を模式的に示した模式図。The schematic diagram which showed typically the whole structure of the water treatment apparatus of embodiment. 図4に示す水処理装置の硫黄脱窒リアクタおよび従属栄養脱窒リアクタの運転条件の一例を示した表。The table | surface which showed an example of the operating conditions of the sulfur denitrification reactor and heterotrophic denitrification reactor of the water treatment apparatus shown in FIG.

以下、図4、図5を参照して実施形態に係る水処理装置について説明する。   Hereinafter, the water treatment apparatus according to the embodiment will be described with reference to FIGS. 4 and 5.

水処理装置11は、嫌気リアクタ12(嫌気性処理槽)、好気リアクタ13(好気性処理槽)、硫黄脱窒リアクタ14(硫黄脱窒処理槽)、および従属栄養脱窒リアクタ15(従属栄養脱窒処理槽)を有する。   The water treatment apparatus 11 includes an anaerobic reactor 12 (anaerobic treatment tank), an aerobic reactor 13 (aerobic treatment tank), a sulfur denitrification reactor 14 (sulfur denitrification treatment tank), and a heterotrophic denitrification reactor 15 (heterotrophic nutrition). (Denitrification tank).

水処理装置11は、嫌気リアクタ12と従属栄養脱窒リアクタ15とを接続した第1配管21と、従属栄養脱窒リアクタ15と好気リアクタ13とを接続した第2配管22と、好気リアクタ13と硫黄脱窒リアクタ14とを接続した第3配管23と、硫黄脱窒リアクタ14と従属栄養脱窒リアクタ15とを接続した第4配管24と、嫌気リアクタ12に接続され嫌気リアクタ12に被処理水(下水)を供給する下水管25(第5配管)と、好気リアクタ13に接続され好気リアクタ13から処理(浄化)された処理水が排出される排出管26(第6配管)と、を備えている。   The water treatment device 11 includes a first pipe 21 connecting the anaerobic reactor 12 and the heterotrophic denitrification reactor 15, a second pipe 22 connecting the heterotrophic denitrification reactor 15 and the aerobic reactor 13, and an aerobic reactor. 13 and the sulfur denitrification reactor 14, the third pipe 23 connected to the sulfur denitrification reactor 14 and the heterotrophic denitrification reactor 15, and the anaerobic reactor 12 connected to the anaerobic reactor 12. A sewage pipe 25 (fifth pipe) that supplies treated water (sewage), and a discharge pipe 26 (sixth pipe) that is connected to the aerobic reactor 13 and discharges treated (purified) treated water from the aerobic reactor 13. And.

水処理装置11は、第1配管21の途中に設けられ嫌気リアクタ12で処理された嫌気性処理水を従属栄養脱窒リアクタ15に送る第1ポンプ31と、第3配管23の途中に設けられ好気リアクタ13で処理された好気性処理水を硫黄脱窒リアクタ14に送る第2ポンプ32と、第4配管24の途中に設けられ硫黄脱窒リアクタ14で処理された硫黄脱窒処理水を従属栄養脱窒リアクタ15に送る第3ポンプ33と、下水管25の途中に設けられ嫌気リアクタ12に被処理水を送る下水ポンプ34(第4ポンプ)と、を備えている。第1ポンプ31は、送水部の一例である。   The water treatment apparatus 11 is provided in the middle of the first pump 31 that sends the anaerobic treated water that is provided in the middle of the first pipe 21 and is processed in the anaerobic reactor 12 to the heterotrophic denitrification reactor 15, and the third pipe 23. The second pump 32 that sends the aerobic treated water treated in the aerobic reactor 13 to the sulfur denitrification reactor 14, and the sulfur denitrification treated water treated in the sulfur denitrification reactor 14 provided in the middle of the fourth pipe 24. A third pump 33 that sends to the heterotrophic denitrification reactor 15 and a sewage pump 34 (fourth pump) that is provided in the middle of the sewage pipe 25 and sends treated water to the anaerobic reactor 12 are provided. The first pump 31 is an example of a water supply unit.

さらに、水処理装置11は、後述するように硫化水素を含むバイオガスを嫌気リアクタから回収して、当該バイオガスを硫黄脱窒リアクタ14に供給する散気管35と、散気管35の途中から分岐してバイオガスを回収する第1ガス管41と、硫黄脱窒リアクタ14から脱硫処理されたバイオガスを回収する第2ガス管42と、従属栄養脱窒リアクタ15から窒素ガスを回収する第3ガス管43と、を備えている。散気管35の途中には、例えば、バイオガスを硫黄脱窒リアクタ14に送るためのブロアが介在されている。   Further, as will be described later, the water treatment device 11 collects a biogas containing hydrogen sulfide from the anaerobic reactor and supplies the biogas to the sulfur denitrification reactor 14, and branches from the middle of the aeration tube 35. The first gas pipe 41 for collecting the biogas, the second gas pipe 42 for collecting the biogas desulfurized from the sulfur denitrification reactor 14, and the third gas for collecting the nitrogen gas from the heterotrophic denitrification reactor 15 A gas pipe 43. In the middle of the air diffusion pipe 35, for example, a blower for sending biogas to the sulfur denitrification reactor 14 is interposed.

嫌気リアクタ12(嫌気性処理槽)では、加水分解菌、酸生成菌、メタン生成菌が、下水(被処理水)中の有機物をメタンガスまで分解して、下水(被処理水)中の有機物の大部分を除去する(嫌気性処理)。嫌気リアクタ12では、このように可燃性ガスであるメタンガスを主成分としたバイオガスと呼ばれるガスを回収することができる。   In the anaerobic reactor 12 (anaerobic treatment tank), hydrolyzing bacteria, acid-producing bacteria, and methanogenic bacteria decompose organic substances in sewage (treated water) to methane gas, and the organic substances in sewage (treated water) Remove most (anaerobic treatment). Thus, the anaerobic reactor 12 can recover a gas called biogas whose main component is methane gas, which is a combustible gas.

被処理水(下水)中に硫黄分が含まれる場合は、嫌気性細菌の一種である硫酸還元菌は、嫌気リアクタ12内において硫化水素を生成する。このため、嫌気性処理水中には、硫化水素が硫化水素イオン(HS)、硫化物イオン(S2−)、硫化水素(HS)の形態で溶解する(これらは、液中のpHにより形態を変えるが、以降では硫化水素と呼ぶ)。そして、このように生成した硫化水素は、上記したバイオガス中に混入する。 When the water to be treated (sewage) contains a sulfur content, sulfate-reducing bacteria that are a kind of anaerobic bacteria produce hydrogen sulfide in the anaerobic reactor 12. For this reason, in the anaerobic treated water, hydrogen sulfide is dissolved in the form of hydrogen sulfide ions (HS ), sulfide ions (S 2− ), and hydrogen sulfide (H 2 S) (these are pH values in the liquid). However, in the following, this is referred to as hydrogen sulfide). And the hydrogen sulfide produced | generated in this way mixes in above-described biogas.

好気リアクタ13(好気性処理槽)には、例えば底部近くにブロアが設けられている。ブロアは、好気リアクタ13内に空気を供給できる。好気リアクタ13において、好気性微生物は、残存した有機物を二酸化炭素に分解する。好気リアクタ13において、硝化菌は、原水中に多く含まれるアンモニア(アンモニア性窒素)を亜硝酸(NO )態及び硝酸(NO )態の窒素まで酸化する(好気性処理)。 In the aerobic reactor 13 (aerobic treatment tank), for example, a blower is provided near the bottom. The blower can supply air into the aerobic reactor 13. In the aerobic reactor 13, the aerobic microorganisms decompose the remaining organic matter into carbon dioxide. In the aerobic reactor 13, the nitrifying bacteria oxidize ammonia (ammonia nitrogen) contained in the raw water to nitrogen in a nitrous acid (NO 2 ) state and a nitric acid (NO 3 ) state (aerobic treatment).

硫黄脱窒リアクタ14(硫黄脱窒処理槽)は、硫黄脱窒菌を高濃度に保持した第1担体44を内部(液中)に有する。第1担体44は、微生物が根付き易い表面を有している。第1担体44は、例えば、吊して使用されるひも状のものでもよいし、水より比重が軽く液中で浮遊するものでもよい。なお、第1担体44は、バイオガスや好気性処理水を効果的に接触させるため、硫黄脱窒リアクタ14の液中の上層部に隙間無く充填されることが望ましい。反面、後述するバイオガスの流れによる流動が可能な程度の空間的な余裕があることが望ましい。   The sulfur denitrification reactor 14 (sulfur denitrification treatment tank) has a first carrier 44 holding sulfur denitrifying bacteria at a high concentration inside (in the liquid). The first carrier 44 has a surface on which microorganisms are easily rooted. The first carrier 44 may be, for example, a string-like one used by being hung, or may be one that has a specific gravity lighter than water and floats in the liquid. Note that the first carrier 44 is desirably filled in the upper layer portion of the liquid of the sulfur denitrification reactor 14 without any gap in order to effectively contact biogas and aerobic treated water. On the other hand, it is desirable that there is enough space to allow the flow of the biogas described later.

散気管35は、第1担体44の下方(硫黄脱窒リアクタ14の底部付近)の位置にノズル部45を有しており、ノズル部45を介して硫黄脱窒リアクタ14内にバイオガスおよび硫化水素を供給できる。したがって、このノズル部45は、硫黄脱窒リアクタ14内に貯留された好気性処理水の液面よりも下側に設けられる。バイオガスおよび硫化水素は、散気管35中のブロアの駆動によって、第1担体44の下方から硫黄脱窒リアクタ内に吹き込まれる。なお、硫黄脱窒リアクタ14中の液(流入水)の硫黄量と硝酸態窒素量の比(S/N比)は、硫黄脱窒リアクタ14に供給される硫化水素を含んだバイオガスの流量を調整することで制御される。   The air diffusion pipe 35 has a nozzle portion 45 at a position below the first carrier 44 (near the bottom of the sulfur denitrification reactor 14), and biogas and sulfide are introduced into the sulfur denitrification reactor 14 via the nozzle portion 45. Hydrogen can be supplied. Therefore, the nozzle portion 45 is provided below the liquid surface of the aerobic treated water stored in the sulfur denitrification reactor 14. Biogas and hydrogen sulfide are blown into the sulfur denitrification reactor from below the first carrier 44 by driving the blower in the air diffusion pipe 35. The ratio (S / N ratio) between the amount of sulfur and the amount of nitrate nitrogen in the liquid (inflow water) in the sulfur denitrification reactor 14 is the flow rate of biogas containing hydrogen sulfide supplied to the sulfur denitrification reactor 14. It is controlled by adjusting.

硫黄脱窒菌(代表的なものとして、Thiobacillus denitrificans)による硫黄脱窒処理には、さまざまな報告がある。例えば下記の(1)〜(3)式のように、硫化水素イオン(HS)や単体硫黄(S)と硝酸塩、亜硝酸塩を使って、硫黄を硫酸まで酸化するとともに窒素を窒素ガスまで還元するものがある。このほかに、硫黄としてはチオ硫酸イオン(S 2−)、窒素源としてはNO(亜酸化窒素)等も利用できる。
5HS+8NO +3H→5SO 2−+4N+4HO …(1)
+2NO →N+SO 2− …(2)
5S+6NO +2HO→5SO 2−+3N+4H …(3)
ここでは、硝酸塩による反応を例示したが、亜硝酸塩を利用して、脱窒を行う硫黄脱窒菌も存在する。
There are various reports on sulfur denitrification treatment with sulfur denitrifying bacteria (typically Thiobacillus denitrificans). For example, as shown in the following formulas (1) to (3), hydrogen sulfide ion (HS ), elemental sulfur (S 0 ), nitrate and nitrite are used to oxidize sulfur to sulfuric acid and nitrogen to nitrogen gas. There is something to reduce. In addition, thiosulfate ions (S 2 O 3 2− ) can be used as sulfur, and N 2 O (nitrous oxide) can be used as a nitrogen source.
5HS - + 8NO 3 - + 3H + → 5SO 4 2- + 4N 2 + 4H 2 O ... (1)
S 0 + 2NO 2 → N 2 + SO 4 2− (2)
5S 0 + 6NO 3 + 2H 2 O → 5SO 4 2− + 3N 2 + 4H + (3)
Here, the reaction with nitrate is exemplified, but there is also a sulfur denitrifying bacterium that performs denitrification using nitrite.

従属栄養脱窒リアクタ15(従属栄養脱窒処理槽)は、第2担体46を内部(液中)に有する。第2担体46の構造は、概ね硫黄脱窒リアクタ14の第1担体44と同様である。第2担体46は、従属栄養的脱窒菌(脱窒時に有機物を必要とする。以下、脱窒菌と呼ぶ)を高濃度に保持している。   The heterotrophic denitrification reactor 15 (heterotrophic denitrification treatment tank) has the second carrier 46 inside (in the liquid). The structure of the second carrier 46 is substantially the same as the first carrier 44 of the sulfur denitrification reactor 14. The second carrier 46 maintains a high concentration of heterotrophic denitrifying bacteria (which requires organic substances during denitrification; hereinafter referred to as denitrifying bacteria).

脱窒菌(代表的なものとして、Preudomonas denitrificans等の微生物)は、様々な有機物を利用することができる。一例として、有機物として酢酸を利用する場合の反応を下記(4)式に例示する。
5CHCOO+8NO +8H→5CO+5HCO +4N+4HO…(4)
脱窒菌の作用によって、有機物を還元剤として脱窒反応が進行する(従属栄養脱窒処理)。従属栄養脱窒リアクタ15では、ほぼ完全な脱窒のため、BOD(biochemical oxygen demand)/N比が、例えば2となるように調整される。従属栄養脱窒リアクタ15内でのBOD/N比の調整は、嫌気リアクタ12から供給する嫌気性処理水の量を操作することで調整される。
Denitrifying bacteria (typically, microorganisms such as Preudomonas denitrificans) can use various organic substances. As an example, the reaction when acetic acid is used as the organic substance is illustrated in the following formula (4).
5CH 3 COO + 8NO 3 + 8H + → 5CO 2 + 5HCO 3 + 4N 2 + 4H 2 O (4)
Due to the action of denitrifying bacteria, a denitrification reaction proceeds using organic substances as a reducing agent (heterotrophic denitrification treatment). In the heterotrophic denitrification reactor 15, the BOD (biochemical oxygen demand) / N ratio is adjusted to, for example, 2 for almost complete denitrification. Adjustment of the BOD / N ratio in the heterotrophic denitrification reactor 15 is adjusted by manipulating the amount of anaerobic treated water supplied from the anaerobic reactor 12.

続いて、図4、図5を参照して、本実施形態の水処理装置11を用いた水処理プロセス(水処理方法)について説明する。   Then, with reference to FIG. 4, FIG. 5, the water treatment process (water treatment method) using the water treatment apparatus 11 of this embodiment is demonstrated.

硫黄脱窒リアクタ14および従属栄養脱窒リアクタ15は、図5に示すような条件で設定された。例えば、硫黄脱窒リアクタ14内において、流入水(好気性処理水)のS/N比は、0.5以下に調整されている。本実施形態では、S/N比は、一例として0.4に調整されているが、S/N比は、例えば0.1以上で0.5以下であればどのような値でもよい。   The sulfur denitrification reactor 14 and the heterotrophic denitrification reactor 15 were set under the conditions shown in FIG. For example, in the sulfur denitrification reactor 14, the S / N ratio of the inflow water (aerobic treated water) is adjusted to 0.5 or less. In the present embodiment, the S / N ratio is adjusted to 0.4 as an example, but the S / N ratio may be any value as long as it is, for example, 0.1 or more and 0.5 or less.

硫黄脱窒リアクタ14および従属栄養脱窒リアクタ15内に処理水が滞留する時間は、それぞれ4時間である。なお、この図5の条件は一例であり、被処理水(下水)の条件やその他処理上の条件等によって変動する。   The time for which the treated water stays in the sulfur denitrification reactor 14 and the heterotrophic denitrification reactor 15 is 4 hours, respectively. The conditions shown in FIG. 5 are merely examples, and vary depending on the conditions of the water to be treated (sewage), other treatment conditions, and the like.

まず、下水ポンプ34の駆動によって、下水管25から嫌気リアクタ12に対して下水(被処理水)が供給される。嫌気リアクタ12では、加水分解菌、酸生成菌、メタン生成菌が、下水中の有機物の一部をメタンガスにまで分解し、バイオガスを生成する。同様に、硫酸還元菌は、嫌気リアクタ内において硫化水素を生成する。   First, sewage (treated water) is supplied from the sewage pipe 25 to the anaerobic reactor 12 by driving the sewage pump 34. In the anaerobic reactor 12, hydrolyzing bacteria, acid-producing bacteria, and methanogens decompose some of the organic matter in the sewage into methane gas, thereby producing biogas. Similarly, sulfate-reducing bacteria produce hydrogen sulfide in an anaerobic reactor.

これらの嫌気性処理で発生した硫化水素を含んだバイオガスは、散気管35およびブロアを介して硫黄脱窒リアクタ14に供給される。嫌気リアクタ12で処理された嫌気性処理水は、第1ポンプ31の駆動によって第1配管21を介して従属栄養脱窒リアクタ15に送られる。なお、この嫌気性処理で処理された嫌気性処理水中には、被処理水(下水)中に含まれるアンモニア(アンモニア性窒素)がそのまま溶存している。   The biogas containing hydrogen sulfide generated by these anaerobic treatments is supplied to the sulfur denitrification reactor 14 through the air diffuser 35 and the blower. The anaerobic treated water treated in the anaerobic reactor 12 is sent to the heterotrophic denitrification reactor 15 through the first pipe 21 by driving the first pump 31. In addition, in the anaerobic treated water treated by the anaerobic treatment, ammonia (ammonia nitrogen) contained in the water to be treated (sewage) is dissolved as it is.

従属栄養脱窒リアクタ15に送られた嫌気性処理水は、従属栄養脱窒リアクタ15内で一旦貯留される。しかしながら、従属栄養脱窒リアクタ15内に亜硝酸(NO )および硝酸(NO )が供給されない状態では、特段の反応はなされない。従属栄養脱窒リアクタ15内に貯留された嫌気性処理水の上澄は、第2配管22を介して好気リアクタ13に供給される。 The anaerobic treated water sent to the heterotrophic denitrification reactor 15 is temporarily stored in the heterotrophic denitrification reactor 15. However, in the state where nitrous acid (NO 2 ) and nitric acid (NO 3 ) are not supplied into the heterotrophic denitrification reactor 15, no particular reaction is performed. The supernatant of the anaerobic treated water stored in the heterotrophic denitrification reactor 15 is supplied to the aerobic reactor 13 via the second pipe 22.

好気リアクタ13では、好気性微生物の働きにより、嫌気性処理水中に残存した有機物を二酸化炭素に分解する。また好気リアクタ13では、硝化菌の働きにより、嫌気性処理水中に含まれるアンモニア(アンモニア性窒素)を亜硝酸(NO )態及び硝酸(NO )態の窒素まで酸化する。好気リアクタ13で処理された好気性処理水は、第2ポンプ32の駆動によって第3配管23を介して硫黄脱窒リアクタ14に送られる。 In the aerobic reactor 13, the organic matter remaining in the anaerobic treated water is decomposed into carbon dioxide by the action of the aerobic microorganism. The aerobic reactor 13 oxidizes ammonia (ammonia nitrogen) contained in the anaerobic treated water to nitrogen in a nitrous acid (NO 2 ) state and a nitric acid (NO 3 ) state by the action of nitrifying bacteria. The aerobic treated water treated in the aerobic reactor 13 is sent to the sulfur denitrification reactor 14 through the third pipe 23 by driving the second pump 32.

硫黄脱窒リアクタ14内には、散気管35およびノズル部45を介して硫化水素を含むバイオガスが供給される。硫黄脱窒リアクタ14では、硫黄脱窒菌が硫黄脱窒反応を行う。硫黄脱窒菌は、硫化水素イオン(HS)、単体硫黄(S)、硝酸塩、および亜硝酸塩を使って、窒素を窒素ガスまで還元する。また、これと同時に、硫黄脱窒菌は、硫黄を硫酸まで酸化する。 A biogas containing hydrogen sulfide is supplied into the sulfur denitrification reactor 14 through the air diffusion pipe 35 and the nozzle portion 45. In the sulfur denitrification reactor 14, sulfur denitrification bacteria perform a sulfur denitrification reaction. Sulfur denitrifying bacteria reduce nitrogen to nitrogen gas using hydrogen sulfide ions (HS ), elemental sulfur (S 0 ), nitrates, and nitrites. At the same time, sulfur denitrifying bacteria oxidize sulfur to sulfuric acid.

硫黄脱窒処理によって硫化水素が使用されることで、バイオガスの脱硫処理(バイオガス中から硫化水素を除去する処理)がなされる。脱硫処理されたバイオガスおよび硫黄脱窒反応で生じた窒素は、第2ガス管42を介して回収される。   By using hydrogen sulfide by sulfur denitrification treatment, biogas desulfurization treatment (treatment for removing hydrogen sulfide from biogas) is performed. The desulfurized biogas and the nitrogen generated by the sulfur denitrification reaction are recovered through the second gas pipe 42.

このような硫黄脱窒処理によって、好気性処理水中に含まれる硝酸態窒素の一部(約40%)が除去される。硫黄脱窒リアクタ14で処理された硫黄脱窒処理水は、第3ポンプ33の駆動によって、第4配管24を介して従属栄養脱窒リアクタ15に送られる。   By such sulfur denitrification treatment, a part (about 40%) of nitrate nitrogen contained in the aerobic treated water is removed. The sulfur denitrification treated water treated in the sulfur denitrification reactor 14 is sent to the heterotrophic denitrification reactor 15 via the fourth pipe 24 by driving the third pump 33.

従属栄養脱窒リアクタ15には、硫黄脱窒処理水のほかに、上述のように嫌気リアクタ12からの嫌気性処理水が送られる。この嫌気性処理水には、嫌気性処理で分解されなかった有機物の残部が含まれている。この嫌気性処理水によって、従属栄養脱窒処理に必要な量の有機物が従属栄養脱窒リアクタ15に供給される。   In addition to the sulfur denitrification treated water, the anaerobic treated water from the anaerobic reactor 12 is sent to the heterotrophic denitrification reactor 15 as described above. This anaerobic treated water contains the remainder of organic matter that was not decomposed by the anaerobic treatment. With this anaerobic treated water, an amount of organic matter necessary for the heterotrophic denitrification treatment is supplied to the heterotrophic denitrification reactor 15.

従属栄養脱窒リアクタ15では、脱窒菌は、有機物(有機物の残部)を還元剤として脱窒反応を行う。従属栄養脱窒リアクタ15での脱窒反応によって、硫黄脱窒処理水中の硝酸態窒素の残部(好気性処理水中に含まれた全硝酸態窒素の約60%)を除去することができる。   In the heterotrophic denitrification reactor 15, the denitrifying bacteria performs a denitrification reaction using the organic substance (the remainder of the organic substance) as a reducing agent. By the denitrification reaction in the heterotrophic denitrification reactor 15, the remainder of nitrate nitrogen in the sulfur denitrification treated water (about 60% of the total nitrate nitrogen contained in the aerobic treated water) can be removed.

この従属栄養脱窒処理によって、先に述べた硫黄脱窒と合わせて、好気性処理水中の硝酸態窒素の略100%が除去される。従属栄養脱窒処理によって生じた窒素ガスは、第3ガス管43を介して回収される。なお、ここで、硝酸態窒素の「残部」とは、硫黄脱窒処理で処理されなかった硝酸態窒素の全量をいうものであるが、「残部」は、硫黄脱窒処理によって処理されなかった硝酸態窒素の一部をいうものであってもよい。なお、後者の場合には、処理水中の硝酸態窒素の除去率は、硫黄脱窒処理と従属栄養脱窒処理とを合算しても100%に到達しない。   By this heterotrophic denitrification treatment, almost 100% of nitrate nitrogen in the aerobic treated water is removed together with the sulfur denitrification described above. Nitrogen gas generated by the heterotrophic denitrification process is recovered via the third gas pipe 43. Here, the “remainder” of nitrate nitrogen means the total amount of nitrate nitrogen that was not treated by the sulfur denitrification treatment, but the “residue” was not treated by the sulfur denitrification treatment. It may be a part of nitrate nitrogen. In the latter case, the removal rate of nitrate nitrogen in the treated water does not reach 100% even when the sulfur denitrification treatment and the heterotrophic denitrification treatment are combined.

従属栄養脱窒処理水の上澄は、第2配管22を介して好気リアクタ13に送られる。第1ポンプ31(送水部)は、ある一定の流量で従属栄養脱窒リアクタ15に嫌気性処理水を送っているが、この第1ポンプ31の駆動力によって、当該嫌気性処理水と同じ流量の従属栄養脱窒処理水が好気リアクタ13に供給される。好気リアクタ13内に送られた従属栄養脱窒処理水は、好気性処理水と混ぜ合わされる。このように混ぜ合わされた従属栄養脱窒処理水は、同じく第1ポンプ31の駆動力によって、上記の嫌気性処理水と同じ流量で、好気リアクタ13から排水管に排水される。   The supernatant of the heterotrophic denitrification water is sent to the aerobic reactor 13 via the second pipe 22. The first pump 31 (water supply unit) sends the anaerobic treated water to the heterotrophic denitrification reactor 15 at a constant flow rate, and the same flow rate as that of the anaerobic treated water by the driving force of the first pump 31. Heterotrophic denitrification treated water is supplied to the aerobic reactor 13. The heterotrophic denitrification treated water sent into the aerobic reactor 13 is mixed with the aerobic treated water. The heterotrophic denitrification treated water mixed in this way is drained from the aerobic reactor 13 to the drain pipe at the same flow rate as the anaerobic treated water by the driving force of the first pump 31.

実施形態の水処理装置11は、有機物とアンモニア性窒素とを含んだ被処理水中の前記有機物の一部を分解する嫌気性処理槽と、前記有機物の残部を含む前記嫌気性処理槽で処理された嫌気性処理水中の、前記有機物の残部を分解すると共に前記アンモニア性窒素を硝酸態窒素にする好気性処理槽と、前記嫌気性処理槽から発生した硫化水素と、前記好気性処理槽で処理された好気性処理水と、硫黄脱窒菌と、を接触させて、前記硫化水素を還元剤として前記硝酸態窒素の一部を脱窒する硫黄脱窒処理槽と、前記硫黄脱窒処理槽で処理された硫黄脱窒処理水と前記嫌気性処理槽で処理された嫌気性処理水と従属栄養脱窒菌とを接触させて、前記嫌気性処理水中の前記有機物の残部を還元剤として、前記硝酸態窒素の残部を脱窒する従属栄養脱窒処理槽と、を備える。   The water treatment apparatus 11 of the embodiment is treated in the anaerobic treatment tank that decomposes a part of the organic matter in the water to be treated containing organic matter and ammonia nitrogen, and the anaerobic treatment tank that contains the remainder of the organic matter. The aerobic treatment tank that decomposes the remainder of the organic matter in the anaerobic treatment water and converts the ammoniacal nitrogen to nitrate nitrogen, hydrogen sulfide generated from the anaerobic treatment tank, and treatment in the aerobic treatment tank A sulfur aerobic treatment water and a sulfur denitrification bacterium, and a sulfur denitrification treatment tank for denitrifying a part of the nitrate nitrogen using the hydrogen sulfide as a reducing agent, and the sulfur denitrification treatment tank The treated sulfur denitrification treated water, the anaerobic treated water treated in the anaerobic treatment tank and the heterotrophic denitrifying bacteria are brought into contact with each other, and the remaining nitric acid in the anaerobic treated water is used as a reducing agent, and the nitric acid Heterotrophic denitrification that denitrifies the rest of the state nitrogen Comprising a treatment tank, a.

また、実施形態の水処理方法は、有機物とアンモニア性窒素とを含んだ被処理水中の前記有機物の一部を分解する嫌気性処理と、前記有機物の残部を含む前記嫌気性処理で処理された嫌気性処理水中の、前記有機物の残部を分解すると共に前記アンモニア性窒素を硝酸態窒素にする好気性処理と、前記嫌気性処理で発生した硫化水素と、前記好気性処理で処理された好気性処理水と、硫黄脱窒菌と、を接触させて、前記硫化水素を還元剤として前記硝酸態窒素の一部を脱窒する硫黄脱窒処理と、前記硫黄脱窒処理で処理された硫黄脱窒処理水と前記嫌気性処理で処理された嫌気性処理水と従属栄養脱窒菌とを接触させて、前記嫌気性処理水中の前記有機物の残部を還元剤として、前記硝酸態窒素の残部を脱窒する従属栄養脱窒処理と、を備える。   Moreover, the water treatment method of the embodiment was treated by anaerobic treatment for decomposing a part of the organic matter in the water to be treated containing organic matter and ammonia nitrogen, and the anaerobic treatment containing the remainder of the organic matter. In the anaerobic treated water, the aerobic treatment which decomposes the remainder of the organic matter and converts the ammoniacal nitrogen to nitrate nitrogen, hydrogen sulfide generated in the anaerobic treatment, and aerobic treated in the aerobic treatment Sulfur denitrification treatment in which treated water and sulfur denitrifying bacteria are contacted to denitrify a part of the nitrate nitrogen using the hydrogen sulfide as a reducing agent, and sulfur denitrification treated in the sulfur denitrification treatment The treated water, the anaerobic treated water treated in the anaerobic treatment and the heterotrophic denitrifying bacteria are brought into contact with each other, and the remainder of the nitrate nitrogen is denitrified using the remainder of the organic matter in the anaerobic treated water as a reducing agent. A heterotrophic denitrification process, comprising .

これらの構成によれば、硫黄脱窒処理および従属栄養脱窒処理によって、処理水中から窒素をほぼ100%除去することができる。これによって、河川中の富栄養化を有効に防止できる。また、硫黄脱窒処理と併用することによって、従属栄養脱窒処理で負担する脱窒量を低減できるため、従属栄養脱窒処理で必要な有機物量を低減できる。これによって、嫌気性処理によって浄化された嫌気性処理水中で有機物が不足し、従属栄養脱窒処理で十分な脱窒が起こらなくなることを防止できる。さらに、嫌気性処理で発生した硫化水素を従属栄養脱窒処理で有効に活用できるため、従属栄養脱窒処理に添加する単体硫黄の量を少なくしたり、単体硫黄を添加する回数を少なくしたり、或いは単体硫黄の添加を不要としたりできる。これによって、水処理コストを低減することができる。   According to these structures, almost 100% of nitrogen can be removed from the treated water by sulfur denitrification treatment and heterotrophic denitrification treatment. This can effectively prevent eutrophication in the river. Moreover, since it can reduce the amount of denitrification which bears by heterotrophic denitrification processing by using together with sulfur denitrification processing, the amount of organic substances required by heterotrophic denitrification processing can be reduced. As a result, it is possible to prevent the organic matter from being deficient in the anaerobic treated water purified by the anaerobic treatment, so that sufficient denitrification does not occur in the heterotrophic denitrification treatment. In addition, hydrogen sulfide generated in anaerobic treatment can be effectively used in heterotrophic denitrification treatment, so the amount of elemental sulfur added to heterotrophic denitrification treatment can be reduced, and the number of additions of elemental sulfur can be reduced. Alternatively, the addition of elemental sulfur can be made unnecessary. Thereby, the water treatment cost can be reduced.

水処理装置は、前記嫌気性処理槽で発生したバイオガスおよび前記硫化水素を前記硫黄脱窒処理槽内に供給する散気管35と、前記硫黄脱窒処理槽内で脱硫処理された前記バイオガスを回収するガス管と、を備える。   The water treatment apparatus includes a biogas generated in the anaerobic treatment tank and an aeration pipe 35 for supplying the hydrogen sulfide into the sulfur denitrification treatment tank, and the biogas desulfurized in the sulfur denitrification treatment tank. A gas pipe for collecting the gas.

この構成によれば、硫黄脱窒処理でバイオガス中の硫化水素を除去することができる。これによって、別途に処理プロセス(脱硫処理)が不要なバイオガスを得ることができるとともに、硫化水素を硫黄脱窒処理で有効活用することができる。   According to this configuration, hydrogen sulfide in the biogas can be removed by sulfur denitrification treatment. This makes it possible to obtain a biogas that does not require a separate treatment process (desulfurization treatment) and to effectively use hydrogen sulfide in the sulfur denitrification treatment.

本実施形態では、散気管35のノズル部45は、前記硫黄脱窒処理槽内に貯留された前記好気性処理水の液面よりも下側に設けられる。この構成によれば、硫黄脱窒処理槽内の好気性処理水中に効率よく硫化水素を溶存させることができる。   In this embodiment, the nozzle part 45 of the diffuser pipe 35 is provided below the liquid level of the aerobic treated water stored in the sulfur denitrification treatment tank. According to this configuration, hydrogen sulfide can be efficiently dissolved in the aerobic treated water in the sulfur denitrification treatment tank.

水処理装置11は、前記好気性処理槽から延びるとともに前記好気性処理槽で処理された好気性処理水が排出される排出管26と、前記嫌気性処理槽から前記従属栄養脱窒処理槽に所定の流量で前記嫌気性処理水を送るとともに、前記従属栄養脱窒処理槽で処理された従属栄養処理水を、前記所定の流量と同じ流量で前記従属栄養脱窒処理槽から前記好気性処理槽に送り、排出管26を介して前記好気性処理槽から排出する送水部と、を備える。   The water treatment device 11 extends from the aerobic treatment tank and discharges the aerobic treatment water treated in the aerobic treatment tank, and from the anaerobic treatment tank to the heterotrophic denitrification treatment tank. Sending the anaerobic treated water at a predetermined flow rate and treating the heterotrophic treated water treated in the heterotrophic denitrification treatment tank from the heterotrophic denitrification treatment tank at the same flow rate as the predetermined flow rate A water supply section that is sent to the tank and discharged from the aerobic treatment tank through the discharge pipe 26.

この構成によれば、前記嫌気性処理槽から送った嫌気性処理水と同量の従属栄養処理水を外部に排出できる。これによって、低コストで安定的に連続稼働が可能な水処理装置11を実現できる。   According to this structure, the heterotrophic treated water of the same amount as the anaerobic treated water sent from the anaerobic treated tank can be discharged to the outside. Thereby, the water treatment apparatus 11 which can be continuously operated stably at low cost can be realized.

前記硫黄脱窒処理槽において、前記硫化水素中の硫黄を含む総硫黄量と前記硝酸態窒素量の比(S/N比)が0.5以下である。本実施形態では、前段の硫黄脱窒処理と、後段の従属栄養脱窒処理と、の2段階の脱窒処理がなされる。そして、要求される処理プロセスでは、嫌気性処理水がある程度浄化(有機物が除去)されているため、後段の従属栄養脱窒には、還元剤となる有機物の量が十分に供給されないという事情(前提条件)がある。また、S/N比が0.5よりも大きくなるように硫化水素(硫黄脱窒において還元剤となる)を供給すると、硫黄脱窒処理槽内に単体硫黄が蓄積され、当該蓄積によって硫黄脱窒処理槽内で閉塞が起こる事態を生ずることとなる。   In the sulfur denitrification treatment tank, a ratio (S / N ratio) of a total sulfur amount including sulfur in the hydrogen sulfide and the nitrate nitrogen amount is 0.5 or less. In the present embodiment, a two-stage denitrification process is performed, which is a first-stage sulfur denitrification process and a second-stage heterotrophic denitrification process. And in the required treatment process, anaerobic treated water is purified to some extent (organic matter is removed), so that the amount of organic matter that serves as a reducing agent is not sufficiently supplied to the subsequent heterotrophic denitrification ( There is a precondition). When hydrogen sulfide (which becomes a reducing agent in sulfur denitrification) is supplied so that the S / N ratio is greater than 0.5, single sulfur is accumulated in the sulfur denitrification treatment tank, and sulfur accumulation is caused by the accumulation. There will be a situation in which blockage occurs in the nitriding tank.

上記の構成によれば、硫黄脱窒処理を従属栄養脱窒処理よりも先に行って、S/N比が0.5以下となるようにすることで、ほぼ完全な脱窒を実現することができる。   According to the above configuration, the sulfur denitrification treatment is performed prior to the heterotrophic denitrification treatment so that the S / N ratio is 0.5 or less, thereby realizing almost complete denitrification. Can do.

さらに、上記構成によれば、過剰な硫黄の付加によって、硫黄脱窒菌による脱窒反応が阻害されることなく、所望の水処理プロセスが実現できる。また上記構成によれば、過剰な硫黄の添加を防止することができ、硫黄脱窒処理槽内で単体硫黄が沈殿堆積し、硫黄脱窒処理槽の内部が閉塞されることを防止できる。硫黄脱窒処理槽内で単体硫黄の蓄積が防止されるため、清掃のために単体硫黄を硫黄脱窒処理槽内から取り出したり、取り出された単体硫黄を廃棄したりするために必要なコストを削減できる。   Furthermore, according to the said structure, a desired water treatment process is realizable, without the denitrification reaction by sulfur denitrifying bacteria being inhibited by addition of excess sulfur. Moreover, according to the said structure, addition of excess sulfur can be prevented, and single sulfur can precipitate and deposit in a sulfur denitrification processing tank, and it can prevent that the inside of a sulfur denitrification processing tank is obstruct | occluded. Accumulation of elemental sulfur in the sulfur denitrification treatment tank is prevented, so the cost required to remove elemental sulfur from the sulfur denitrification treatment tank for cleaning or to discard the extracted elemental sulfur is eliminated. Can be reduced.

いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

11…水処理装置、12…嫌気リアクタ、13…好気リアクタ、14…硫黄脱窒リアクタ、15…従属栄養脱窒リアクタ、31…第1ポンプ、35…散気管、42…第2ガス管、45…ノズル部 DESCRIPTION OF SYMBOLS 11 ... Water treatment apparatus, 12 ... Anaerobic reactor, 13 ... Aerobic reactor, 14 ... Sulfur denitrification reactor, 15 ... Heterotrophic denitrification reactor, 31 ... First pump, 35 ... Aeration pipe, 42 ... Second gas pipe, 45 ... Nozzle

Claims (8)

有機物とアンモニア性窒素とを含んだ被処理水中の前記有機物の一部を分解する嫌気性処理槽と、
前記有機物の残部を含む前記嫌気性処理槽で処理された嫌気性処理水中の、前記有機物の残部を分解すると共に前記アンモニア性窒素を硝酸態窒素にする好気性処理槽と、
前記嫌気性処理槽から発生した硫化水素と、前記好気性処理槽で処理された好気性処理水と、硫黄脱窒菌と、を接触させて、前記硫化水素を還元剤として前記硝酸態窒素の一部を脱窒する硫黄脱窒処理槽と、
前記硫黄脱窒処理槽で処理された硫黄脱窒処理水と前記嫌気性処理槽で処理された嫌気性処理水と従属栄養脱窒菌とを接触させて、前記嫌気性処理水中の前記有機物の残部を還元剤として、前記硝酸態窒素の残部を脱窒する従属栄養脱窒処理槽と、
を備える水処理装置。
An anaerobic treatment tank for decomposing part of the organic matter in the water to be treated containing organic matter and ammoniacal nitrogen;
An aerobic treatment tank that decomposes the remainder of the organic substance and converts the ammonia nitrogen to nitrate nitrogen in the anaerobic treatment water treated in the anaerobic treatment tank containing the remainder of the organic substance;
Hydrogen sulfide generated from the anaerobic treatment tank, aerobic treated water treated in the aerobic treatment tank, and sulfur-denitrifying bacteria are brought into contact with each other, and one of the nitrate nitrogens using the hydrogen sulfide as a reducing agent. A sulfur denitrification treatment tank for denitrifying the part,
Contacting the sulfur denitrification treated water treated in the sulfur denitrification treatment tank, the anaerobic treated water treated in the anaerobic treatment tank and the heterotrophic denitrifying bacteria, the remainder of the organic matter in the anaerobic treated water A heterotrophic denitrification treatment tank that denitrifies the remainder of the nitrate nitrogen using a reducing agent,
A water treatment apparatus comprising:
前記嫌気性処理槽で発生したバイオガスおよび前記硫化水素を前記硫黄脱窒処理槽内に供給する散気管と、
前記硫黄脱窒処理槽内で脱硫処理された前記バイオガスを回収するガス管と、
を備える請求項1に記載の水処理装置。
An air diffuser for supplying the biogas generated in the anaerobic treatment tank and the hydrogen sulfide into the sulfur denitrification treatment tank;
A gas pipe for collecting the biogas desulfurized in the sulfur denitrification tank;
A water treatment device according to claim 1.
前記散気管のノズル部は、前記硫黄脱窒処理槽内に貯留された前記好気性処理水の液面よりも下側に設けられる請求項2に記載の水処理装置。   The water treatment apparatus according to claim 2, wherein a nozzle portion of the air diffusion pipe is provided below a liquid surface of the aerobic treated water stored in the sulfur denitrification treatment tank. 前記好気性処理槽から延びるとともに前記好気性処理槽で処理された好気性処理水が排出される排出管と、
前記嫌気性処理槽から前記従属栄養脱窒処理槽に所定の流量で前記嫌気性処理水を送るとともに、前記従属栄養脱窒処理槽で処理された従属栄養脱窒処理水を、前記所定の流量と同じ流量で前記従属栄養脱窒処理槽から前記好気性処理槽に送り、前記排出管を介して前記好気性処理槽から排出する送水部と、
を備える請求項3に記載の水処理装置。
A discharge pipe extending from the aerobic treatment tank and discharged from the aerobic treatment water treated in the aerobic treatment tank;
While sending the anaerobic treated water at a predetermined flow rate from the anaerobic treatment tank to the heterotrophic denitrification treatment tank, the heterotrophic denitrification treated water treated in the heterotrophic denitrification treatment tank is the predetermined flow rate. A water supply section that is sent from the heterotrophic denitrification treatment tank to the aerobic treatment tank at the same flow rate, and is discharged from the aerobic treatment tank through the discharge pipe,
A water treatment device according to claim 3.
前記硫黄脱窒処理槽において、前記硫化水素中の硫黄を含む総硫黄量と前記硝酸態窒素量の比(S/N比)が0.5以下である請求項4に記載の水処理装置。   The water treatment apparatus according to claim 4, wherein a ratio (S / N ratio) of a total sulfur amount including sulfur in the hydrogen sulfide and the nitrate nitrogen amount is 0.5 or less in the sulfur denitrification treatment tank. 有機物とアンモニア性窒素とを含んだ被処理水中の前記有機物の一部を分解する嫌気性処理と、
前記有機物の残部を含む前記嫌気性処理で処理された嫌気性処理水中の、前記有機物の残部を分解すると共に前記アンモニア性窒素を硝酸態窒素にする好気性処理と、
前記嫌気性処理で発生した硫化水素と、前記好気性処理で処理された好気性処理水と、硫黄脱窒菌と、を接触させて、前記硫化水素を還元剤として前記硝酸態窒素の一部を脱窒する硫黄脱窒処理と、
前記硫黄脱窒処理で処理された硫黄脱窒処理水と前記嫌気性処理で処理された嫌気性処理水と従属栄養脱窒菌とを接触させて、前記嫌気性処理水中の前記有機物の残部を還元剤として、前記硝酸態窒素の残部を脱窒する従属栄養脱窒処理と、
を備える水処理方法。
Anaerobic treatment for decomposing part of the organic matter in the water to be treated containing organic matter and ammoniacal nitrogen;
Aerobic treatment of decomposing the remaining organic matter and converting the ammoniacal nitrogen to nitrate nitrogen in the anaerobic treated water treated by the anaerobic treatment containing the remaining organic matter;
Hydrogen sulfide generated by the anaerobic treatment, aerobic treated water treated by the aerobic treatment, and sulfur denitrifying bacteria are contacted, and a part of the nitrate nitrogen is reduced using the hydrogen sulfide as a reducing agent. Sulfur denitrification treatment to denitrify,
The sulfur denitrification treated water treated in the sulfur denitrification treatment, the anaerobic treated water treated in the anaerobic treatment and the heterotrophic denitrifying bacteria are brought into contact with each other, and the remainder of the organic matter in the anaerobic treated water is reduced. Heterotrophic denitrification treatment for denitrifying the remainder of the nitrate nitrogen as an agent,
A water treatment method comprising:
前記嫌気性処理で発生したバイオガスおよび前記硫化水素を前記硫黄脱窒処理に供給し、前記硫黄脱窒処理で脱硫処理された前記バイオガスを回収する処理を備えた請求項6に記載の水処理方法。   The water according to claim 6, further comprising a process of supplying the biogas generated in the anaerobic process and the hydrogen sulfide to the sulfur denitrification process and recovering the biogas desulfurized by the sulfur denitrification process. Processing method. 前記硫黄脱窒処理において、前記硫化水素中の硫黄を含む総硫黄量と前記硝酸態窒素量の比(S/N比)が0.5以下である請求項7に記載の水処理方法。   The water treatment method according to claim 7, wherein, in the sulfur denitrification treatment, a ratio (S / N ratio) of a total sulfur amount including sulfur in the hydrogen sulfide and the nitrate nitrogen amount is 0.5 or less.
JP2013079653A 2013-04-05 2013-04-05 Water treatment device, water treatment method Active JP6116975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013079653A JP6116975B2 (en) 2013-04-05 2013-04-05 Water treatment device, water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079653A JP6116975B2 (en) 2013-04-05 2013-04-05 Water treatment device, water treatment method

Publications (2)

Publication Number Publication Date
JP2014200747A true JP2014200747A (en) 2014-10-27
JP6116975B2 JP6116975B2 (en) 2017-04-19

Family

ID=52351700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079653A Active JP6116975B2 (en) 2013-04-05 2013-04-05 Water treatment device, water treatment method

Country Status (1)

Country Link
JP (1) JP6116975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600942A (en) * 2015-09-24 2016-05-25 中国水产科学研究院渔业机械仪器研究所 Method for formation of bioflocs by cyanobacterial bloom
JP2017113676A (en) * 2015-12-22 2017-06-29 株式会社東芝 Waste water treatment apparatus, and waste water treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234322A (en) * 1992-02-24 1993-09-10 Meidensha Corp Method and apparatus for waste water processing using sulfuric bacteria
JP2000189995A (en) * 1999-01-05 2000-07-11 Ebara Corp Method and device for removing nitrogen in waste water
JP2003071490A (en) * 2001-09-06 2003-03-11 Nippon Steel Corp Method for removing nitrogen from wastewater
JP2005288371A (en) * 2004-04-01 2005-10-20 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
JP2010042327A (en) * 2008-08-08 2010-02-25 Toshiba Corp Water treatment system
US20100163482A1 (en) * 2008-12-29 2010-07-01 Industrial Technology Research Institute System and method for treating ammonia-based wastewater
JP2011189286A (en) * 2010-03-15 2011-09-29 Toshiba Corp Water treatment system for organic wastewater
JP2012066186A (en) * 2010-09-22 2012-04-05 Toshiba Corp Water treatment apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234322A (en) * 1992-02-24 1993-09-10 Meidensha Corp Method and apparatus for waste water processing using sulfuric bacteria
JP2000189995A (en) * 1999-01-05 2000-07-11 Ebara Corp Method and device for removing nitrogen in waste water
JP2003071490A (en) * 2001-09-06 2003-03-11 Nippon Steel Corp Method for removing nitrogen from wastewater
JP2005288371A (en) * 2004-04-01 2005-10-20 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
JP2010042327A (en) * 2008-08-08 2010-02-25 Toshiba Corp Water treatment system
US20100163482A1 (en) * 2008-12-29 2010-07-01 Industrial Technology Research Institute System and method for treating ammonia-based wastewater
JP2011189286A (en) * 2010-03-15 2011-09-29 Toshiba Corp Water treatment system for organic wastewater
JP2012066186A (en) * 2010-09-22 2012-04-05 Toshiba Corp Water treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600942A (en) * 2015-09-24 2016-05-25 中国水产科学研究院渔业机械仪器研究所 Method for formation of bioflocs by cyanobacterial bloom
JP2017113676A (en) * 2015-12-22 2017-06-29 株式会社東芝 Waste water treatment apparatus, and waste water treatment method

Also Published As

Publication number Publication date
JP6116975B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5355459B2 (en) Organic wastewater treatment system
JP5197223B2 (en) Water treatment system
JP5100091B2 (en) Water treatment method
JP2011189249A (en) Biological nitrogen treatment method for ammonia-containing waste water
JP5006845B2 (en) Method for suppressing generation of nitrous oxide
WO2013084973A1 (en) Processing system and processing method for nitrogen-containing organic waste water
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
EP2226296A1 (en) Nitrite type nitrification-reactive sludge, production method therefor, production apparatus therefor, and waste water treatment method and waste water treatment apparatus
US10556816B2 (en) Wastewater treatment apparatus
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
JP2006205097A (en) Biological treatment method of wastewater
JP5858763B2 (en) Nitrogen-containing organic wastewater treatment system and treatment method
JP2003126886A (en) Biological denitrification method and device of the same
JP6116975B2 (en) Water treatment device, water treatment method
JP2012066186A (en) Water treatment apparatus
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP3656426B2 (en) Biological treatment of ammoniacal nitrogen
JP5812277B2 (en) Nitrogen removal method
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP2001079593A (en) Removing method of nitrogen in waste water
JP2005288371A (en) Wastewater treatment method
JP5951531B2 (en) Wastewater treatment equipment
JP6113611B2 (en) Organic wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R151 Written notification of patent or utility model registration

Ref document number: 6116975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151