JP2006205097A - Biological treatment method of wastewater - Google Patents

Biological treatment method of wastewater Download PDF

Info

Publication number
JP2006205097A
JP2006205097A JP2005022465A JP2005022465A JP2006205097A JP 2006205097 A JP2006205097 A JP 2006205097A JP 2005022465 A JP2005022465 A JP 2005022465A JP 2005022465 A JP2005022465 A JP 2005022465A JP 2006205097 A JP2006205097 A JP 2006205097A
Authority
JP
Japan
Prior art keywords
anaerobic
selenium
aerobic
wastewater
anaerobic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005022465A
Other languages
Japanese (ja)
Inventor
Hirayasu Nakagawa
平安 中川
Tetsuya Ito
哲也 伊藤
Kazuhide Kamimura
一秀 上村
Hideki Kamiyoshi
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005022465A priority Critical patent/JP2006205097A/en
Publication of JP2006205097A publication Critical patent/JP2006205097A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological treatment method of wastewater which can efficiently reduce and remove nitrogen and selenium in wastewater by improving the selenium reducing capacity of activated sludge. <P>SOLUTION: The biological treatment method comprises a first anaerobic treatment process (6) for bringing the wastewater (1) into contact with activated sludge adhering to a carrier in presence of first organic matter (5) under an anaerobic condition, and a second anaerobic treatment process (8) for bringing the treated water of the first anaerobic treatment process (6) into contact with activated sludge adhering to a carrier in presence of second organic matter (7) under an anaerobic condition. This method may additionally contain a solid-liquid separation process (10) for performing the solid-liquid separation of the treated water of the second anaerobic treatment process (8), a first aerobic treatment process (2) for bringing the wastewater into contact with activated sludge adhering to a carrier under an aerobic condition before introducing the wastewater to the first anaerobic treatment process (6), and a second aerobic treatment process (13) for bringing the treated water (14a) of the second anaerobic treatment process or the separated water (11) of the solid-liquid separation process into contact with activated sludge adhering to a carrier under an aerobic condition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排水の生物学的処理方法に関し、特に、石炭等の燃焼排ガス中の硫黄酸化物質を除去する湿式排煙脱硫装置等から排出される排水など、窒素と溶解性セレン(6価および4価)を含む排水の生物学的処理方法に関する。   The present invention relates to a biological treatment method of wastewater, and in particular, nitrogen and soluble selenium (hexavalent and selenium) such as wastewater discharged from a wet flue gas desulfurization device that removes sulfur oxides in combustion exhaust gas such as coal. The present invention relates to a biological treatment method of wastewater containing tetravalent).

石炭等を燃料とする燃焼排ガス中の硫黄酸化物質を除去する湿式排煙脱硫装置等から排出される排水には、排ガス(灰を含む)中の微量金属類や窒素化合物(アンモニア性窒素、硝酸性窒素および亜硝酸性窒素)等が含まれるため、放流規制値を満足する水質まで無害化して放流されている。   Wastewater discharged from wet flue gas desulfurization equipment that removes sulfur oxides from combustion exhaust gas using coal, etc. as fuel, includes trace metals and nitrogen compounds (ammonia nitrogen, nitric acid) in exhaust gas (including ash) The water quality that satisfies the discharge regulation value is rendered harmless and discharged.

今日放流水質規制強化の一環として、セレン(Se)等の金属類が規制対象物資となった。因みに石炭を燃料とする燃焼排ガス中の硫黄酸化物質を除去する湿式排煙脱硫装置等から排出される排水中のセレン濃度は、5mg/l程度(主に6価セレンが大部分を占める)であるのに対し、セレンの放流規制値は0.1mg/l以下であるため、セレンの処理は不可欠である。   Metals such as selenium (Se) have become regulated substances as part of the tightening of effluent quality regulations today. Incidentally, the concentration of selenium in wastewater discharged from wet flue gas desulfurization equipment that removes sulfur oxides in combustion exhaust gas using coal as fuel is about 5 mg / l (mainly hexavalent selenium occupies most). On the other hand, since the selenium release regulation value is 0.1 mg / l or less, the selenium treatment is indispensable.

セレンは石炭の燃焼に際し排ガスに含まれて排出され、排水に6価や4価のセレン酸塩(SeO4 2-、SeO3 2-)として溶解している。このセレン酸塩のうち4価セレン(主としてSeO3 2-の形態で存在する)は鉄等と難溶解性の金属塩を形成するため、凝集沈殿処理による除去が可能である。しかし6価セレン(SeO4 2-の形態で存在する)は、鉄等と難溶解性の金属塩を形成せず、イオン交換樹脂や活性炭吸着処理でも除去することができない。そのため2価の鉄塩や金属鉄によって6価セレンを一旦4価セレンに還元した後、鉄塩と難溶解性の金属塩を形成する方法があるが、これらの方法はその反応条件から運転費が高く、汚泥発生量が非常に多いという欠点がある。 Selenium is contained in exhaust gas and discharged when coal is burned, and is dissolved in wastewater as hexavalent or tetravalent selenate (SeO 4 2− , SeO 3 2− ). Among these selenates, tetravalent selenium (mainly present in the form of SeO 3 2− ) forms a hardly soluble metal salt with iron or the like, and therefore can be removed by a coagulation precipitation treatment. However, hexavalent selenium (present in the form of SeO 4 2− ) does not form a hardly soluble metal salt with iron or the like, and cannot be removed by ion exchange resin or activated carbon adsorption treatment. For this reason, there is a method in which hexavalent selenium is once reduced to tetravalent selenium with a divalent iron salt or metallic iron, and then a hardly soluble metal salt is formed with the iron salt. However, there is a disadvantage that the amount of sludge generation is very large.

上述の従来法ではセレンを規制値以下に処理することは困難であるが、排水中の6価セレンを4価セレンに還元することができれば、物理化学的処理方法で除去することが可能となる。その方法として以下の生物学的処理方法が提案されている。   In the conventional method described above, it is difficult to treat selenium below the regulation value, but if hexavalent selenium in the waste water can be reduced to tetravalent selenium, it can be removed by a physicochemical treatment method. . As the method, the following biological treatment methods have been proposed.

特許文献1には、嫌気性反応槽にセレン含有水および硝酸イオンを供給し、さらに硝酸イオンの脱窒反応当量より過剰の有機物を供給して槽内の脱窒細菌と嫌気状態で接触させることで、生物反応により6価および4価セレンを単体セレンに還元した後、固液分離する処理方法が記載されている。   In Patent Document 1, selenium-containing water and nitrate ions are supplied to an anaerobic reaction tank, and an excess of organic matter is supplied in excess of the denitrification reaction equivalent of nitrate ions to make contact with denitrifying bacteria in the tank in an anaerobic state. And a method of solid-liquid separation after reducing hexavalent and tetravalent selenium to simple selenium by biological reaction is described.

特許文献2には、第1の嫌気性反応槽と第2の嫌気性反応槽を設けて排水を多段階で嫌気処理する方法において、各槽の後段に第1の固液分離槽と第2の固液分離槽を設けることにより、一方の嫌気処理槽の生物汚泥が他方の嫌気処理槽に移動しないようにして、各嫌気処理槽ごとにそれぞれ独立した生物相の生物汚泥を用いること、および第1の嫌気性反応槽および第2の嫌気性反応槽の両方に、有機物(メタノール)と硝酸(亜硝酸)塩を添加することが記載されている。   In Patent Document 2, in a method in which a first anaerobic reaction tank and a second anaerobic reaction tank are provided to perform anaerobic treatment of wastewater in multiple stages, a first solid-liquid separation tank and a second The biological sludge of one anaerobic treatment tank is not moved to the other anaerobic treatment tank by using the solid-liquid separation tank of It is described that an organic substance (methanol) and nitric acid (nitrous acid) salt are added to both the first anaerobic reaction tank and the second anaerobic reaction tank.

特許文献3には、バチルス属に属し、セレン酸還元能を有する新規性微生物を、セレン酸又はその含有物と接触させるセレン酸の還元方法が記載されている。   Patent Document 3 describes a method for reducing selenic acid in which a novel microorganism belonging to the genus Bacillus and having a selenate reducing ability is brought into contact with selenate or its inclusion.

特許文献4には、図2に示すセレンおよび窒素化合物を含有する排水の処理方法が記載されている。なお、排水1中に含まれる窒素化合物がアンモニアである場合は、前段に設けられた硝化槽(図示省略)により、あらかじめ好気性条件で活性汚泥と接触させてアンモニア性窒素を硝酸性窒素に変換させておく。この排水1を嫌気処理槽20に導入し、嫌気状態のもとに有機物21を添加し、浮遊状態の脱窒菌に接触させて硝酸性窒素を分解する。同時に脱窒菌により排水中に含まれる6価セレンを4価セレンに還元し、さらに単体セレンまで還元して固形化する。なお、有機物21としてはメタノールを用い、排水1中の窒素濃度が低い場合は硝酸(または亜硝酸)塩22を嫌気処理槽20に添加する。   Patent Document 4 describes a method for treating waste water containing selenium and a nitrogen compound shown in FIG. In addition, when the nitrogen compound contained in the waste water 1 is ammonia, it is brought into contact with activated sludge in advance under aerobic conditions by a nitrification tank (not shown) provided in the previous stage to convert ammonia nitrogen to nitrate nitrogen. Let me. This waste water 1 is introduced into the anaerobic treatment tank 20, an organic substance 21 is added under anaerobic conditions, and nitrate nitrogen is decomposed by being brought into contact with floating denitrifying bacteria. At the same time, hexavalent selenium contained in the waste water is reduced to tetravalent selenium by denitrifying bacteria, and further reduced to single selenium to be solidified. Note that methanol is used as the organic substance 21, and nitric acid (or nitrous acid) salt 22 is added to the anaerobic treatment tank 20 when the nitrogen concentration in the wastewater 1 is low.

次に、この嫌気処理槽20の処理液を好気処理槽24に導入し、散気装置25より空気4を供給して、好気性微生物の作用によって残存する有機物(メタノール)を分解する。さらに、この好気処理槽24の処理液を固液分離槽26に導入し、固形物となった単体セレンを沈殿させる。汚泥の一部は、嫌気処理槽20の汚泥濃度を一定に保持するため返送汚泥27として嫌気処理槽20に返送し、残部は、余剰汚泥28として系外に持ち出し処分する。一方、固液分離槽26からの上澄液は処理水14bとして系外に排出する。
特開平08-299986号公報 特開平09-122688号公報 特開平09-248595号公報 特開平11-188387号公報
Next, the treatment liquid of the anaerobic treatment tank 20 is introduced into the aerobic treatment tank 24, and the air 4 is supplied from the aeration device 25 to decompose the remaining organic matter (methanol) by the action of the aerobic microorganisms. Further, the treatment liquid in the aerobic treatment tank 24 is introduced into the solid-liquid separation tank 26 to precipitate single selenium that has become a solid. A part of the sludge is returned to the anaerobic treatment tank 20 as a return sludge 27 in order to keep the sludge concentration in the anaerobic treatment tank 20 constant, and the remaining part is taken out as a surplus sludge 28 and disposed of. On the other hand, the supernatant liquid from the solid-liquid separation tank 26 is discharged out of the system as treated water 14b.
Japanese Patent Application Laid-Open No. 08-299986 Japanese Patent Laid-Open No. 09-122688 JP 09-248595 A Japanese Patent Laid-Open No. 11-188387

図2に示した処理方法(特許文献4)は、窒素化合物とセレンを同時に処理できる利点があるが、嫌気処理槽20や好気処理槽24で浮遊方式活性汚泥を用いている。セレンは微生物に対して毒性があることが知られており、活性汚泥内のセレン蓄積量の増加に伴い、セレン処理性能の悪化や活性汚泥の凝集性悪化の原因となって固液分離性能の低下を招きやすい。   The treatment method (Patent Document 4) shown in FIG. 2 has an advantage that nitrogen compound and selenium can be treated simultaneously, but floating activated sludge is used in the anaerobic treatment tank 20 and the aerobic treatment tank 24. Selenium is known to be toxic to microorganisms, and as the amount of selenium accumulated in the activated sludge increases, it deteriorates the selenium treatment performance and the cohesiveness of the activated sludge. It tends to cause a decline.

また、嫌気処理槽20に後続する好気処理槽24において好気状態に保持するため、嫌気処理槽20で生じた4価セレンや単体セレンが活性汚泥によって再び難処理性の6価セレンに酸化されて再溶出し、セレン除去能力を低下させる。それを防止するため好気処理槽24でORP(酸化還元電位)制御が必要となる。   Further, in order to maintain the aerobic state in the aerobic treatment tank 24 subsequent to the anaerobic treatment tank 20, the tetravalent selenium and the single selenium generated in the anaerobic treatment tank 20 are oxidized again into difficult-to-treat hexavalent selenium by activated sludge. Re-eluted, reducing the ability to remove selenium. In order to prevent this, ORP (oxidation reduction potential) control is required in the aerobic treatment tank 24.

特許文献1、特許文献2に記載の処理方法は、いずれも脱窒のため(酸素源として)の硝酸イオン(亜硝酸イオン)を、排水中のアンモニアの硝化によって得たり、あるいは硝酸イオンを強制的に添加することが不可欠である。このうち特許文献2に記載された処理方法は、2段の嫌気処理によりそれぞれ異なる生物相を用いて処理するものであるが、嫌気処理槽においていずれも浮遊方式活性汚泥を用いているため、やはり特許文献4と同様に浮遊方式活性汚泥に伴う問題点がある。   The treatment methods described in Patent Document 1 and Patent Document 2 both obtain nitrate ions (nitrite ions) for denitrification (as an oxygen source) by nitrification of ammonia in wastewater, or forcibly nitrate ions. Is essential. Among them, the treatment method described in Patent Document 2 is a treatment using different biota by two-stage anaerobic treatment, but since both use an activated sludge in the anaerobic treatment tank, Similar to Patent Document 4, there is a problem with floating activated sludge.

特許文献3に記載の新規微生物による処理方法では、これに際して、培養、純粋分離、汚染排水への接種と培養等の煩雑な手順と長期間の準備が必要となる。またセレン以外、窒素化合物が共存する場合の処理については開示されていない。   In the treatment method using a novel microorganism described in Patent Document 3, complicated procedures such as culture, pure separation, inoculation to contaminated wastewater and culture, and long-term preparation are required. Further, there is no disclosure about the treatment in the case where a nitrogen compound coexists other than selenium.

そこで本発明は、上記の問題点に鑑み、活性汚泥のセレン還元能力を高めることで、排水中の窒素とセレンを効率良く還元して除去することができる排水の生物学的処理方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention provides a biological treatment method of wastewater that can efficiently reduce and remove nitrogen and selenium in wastewater by increasing the selenium reduction ability of activated sludge. For the purpose.

本発明者らは、産業排水処理設備および下水処理場の各種活性汚泥を用いてセレン還元処理について検討した結果、上述の生物学的処理方法とは異なり、いずれの活性汚泥でも、硝酸性窒素の共存によって活性汚泥のセレン還元処理能力がむしろ低下して不安定となること、活性汚泥の馴致所要期間に大きな影響を及ぼすことを見出した。   As a result of studying selenium reduction treatment using various activated sludges in industrial wastewater treatment facilities and sewage treatment plants, the present inventors, unlike the biological treatment method described above, in any activated sludge, It was found that the coexistence of selenium reduction treatment ability of activated sludge is rather lowered and becomes unstable, and it has a great influence on the required duration of acclimatization of activated sludge.

すなわち、本発明に係る排水の生物学的処理方法は、排水を、第1の有機物存在の下に嫌気状態で担体に付着した活性汚泥と接触させる第1の嫌気処理工程と、この第1の嫌気処理工程の処理水を第2の有機物存在の下に嫌気状態で担体に付着した活性汚泥と接触させる第2の嫌気処理工程とを含んでなることを特徴とするものである。   That is, the biological treatment method of wastewater according to the present invention includes a first anaerobic treatment step in which wastewater is brought into contact with activated sludge attached to a carrier in the anaerobic state in the presence of the first organic substance, And a second anaerobic treatment step in which the treated water of the anaerobic treatment step is brought into contact with the activated sludge attached to the carrier in the anaerobic state in the presence of the second organic substance.

なお、前記排水は、窒素とセレンを含有する排水が好ましく、例えば、石炭等の燃焼排ガス中の硫黄酸化物質を除去する湿式排煙脱硫装置等から排出される、主として硝酸性窒素のほか、アンモニア性窒素、亜硝酸性窒素等を含む窒素と主に6価セレンが大部分を占めるセレンを含有する排水がより好ましい。また、前記第1の有機物は、メタノールが好ましい。   The waste water is preferably waste water containing nitrogen and selenium. For example, in addition to nitrate nitrogen mainly discharged from wet flue gas desulfurization equipment that removes sulfur oxides in combustion exhaust gas such as coal, ammonia Wastewater containing nitrogen containing nitrous acid, nitrite nitrogen and selenium mainly comprising hexavalent selenium is more preferable. The first organic substance is preferably methanol.

前記第2の有機物は、酢酸および酢酸塩、エタノール、グリセロール、乳酸およびその塩、ピルビン酸およびその塩、フマル酸およびその塩、リンゴ酸およびその塩、コハク酸およびその塩、グルタミン酸およびその塩、クエン酸およびその塩、グルコース、フラクトース並びにシュークロースから選ばれた1種以上であることが好ましい。   The second organic substance is acetic acid and acetate, ethanol, glycerol, lactic acid and salt thereof, pyruvic acid and salt thereof, fumaric acid and salt thereof, malic acid and salt thereof, succinic acid and salt thereof, glutamic acid and salt thereof, It is preferably at least one selected from citric acid and its salts, glucose, fructose and sucrose.

本発明に係る排水の生物学的処理方法は、前記第2の嫌気処理工程の処理水を固液分離する固液分離工程をさらに含むことができる。この固液分離工程では、第2鉄塩またはアルカリ剤を添加することが好ましい。   The biological treatment method of waste water according to the present invention can further include a solid-liquid separation step of solid-liquid separation of the treated water in the second anaerobic treatment step. In this solid-liquid separation step, it is preferable to add a ferric salt or an alkali agent.

本発明に係る排水の生物学的処理方法は、前記排水を、前記第1の嫌気処理工程に導入する前に、好気状態で担体に付着した活性汚泥と接触させる第1の好気処理工程をさらに含むことができる。   The biological treatment method of waste water according to the present invention is a first aerobic treatment step in which the waste water is brought into contact with activated sludge adhering to a carrier in an aerobic state before being introduced into the first anaerobic treatment step. Can further be included.

本発明に係る排水の生物学的処理方法は、前記第2の嫌気処理工程の処理水を、または前記固液分離工程の分離処理水を、好気状態で担体に付着した活性汚泥と接触させる第2の好気処理工程をさらに含むことができる。   In the biological treatment method of waste water according to the present invention, the treated water in the second anaerobic treatment step or the separated treated water in the solid-liquid separation step is brought into contact with activated sludge attached to a carrier in an aerobic state. A second aerobic treatment step can be further included.

本発明に係る排水の生物学的処理方法は、前記第1の嫌気処理工程および前記第2の嫌気処理工程から排出される洗浄排水を、並びに前記固液分離工程で分離された沈殿物を、第1好気処理工程および第2好気処理工程に混入させずに系外に排出する工程をさらに含むことができる。   The biological treatment method of wastewater according to the present invention is the wastewater discharged from the first anaerobic treatment step and the second anaerobic treatment step, and the precipitate separated in the solid-liquid separation step, It can further include a step of discharging out of the system without being mixed in the first aerobic treatment step and the second aerobic treatment step.

本発明に係る排水の生物学的処理方法は、前記固液分離工程で分離された沈殿物を、第1好気処理工程および第2好気処理工程に混入させずに系外に排出する工程をさらに含むことができる。   The biological treatment method of waste water according to the present invention is a step of discharging the precipitate separated in the solid-liquid separation step out of the system without being mixed in the first aerobic treatment step and the second aerobic treatment step. Can further be included.

本発明では、脱窒工程およびセレン還元工程、好ましくはさらに硝化工程および生物酸化工程に適用する全ての装置に、微生物付着用担体として固定床方式を採用したので、浮遊方式活性汚泥にみられるようなセレン蓄積量の増加に伴う凝集性悪化等の変調を生じることがない。したがって、本発明によれば、排水中の窒素およびセレンを処理するに際し、活性汚泥の処理性能を阻害することなく効果的に除去することができる。   In the present invention, the fixed bed system is used as a carrier for attaching microorganisms to all devices applied to the denitrification process and the selenium reduction process, preferably further the nitrification process and the biooxidation process. Thus, there is no modulation such as agglomeration deterioration accompanying an increase in the amount of accumulated selenium. Therefore, according to the present invention, when nitrogen and selenium in waste water are treated, they can be effectively removed without impairing the treatment performance of activated sludge.

また本発明では固定床方式を採用したことにより、浮遊式活性汚泥に比べて汚泥濃度を高く保持でき、固定床内での硝酸性窒素の濃度勾配により、処理水の硝酸性窒素濃度を、セレン還元菌に対する硝酸性窒素の影響限界濃度(閾値)以下に安定して達成することができる。そのため排水中の窒素とセレンの負荷変動や阻害物質(過硫酸塩等)に対しても抵抗性がある。   In addition, by adopting the fixed bed method in the present invention, the sludge concentration can be maintained higher than that of the floating activated sludge, and the nitrate nitrogen concentration in the treated water is reduced by the concentration gradient of nitrate nitrogen in the fixed bed. It can be stably achieved below the influence limit concentration (threshold value) of nitrate nitrogen for reducing bacteria. Therefore, it is resistant to fluctuations in the load of nitrogen and selenium in waste water and inhibitors (persulfates, etc.).

浮遊式活性汚泥では、不溶性セレン(単体セレン)の排出は余剰汚泥と共に人為的に排出しなければならず、排水の窒素とセレン負荷によっては活性汚泥中のセレン高濃度蓄積が避けられない場合がある。それに対し本発明の固定床では、定期的にろ床を洗浄することによりろ床から自然剥離した汚泥と不溶性セレン(単体セレン)をそれぞれ効率よく排出することができ、その結果ろ床内のセレン蓄積量の増加に伴う処理性低下等を回避することができる。   In floating activated sludge, insoluble selenium (single selenium) must be discharged artificially together with surplus sludge. Depending on the nitrogen and selenium load of the wastewater, high concentration accumulation of selenium in the activated sludge may be unavoidable. is there. On the other hand, in the fixed bed of the present invention, the sludge and the insoluble selenium that are naturally separated from the filter bed can be efficiently discharged by washing the filter bed periodically, and as a result, the selenium in the filter bed can be discharged. It is possible to avoid a decrease in processability associated with an increase in the accumulation amount.

従来、排水の窒素濃度が低い(NO3‐Nが約50mg/l以下)場合、浮遊式活性汚泥では汚泥濃度と処理性能を維持するために窒素濃度が約100mg/l以上(NO3‐Nとして)となるように、窒素化合物(アンモニア性または硝酸性窒素)を添加する必要がある。本発明では固定床方式を採用したことにより、排水の窒素濃度に応じて汚泥濃度が自然に制御され、窒素およびセレン処理性が維持されるため、窒素化合物を人為的に添加する必要がない。本発明は特に排水の窒素濃度が低い場合に効果的である。 Conventionally, when the nitrogen concentration in the wastewater is low (NO 3 -N is about 50 mg / l or less), the floating activated sludge has a nitrogen concentration of about 100 mg / l or more (NO 3 -N in order to maintain the sludge concentration and treatment performance. Nitrogen compound (ammonia or nitrate nitrogen) needs to be added. In the present invention, since the fixed bed system is adopted, the sludge concentration is naturally controlled according to the nitrogen concentration of the waste water, and the nitrogen and selenium treatment properties are maintained, so that it is not necessary to add a nitrogen compound artificially. The present invention is particularly effective when the concentration of nitrogen in the wastewater is low.

さらに、本発明では、第2嫌気処理工程に引き続き固液分離工程で直ちに固形物を分離することで、還元されて生成した4価セレンおよび単体セレンが第2好気処理工程において再び6価セレンに酸化されることなく、セレン処理性能が良好に維持される。   Furthermore, in the present invention, the solid matter is immediately separated in the solid-liquid separation step subsequent to the second anaerobic treatment step, so that tetravalent selenium and simple selenium produced by reduction are again hexavalent selenium in the second aerobic treatment step. Selenium treatment performance is maintained well without being oxidized.

また、本発明では、前段の固液分離工程で4価セレンおよび単体セレンが分離されて上澄水には含まれないため、第2好気処理工程で6価セレンの再溶出を防止するためのORP(酸化還元電位)の制御等が不要となり設備を簡素化することができる。   In the present invention, since tetravalent selenium and simple selenium are separated in the solid-liquid separation step in the previous stage and are not contained in the supernatant water, it is possible to prevent re-elution of hexavalent selenium in the second aerobic treatment step. Control of ORP (oxidation-reduction potential) or the like is unnecessary, and the equipment can be simplified.

添付の図面を参照して、本発明に係る排水の生物学的処理方法の一実施形態を説明する。図1は、本発明に係る排水の生物学的処理方法を実施するために好適な排水の生物学的処理システムの一例を示す模式図である。   With reference to the attached drawings, an embodiment of the biological treatment method of waste water according to the present invention will be described. FIG. 1 is a schematic view showing an example of a biological treatment system for wastewater suitable for carrying out the biological treatment method for wastewater according to the present invention.

図1に示すように、本システムは、排水1を脱窒処理する第1嫌気処理槽6と、この第1嫌気処理槽6の処理水をセレン還元処理する第2嫌気処理槽8とで主に構成されている。なお、第1嫌気処理槽6の前段には、排水1を硝化処理する第1好気処理槽2が設けられている。また、第2嫌気処理槽8の後段には、この処理水を生物酸化処理する第2好気処理槽13が設けられている。さらに、この第2嫌気処理槽8と第2好気処理槽13の間には、第2嫌気処理槽8の処理水を固液分離する固液分離槽10が設けられている。   As shown in FIG. 1, this system mainly includes a first anaerobic treatment tank 6 that denitrifies wastewater 1 and a second anaerobic treatment tank 8 that treats treated water in the first anaerobic treatment tank 6 with selenium. It is configured. A first aerobic treatment tank 2 for nitrifying the waste water 1 is provided in the front stage of the first anaerobic treatment tank 6. Further, a second aerobic treatment tank 13 for biologically oxidizing the treated water is provided at the subsequent stage of the second anaerobic treatment tank 8. Furthermore, a solid-liquid separation tank 10 for solid-liquid separation of the treated water in the second anaerobic treatment tank 8 is provided between the second anaerobic treatment tank 8 and the second aerobic treatment tank 13.

なお、第1嫌気処理槽6および第2嫌気処理槽8には、槽内の固定床を逆洗するための逆洗用水15を供給する配管がそれぞれ槽底部に設けられているとともに、この逆洗排水を排出するための配管がそれぞれ槽天井部に設けられている。   The first anaerobic treatment tank 6 and the second anaerobic treatment tank 8 are each provided with a pipe for supplying backwash water 15 for backwashing the fixed bed in the tank at the bottom of the tank. Pipes for discharging the washing waste water are respectively provided in the tank ceiling.

このような構成によれば、先ず、排煙脱硫排水等の窒素化合物とセレンを含む排水1を第1嫌気処理槽2に導入する。ここで、窒素化合物としてはアンモニア性窒素や硝酸性窒素があげられ、図中、アンモニア性窒素を含む排水を1a、硝酸性窒素のみを含む排水を1とした。このアンモニア性窒素を含む排水1aは第1好気処理槽2に導入する。また硝酸性窒素のみを含む排水1は後述する第1嫌気処理槽6に直接導入する。   According to such a configuration, first, waste water 1 containing nitrogen compound such as flue gas desulfurization waste water and selenium is introduced into the first anaerobic treatment tank 2. Here, examples of the nitrogen compound include ammonia nitrogen and nitrate nitrogen. In the figure, waste water containing ammonia nitrogen is 1a, and waste water containing nitrate nitrogen alone is 1. The wastewater 1a containing ammonia nitrogen is introduced into the first aerobic treatment tank 2. Moreover, the waste water 1 containing only nitrate nitrogen is directly introduced into the first anaerobic treatment tank 6 described later.

第1好気処理槽2には、微生物付着担体として固定床が設けられており、アルカリ剤17によってpH5〜9、好ましくはpH6.5〜7.5に調整し、槽内に設けられた散気装置に空気4を供給することで曝気する。これによって好気状態で排水1a中のアンモニア性窒素が、担体に固定された硝化菌の作用により次式のごとく反応して、硝酸性窒素に酸化される。
NH4 ++O2→NO2 -+4H+
2NO2 -+O2→2NO3 -
The first aerobic treatment tank 2 is provided with a fixed bed as a microorganism adhesion carrier, adjusted to pH 5-9, preferably pH 6.5-7.5 with an alkaline agent 17, and dispersed in the tank. Aeration is performed by supplying air 4 to the air device. Thus, ammoniacal nitrogen in the wastewater 1a in an aerobic state reacts by the action of nitrifying bacteria fixed on the carrier as shown by the following formula and is oxidized to nitrate nitrogen.
NH 4 + + O 2 → NO 2 - + 4H +
2NO 2 - + O 2 → 2NO 3 -

固定床の微生物付着担体としては、砂、活性炭、アンスラサイト(無煙炭)、プラスチック製平板等が使用できる。   As the microorganism-adhering carrier for the fixed bed, sand, activated carbon, anthracite (anthracite), plastic flat plate, or the like can be used.

ついで、第1好気処理槽2の処理液3または硝酸性窒素を含む排水1を、第1嫌気処理槽6に導入する。第1嫌気処理槽6には、微生物付着担体として下向流(または上向流でもよい)の固定床が設けられており、第1嫌気処理槽6に第1の有機物としてメタノール5を添加すると、嫌気性条件下で排水中の硝酸性窒素が、脱窒菌の作用により次式のごとく反応して分解される。
6NO3 -+5CH3OH→5CO2+3N2+7H2O+6OH-
Next, the treatment liquid 3 of the first aerobic treatment tank 2 or the waste water 1 containing nitrate nitrogen is introduced into the first anaerobic treatment tank 6. The first anaerobic treatment tank 6 is provided with a fixed bed of a downward flow (or may be an upward flow) as a microorganism adhesion carrier, and when methanol 5 is added to the first anaerobic treatment tank 6 as a first organic substance. Under anaerobic conditions, nitrate nitrogen in the wastewater reacts and is decomposed by the action of denitrifying bacteria as follows:
6NO 3 - + 5CH 3 OH → 5CO 2 + 3N 2 + 7H 2 O + 6OH -

固定床の微生物付着担体としては、砂、活性炭、アンスラサイト(無煙炭)、プラスチック粒子のほか、ポリビニルアルコールやポリエチレングリコールに包括固定したものでもよい。   As the microorganism-adhering carrier for the fixed bed, in addition to sand, activated carbon, anthracite (anthracite), plastic particles, those fixed in polyvinyl alcohol or polyethylene glycol may be used.

第1嫌気処理槽6の固定床内では、付着汚泥が10000〜20000mg/lと高濃度に保持されるため、浮遊方式の活性汚泥とは異なって、固定床内の通水方向に対して硝酸性窒素の濃度勾配が生じ、排水中の硝酸性窒素濃度に応じた脱窒作用が安定して起きる。すなわち、第1嫌気処理槽6に供給する硝酸性窒素負荷が充填材容積1m3あたり0.5から5kg/日、メタノール添加量が排水中の硝酸性窒素量に対して2〜3(重量比)であれば、第1嫌気処理槽6の処理水中の硝酸性窒素および亜硝酸性窒素濃度は20mg/l以下となる。 In the fixed bed of the first anaerobic treatment tank 6, the adhering sludge is kept at a high concentration of 10,000 to 20000 mg / l. Therefore, unlike the activated sludge of the floating system, nitric acid is added to the water flow direction in the fixed bed. A concentration gradient of basic nitrogen is generated, and denitrification action according to the concentration of nitrate nitrogen in the wastewater occurs stably. That is, the nitrate nitrogen load supplied to the first anaerobic treatment tank 6 is 0.5 to 5 kg / day per 1 m 3 of the filler volume, and the methanol addition amount is 2 to 3 (weight ratio) with respect to the nitrate nitrogen amount in the waste water. ), The concentration of nitrate nitrogen and nitrite nitrogen in the treated water of the first anaerobic treatment tank 6 is 20 mg / l or less.

次に、第1嫌気処理槽6の処理液に、第2の有機物として酢酸または酢酸塩7を添加し、これを第2嫌気処理槽8に導入する。第2嫌気処理槽8には、微生物付着担体として前記と同様に下向流(または上向流でもよい)の固定床が設けられており、嫌気性条件下で硝酸性窒素および亜硝酸性窒素濃度がさらに脱窒されるとともに、セレン還元菌の作用によってセレンが還元されて、6価セレンは4価セレンまたは単体セレンとなって、第2嫌気処理槽8の付着汚泥内に蓄積する。その反応は次式のとおりと推定される。
SeO4 2-→SeO3 2-→Se0
Next, acetic acid or acetate 7 is added as a second organic substance to the treatment liquid in the first anaerobic treatment tank 6, and this is introduced into the second anaerobic treatment tank 8. The second anaerobic treatment tank 8 is provided with a fixed bed having a downward flow (or may be an upward flow) as a microorganism-adhering carrier as described above, and nitrate nitrogen and nitrite nitrogen under anaerobic conditions. The concentration is further denitrified, and selenium is reduced by the action of the selenium reducing bacteria, so that hexavalent selenium becomes tetravalent selenium or simple selenium and accumulates in the attached sludge of the second anaerobic treatment tank 8. The reaction is estimated as follows:
SeO 4 2- → SeO 3 2- → Se 0

なお、第2嫌気処理槽8に添加する第2の有機物としては、上記の酢酸または酢酸塩7のほか、エタノール、グリセロール、乳酸およびその塩、ピルビン酸およびその塩、フマル酸およびその塩、リンゴ酸およびその塩、コハク酸およびその塩、グルタミン酸およびその塩、クエン酸およびその塩、グルコース、フラクトースならびにシュークロースから選ばれた1種以上のものが使用できる。   The second organic substance added to the second anaerobic treatment tank 8 includes, in addition to the above-mentioned acetic acid or acetate 7, ethanol, glycerol, lactic acid and its salt, pyruvic acid and its salt, fumaric acid and its salt, apple One or more selected from acids and salts thereof, succinic acid and salts thereof, glutamic acid and salts thereof, citric acid and salts thereof, glucose, fructose and sucrose can be used.

第2嫌気処理槽8に添加する第2の有機物の添加量は、第2嫌気処理槽8に供給するセレン濃度が5mg/l程度以下(6価セレンとして)であれば、排水中のセレン量に対して0.3から50(各有機物としての重量比)、好ましくは2〜40(各有機物としての重量比)とすることで、第2嫌気処理槽8の処理水14aのセレン濃度を0.1mg/l未満にすることができる。   If the selenium concentration supplied to the second anaerobic treatment tank 8 is about 5 mg / l or less (as hexavalent selenium), the amount of the second organic substance added to the second anaerobic treatment tank 8 is the amount of selenium in the waste water. The selenium concentration in the treated water 14a of the second anaerobic treatment tank 8 is 0 by setting the ratio to 0.3 to 50 (weight ratio as each organic substance), preferably 2 to 40 (weight ratio as each organic substance). Can be less than 1 mg / l.

第1嫌気処理槽6および第2嫌気処理槽8では、担体に付着した活性汚泥の増殖に伴い固定床のろ過差圧が上昇するため、定期的に逆洗用水15a、15bを第1嫌気処理槽6および第2嫌気処理槽8の固定床底部から上向流で供給してそれぞれの固定床を洗浄する。逆洗頻度は1〜30日間程度に1回である。排出された逆洗排水16a、16bには担体付着した汚泥からの剥離汚泥のほか、不溶化された単体セレンが含まれており、これらの逆洗排水16は第1好気処理槽2および後述する第2好気処理槽に混入しないように系外に導き、固液分離し固形物として脱水ケーキ化して処分する(図示省略)。この固液分離法としては凝集沈殿処理のほか膜分離法等が使用できる。   In the first anaerobic treatment tank 6 and the second anaerobic treatment tank 8, since the filtration differential pressure of the fixed bed increases with the growth of the activated sludge adhering to the carrier, the backwash waters 15a and 15b are periodically treated with the first anaerobic treatment. The fixed bed is supplied from the bottom of the fixed bed of the tank 6 and the second anaerobic treatment tank 8 to wash each fixed bed. The frequency of backwashing is once every 1 to 30 days. The discharged backwash effluents 16a and 16b contain insolubilized single selenium as well as exfoliated sludge from the sludge adhering to the carrier. These backwash effluents 16 are the first aerobic treatment tank 2 and will be described later. The mixture is led out of the system so as not to be mixed into the second aerobic treatment tank, separated into solid and liquid, dehydrated as a solid, and disposed of (not shown). As the solid-liquid separation method, a membrane separation method or the like can be used in addition to the coagulation sedimentation treatment.

第2嫌気処理槽8の処理水14aは、固液分離槽10を経て、または固液分離槽10を経ないで、直接第1好気処理槽13に導入する。第2嫌気処理槽の処理水14aに4価セレンまたは単体セレンが残存する場合は固液分離槽10を経ることが好ましく、4価セレンおよび単体セレンが残存しない場合は固液分離槽10を経ないで直接第2好気処理槽13に導入する。   The treated water 14 a of the second anaerobic treatment tank 8 is directly introduced into the first aerobic treatment tank 13 through the solid-liquid separation tank 10 or without passing through the solid-liquid separation tank 10. When tetravalent selenium or simple selenium remains in the treated water 14a of the second anaerobic treatment tank, it is preferable to go through the solid-liquid separation tank 10, and when no tetravalent selenium and simple selenium remain, go through the solid-liquid separation tank 10. Without being introduced directly into the second aerobic treatment tank 13.

固液分離槽10では、処理水14aに凝集剤9を添加し、pH5〜9好ましくはpH6〜8となるようにアルカリ剤17で調整する。固液分離槽10としては凝集沈殿処理のほか、MF膜分離が使用できる。凝集剤9としては塩化第二鉄、硫酸第二鉄などの第2鉄塩が使用でき、アルカリ剤17としては水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が使用できる。第2嫌気処理槽の処理水14aに含まれる4価セレンは、第2鉄塩によって次の反応式のごとく不溶化し、単体セレンは水酸化第二鉄の凝集反応により共沈する。
3SeO3 2-+2Fe3+→Fe2(SeO33
In the solid-liquid separation tank 10, the flocculant 9 is added to the treated water 14 a, and the pH is adjusted to 5 to 9, preferably 6 to 8 with the alkali agent 17. As the solid-liquid separation tank 10, MF membrane separation can be used in addition to coagulation sedimentation treatment. As the aggregating agent 9, a ferric salt such as ferric chloride or ferric sulfate can be used, and as the alkali agent 17, sodium hydroxide, potassium hydroxide, calcium hydroxide or the like can be used. The tetravalent selenium contained in the treated water 14a of the second anaerobic treatment tank is insolubilized by the ferric salt as shown in the following reaction formula, and the simple selenium is co-precipitated by the ferric hydroxide aggregation reaction.
3SeO 3 2- + 2Fe 3+ → Fe 2 (SeO 3 ) 3

不溶化した4価セレンは、固液分離して沈殿物12とした後、系外で脱水ケーキ化して(図示省略)、セレンが第1好気処理槽2および第2好気処理槽13に混入しないようにする。   The insolubilized tetravalent selenium is separated into solid and liquid to form a precipitate 12, which is then dehydrated outside the system (not shown), and selenium is mixed into the first aerobic treatment tank 2 and the second aerobic treatment tank 13. Do not.

第2好気処理槽13は、活性汚泥が付着した担体を充填した固定床が好ましい。付着担体としては、第1好気処理槽2と同様、砂、活性炭、アンスラサイト(無煙炭)、プラスチック製の平板等が使用できる。第2好気処理槽13では好気状態に保持するために、槽内に設けられた散気装置に空気4が供給されており、第2嫌気処理槽の処理水14aに残存する有機物(メタノール、酢酸または酢酸塩ほか)が好気性微生物により炭酸ガスと水に分解される。   The second aerobic treatment tank 13 is preferably a fixed bed filled with a carrier to which activated sludge is adhered. As the adhesion carrier, sand, activated carbon, anthracite (anthracite), a plastic flat plate, and the like can be used as in the first aerobic treatment tank 2. In order to maintain the aerobic state in the second aerobic treatment tank 13, air 4 is supplied to a diffuser provided in the tank, and organic matter (methanol) remaining in the treated water 14 a of the second anaerobic treatment tank. , Acetic acid or acetate, etc.) is decomposed into carbon dioxide and water by aerobic microorganisms.

なお、第2嫌気処理槽の処理水14aに含まれる4価セレンを固液分離槽10で除去せずに第1好気処理槽13に供給した場合、4価セレンの一部は微生物の作用によって難処理性の6価セレンに再酸化されて処理水14のセレン濃度を上昇させ、セレンの除去効率を悪化させる。   In addition, when tetravalent selenium contained in the treated water 14a of the second anaerobic treatment tank is supplied to the first aerobic treatment tank 13 without being removed by the solid-liquid separation tank 10, a part of the tetravalent selenium is an action of microorganisms. Is re-oxidized to difficult-to-process hexavalent selenium to increase the selenium concentration in the treated water 14 and deteriorate the selenium removal efficiency.

本発明の実施例として図1に示す装置を、また比較例として図2に示す装置を用いて、以下の手順にて排水を処理する試験を行った。   Using the apparatus shown in FIG. 1 as an example of the present invention and the apparatus shown in FIG. 2 as a comparative example, a test for treating wastewater was performed according to the following procedure.

窒素化合物およびセレンを含む排水として、石炭焚火力発電所における排煙脱硫排水を用いた。この排水の性状を次に示す。
アンモニア性窒素:0.7mg/l
硝酸性窒素:40mg/l
6価セレン:0.3mg/l
As waste water containing nitrogen compounds and selenium, flue gas desulfurization waste water at a coal-fired thermal power plant was used. The properties of this drainage are as follows.
Ammonia nitrogen: 0.7 mg / l
Nitrate nitrogen: 40 mg / l
Hexavalent selenium: 0.3 mg / l

前記排水を用い、下記実施例1および比較例の処理条件で各々処理した。なお、実施例1および比較例ともに排水中の窒素は硝酸性窒素が大部分であったため、第1好気処理(硝化処理)は実施せず、以下の処理工程で直接処理した。   Using the waste water, each was treated under the treatment conditions of Example 1 and Comparative Example below. In addition, since nitrogen in waste water was mostly nitrate nitrogen in both Example 1 and Comparative Example, the first aerobic treatment (nitrification treatment) was not carried out, and the treatment was performed directly in the following treatment steps.

(実施例1の処理条件)
排水供給量:32l/日
第1嫌気処理工程の接触時間:0.7時間
メタノール添加量:100mg/l
第2嫌気処理工程の接触時間:0.4時間
酢酸添加量:5mg/l
固液分離工程の滞留時間:1日間
第2好気処理工程の接触時間:0.5日間
第2嫌気処理工程の逆洗頻度:5日間に1回
(Processing conditions of Example 1)
Wastewater supply amount: 32 l / day Contact time of the first anaerobic treatment process: 0.7 hours Methanol addition amount: 100 mg / l
Contact time of the second anaerobic treatment step: 0.4 hours Acetic acid addition amount: 5 mg / l
Residence time of the solid-liquid separation process: 1 day Contact time of the second aerobic treatment process: 0.5 days Frequency of backwashing of the second anaerobic treatment process: once every 5 days

(比較例の処理条件)
排水供給量:2l/日
嫌気処理工程の滞留時間:1日間
MLSS:約4000mg/l
メタノール添加量:100mg/l
硝酸塩添加量:60mg/l(Nとして)
好気処理工程の滞留時間:0.8日間
固液分離工程の滞留時間:1.5日間
(Processing conditions of the comparative example)
Wastewater supply amount: 2 l / day Residence time of anaerobic treatment process: 1 day MLSS: about 4000 mg / l
Methanol addition amount: 100 mg / l
Nitrate addition amount: 60 mg / l (as N)
Residence time for aerobic treatment process: 0.8 days Residence time for solid-liquid separation process: 1.5 days

実施例1では、下水汚泥を各工程毎に約1000ppm接種し、前記処理条件で馴致を開始した。第2嫌気処理工程でセレン処理能力が発揮される迄の期間(馴致期間)は約1週間以内で、そのときの処理水14のセレン濃度は0.06mg/lであった。   In Example 1, about 1000 ppm of sewage sludge was inoculated for each step, and habituation was started under the above treatment conditions. The period (acclimation period) until the selenium treatment ability was exhibited in the second anaerobic treatment step was within about one week, and the selenium concentration in the treated water 14 at that time was 0.06 mg / l.

比較例においては、嫌気処理槽に下水汚泥を2000〜3000ppm接種し、前記処理条件で馴致を開始した結果、セレン処理能力が発揮されるのに約1ヶ月を要し、そのときの処理水14bのセレン濃度は0.07から0.15mg/lと変動した。   In the comparative example, as a result of inoculating 2000 to 3000 ppm of sewage sludge in an anaerobic treatment tank and starting acclimatization under the treatment conditions, it took about one month for the selenium treatment ability to be exhibited, and the treated water 14b at that time The selenium concentration varied from 0.07 to 0.15 mg / l.

前記の実施例1および比較例で馴致が終了後約1週間後に得られた処理水の性状は次のとおりであった。   The properties of the treated water obtained about one week after completion of the adaptation in Example 1 and Comparative Example were as follows.

Figure 2006205097
Figure 2006205097

以上の結果から、本発明を採用することによってセレン処理能力を発揮させるために必要な馴致期間を大幅に短縮でき、省力化できることが検証された。また本発明では馴致終了後の処理水水質が安定していることが検証された。   From the above results, it was verified that by adopting the present invention, the acclimation period required for exhibiting the selenium processing capability can be greatly shortened, and labor can be saved. In the present invention, it was verified that the quality of the treated water after completion of the acclimatization was stable.

実施例1の第2嫌気処理工程で添加した酢酸に代えて、エタノール、グリセロール、乳酸、ピルビン酸、フマル酸、リンゴ酸、コハク酸、グルタミン酸、クエン酸、グルコース、フラクトース、シュークロースを添加したことを除いて、実施例1と同様の排水性状および処理条件で試験を行い、その処理水のセレン濃度を測定した。その結果を表2に示す。   In place of acetic acid added in the second anaerobic treatment step of Example 1, ethanol, glycerol, lactic acid, pyruvic acid, fumaric acid, malic acid, succinic acid, glutamic acid, citric acid, glucose, fructose, sucrose were added A test was conducted under the same drainage properties and treatment conditions as in Example 1, and the selenium concentration of the treated water was measured. The results are shown in Table 2.

Figure 2006205097
Figure 2006205097

表2に示すように、各種有機物のいずれも、処理水の全セレン濃度は0.1mg/l以下を達成でき、セレン還元処理に効果があることが検証された。   As shown in Table 2, it was verified that all the organic substances can achieve the total selenium concentration of the treated water of 0.1 mg / l or less, and are effective in the selenium reduction treatment.

本発明に係る排水の生物学的処理方法の一実施形態を示すフロー図である。It is a flowchart which shows one Embodiment of the biological treatment method of the waste_water | drain based on this invention. 従来の排水の生物学的処理方法を示すフロー図である。It is a flowchart which shows the biological treatment method of the conventional waste_water | drain.

符号の説明Explanation of symbols

1、1a 排水
2 第1好気処理槽
3 第1好気処理槽処理水
4 空気
5 メタノール
6 第1嫌気処理槽
7 酢酸または酢酸塩
8 第2嫌気処理槽
9 凝集剤
10 固液分離槽
11 分離処理水
12 沈殿物
13 第2好気処理槽
14、14a、14b 処理水
15 逆洗用水
16 逆洗排水
17 アルカリ剤
20 嫌気処理槽
21 有機物(メタノール)
22 硝酸(亜硝酸)塩
23 撹拌機
24 好気処理槽
25 散気装置
26 固液分離槽
27 返送汚泥
28 余剰汚泥
DESCRIPTION OF SYMBOLS 1, 1a Waste water 2 1st aerobic treatment tank 3 1st aerobic treatment tank treated water 4 Air 5 Methanol 6 1st anaerobic treatment tank 7 Acetic acid or acetate 8 2nd anaerobic treatment tank 9 Flocculant 10 Solid-liquid separation tank 11 Separated treated water 12 Precipitate 13 Second aerobic treatment tank 14, 14a, 14b Treated water 15 Backwash water 16 Backwash drainage 17 Alkaline agent 20 Anaerobic treatment tank 21 Organic matter (methanol)
22 Nitric acid (nitrous acid) salt 23 Stirrer 24 Aerobic treatment tank 25 Air diffuser 26 Solid-liquid separation tank 27 Return sludge 28 Excess sludge

Claims (7)

排水を、第1の有機物存在の下に嫌気状態で担体に付着した活性汚泥と接触させる第1の嫌気処理工程と、この第1の嫌気処理工程の処理水を第2の有機物存在の下に嫌気状態で担体に付着した活性汚泥と接触させる第2の嫌気処理工程とを含んでなる排水の生物学的処理方法。   A first anaerobic treatment step in which wastewater is brought into contact with activated sludge adhering to the carrier in the anaerobic state in the presence of the first organic matter, and treated water in the first anaerobic treatment step in the presence of the second organic matter. A biological treatment method for wastewater, comprising a second anaerobic treatment step in which the activated sludge adhered to the carrier in an anaerobic state is brought into contact. 前記第2の有機物が、酢酸および酢酸塩、エタノール、グリセロール、乳酸およびその塩、ピルビン酸およびその塩、フマル酸およびその塩、リンゴ酸およびその塩、コハク酸およびその塩、グルタミン酸およびその塩、クエン酸およびその塩、グルコース、フラクトース並びにシュークロースから選ばれた1種以上である請求項1に記載の排水の生物学的処理方法。   The second organic substance is acetic acid and acetate, ethanol, glycerol, lactic acid and salt thereof, pyruvic acid and salt thereof, fumaric acid and salt thereof, malic acid and salt thereof, succinic acid and salt thereof, glutamic acid and salt thereof, The biological treatment method of waste water according to claim 1, wherein the biological treatment method is one or more selected from citric acid and salts thereof, glucose, fructose and sucrose. 前記第2の嫌気処理工程の処理水を固液分離する固液分離工程をさらに含んでなる請求項1または2に記載の排水の生物学的処理方法。   The wastewater biological treatment method according to claim 1 or 2, further comprising a solid-liquid separation step of solid-liquid separation of the treated water in the second anaerobic treatment step. 前記排水を、前記第1の嫌気処理工程に導入する前に、好気状態で担体に付着した活性汚泥と接触させる第1の好気処理工程をさらに含んでなる請求項1〜3のいずれか1項に記載の排水の生物学的処理方法。   The first aerobic treatment step of bringing the waste water into contact with the activated sludge adhering to the carrier in an aerobic state before introducing the waste water into the first anaerobic treatment step. A biological treatment method of waste water according to item 1. 前記第2の嫌気処理工程の処理水を、または前記固液分離工程の分離処理水を、好気状態で担体に付着した活性汚泥と接触させる第2の好気処理工程をさらに含んでなる請求項1〜4のいずれか1項に記載の排水の生物学的処理方法。   A second aerobic treatment step in which the treated water in the second anaerobic treatment step or the separated treated water in the solid-liquid separation step is brought into contact with activated sludge attached to the carrier in an aerobic state. Item 5. The biological treatment method for wastewater according to any one of Items 1 to 4. 前記第1の嫌気処理工程および前記第2の嫌気処理工程から排出される洗浄排水を、並びに前記固液分離工程で分離された沈殿物を、第1好気処理工程および第2好気処理工程に混入させずに系外に排出する工程をさらに含んでなる請求項1〜5のいずれか1項に記載の排水の生物学的処理方法。   The washing waste water discharged from the first anaerobic treatment step and the second anaerobic treatment step, and the precipitate separated in the solid-liquid separation step, the first aerobic treatment step and the second aerobic treatment step. The biological treatment method of waste water according to any one of claims 1 to 5, further comprising a step of discharging it outside the system without being mixed into the system. 前記固液分離工程で分離された沈殿物を、第1好気処理工程および第2好気処理工程に混入させずに系外に排出する工程をさらに含んでなる請求項3〜6のいずれか1項に記載の排水の生物学的処理方法。   7. The method according to claim 3, further comprising a step of discharging the precipitate separated in the solid-liquid separation step out of the system without being mixed in the first aerobic treatment step and the second aerobic treatment step. A biological treatment method of waste water according to item 1.
JP2005022465A 2005-01-31 2005-01-31 Biological treatment method of wastewater Withdrawn JP2006205097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022465A JP2006205097A (en) 2005-01-31 2005-01-31 Biological treatment method of wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022465A JP2006205097A (en) 2005-01-31 2005-01-31 Biological treatment method of wastewater

Publications (1)

Publication Number Publication Date
JP2006205097A true JP2006205097A (en) 2006-08-10

Family

ID=36962479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022465A Withdrawn JP2006205097A (en) 2005-01-31 2005-01-31 Biological treatment method of wastewater

Country Status (1)

Country Link
JP (1) JP2006205097A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007146658A2 (en) * 2006-06-06 2007-12-21 Honeywell International Inc. System and methods for biological selenium removal from water
WO2008027259A2 (en) * 2006-08-25 2008-03-06 Infilco Degremont, Inc. Methods and systems for biological treatment of flue gas desulfurization wastewater
US7985576B2 (en) 2006-08-25 2011-07-26 Infilco Degremont, Inc. Methods and systems for biological treatment of flue gas desulfurization wastewater
JP2015024360A (en) * 2013-07-25 2015-02-05 オルガノ株式会社 Selenium-containing water treatment method and apparatus
KR20160003033A (en) 2013-06-28 2016-01-08 미츠비시 쥬고우 메카토로시스테무즈 가부시키가이샤 Method for removing selenium and apparatus for removing selenium
CN105712570A (en) * 2014-12-05 2016-06-29 中国石油化工股份有限公司 Processing method of high concentration selenium-containing wastewater
CN108793401A (en) * 2018-06-14 2018-11-13 石泰山 A kind of formula and preparation method thereof of denitrification compounded carbons

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460412B (en) * 2006-06-06 2012-08-15 霍尼韦尔国际公司 System and methods for biological selenium removal from water
WO2007146658A3 (en) * 2006-06-06 2008-02-14 Honeywell Int Inc System and methods for biological selenium removal from water
US7378022B2 (en) 2006-06-06 2008-05-27 Honeywell International Inc. System and methods for biological selenium removal from water
WO2007146658A2 (en) * 2006-06-06 2007-12-21 Honeywell International Inc. System and methods for biological selenium removal from water
WO2008027259A2 (en) * 2006-08-25 2008-03-06 Infilco Degremont, Inc. Methods and systems for biological treatment of flue gas desulfurization wastewater
WO2008027259A3 (en) * 2006-08-25 2009-07-09 Infilco Degremont Inc Methods and systems for biological treatment of flue gas desulfurization wastewater
US7985576B2 (en) 2006-08-25 2011-07-26 Infilco Degremont, Inc. Methods and systems for biological treatment of flue gas desulfurization wastewater
KR20160003033A (en) 2013-06-28 2016-01-08 미츠비시 쥬고우 메카토로시스테무즈 가부시키가이샤 Method for removing selenium and apparatus for removing selenium
US10919790B2 (en) 2013-06-28 2021-02-16 Mitsubishi Power Environmental Solutions, Ltd. Method for removing selenium and apparatus for removing selenium
JP2015024360A (en) * 2013-07-25 2015-02-05 オルガノ株式会社 Selenium-containing water treatment method and apparatus
CN105712570A (en) * 2014-12-05 2016-06-29 中国石油化工股份有限公司 Processing method of high concentration selenium-containing wastewater
CN105712570B (en) * 2014-12-05 2018-11-06 中国石油化工股份有限公司 A kind of processing method of high concentration selenium-containing wastewater
CN108793401A (en) * 2018-06-14 2018-11-13 石泰山 A kind of formula and preparation method thereof of denitrification compounded carbons

Similar Documents

Publication Publication Date Title
CN108483655B (en) Method for deep denitrification by coupling shortcut nitrification and denitrification with anaerobic ammonia oxidation and sulfur autotrophic denitrification
JP4578278B2 (en) Sewage treatment apparatus and treatment method
US10059610B2 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
JP2006205097A (en) Biological treatment method of wastewater
JP2002166293A (en) Method to remove nitrogen and phosphor simultaneously from waste water
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP2008126143A (en) Water treatment method
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
JP2018083173A (en) Wastewater treatment method, wastewater treatment system and coal gasification power generation equipment with the same
KR100887567B1 (en) Device for treating waste water
JP3202510B2 (en) Equipment for treating wastewater containing nitrogen and fluorine
JP3958900B2 (en) How to remove nitrogen from wastewater
KR101345642B1 (en) Method for removing nitrogen in waste water
JPH10249392A (en) Treatment of waste water
JP6116975B2 (en) Water treatment device, water treatment method
KR100572516B1 (en) Wastewater Treatment Method
JP2003071490A (en) Method for removing nitrogen from wastewater
JP3358388B2 (en) Treatment method for selenium-containing water
US20050077251A1 (en) Method for control of wastewater treatment plant odors
JP3799634B2 (en) Method for treating selenium-containing water
JP4765308B2 (en) Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method
JP3835922B2 (en) Treatment method of flue gas desulfurization waste water
KR20100083223A (en) Method for high class treatment of wastewater using gas permeable membrane-attached biofilm
JP3837757B2 (en) Method for treating selenium-containing water
JP2006088057A (en) Method for treating ammonia-containing water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401