WO2011048705A1 - Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method - Google Patents

Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method Download PDF

Info

Publication number
WO2011048705A1
WO2011048705A1 PCT/JP2009/068634 JP2009068634W WO2011048705A1 WO 2011048705 A1 WO2011048705 A1 WO 2011048705A1 JP 2009068634 W JP2009068634 W JP 2009068634W WO 2011048705 A1 WO2011048705 A1 WO 2011048705A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
human waste
iron powder
iron
phosphorus
Prior art date
Application number
PCT/JP2009/068634
Other languages
French (fr)
Japanese (ja)
Inventor
敏明 石井
Original Assignee
石井商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石井商事株式会社 filed Critical 石井商事株式会社
Priority to CN200980163089.0A priority Critical patent/CN102791635A/en
Priority to PCT/JP2009/068634 priority patent/WO2011048705A1/en
Priority to JP2011537082A priority patent/JPWO2011048705A1/en
Publication of WO2011048705A1 publication Critical patent/WO2011048705A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets

Definitions

  • the present invention relates to a removal method for efficiently and rapidly removing phosphorus, COD, nitrogen, color and odor in human waste or human waste water (hereinafter referred to as human waste), and a phosphorus removal apparatus using the method It is a thing.
  • Contamination of environmental water is progressing on a global scale, and urgent measures are needed.
  • One of the sources of environmental water pollution is drainage from the livestock industry. Livestock waste water is discharged after being purified to the standard value at the source livestock shed or farm, but for various reasons, the reduction of pollution has not progressed.
  • phosphorus is one of the sources of contamination by human waste. Since phosphorus can not be degraded by microorganisms, it is still difficult to reduce the concentration of phosphorus in environmental water. Furthermore, although the provisional standard (total phosphorus 24 mg / L) is currently applied to the drainage standard for phosphorus related to livestock wastewater under the Water Pollution Control Law, the provisional standard is reviewed from now on, and the general standard level It is planned to be strengthened up to 8 mg / L of phosphorus.
  • sewage that has infiltrated underground will increase the concentration of nitrite and nitrate in groundwater.
  • the reference value of groundwater of nitrite nitrogen and nitrate nitrogen is 10 mg / L. It is said that when the concentration of these nitrogen compounds is high, it may cause methaemoglobinemia etc. of infants. From such a social background, nitrogen pollution to environmental water is a serious problem. In addition, it is said that the most frequent complaints to the livestock industry is an offensive odor. If this point can be solved, it will be a gospel to the livestock producer.
  • Patent Document 1 uses an aggregating treatment agent such as ferric chloride or polyferric sulfate to treat livestock urine, We are removing phosphorus inside.
  • an aggregating treatment agent such as ferric chloride or polyferric sulfate
  • Patent Literatures 2 and 3 show a technique of reacting iron salt or aluminum salt with phosphate ion to remove phosphorus dissolved in waste water.
  • Patent Document 4 a coagulant such as polyferric sulfate or polyaluminum chloride is added to chemically convert phosphorus in waste water to iron phosphate in order to remove phosphorus in sewage and industrial waste water, Techniques for wastewater purification are shown.
  • a coagulant such as polyferric sulfate or polyaluminum chloride
  • Patent Document 6 describes that phosphoric acid concentration can be reduced by adding powdered iron in human waste.
  • Patent Document 6 uses an iron base material, and the particle size of the iron base powder is 3000 ⁇ m or less, and the specific surface area is 0.005 m 2 / g.
  • the iron content is 70% or more, and the components other than iron are oxygen, magnesium, strontium, phosphorus and sulfur.
  • Water-soluble phosphate ions react with iron to become insoluble phosphorus compounds, depending on whether this iron-based material is sprayed, spread or mixed at a ratio of several% to animal feces and urine. Is disclosed.
  • the iron component and the phosphorus compound form a water insoluble component. I can not speed up. That is, there is a problem that the removal rate of phosphorus is low. Moreover, the phosphorus concentration after the process seen in the Example of patent document 6 was about 0.1 mass% and 1000 mg / L.
  • the present invention advantageously solves the above problems, a method capable of rapidly removing phosphorus etc. in human urine without the need to add unnecessary ions and components, and a removal and recovery apparatus using the method Intended to provide.
  • iron powder was slightly dissolved when iron powder was put in manure, so it was examined whether phosphorus could be removed with iron alone.
  • the iron powder used is of two types: reduced iron powder (80 to 150 ⁇ m manufactured by Entech Co., Ltd.) and iron oxide powder (75 to 150 ⁇ m manufactured by Ishii Shoji Yashio Plant).
  • the reduced iron powder is produced by reducing with mill scale (iron oxide generated on the surface of iron by watering during rolling of slabs and billets (iron bars)) with coke etc. and then heat-treated in a hydrogen atmosphere Iron powder, which has pores in the particles.
  • the purity is iron powder of Fe: 90% by mass or more, and the balance is an unavoidable impurity.
  • iron oxide powder is iron powder obtained by burning and oxidizing slag-containing iron with a rotary kiln, and Fe: 85 to 90 mass%. Impurities are CaO, SiO 2 , Al 2 O 3 , MgO, etc. of slag composition.
  • 150 mL of human waste was placed in a 2-liter polyethylene wide-mouthed bottle, to which 3 g of iron powder was added. The addition rate of iron powder to human waste was 2% by mass. Carbon material is not added. The iron powder was put into a poly container in a dispersed state without being put in a bag.
  • Experiment 1 is the case where reduced iron powder is used
  • Experiment 2 is the case where iron oxide powder is used.
  • the poly container containing human waste and iron powder was placed on a rotary table of a ball mill and rotated at 10 rpm.
  • the phosphate ion concentration before treatment was 75 mg / L.
  • the time change of the phosphate ion concentration at that time is shown in Table 1. After 120 minutes, the phosphate ion concentration slightly decreased, and was 20 mg / L for reduced iron powder and 43 mg / L for iron oxide powder. Even with iron powder, the concentration of phosphate ion was lowered due to the dissolution of iron, but the decrease was slight.
  • Iron powder used iron oxide powder The particle size of the iron oxide powder is 75 ⁇ m or less in Experiment 3, 75 to 150 ⁇ m in Experiment 4, and 500 ⁇ m or less in Experiment 5.
  • Three grams of each iron oxide powder was added to a 2 liter polybin. No carbide is used.
  • the iron oxide powder was not dispersed in a bag, but was run in a dispersed state.
  • the addition rate of iron oxide powder to human waste was 2% by mass.
  • the container containing human waste was placed on a rotary table of a ball mill and rotated at 10 rpm for a predetermined time. After a predetermined time elapsed, the phosphate ion concentration in human waste was measured.
  • the change is shown in Table 2.
  • the phosphate ion concentration before treatment was 75 mg / L. After 120 minutes, the phosphate ion concentration decreased slightly and became 43 mg / L in any case regardless of the particle size of the iron oxide powder. Again, it was found that with iron powder alone, the decrease in phosphate ion was not noticeable even if the particle size was changed.
  • the phosphate ion concentration was 113 mg / L before the start of the experiment.
  • the phosphate ion concentration in human waste stirred for 120 minutes with activated carbon alone was 113 mg / L and no decrease in phosphate ion concentration was observed.
  • the addition ratio of iron material and activated carbon was 4% by mass.
  • the mixture of pure iron powder and activated carbon was dispersed in 2 liters of polybin as it was without putting it in a bag, and was rotated at 10 rpm using a ball mill turntable.
  • the change in phosphoric acid concentration at that time is shown in Table 5.
  • activated carbon manufactured by Kuraray Co., Ltd. was used, the color of human waste disappeared and became colorless. In the case of activated carbon made in China, no decoloring was observed.
  • the COD was initially 160 mg / L, but after 120 minutes, it was about 10 mg / L for any activated carbon, and a remarkable lowering effect was observed.
  • the phosphate ion concentration was 113 mg / L at the beginning of the experiment, but in Experiment 8 it was 0 mg / L in 90 minutes and in Experiment 9 0.2 mg / L in 120 minutes. 10 decreased to 0.5 mg / L in 120 minutes.
  • the effects of iron and carbon additions were examined.
  • 150 mL of human waste was placed in a 2 liter polybin.
  • the iron material used was slag-containing iron (manufactured by Ishii Shoji Co., Ltd., 1.4 mm or less).
  • Slag-containing iron Ishii Shoji Co., Ltd. made by Yasoi Co., Ltd.
  • slag slab, steel plate
  • molten steel molten steel
  • slag is separated from this steel flow (grind, magnetic separation, sieving) to produce iron powder.
  • slag-containing iron it is difficult to completely separate the slag, and it is referred to as "slag-containing iron" because some of the slag contains it.
  • the purity may be contained in the slag and may vary depending on the lot, and the Fe content is about 70 to 90% by concentration.
  • the impurities include CaO, SiO 2 , Al 2 O 3 , MgO, etc., which are the composition of slag. In the experiment, 6.5 g of this slag-containing iron was used.
  • the carbon material used activated carbon (plastic type, powdery form) and changed the amount used to 0.5 g (experiment 11), 1.0 g (experiment 12) and 1.5 g (experiment 13).
  • the addition rates of iron material and carbon material were 7.1% (experiment 11), 13.3% (experiment 12) and 18.8% (experiment 13).
  • the mixture of iron material and carbon material was placed in a non-woven fabric (6 cm ⁇ 6 cm).
  • the non-woven fabric containing the additive was placed in a poly bottle and rotated at 10 rpm using a ball mill turntable.
  • the change of the phosphate ion concentration at that time is shown in Table 6. Although the phosphate ion concentration at the start was 113 mg / L, no remarkable decrease was observed at 20 to 35 mg / L even after 120 minutes. When slag-containing iron was used, it was found that the decrease in phosphate ion concentration was slight and that no difference was observed due to the addition amount.
  • the iron powder material used 7.7 g of slag containing iron (Ishii Shoji Co., Ltd. product, 1.4 mm or less).
  • the activated carbon used the activated carbon (plastic type, powdery form), and the amount used was changed into 0.6 g (experiment 14), 1.3 g (experiment 15), and 1.9 g (experiment 16).
  • the addition rates of the iron powder material and the activated carbon were 7.2% by mass (experiment 14), 14.4% by mass (experiment 15) and 19.8% by mass (experiment 16).
  • the influence of the addition rate of the mixture of iron powder and activated carbon on human waste was examined.
  • iron powder 2.6 g (experiment 17), 3.9 g (experiment 18), and 5.2 g (experiment 19) of slag containing iron (Ishii Shoji Co., Ltd. product, 1.4 mm or less) were used.
  • the activated carbon used is 0.4 g (Experiment 17), 0.6 g (Experiment 18) and 0.8 g (Experiment 19), using activated carbon (Kuraray Chemical Co., Ltd., Kuraray PW-D). did.
  • iron powder pure iron powder (reduced iron powder, manufactured by JFE Steel Corp., 0.25 mm or less) was used. The amounts used were 2.6 g (experiment 20), 3.9 g (experiment 21), 4.5 g (experiment 22), 5.2 g (experiment 23) and 5.8 g (experiment 24).
  • activated carbon activated carbon (Kuraray Chemical Co., Ltd. product, KURARECOR PW-D) was used. The amounts used were changed to 0.4 g (experiment 20), 0.6 g (experiment 21), 0.7 g (experiment 22), 0.8 g (experiment 23) and 0.9 g (experiment 24). went.
  • the addition rate of iron powder and activated carbon to human waste is 2% by mass (experiment 20), 3% by mass (experiment 21), 3.5% by mass (experiment 22), 4% by mass (experiment 23) and 4.5% by mass (Experiment 24).
  • 150 mL of human waste was placed in a 2 liter polybin. The mixture was placed in a non-woven fabric (6 cm ⁇ 6 cm) and spun on a ball mill turntable at 10 rpm for 2 hours.
  • the change of the phosphoric acid concentration at this time is shown in Table 9. It was found that when pure iron powder was used for iron powder, the concentration of phosphate ions in human waste decreased, and when the amount of activated carbon added was large, the phosphorus removal effect was increased.
  • the mixture of iron powder and activated carbon was examined for its effect on the decrease in phosphate ion concentration due to the rotational speed when rotating on a ball mill turntable.
  • iron powder 7.7 g of slag-containing iron (Ishii Shoji Co., Ltd. product, 1.4 mm or less) was used.
  • activated carbon 1.3 g of activated carbon (plastic, powder) was used.
  • 150 mL of human waste was placed in a 2 liter polybin. The mixture was placed in a non-woven (6 cm ⁇ 6 cm). The addition ratio of iron powder and activated carbon was 6% by mass.
  • the additives were dispersed in poly bottles and spun on a ball mill turntable at 10 rpm (experiment 25), 30 rpm (experiment 26) and 45 rpm (experiment 27). Changes in phosphate ion concentration at that time are shown in Table 10. When using slag-containing iron, the decrease in phosphate ion concentration was slight. Moreover, the difference by rotation speed was slight.
  • For human waste 150 mL was placed in a 2 liter polybin.
  • iron powder 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, 250 ⁇ m or less) was used.
  • activated carbon 0.8 g of activated carbon (manufactured by Kuraray Chemical Co., Ltd., PW-D) was used.
  • the addition rate of iron powder and activated carbon to human waste was 4% by mass.
  • the additives were dispersed in poly bottles and spun on a ball mill turntable at 5 rpm (experiment 28), 10 rpm (experiment 29) and 15 rpm (experiment 30). Changes in phosphate ion concentration at that time are shown in Table 11. From the table, it can be seen that the concentration of phosphate ions in human waste is decreasing. Moreover, the difference by rotation speed was not seen so much.
  • iron powder and activated carbon were used repeatedly, it was examined whether the phosphorus removal effect could be sustained by the number of repetitions.
  • iron powder 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, 250 ⁇ m or less) was used.
  • activated carbon 0.8 g of activated carbon (Kuraray Chemical Co., Ltd. product, PW-D) was used.
  • 150 mL of human waste was placed in a 2 liter polybin. The mixture was used in the dispersed state without using a non-woven fabric. The additives were dispersed in poly bottles and spun on a ball mill turntable for 10 minutes at 10 rpm.
  • COD was also measured together.
  • the COD before treatment was about 100 mg / L, but was 11.5 mg / L at the first test (experiment 31).
  • the reduction rate of COD was slightly reduced to 20 mg / L at the second time (experiment 32), 35 mg / L at the third time (experiment 33), and 50 mg / L at the fourth time (experiment 34).
  • the color of human waste was yellow-brown before treatment but became colorless upon the first treatment. It became transparent in the second time, but started to be slightly colored in the third time.
  • the odor of human waste was odorless in the first treatment (experiment 31), some odors remained in the second treatment (experiment 32) and the third treatment (experiment 33).
  • the 4th time the odor was not obtained so much.
  • the urine volume used for the experiment was four types of 150 mL (experiment 35), 300 mL (experiment 36), 450 mL (experiment 37) and 600 mL (experiment 38).
  • iron powder 5.2 g of pure iron powder (reduced iron powder, manufactured by JFE Steel Corp., 250 ⁇ m or less) was used.
  • activated carbon 0.8 g of PW-D manufactured by Kuraray Chemical Co., Ltd. was used.
  • the addition rates of iron powder and activated carbon to the human waste are 4% by mass (experiment 35), 2% by mass (experiment 36), 1.5% by mass (experiment 37) and 1% by mass (experiment 38).
  • Each urine volume was placed in a 2 liter polybin.
  • the mixture was put into the polybin in its dispersed state without using a non-woven fabric.
  • the poly bottle was rotated on a ball mill turntable for 10 minutes at 10 rpm or until the phosphate ion concentration became 0.8 mg / L or less.
  • the change of the phosphate ion concentration in that case is shown in Table 13.
  • the phosphate ion concentration was 0.8 mg / L in 60 minutes.
  • the phosphate ion concentration was 0.8 mg / L in 90 minutes at an addition rate of 2% by mass.
  • the phosphate ion concentration was 2 mg / L even after 120 minutes at an addition rate of 1.5 mass%, and was 5 mg / L even after 120 minutes at an addition rate of 1 mass%. Meanwhile, COD was also affected. The initial COD was 160 mg / L at an addition rate of 4% by mass, but as the addition rate decreased, the COD increased to 12.3 mg / L and 14.8 mg / L, and at an addition rate of 1% by mass, 27%. It was as high as 0.5 mg / L.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows. 1. A method for rapidly removing phosphorus, COD, nitrogen, color and odor in human waste or excrement, characterized in that powdered activated carbon and iron powder are supplied to excrement or excrement in human waste or excrement.
  • the powdery activated carbon is any one of powdery, granular or linear, and has a specific surface area of 300 m 2 / g or more, and a diameter or long side of 2 mm or less.
  • the iron powder is a reduced iron powder having a circle equivalent diameter of 1 mm or less, the phosphorus, COD, nitrogen, color and odor in human waste or human waste water according to 1 or 2 above. How to remove
  • the phosphorus in the human waste or human waste water according to any one of 1 to 4, characterized in that the ratio of the powdered activated carbon and the iron powder in the human waste or human waste water is 1 to 20% by mass. Rapid removal of COD, nitrogen, color and odor.
  • An apparatus for removing phosphorus, COD, nitrogen, color and odor in human waste and human waste water comprising a reaction tank, means for supplying powdered activated carbon, means for supplying iron powder, and stirring of human waste and human waste water. And means for removing.
  • the supply means of the powdery activated carbon and the iron powder is housed and supplied in the container having the permeability of the powdery activated carbon and the iron powder. Removal device as described.
  • phosphorus and the like in water can be rapidly and efficiently reduced without adding unnecessary ions and components into the water.
  • FIG. 1 shows the configuration of a rapid removal and recovery system according to the present invention. It is the conceptual diagram which showed the rapid phosphorus removal apparatus (for experiment). It is the conceptual diagram which showed the rapid phosphorus removal apparatus (cylindrical horizontal type
  • activated carbon powdered activated carbon
  • iron powder are allowed to stir and flow (hereinafter referred to as agitation) in a reaction tank, that is, activated carbon and iron powder in the reaction tank
  • agitation powdered activated carbon and iron powder in the reaction tank
  • phosphate ions in human waste react with iron ions in iron powder to form iron phosphate. Since it is insoluble, it becomes a precipitate and coats the surfaces of iron powder and activated carbon, which interferes with the reaction. That is, surface deposits need to be exfoliated and separated, which requires stirring of human waste.
  • the ratio of the mass of iron powder to activated carbon is preferably 1/2 to 1/15. More preferably, it is 1/2 to 1/10. Further, it is preferable that the ratio of iron powder and activated carbon (mass of iron powder and activated carbon / mass of human waste) in human waste is 1 to 20 mass%.
  • an apparatus such as a ball mill because stirring, mixing and impact are performed and the dephosphorizing effect is promoted.
  • the stirring in the present invention is preferably performed by rotating the stirring blade or the reaction tank itself.
  • the rotational speed of the blade is preferably 0.5 rpm or more. More preferably, it is about 100 to 1000 rpm, but when it is desired to increase the processing speed, it can be about 5000 to 30000 rpm.
  • the peripheral speed is preferably 0.5 rpm or more, and the upper limit is not particularly limited, but about 100 rpm or less is desirable.
  • both activated carbon and iron powder are used as powders, and by setting the ratio of the mass of iron powder to activated carbon and the ratio of iron powder and activated carbon in human waste as described above, Contact to promote dissolution of iron ions, thereby increasing the rate of phosphorus removal.
  • the mixture of activated carbon and iron powder can be stored in a water-permeable container to facilitate recovery. This makes it possible to recover iron phosphate produced by the reaction of phosphate ion and iron ion, and also to reuse it as a resource.
  • the container for containing the mixture of iron powder and activated carbon is preferably a container (bag) made of fiber.
  • the container is woven or non-woven or mesh. With such a container, water can pass but powder etc. can not pass. Moreover, the produced iron phosphate can not pass either. It is also possible to discard the whole container after treatment. Alternatively, it is also possible to take iron phosphate out of the container.
  • the activated carbon in the present invention is preferably in the form of powder, granules, or linear. Moreover, it is desirable that the specific surface area is 300 m 2 / g or more, and the diameter or one long side is 2 mm or less.
  • the term "granular" refers to particles having a diameter of more than 0.1 mm, and the term powder refers to particles having a diameter of 0.1 mm or less.
  • the length of the diameter refers to the diameter in the case of spherical particles and the length of the diagonal in the case of rectangular particles. For example, a digital CCD microscope (Mortex, MS-804) is used Can be measured.
  • the iron powder in the present invention is preferably a reduced iron powder, and the purity of iron is preferably 90% by mass or more (the balance is an unavoidable impurity).
  • the particle diameter of the powder is preferably 1 mm or less in equivalent circle diameter, and more preferably 250 ⁇ m or less.
  • the equivalent circle diameter in the present invention is determined by a value measured using a digital CCD microscope (Mortex Co., Ltd., MS-804).
  • FIG. 1 An example of a basic system for removing phosphorus etc. according to the present invention is shown in FIG.
  • Human waste, activated carbon and iron powder are mixed in the reaction vessel to produce iron ions.
  • the generated iron ions react with phosphate ions dissolved in human waste to form iron phosphate.
  • the supernatant (or reaction solution) is sent to the precipitation tank 1.
  • the precipitate accumulated in the lower part of the reaction vessel is sent to the settling vessel 2.
  • iron phosphate precipitates and separates.
  • the supernatant, which contains no precipitate, is drained.
  • the precipitate is recovered and reused as iron phosphate and the like.
  • reaction vessel described above is not particularly limited as long as it can stir human waste with respect to activated carbon and iron powder, but the structure in which the reaction vessel itself rotates or the structure in which the rotary vane is provided inside the reaction vessel Is preferred.
  • the container containing the activated carbon and the iron powder can be fixed not only in the reaction tank but also fixed in the reaction tank or suspended in the case of a stirring blade system.
  • the processing amount, the processing time, the place, the installation area, and which embodiment should be selected may be determined based on the situation of the site.
  • Reaction tank rotation method (see Figure 3) The example was performed in this manner. Phosphorus and the like are removed by placing a reaction vessel containing manure, activated carbon and iron powder on a rotating table using a rotating table of a ball mill and rotating for a predetermined time.
  • the dispersion of iron phosphate produced by the reaction of iron and phosphorus in human urine or mixing in sludge may be a problem in some cases.
  • iron phosphate and activated carbon can be collected in an aqueous container (bag) to enable recovery of iron phosphate. That is, iron powder, activated carbon and iron phosphate are present in the container, and iron phosphate is not mixed in excrement. After the phosphorus and the like are removed, it is possible to remove phosphorus by disposing only the container.
  • the water-permeable container bag
  • the iron powder and the activated carbon remain in contact with each other. Since iron phosphate produced by the reaction of iron powder and activated carbon is insulating, dissolution of iron ions is inhibited, so it is better to avoid the use of a smaller bag (container). In that case, it is more advantageous to place iron powder and activated carbon directly into the reaction tank for treatment rather than treatment using a container.
  • the liquid is separated by separating the liquid and the precipitate after the reaction of iron and phosphorus, and the precipitate is recovered as a useful resource.
  • the precipitate can be recovered by a conventionally known method such as a filtration method using a usual filter cloth, a filter press method, or a centrifugal separation method.
  • the problem with using activated carbon is the price. Even if it has high performance, it is difficult to actually use it if the price is high. In order to solve such problems, we examined the color removal property and the price, and reached the activated carbon generated in the waste treatment stage. By using the above-mentioned activated carbon as a carbon material powder, the colored night soil began to fade within 5 minutes and became colorless (see FIG. 9). At the same time, it was also possible to reduce the odor specific to human waste.
  • Example 1 150 mL of human waste was placed in a 2 liter reaction vessel (poly bottle).
  • iron powder 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, particle size: 250 ⁇ m or less, purity: 90% by mass or more (remainder is inevitable impurity)) was used.
  • activated carbon 0.8 g of PW-D manufactured by Kuraray Chemical Co., Ltd. was used.
  • the addition rate of iron powder and activated carbon to human waste was 4% by mass.
  • the additives were dispersed in poly bottles and spun on a ball mill at 10 rpm (experiment 39). Changes in pH, COD, total nitrogen and total phosphorus concentration at that time are shown in Table 14. After 30 minutes, the COD was about 1/5, the total nitrogen was about 1/3, and the total phosphorus was about 1/100. The characteristic color of human waste disappeared in 5 minutes, and was colorless and transparent after that. The odor gradually faded.
  • pure iron powder and activated carbon are put into a large non-woven bag (volume about 400 ml) under the conditions described above (experiment 39), and this bag is put into a polybin, and the condition of 10 rpm on the rotary table of the ball mill. It was rotated by. At that time, pH, COD, total nitrogen and total phosphorus concentration were measured. After a lapse of a predetermined time, analysis was carried out, and as in the results of Table 14, COD was about 1/5 after 30 minutes, total nitrogen was about 1/3, and total phosphorus was about 1/100. In addition, iron phosphate generated by the reaction of iron and activated carbon did not exude too much.
  • Example 2 150 mL of human waste was placed in a 2 liter polybin.
  • iron powder 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, particle size: 250 ⁇ m or less, purity: 90% by mass or more (remainder is inevitable impurity)) was used.
  • activated carbon 1.6 g (experiment 40) and 2.4 g (experiment 41) of PW-D manufactured by Kuraray Chemical Co., Ltd. were used.
  • the addition ratio of iron powder and activated carbon to human waste was 4.5% by mass in Experiment 40 and 5.1% by mass in Experiment 41.
  • the additives were dispersed in poly bottles and spun on a ball mill turntable at 10 rpm.
  • Example 3 150 mL of human waste was placed in a reaction vessel (pot) (500 mL) of a juicer mixer.
  • iron powder 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, particle size: 250 ⁇ m or less, purity: 90% by mass or more (remainder is inevitable impurity)) was used.
  • activated carbon 0.8 g of PW-D manufactured by Kuraray Chemical Co., Ltd. was used (Experiment 42).
  • the addition ratio of iron powder and activated carbon was 4% by mass.
  • the additives were dispersed in the pot, and the rotating blades in the pot were rotated at about 13000 rpm. Changes in pH, COD, total nitrogen and total phosphorus concentration at that time are shown in Table 16. After 5 minutes, the COD was about 1/5, the total nitrogen was about 1/3, and the total phosphorus was about 1/4. In the 10-minute treatment, the COD was about 1/5, the total nitrogen was about 1/4, and the total phosphorus was about 1/100. In the 15-minute treatment, the COD was about 1/8, the total nitrogen was about 1/4, and the total phosphorus was about 1/700. The characteristic color of human waste disappeared in 5 minutes, and was colorless and transparent after that. The smell gradually faded.
  • Example 4 Human waste, activated carbon and iron powder were mixed and stirred in a juicer mixer (pot volume: 500 mL). As for the human waste, 150 mL was put into the pot of the juicer mixer. As the iron material, 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, particle size: 250 ⁇ m or less, purity: 90 mass% or more (remainder is inevitable impurity)) was used. Activated carbon added by Kuraray Chemical Co., Ltd., and added 1.6 g (experiment 43) and 2.4 g (experiment 44) of PW-D.

Abstract

A method which enables phosphorus and other substances to be rapidly removed from an excretal wastewater without the need of adding any unnecessary ion or ingredient; and a removal/recovery device using the method. Powdery activated carbon and an iron powder are supplied to excreta or an excretal wastewater, and the mixture is stirred and flowed. The device is used for stirring and flowing the mixture.

Description

し尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法およびその方法を用いた除去装置Method for rapid removal of phosphorus, COD, nitrogen, color and odor in human waste or human waste water and removal apparatus using the method
 本発明は、し尿またはし尿排水(以下、し尿と記す)中のリン、COD、窒素、色および臭気を、効率的かつ急速に除去するための除去方法およびその方法を用いたリンの除去装置に関するものである。 The present invention relates to a removal method for efficiently and rapidly removing phosphorus, COD, nitrogen, color and odor in human waste or human waste water (hereinafter referred to as human waste), and a phosphorus removal apparatus using the method It is a thing.
 環境水の汚染汚濁は、地球規模で進行しており、早急なる対策が必要である。その環境水の汚染源の一つに、畜産業からの排水がある。畜産排水は、発生源の畜舎あるいは農場で基準値まで浄化されてから排出されているが、様々な理由から、汚染の低減化が進行していないのが実情である。 Contamination of environmental water is progressing on a global scale, and urgent measures are needed. One of the sources of environmental water pollution is drainage from the livestock industry. Livestock waste water is discharged after being purified to the standard value at the source livestock shed or farm, but for various reasons, the reduction of pollution has not progressed.
 また、家畜し尿による汚染源の一つにリンがある。リンは、微生物で分解できないことから、環境水中のリン濃度を低減することは現在でも難しい。
 さらに、水質汚濁防止法による畜産排水に係わるリンの排水基準は、現在のところ暫定基準(全リン24mg/L)が適用されていが、今後、暫定基準の見直しがおこなわれ、一般基準レベル(全リン8mg/L)まで強化されることが予定されている。
In addition, phosphorus is one of the sources of contamination by human waste. Since phosphorus can not be degraded by microorganisms, it is still difficult to reduce the concentration of phosphorus in environmental water.
Furthermore, although the provisional standard (total phosphorus 24 mg / L) is currently applied to the drainage standard for phosphorus related to livestock wastewater under the Water Pollution Control Law, the provisional standard is reviewed from now on, and the general standard level It is planned to be strengthened up to 8 mg / L of phosphorus.
 し尿のCODの低減も畜産農家にとっては大きな課題である。これまでは活性汚泥法や、ラグーン方式など、様々な方法で処理されているが、経済的な面から効果は限定的であり、不十分な処理状態で環境水中に排水されると、河川の汚染、水環境汚染に結びつくことになる。 Reducing COD in human waste is also a major issue for livestock farmers. So far, it has been treated by various methods such as activated sludge method and lagoon method, but the effect is limited from the economic point of view, and if it is drained into environmental water under inadequate treatment condition, the river It leads to pollution and water pollution.
 また、地下にしみこんだ汚水は、地下水の亜硝酸濃度や、硝酸濃度を高めることになる。環境省では、亜硝酸体窒素、硝酸体窒素の地下水の基準値を、10mg/Lとしている。これら窒素化合物の濃度が高くなると、乳幼児のメタヘモグロビン血しょう症等を引起こす可能性があると言われている。このような社会的背景から、環境水への窒素汚染は深刻な問題となっている。
 また、畜産業への苦情として最も多いのは、悪臭であると言われている。この点も解決できれば、畜産業者にとっては福音となる。
In addition, sewage that has infiltrated underground will increase the concentration of nitrite and nitrate in groundwater. In the Ministry of the Environment, the reference value of groundwater of nitrite nitrogen and nitrate nitrogen is 10 mg / L. It is said that when the concentration of these nitrogen compounds is high, it may cause methaemoglobinemia etc. of infants. From such a social background, nitrogen pollution to environmental water is a serious problem.
In addition, it is said that the most frequent complaints to the livestock industry is an offensive odor. If this point can be solved, it will be a gospel to the livestock producer.
 これらの問題に対し、排水中に溶解しているリンを除去する方法として、特許文献1では、畜産し尿の処理に塩化第二鉄、ポリ硫酸第二鉄などの凝集処理剤を使用し、排水中のリン除去を行っている。 To solve these problems, as a method of removing phosphorus dissolved in waste water, Patent Document 1 uses an aggregating treatment agent such as ferric chloride or polyferric sulfate to treat livestock urine, We are removing phosphorus inside.
 また、特許文献2および3では、鉄塩またはアルミニウム塩をリン酸イオンと反応させて排水中に溶解しているリンを除去する技術が示されている。 Further, Patent Literatures 2 and 3 show a technique of reacting iron salt or aluminum salt with phosphate ion to remove phosphorus dissolved in waste water.
 さらに、特許文献4では、下水や工場排水中のリンを除去するために、ポリ硫酸第二鉄やポリ塩化アルミニウムなどの凝集剤を加えて排水中のリンをリン酸鉄に化学変化させて、排水浄化を行う技術が示されている。 Furthermore, in Patent Document 4, a coagulant such as polyferric sulfate or polyaluminum chloride is added to chemically convert phosphorus in waste water to iron phosphate in order to remove phosphorus in sewage and industrial waste water, Techniques for wastewater purification are shown.
 また、鉄鋼スラグを用いる技術もある。
 特許文献5に記載の技術では、リンを含有する排水中のリンを除去するために、鉄鋼スラグに通すことで除去している。鉄鋼スラグには、高炉スラグおよび除冷スラグが使用されている。鉄鋼スラグは多孔質であることがリン除去に好ましいとされている。
There is also a technology that uses steel slag.
In the technology described in Patent Document 5, in order to remove phosphorus in the phosphorus-containing wastewater, it is removed by passing it through a steel slag. Blast furnace slag and cold-cooling slag are used for iron and steel slag. It is considered that iron and steel slag is porous for phosphorus removal.
 また、鉄塩やスラグではなく、純鉄を用いる方法も提案されている。例えば、特許文献6に、し尿中に微粉鉄をくわえることで、リン酸濃度を低減できる旨が記載されている。
 特許文献6は、鉄基材を使用し、その鉄基材粉末の粒径は、3000μm以下、比表面積が0.005m/gとなっている。また、鉄含有量は、70%以上であり、鉄以外の成分は、酸素、マグネシウム、ストロンチウム、リン、イオウとなっている。
 この鉄基材を動物の糞尿に対して数%の比率で散布するか、敷き詰めるか、混ぜ込むかなどによって、水溶性のリン酸イオンは鉄と反応して不溶性のリン化合物となる旨の技術が開示されている。
Also, a method using pure iron instead of iron salt or slag has been proposed. For example, Patent Document 6 describes that phosphoric acid concentration can be reduced by adding powdered iron in human waste.
Patent Document 6 uses an iron base material, and the particle size of the iron base powder is 3000 μm or less, and the specific surface area is 0.005 m 2 / g. The iron content is 70% or more, and the components other than iron are oxygen, magnesium, strontium, phosphorus and sulfur.
Water-soluble phosphate ions react with iron to become insoluble phosphorus compounds, depending on whether this iron-based material is sprayed, spread or mixed at a ratio of several% to animal feces and urine. Is disclosed.
特開2001−205273号公報JP, 2001-205273, A 特開2006−281177号公報JP, 2006-281177, A 特開2008−68248号公報JP 2008-68248 A 特開2003−340464号公報JP 2003-340464 特開2008−142613号公報JP, 2008-142613, A 特開2000−140862号公報JP 2000-140862 A
 しかしながら、上記特許文献1~4に記載の鉄塩またはアルミニウム塩を用いた、リンの除去方法では、鉄イオンやアルミニウムイオン以外のイオンや成分も水中に加えられてしまうという問題があった。
 すなわち、処理対象水への鉄塩やアルミニウム塩の添加に伴い、鉄イオンまたはアルミニウムイオンと結合して鉄塩またはアルミニウム塩を形成している塩化物イオンや硫酸イオン等の対イオンも処理対象水中に添加されることとなり、処理対象水中の塩化物イオン濃度や硫酸イオン濃度が上昇し、生態系へ悪影響が生じるという問題があった。
However, in the method of removing phosphorus using the iron salt or aluminum salt described in Patent Documents 1 to 4, there is a problem that ions and components other than iron ions and aluminum ions are also added to water.
That is, with the addition of iron salts or aluminum salts to the water to be treated, counter ions such as chloride ions or sulfate ions which combine with iron ions or aluminum ions to form iron salts or aluminum salts are also treated water As a result, the concentration of chloride ions and sulfate ions in the water to be treated is increased, which adversely affects the ecosystem.
 また、上記特許文献5に記載の、鉄鋼スラグを用いたリンの除去方法および特許文献6に記載の鉄基材を用いたリンの除去方法では、鉄分とリン化合物とが水不溶性成分を形成する速度を上げることができない。すなわち、リンの除去速度が低いという問題があった。また、特許文献6の実施例に見られる処理後のリン濃度は0.1質量%、1000mg/L程度であった。 Further, in the method of removing phosphorus using iron and steel slag described in Patent Document 5 and the method of removing phosphorus using an iron base material described in Patent Document 6, the iron component and the phosphorus compound form a water insoluble component. I can not speed up. That is, there is a problem that the removal rate of phosphorus is low. Moreover, the phosphorus concentration after the process seen in the Example of patent document 6 was about 0.1 mass% and 1000 mg / L.
 すなわち、上記した方法では、リンの除去速度は、きわめて遅く、通常、1日は必要であった。このように処理時間が長くなると、し尿をためておく処理槽が数多く必要となってしまう。このような現状から、短時間でし尿中のリン等を処理できる方法が望まれていた。 That is, in the above-mentioned method, the removal rate of phosphorus was very slow, usually requiring one day. As such, when the treatment time is long, many treatment tanks for storing human waste are required. From such a current situation, a method capable of treating phosphorus and the like in human urine in a short time has been desired.
 また、し尿には独特の色がついている(図1参照)。
 現在の畜産排水処理での最大の問題は、脱色である。これまでは、凝集剤の大量添加によって脱色を行ってきたが、経費的に問題があり実用的ではない。また、オゾン処理によっても脱色は可能であるが、オゾン発生器の導入、装置のメンテナス、運転者の確保など、この処理方法も実用面での課題が多い。
In addition, it has a unique color (see Figure 1).
The biggest problem in current livestock wastewater treatment is bleaching. Until now, decolorization has been carried out by adding a large amount of flocculant, but this is problematic due to cost and is not practical. Although decolorization is possible by ozone treatment, this treatment method also has many practical problems, such as introduction of an ozone generator, maintenance of an apparatus, securing of a driver, and the like.
 従って、リンの除去以外の問題、すなわち窒素化合物の濃度やCOD値、し尿の色や臭気(以下、リン等という場合はこれらを含むものとする)の低減化に対しては、有効な手段が無いのが実情であった。
 本発明は、上記の問題を有利に解決するもので、不要なイオンや成分を添加する必要がなくかつ急速に、し尿中のリン等を除去することができる方法およびその方法を用いる除去回収装置を提供することを目的とする。
Therefore, there is no effective means to reduce problems other than removal of phosphorus, that is, the concentration and COD value of nitrogen compounds, the color and odor of human waste (hereinafter referred to as phosphorus in the case of phosphorus etc.). Was the situation.
The present invention advantageously solves the above problems, a method capable of rapidly removing phosphorus etc. in human urine without the need to add unnecessary ions and components, and a removal and recovery apparatus using the method Intended to provide.
 以下、本発明を成功に至らしめた実験について説明する。
 まず、鉄粉をし尿中に入れるとわずかに鉄の溶解が見られるので、鉄のみでもリンが除去できるのか検討した。使用した鉄粉は、還元鉄粉(エヌテック社製 80~150μm)および酸化鉄粉(石井商事(株)八潮工場製、75~150μm)の2種類である。
 還元鉄粉は、ミルスケール(スラブ、ビレット(鉄の角材)の圧延の際に散水することにより鉄の表面に発生する酸化鉄)をコークス等で還元し、次に水素雰囲気で熱処理して製造させた鉄粉で、粒子内に空孔を有している。純度はFe:90質量%以上の鉄粉で、残部は不可避的不純物である。
Hereinafter, an experiment which has succeeded in the present invention will be described.
First, iron powder was slightly dissolved when iron powder was put in manure, so it was examined whether phosphorus could be removed with iron alone. The iron powder used is of two types: reduced iron powder (80 to 150 μm manufactured by Entech Co., Ltd.) and iron oxide powder (75 to 150 μm manufactured by Ishii Shoji Yashio Plant).
The reduced iron powder is produced by reducing with mill scale (iron oxide generated on the surface of iron by watering during rolling of slabs and billets (iron bars)) with coke etc. and then heat-treated in a hydrogen atmosphere Iron powder, which has pores in the particles. The purity is iron powder of Fe: 90% by mass or more, and the balance is an unavoidable impurity.
 一方、酸化鉄粉は、スラグ含有鉄をロータリーキルンで焼き、酸化させた鉄粉で、Fe:85~90質量%である。不純分は、スラグ組成のCaO,SiO,Al,MgOなどである。
 し尿150mLを2リットルのポリエチレン製広口瓶に入れ、これに鉄粉3gを加えた。し尿に対する鉄粉の添加率は、2質量%となった。炭素材は添加していない。鉄粉は、袋に入れることなく、分散状態のままポリ容器中に入れた。還元鉄粉を使用した場合を実験1、酸化鉄粉の場合を実験2とする。
On the other hand, iron oxide powder is iron powder obtained by burning and oxidizing slag-containing iron with a rotary kiln, and Fe: 85 to 90 mass%. Impurities are CaO, SiO 2 , Al 2 O 3 , MgO, etc. of slag composition.
150 mL of human waste was placed in a 2-liter polyethylene wide-mouthed bottle, to which 3 g of iron powder was added. The addition rate of iron powder to human waste was 2% by mass. Carbon material is not added. The iron powder was put into a poly container in a dispersed state without being put in a bag. Experiment 1 is the case where reduced iron powder is used, and Experiment 2 is the case where iron oxide powder is used.
 し尿と鉄粉の入ったポリ容器は、ボールミルの回転台にのせ10rpmの条件で回転させた。処理前のリン酸イオン濃度は75mg/Lであった。その時のリン酸イオン濃度の時間変化を表1に示す。120分経過後、リン酸イオン濃度は、やや低下し、還元鉄粉では20mg/L、酸化鉄粉では43mg/Lとなった。鉄粉のみでも、鉄が溶解することから、リン酸イオン濃度は低くなったが、その低下はわずかであった。 The poly container containing human waste and iron powder was placed on a rotary table of a ball mill and rotated at 10 rpm. The phosphate ion concentration before treatment was 75 mg / L. The time change of the phosphate ion concentration at that time is shown in Table 1. After 120 minutes, the phosphate ion concentration slightly decreased, and was 20 mg / L for reduced iron powder and 43 mg / L for iron oxide powder. Even with iron powder, the concentration of phosphate ion was lowered due to the dissolution of iron, but the decrease was slight.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、鉄粉の粒径による影響について3種類の条件で検討した。鉄粉は、酸化鉄粉を使用した。酸化鉄粉の粒径は、実験3では75μm以下,実験4では75~150μm,実験5では500μm以下とした。各酸化鉄粉3gを2リットルのポリビンに加えた。炭化物は使用しない。酸化鉄粉は、袋の中に入れるのではなく、分散させた状態で実験を行った。し尿に対する酸化鉄粉の添加率は2質量%であった。
 し尿の入った容器は、ボールミルの回転台にのせ、10rpmの条件で所定時間回転させた。所定時間経過後、し尿中のリン酸イオン濃度を測定した。その変化を、表2に示す。処理前のリン酸イオン濃度は75mg/Lであった。120分経過後、リン酸イオン濃度はやや低下し、酸化鉄粉の粒径に関らず、いずれの場合も43mg/Lとなった。やはり、鉄粉のみでは、粒径を変化させても、リン酸イオンの低下は顕著にならないことが分かった。
Next, the influence of the particle size of iron powder was examined under three conditions. Iron powder used iron oxide powder. The particle size of the iron oxide powder is 75 μm or less in Experiment 3, 75 to 150 μm in Experiment 4, and 500 μm or less in Experiment 5. Three grams of each iron oxide powder was added to a 2 liter polybin. No carbide is used. The iron oxide powder was not dispersed in a bag, but was run in a dispersed state. The addition rate of iron oxide powder to human waste was 2% by mass.
The container containing human waste was placed on a rotary table of a ball mill and rotated at 10 rpm for a predetermined time. After a predetermined time elapsed, the phosphate ion concentration in human waste was measured. The change is shown in Table 2. The phosphate ion concentration before treatment was 75 mg / L. After 120 minutes, the phosphate ion concentration decreased slightly and became 43 mg / L in any case regardless of the particle size of the iron oxide powder. Again, it was found that with iron powder alone, the decrease in phosphate ion was not noticeable even if the particle size was changed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 さらに、炭素材のみで、し尿中のリン酸イオン濃度が減少するかを検討した。炭素材は、木質系の活性炭(中国製)を使用した。し尿150mLを2リットルのポリビンに入れ、鉄材は使用しないで、活性炭(中国製)0.8gを加えた。炭素材は、袋にいれないで、そのままの分散状態で使用した。ポリビンは、ボールミルの回転台を用い、10rpmの条件で回転させた。この実験を実験6とする。所定時間経過後におけるリン酸イオン濃度の変化を表3に示す。リン酸イオン濃度の測定と共にCOD、着色状況および臭気についても確認し、その結果を表3に併記する。リン酸イオン濃度は、実験開始前113mg/Lであった。活性炭のみで120分撹拌したし尿中のリン酸イオン濃度は、113mg/Lで、リン酸イオン濃度の低下は見られなかった。 Furthermore, it was examined whether the concentration of phosphate ion in human waste decreased with only the carbon material. As a carbon material, wood-based activated carbon (made in China) was used. 150 mL of human waste was placed in a 2-liter poly bottle, and 0.8 g of activated carbon (made in China) was added without using an iron material. The carbon material was used as it was in the dispersed state without being put in the bag. The poly bottle was spun at 10 rpm using a ball mill turntable. This experiment is referred to as Experiment 6. Changes in phosphate ion concentration after a predetermined time has elapsed are shown in Table 3. Along with the measurement of the phosphate ion concentration, the COD, the coloring condition and the odor are also confirmed, and the results are also shown in Table 3. The phosphate ion concentration was 113 mg / L before the start of the experiment. The phosphate ion concentration in human waste stirred for 120 minutes with activated carbon alone was 113 mg / L and no decrease in phosphate ion concentration was observed.
 ところが、し尿独特の色(黄褐色)は実験開始5分で消えて無色となった。また、し尿は、特有のニオイを有していたが、炭素材を加え撹拌することで、し尿臭は消え、アンモニア臭も少なくなった。さらに、CODに変化が見られ、実験前は160mg/Lであったが、120分後には18.3mg/Lにまで低くなっていることが分かった。 However, the color unique to human waste (yellowish brown) disappeared 5 minutes after the start of the experiment and became colorless. In addition, although it had a distinctive odor, by adding a carbon material and stirring, the excrement odor disappeared and the ammonia odor decreased. Furthermore, it was found that there was a change in COD, which was 160 mg / L before the experiment, but was lowered to 18.3 mg / L after 120 minutes.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 つぎに、その他の活性炭をし尿中に加えることで、リン酸イオン濃度とともに、色やCODも低下するかについて確認した。し尿150mLは、2リットルのポリビンに入れた。鉄材は、使用しないで、活性炭(クラレケミカル(株)製、クラレコールPW−D 0.25mm以下)0.8gを用いた(実験7とする)。
 活性炭は、そのままの状態でポリビンに入れ使用した。活性炭とし尿との混合物は、ポリビン中で分散させた。ポリビンは、ボールミルの回転台を用い、10rpmの条件で120分間回転させた。その時のリン酸イオン濃度の変化を表4に示す。同時にCOD,着色状況、臭気についても確認し、その結果を表4に併記する。リン酸イオン濃度は、実験前も、実験後も113mg/Lで、低下はなかった。
Next, it was confirmed whether color and COD decrease with the phosphate ion concentration by adding other activated carbon in the human waste. 150 mL of human waste was placed in a 2 liter polybin. The iron material was not used, and 0.8 g of activated carbon (Kuraray Chemical Co., Ltd. product, Klarecol PW-D 0.25 mm or less) was used (referred to as Experiment 7).
Activated carbon was put into polybin and used as it was. The mixture of activated carbon and human waste was dispersed in polybin. The poly bottle was spun at 10 rpm for 120 minutes using a ball mill turntable. The change of the phosphate ion concentration at that time is shown in Table 4. At the same time, the COD, the coloring condition and the odor are also confirmed, and the results are shown in Table 4. The phosphate ion concentration did not decrease at 113 mg / L both before and after the experiment.
 ところが、し尿独特の色(黄褐色)は実験開始5分で消え去り無色となった。また、し尿は、特有のニオイを有しており、大きな社会問題となっているが、活性炭と混合することで、し尿臭は消え、アンモニア臭は少なくなった。さらに、CODに変化が見られ、実験前は160mg/Lであったが、120分後には16.5mg/Lにまで低くなった。活性炭は、し尿中のリンを除去する効果がなかったが、COD,脱色、脱臭に効果があった。 However, the color unique to human waste (yellowish brown) disappeared 5 minutes after the start of the experiment and became colorless. In addition, human waste has a distinctive odor, which is a serious social problem, but mixing with activated carbon eliminates human odor and reduces ammonia odor. Furthermore, there was a change in COD, which was 160 mg / L before the experiment but decreased to 16.5 mg / L after 120 minutes. Activated carbon was not effective in removing phosphorus in human urine, but was effective in COD, decolorization and deodorization.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 さらに、活性炭の種類によって、し尿中のリンの除去に差があるか検討した。し尿は150mLを2リットルのポリビンに入れた。鉄材は、純鉄粉(還元鉄粉、JFEスチール(株)製、JIPK K−1001,0.25mm以下)5.2gを使用した。活性炭は、3種類、クラレケミカル(株)製 木質系(PW−D、実験8)、クラレケミカル(株)製ヤシ殻系(PK−D、実験9)および中国製活性炭(実験10)とした。使用量は、いずれも0.8gとした。なお、鉄材と活性炭の添加率は、4質量%であった。
 純鉄粉と活性炭との混合物は、袋に入れることなく、そのままの状態で2リットルのポリビンの中に分散させ、ボールミルの回転台を用い、10rpmの条件で回転させた。その時のリン酸濃度の変化を表5に示す。クラレ(株)製の活性炭を使用した場合、し尿の色は消え無色になった。中国製活性炭では、脱色は見られなかった。
Furthermore, we examined whether there was a difference in the removal of phosphorus in human urine depending on the type of activated carbon. 150 mL of human waste was placed in a 2 liter polybin. As an iron material, 5.2 g of pure iron powder (reduced iron powder, manufactured by JFE Steel Co., Ltd., JIPK K-1001, 0.25 mm or less) was used. Three types of activated carbon were used: wood-based (PW-D, experiment 8) manufactured by Kuraray Chemical Co., Ltd., coconut shell-based (PK-D, experiment 9) manufactured by Kuraray Chemical Co., Ltd., and activated carbon made in China (experiment 10) . The amount used was 0.8 g in each case. The addition ratio of iron material and activated carbon was 4% by mass.
The mixture of pure iron powder and activated carbon was dispersed in 2 liters of polybin as it was without putting it in a bag, and was rotated at 10 rpm using a ball mill turntable. The change in phosphoric acid concentration at that time is shown in Table 5. When activated carbon manufactured by Kuraray Co., Ltd. was used, the color of human waste disappeared and became colorless. In the case of activated carbon made in China, no decoloring was observed.
 また、CODは当初160mg/Lであったが、120分後にはいずれの活性炭でも約10mg/L程度になり、顕著な低下効果が見られた。酸化鉄粉を用いた場合のリン酸イオン濃度は、実験開始時には113mg/Lであったが、実験8では90分で0mg/Lに、実験9は120分で0.2mg/Lに、実験10では120分で0.5mg/Lにまで減少した。
 し尿の臭気にも変化が見られた。開始時には、強いアンモニア臭およびし尿臭がした。しかし、30分後には、し尿臭が消え、アンモニア臭のみとなった。さらに、60分後には、アンモニア臭も薄くなった。その後、90分、120分と時間が経つにつれ、さらにアンモニア臭は薄くなっていった。
The COD was initially 160 mg / L, but after 120 minutes, it was about 10 mg / L for any activated carbon, and a remarkable lowering effect was observed. When iron oxide powder was used, the phosphate ion concentration was 113 mg / L at the beginning of the experiment, but in Experiment 8 it was 0 mg / L in 90 minutes and in Experiment 9 0.2 mg / L in 120 minutes. 10 decreased to 0.5 mg / L in 120 minutes.
There was also a change in the odor of human waste. At the beginning, there was a strong ammonia odor and a manure odor. However, after 30 minutes, the urinary odor disappeared and only the ammonia odor was found. Furthermore, after 60 minutes, the odor of ammonia also became thin. After that, as the time passed for 90 minutes and 120 minutes, the ammonia odor further decreased.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 鉄と炭素の添加量による影響について検討した。し尿150mLは、2リットルのポリビンに入れた。鉄材は、スラグ含有鉄(石井商事(株)製、1.4mm以下)を用いた。スラグ含有鉄(石井商事(株)八潮製)は、鉄の製造段階で、転炉及び電炉で出向の際にスラグ(ノロ、鋼滓)と溶鋼は分離回収されるが、完全に分離回収することは不可能にて、溶鋼の一部はスラグ中に混入してしまう。この鋼とスラグが混在する部分が、鋼流れ、地金混入スラグと呼ばれるものである。 The effects of iron and carbon additions were examined. 150 mL of human waste was placed in a 2 liter polybin. The iron material used was slag-containing iron (manufactured by Ishii Shoji Co., Ltd., 1.4 mm or less). Slag-containing iron (Ishii Shoji Co., Ltd. made by Yasoi Co., Ltd.) separates and recovers slag (slab, steel plate) and molten steel when it is dispatched in a converter and an electric furnace at the iron production stage, but completely separate and recover It is impossible, and a part of molten steel mixes in slag. The portion in which this steel and slag are mixed is called steel flow, metal-containing slag.
 石井商事・八潮では、この鋼流れからスラグを分離し(粉砕、磁選、篩分)し、鉄粉を製造している。ただ、スラグを完全に分離することは難しく、一部スラグが含有する為に、「スラグ含有鉄」と称している。純度はスラグが含有していることもあり、又、ロットによりばらつきもあり、Fe:70~90濃度%程度である。不純物としては、スラグの組成であるCaO,SiO,Al,MgOなどが含まれる。実験には、このスラグ含有鉄を6.5g使用した。 In Ishii Shoji and Yashio, slag is separated from this steel flow (grind, magnetic separation, sieving) to produce iron powder. However, it is difficult to completely separate the slag, and it is referred to as "slag-containing iron" because some of the slag contains it. The purity may be contained in the slag and may vary depending on the lot, and the Fe content is about 70 to 90% by concentration. The impurities include CaO, SiO 2 , Al 2 O 3 , MgO, etc., which are the composition of slag. In the experiment, 6.5 g of this slag-containing iron was used.
 炭素材は、活性炭(プラスチック系、粉末状)を用い、それの使用量を0.5g(実験11)、1.0g(実験12)および1.5g(実験13)と変化させて実験を行った。
 鉄材と炭素材との添加率は、7.1%(実験11)、13.3%(実験12)および18.8%(実験13)であった。
The carbon material used activated carbon (plastic type, powdery form) and changed the amount used to 0.5 g (experiment 11), 1.0 g (experiment 12) and 1.5 g (experiment 13). The
The addition rates of iron material and carbon material were 7.1% (experiment 11), 13.3% (experiment 12) and 18.8% (experiment 13).
 鉄材と炭素材との混合物は、不織布(6cm×6cm)の中にいれた。添加物の入った不織布は、ポリビンの中に入れ、ボールミルの回転台を用い、10rpmの条件で回転させた。その時のリン酸イオン濃度の変化を表6に示す。開始時のリン酸イオン濃度は113mg/Lであったが、120分後でも20~35mg/Lで、顕著な低下は見られなかった。スラグ含有鉄を使用した場合には、リン酸イオン濃度の減少はわずかであり、添加量による差は見られないことが分かった。 The mixture of iron material and carbon material was placed in a non-woven fabric (6 cm × 6 cm). The non-woven fabric containing the additive was placed in a poly bottle and rotated at 10 rpm using a ball mill turntable. The change of the phosphate ion concentration at that time is shown in Table 6. Although the phosphate ion concentration at the start was 113 mg / L, no remarkable decrease was observed at 20 to 35 mg / L even after 120 minutes. When slag-containing iron was used, it was found that the decrease in phosphate ion concentration was slight and that no difference was observed due to the addition amount.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 次に、鉄粉量は一定にし、活性炭量のみを変化させた場合の、し尿中のリンの除去効果について検討した。
 鉄粉材は、スラグ含有鉄(石井商事(株)製、1.4mm以下)7.7gを使用した。活性炭は、活性炭(プラスチック系、粉末状)を用い、その使用量を0.6g(実験14)、1.3g(実験15)および1.9g(実験16)と変化させて実験を行った。鉄粉材と活性炭の添加率は、7.2質量%(実験14)、14.4質量%(実験15)および19.8質量%(実験16)であった。
Next, the amount of iron powder was kept constant, and the removal effect of phosphorus in human waste when only the amount of activated carbon was changed was examined.
The iron powder material used 7.7 g of slag containing iron (Ishii Shoji Co., Ltd. product, 1.4 mm or less). The activated carbon used the activated carbon (plastic type, powdery form), and the amount used was changed into 0.6 g (experiment 14), 1.3 g (experiment 15), and 1.9 g (experiment 16). The addition rates of the iron powder material and the activated carbon were 7.2% by mass (experiment 14), 14.4% by mass (experiment 15) and 19.8% by mass (experiment 16).
 し尿150mLを2リットルのポリビンに入れた。鉄粉と活性炭との混合物は、不織布(6cm×6cm)の中にいれ、それをポリビンの中で分散させ、ボールミルの回転台を用い10rpmの条件で120分間回転させた。その時のリン酸イオン濃度の変化を表7に示す。リン酸イオン濃度は、開始時113mg/Lであったが、120分後でも10~30mg/Lであった。この処理によって、リン酸イオン濃度は低下したが、顕著な減少ではなかった。これは、スラグ含有鉄を使用したことによるものである。また、鉄粉と活性炭の添加量による違いは、見られなかった。 150 mL of human waste was placed in a 2 liter polybin. A mixture of iron powder and activated carbon was placed in a non-woven fabric (6 cm × 6 cm), dispersed in a poly bottle, and rotated at 10 rpm for 120 minutes using a ball mill turntable. The change of the phosphate ion concentration at that time is shown in Table 7. The phosphate ion concentration was 113 mg / L at the beginning, but was 10 to 30 mg / L even after 120 minutes. By this treatment, the phosphate ion concentration was reduced, but not significantly. This is due to the use of slag-containing iron. Moreover, the difference by the addition amount of iron powder and activated carbon was not seen.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 し尿に対する鉄粉末と活性炭との混合物の添加率による影響について検討した。鉄粉末は、スラグ含有鉄(石井商事(株)製、1.4mm以下)2.6g(実験17)、3.9g(実験18)、および5.2g(実験19)を使用した。活性炭としては、活性炭(クラレケミカル(株)製、クラレコールPW−D)を用い、その使用量を0.4g(実験17)、0.6g(実験18)および0.8g(実験19)とした。 The influence of the addition rate of the mixture of iron powder and activated carbon on human waste was examined. As iron powder, 2.6 g (experiment 17), 3.9 g (experiment 18), and 5.2 g (experiment 19) of slag containing iron (Ishii Shoji Co., Ltd. product, 1.4 mm or less) were used. The activated carbon used is 0.4 g (Experiment 17), 0.6 g (Experiment 18) and 0.8 g (Experiment 19), using activated carbon (Kuraray Chemical Co., Ltd., Kuraray PW-D). did.
 し尿150mLを2リットルのポリビンに入れた。鉄粉末と活性炭との混合物は、不織布製の袋(6cm×6cm)の中にいれ、それをポリビンの中におき、ボールミルの回転台を用い、10rpmの条件で2時間回転させた。その時のリン酸イオン濃度の変化を表8に示す。スラグ含有鉄を使用した場合、リン酸イオン濃度は当初の113mg/Lであったが、120分後には12.5~48mg/Lになった。また、鉄粉末と活性炭との添加率がし尿量に対して大きくなるほどリン酸イオン濃度は低くなった。 150 mL of human waste was placed in a 2 liter polybin. The mixture of iron powder and activated carbon was placed in a non-woven bag (6 cm × 6 cm), placed in a polybin, and rotated at 10 rpm for 2 hours using a ball mill turntable. The change in phosphate ion concentration at that time is shown in Table 8. When slag-containing iron was used, the phosphate ion concentration was 113 mg / L originally, but after 120 minutes it was 12.5 to 48 mg / L. Moreover, the phosphate ion concentration became low, so that the addition rate of iron powder and activated carbon became large with respect to the amount of human waste.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 さらに、鉄粉末と活性炭の添加率による影響について検討した。鉄粉末は、純鉄粉(還元鉄粉、JFEスチール(株)製、0.25mm以下)を用いた。その使用量は、2.6g(実験20)、3.9g(実験21)、4.5g(実験22)、5.2g(実験23)および5.8g(実験24)とした。活性炭としては、活性炭(クラレケミカル(株)製、クラレコールPW−D)を用いた。その使用量は、0.4g(実験20)、0.6g(実験21)、0.7g(実験22)、0.8g(実験23)および0.9g(実験24)と変化させて実験を行った。 Furthermore, the influence by the addition rate of iron powder and activated carbon was examined. As iron powder, pure iron powder (reduced iron powder, manufactured by JFE Steel Corp., 0.25 mm or less) was used. The amounts used were 2.6 g (experiment 20), 3.9 g (experiment 21), 4.5 g (experiment 22), 5.2 g (experiment 23) and 5.8 g (experiment 24). As activated carbon, activated carbon (Kuraray Chemical Co., Ltd. product, KURARECOR PW-D) was used. The amounts used were changed to 0.4 g (experiment 20), 0.6 g (experiment 21), 0.7 g (experiment 22), 0.8 g (experiment 23) and 0.9 g (experiment 24). went.
 鉄粉末と活性炭のし尿に対する添加率は、2質量%(実験20)、3質量%(実験21)、3.5質量%(実験22)、4質量%(実験23)および4.5質量%(実験24)であった。
 し尿150mLを2リットルのポリビンに入れた。混合物は、不織布(6cm×6cm)の中にいれ、ボールミルの回転台上、10rpmの条件で2時間回転させた。この時のリン酸濃度の変化を表9に示す。鉄粉末に純鉄粉を使用すると、し尿中のリン酸イオン濃度は減少し、活性炭の添加量が大きくなると、リンの除去効果は大きくなることが分かった。
The addition rate of iron powder and activated carbon to human waste is 2% by mass (experiment 20), 3% by mass (experiment 21), 3.5% by mass (experiment 22), 4% by mass (experiment 23) and 4.5% by mass (Experiment 24).
150 mL of human waste was placed in a 2 liter polybin. The mixture was placed in a non-woven fabric (6 cm × 6 cm) and spun on a ball mill turntable at 10 rpm for 2 hours. The change of the phosphoric acid concentration at this time is shown in Table 9. It was found that when pure iron powder was used for iron powder, the concentration of phosphate ions in human waste decreased, and when the amount of activated carbon added was large, the phosphorus removal effect was increased.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 鉄粉末と活性炭との混合物を、ボールミル回転台上で回転した場合の回転速度によるリン酸イオン濃度の減少に対する影響について検討した。鉄粉末は、スラグ含有鉄(石井商事(株)製、1.4mm以下)7.7gを使用した。活性炭としては、活性炭(プラスチック系、粉末状)1.3gを用いた。
 し尿150mLは、2リットルのポリビンに入れた。混合物は、不織布(6cm×6cm)の中にいれた。鉄粉末と活性炭の添加率は6質量%であった。添加物は、ポリビンの中で分散させ、ボールミル回転台上で10rpm(実験25)、30rpm(実験26)および45rpm(実験27)の条件で回転させた。その際のリン酸イオン濃度の変化を表10に示す。スラグ含有鉄を使用した場合には、リン酸イオン濃度の減少はわずかであった。また、回転数による差はわずかであった。
The mixture of iron powder and activated carbon was examined for its effect on the decrease in phosphate ion concentration due to the rotational speed when rotating on a ball mill turntable. As iron powder, 7.7 g of slag-containing iron (Ishii Shoji Co., Ltd. product, 1.4 mm or less) was used. As activated carbon, 1.3 g of activated carbon (plastic, powder) was used.
150 mL of human waste was placed in a 2 liter polybin. The mixture was placed in a non-woven (6 cm × 6 cm). The addition ratio of iron powder and activated carbon was 6% by mass. The additives were dispersed in poly bottles and spun on a ball mill turntable at 10 rpm (experiment 25), 30 rpm (experiment 26) and 45 rpm (experiment 27). Changes in phosphate ion concentration at that time are shown in Table 10. When using slag-containing iron, the decrease in phosphate ion concentration was slight. Moreover, the difference by rotation speed was slight.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 し尿は、150mLを2リットルのポリビンに入れた。鉄粉末は、純鉄粉(還元鉄粉、JFEスチール製、250μm以下)5.2gを使用した。活性炭は、活性炭(クラレケミカル(株)製、PW−D)0.8gを用いた。
 鉄粉末と活性炭のし尿に対する添加率は4質量%であった。添加物は、ポリビンの中で分散させ、ボールミルの回転台上で5rpm(実験28)、10rpm(実験29)および15rpm(実験30)の条件で回転させた。その際のリン酸イオン濃度の変化を表11に示す。同表より、し尿中のリン酸イオン濃度は減少していることが分かる。また、回転数による差はあまり見られなかった。
For human waste, 150 mL was placed in a 2 liter polybin. As iron powder, 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, 250 μm or less) was used. As the activated carbon, 0.8 g of activated carbon (manufactured by Kuraray Chemical Co., Ltd., PW-D) was used.
The addition rate of iron powder and activated carbon to human waste was 4% by mass. The additives were dispersed in poly bottles and spun on a ball mill turntable at 5 rpm (experiment 28), 10 rpm (experiment 29) and 15 rpm (experiment 30). Changes in phosphate ion concentration at that time are shown in Table 11. From the table, it can be seen that the concentration of phosphate ions in human waste is decreasing. Moreover, the difference by rotation speed was not seen so much.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 鉄粉末と活性炭を繰り返し使用した場合、繰り返しの回数によってリン除去効果は持続できるか検討した。鉄粉末は、純鉄粉(還元鉄粉、JFEスチール製、250μm以下)5.2gを使用した。活性炭としては、活性炭(クラレケミカル(株)製、PW−D)0.8gを用いた。
 し尿150mLは、2リットルのポリビンに入れた。混合物は、不織布を使用しないで、分散状態で使用した。添加物は、ポリビンの中で分散させ、ボールミル回転台上、10rpmの条件で120分間回転させた。ついで、ポリ容器中のし尿を取り出し、未処理のし尿を150mL加え、さらに2時間回転させた。この操作を4回繰り返して行った。そのときのリン酸イオン濃度の変化を表12に示す。リン酸イオン濃度は、4回繰り返しても3.5mg/Lまで低減化しており、鉄粉未と活性炭のリン除去効果は持続していた。
When iron powder and activated carbon were used repeatedly, it was examined whether the phosphorus removal effect could be sustained by the number of repetitions. As iron powder, 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, 250 μm or less) was used. As activated carbon, 0.8 g of activated carbon (Kuraray Chemical Co., Ltd. product, PW-D) was used.
150 mL of human waste was placed in a 2 liter polybin. The mixture was used in the dispersed state without using a non-woven fabric. The additives were dispersed in poly bottles and spun on a ball mill turntable for 10 minutes at 10 rpm. Then, the human waste in the poly container was removed, 150 mL of untreated human urine was added, and the mixture was further rotated for 2 hours. This operation was repeated four times. Changes in phosphate ion concentration at that time are shown in Table 12. The phosphate ion concentration was reduced to 3.5 mg / L even after four repetitions, and the phosphorus removal effect of iron powder and activated carbon was sustained.
 また、一緒にCODも測定した。処理前のCODは、約100mg/Lであったが、1回目(実験31)では11.5mg/Lになった。2回目(実験32)では20mg/L、3回目(実験33)では35mg/L、4回目(実験34)では50mg/LとCODの減少率は若干小さくなった。さらに、し尿の色は、処理前は黄褐色であったが、1回目の処理によって無色となった。2回目では、透明になったが、3回目ではやや色がつき始めた。
 また、し尿の臭気は、1回目(実験31)の処理では無臭となったが、2回目(実験32)および3回目(実験33)の処理ではやや臭気が残った。さらに、4回目(実験34)ではあまり臭気は取れなかった。
In addition, COD was also measured together. The COD before treatment was about 100 mg / L, but was 11.5 mg / L at the first test (experiment 31). The reduction rate of COD was slightly reduced to 20 mg / L at the second time (experiment 32), 35 mg / L at the third time (experiment 33), and 50 mg / L at the fourth time (experiment 34). Furthermore, the color of human waste was yellow-brown before treatment but became colorless upon the first treatment. It became transparent in the second time, but started to be slightly colored in the third time.
In addition, although the odor of human waste was odorless in the first treatment (experiment 31), some odors remained in the second treatment (experiment 32) and the third treatment (experiment 33). Furthermore, at the 4th time (experiment 34), the odor was not obtained so much.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 し尿量を増加させることによって、し尿量に対する鉄粉末と活性炭との混合物の添加比率を変化させた場合のリン酸イオンの除去効果について検討した。実験に用いたし尿量は、150mL(実験35)、300mL(実験36)、450mL(実験37)および600mL(実験38)の4種類であった。
 鉄粉末は、純鉄粉(還元鉄粉、JFEスチール(株)製、250μm以下)5.2gを使用した。活性炭はクラレケミカル(株)製、PW−Dを0.8g用いた。鉄粉末と活性炭のし尿に対する添加率は、4質量%(実験35)、2質量%(実験36)、1.5質量%(実験37)および1質量%(実験38)となる。
We examined the removal effect of phosphate ion when the addition ratio of the mixture of iron powder and activated carbon to the amount of human waste was changed by increasing the amount of human urine. The urine volume used for the experiment was four types of 150 mL (experiment 35), 300 mL (experiment 36), 450 mL (experiment 37) and 600 mL (experiment 38).
As iron powder, 5.2 g of pure iron powder (reduced iron powder, manufactured by JFE Steel Corp., 250 μm or less) was used. As the activated carbon, 0.8 g of PW-D manufactured by Kuraray Chemical Co., Ltd. was used. The addition rates of iron powder and activated carbon to the human waste are 4% by mass (experiment 35), 2% by mass (experiment 36), 1.5% by mass (experiment 37) and 1% by mass (experiment 38).
 各し尿量とも、2リットルのポリビンに入れた。混合物は、不織布を使用しないで、そのままの分散状態でポリビンの中に入れた。ポリビンは、ボールミルの回転台上、10rpmの条件で120分間あるいはリン酸イオン濃度が0.8mg/L以下になるまで回転させた。その際のリン酸イオン濃度の変化を表13に示す。添加率4質量%の場合は、60分間でリン酸イオン濃度は0.8mg/Lとなった。添加率2質量%では90分間でリン酸イオン濃度は0.8mg/Lとなった。
 また、添加率1.5質量%では120分後でもリン酸イオン濃度は2mg/L、添加率1質量%では120分後でも5mg/Lであった。一方、CODにも影響があった。添加率4質量%では当初のCODは、160mg/Lであったが、添加率が低くなるにつれ、CODは12.3mg/L、14.8mg/Lと増大し、添加率1質量%では27.5mg/Lと高くなった。
Each urine volume was placed in a 2 liter polybin. The mixture was put into the polybin in its dispersed state without using a non-woven fabric. The poly bottle was rotated on a ball mill turntable for 10 minutes at 10 rpm or until the phosphate ion concentration became 0.8 mg / L or less. The change of the phosphate ion concentration in that case is shown in Table 13. In the case of the addition rate of 4% by mass, the phosphate ion concentration was 0.8 mg / L in 60 minutes. The phosphate ion concentration was 0.8 mg / L in 90 minutes at an addition rate of 2% by mass.
The phosphate ion concentration was 2 mg / L even after 120 minutes at an addition rate of 1.5 mass%, and was 5 mg / L even after 120 minutes at an addition rate of 1 mass%. Meanwhile, COD was also affected. The initial COD was 160 mg / L at an addition rate of 4% by mass, but as the addition rate decreased, the COD increased to 12.3 mg / L and 14.8 mg / L, and at an addition rate of 1% by mass, 27%. It was as high as 0.5 mg / L.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 以上のような実験、考察を経て、発明者は、活性炭および鉄粉末に対し、し尿を流動させることで、し尿中のリン、COD、窒素、色および臭気を急速除去することができることを知見した。
 本発明は上記知見に立脚するものである。
Through the above experiments and discussions, the inventor has found that by flowing human waste to activated carbon and iron powder, it is possible to rapidly remove phosphorus, COD, nitrogen, color and odor in human urine. .
The present invention is based on the above findings.
 すなわち、本発明の要旨構成は次のとおりである。
 1.し尿またはし尿排水中に、粉状の活性炭と鉄粉末を供給し、撹拌、流動させることを特徴とする、し尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。
That is, the gist configuration of the present invention is as follows.
1. A method for rapidly removing phosphorus, COD, nitrogen, color and odor in human waste or excrement, characterized in that powdered activated carbon and iron powder are supplied to excrement or excrement in human waste or excrement.
 2.前記粉状の活性炭は、粉末状、粒状または線状のいずれか一の形状であって、比表面積:300m/g以上、直径あるいは長辺の一片が2mm以下であることを特徴とする、前記1に記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 2. The powdery activated carbon is any one of powdery, granular or linear, and has a specific surface area of 300 m 2 / g or more, and a diameter or long side of 2 mm or less. A method for rapidly removing phosphorus, COD, nitrogen, color and odor in human waste or human waste water as described in 1 above.
 3.前記鉄粉末は、還元鉄粉であって、円相当径が1mm以下であることを特徴とする、前記1または2に記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 3. The iron powder is a reduced iron powder having a circle equivalent diameter of 1 mm or less, the phosphorus, COD, nitrogen, color and odor in human waste or human waste water according to 1 or 2 above. How to remove
 4.前記粉状の活性炭に対する前記鉄粉末の質量の比が1/2~1/15であることを特徴とする、前記1乃至3のいずれかに記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 4. The phosphorus, COD, nitrogen in human waste or human waste water according to any one of the items 1 to 3, wherein the ratio of the mass of the iron powder to the powdery activated carbon is 1/2 to 1/15. How to quickly remove color and odor.
 5.前記し尿またはし尿排水中における前記粉状の活性炭と前記鉄粉末の割合が1~20質量%であることを特徴とする、前記1乃至4のいずれかに記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 5. The phosphorus in the human waste or human waste water according to any one of 1 to 4, characterized in that the ratio of the powdered activated carbon and the iron powder in the human waste or human waste water is 1 to 20% by mass. Rapid removal of COD, nitrogen, color and odor.
 6.前記粉状の活性炭と前記鉄粉末とを、通水性を有する容器に収納して供給することを特徴とする、前記1乃至5のいずれかに記載のし尿またはし尿排水中のリン、窒素、色および臭気の急速除去方法。 6. The phosphorus, nitrogen, color in the human waste or human waste water according to any one of the above 1 to 5, characterized in that the powdery activated carbon and the iron powder are contained in a container having water permeability and supplied. And rapid odor removal methods.
 7.し尿およびし尿排水中のリン、COD、窒素、色および臭気を除去する装置であって、反応槽と、粉状の活性炭の供給手段と、鉄粉末の供給手段と、該し尿およびし尿排水の撹拌手段とを備えることを特徴とする、除去装置。 7. An apparatus for removing phosphorus, COD, nitrogen, color and odor in human waste and human waste water, comprising a reaction tank, means for supplying powdered activated carbon, means for supplying iron powder, and stirring of human waste and human waste water. And means for removing.
 8.前記装置の底部に沈下したリン酸鉄の回収口を備えることを特徴とする、前記7に記載の除去装置。 8. The removal device according to the above 7, further comprising a recovery port for iron phosphate which has sunk to the bottom of the device.
 9.前記粉状の活性炭と前記鉄粉末の供給手段が、前記粉状の活性炭と前記鉄粉末を通水性を有する容器内に収納して供給するものであることを特徴とする、前記7または8に記載の除去装置。 9. In the above-mentioned 7 or 8, the supply means of the powdery activated carbon and the iron powder is housed and supplied in the container having the permeability of the powdery activated carbon and the iron powder. Removal device as described.
 10.前記撹拌手段が撹拌羽根であり、該撹拌羽根の回転速度を0.5rpm以上とすることを特徴とする、前記7乃至9のいずれかに記載の除去装置。 10. The removal device according to any one of 7 to 9, wherein the stirring means is a stirring blade, and the rotational speed of the stirring blade is 0.5 rpm or more.
 11.前記撹拌手段が反応槽の回転であり、該反応槽の周速度を0.5rpm以上とすることを特徴とする、前記7乃至9いずれかに記載の除去装置。 11. The removal apparatus according to any one of 7 to 9, wherein the stirring means is a rotation of the reaction tank, and a circumferential speed of the reaction tank is 0.5 rpm or more.
 12.前記通水性を有する容器が前記反応槽上部からし尿またはし尿排水中に吊下げられていることを特徴とする、前記10に記載の除去装置。 12. 10. The removal apparatus according to 10, wherein the water-permeable container is suspended from the upper portion of the reaction tank into the excrement or excrement.
 13.前記通水性を有する容器が前記反応槽に固定されていることを特徴とする、前記10または11に記載の除去装置。 13. The removal apparatus according to 10 or 11, wherein the water-permeable container is fixed to the reaction vessel.
 本発明によれば、不要なイオンや成分を水中に添加することなく、水中のリン等を急速かつ効率的に低減することができる。 According to the present invention, phosphorus and the like in water can be rapidly and efficiently reduced without adding unnecessary ions and components into the water.
脱色前のし尿を示した写真である。It is a photograph showing human waste before bleaching. 本発明に従う急速除去回収システムの構成を示した図である。FIG. 1 shows the configuration of a rapid removal and recovery system according to the present invention. 急速リン除去装置(実験用)を示した概念図である。It is the conceptual diagram which showed the rapid phosphorus removal apparatus (for experiment). 本発明に従う急速リン除去装置(円筒横型・容器回転方式)を示した概念図である。It is the conceptual diagram which showed the rapid phosphorus removal apparatus (cylindrical horizontal type | mold container rotation system) according to this invention. 本発明に従う急速リン除去装置(円筒横型・内部撹はん式)を示した概念図である。It is a conceptual diagram showing a rapid phosphorus removal device (cylindrical horizontal type and internal stirring type) according to the present invention. 本発明に従う急速リン除去装置(円筒縦型・内部撹はん式)を示した概念図である。It is a conceptual diagram showing a rapid phosphorus removal device (cylindrical vertical type / internal stirring type) according to the present invention. 本発明に従う急速リン除去装置(円錐型・内部撹はん式)を示した概念図である。It is the conceptual diagram which showed the rapid phosphorus removal apparatus (cone type and internal stirring type) according to this invention. 本発明に従う急速リン除去装置 (円錐型・流動床式)を示した概念図である。It is a conceptual diagram showing a rapid phosphorus removal device (cone type, fluid bed type) according to the present invention. 脱色後のし尿を示した写真である。It is a photograph showing human waste after decoloration.
 以下、本発明を具体的に説明する。
 本発明は、反応槽内で、粉状の活性炭(以下、活性炭と記す)と鉄粉末を、し尿と撹拌、流動(以下、撹拌と記す)させる、すなわち、反応槽内で、活性炭と鉄粉末を、し尿と接触させることでし尿中のリン等の除去を行う。
 鉄粉末をし尿中に加えても、前記に示した実験のとおり、鉄粉末中の鉄の溶解はあまりおこらない。鉄を溶解させるためには、さらに、し尿中に活性炭をくわえることが必要である。し尿中に活性炭を加えることで、活性炭と鉄との間で接触が起こり、一種の局部電池が形成され、それによって鉄のイオン化が進行して、リン酸イオンとの反応が起こりリン酸イオンが不溶性のリン酸鉄となる。
Hereinafter, the present invention will be specifically described.
In the present invention, powdered activated carbon (hereinafter referred to as activated carbon) and iron powder are allowed to stir and flow (hereinafter referred to as agitation) in a reaction tank, that is, activated carbon and iron powder in the reaction tank To remove phosphorus etc. in human urine by contacting it with human urine.
Even if iron powder is added to human waste, dissolution of iron in iron powder does not occur so much, as in the experiment shown above. In order to dissolve iron, it is further necessary to add activated carbon in human urine. The addition of activated carbon to human urine causes contact between the activated carbon and iron to form a kind of local battery, whereby the ionization of iron proceeds and the reaction with phosphate ions takes place, phosphate ions It becomes insoluble iron phosphate.
 上述した様に、し尿中のリン酸イオンは、鉄粉末中の鉄イオンと反応して、リン酸鉄を生成する。これは不溶性であることから、沈殿物となり、鉄粉末および活性炭の表面を被覆し、反応を妨げることになる。すなわち、表面の付着物は剥離、分離することが必要であり、それには、し尿を撹拌させる必要がある。 As described above, phosphate ions in human waste react with iron ions in iron powder to form iron phosphate. Since it is insoluble, it becomes a precipitate and coats the surfaces of iron powder and activated carbon, which interferes with the reaction. That is, surface deposits need to be exfoliated and separated, which requires stirring of human waste.
 上記撹拌時に、活性炭に対する鉄粉末の質量の比(本発明では、活性炭の質量/鉄粉末の質量を意味する。)は、1/2~1/15であることが望ましく。より好ましくは、1/2~1/10である。また、し尿中における鉄粉末および活性炭の割合(鉄粉末および活性炭の質量/し尿の質量)は1~20質量%とすることが好ましい。
 また、ボールミルのような装置を使用すれば、撹拌、混合と衝撃とが行われることになり、脱リン効果が促進されるため好ましい。
At the time of the stirring, the ratio of the mass of iron powder to activated carbon (in the present invention, the mass of activated carbon / the mass of iron powder) is preferably 1/2 to 1/15. More preferably, it is 1/2 to 1/10. Further, it is preferable that the ratio of iron powder and activated carbon (mass of iron powder and activated carbon / mass of human waste) in human waste is 1 to 20 mass%.
In addition, it is preferable to use an apparatus such as a ball mill because stirring, mixing and impact are performed and the dephosphorizing effect is promoted.
 本発明における撹拌は、撹拌羽根または反応槽自身の回転によって行うことが好ましい。この時、撹拌羽根の場合は、羽根の回転速度が0.5rpm以上が好ましい。より好ましくは、100~1000rpm程度であるが、処理速度を上げたいときは、5000~30000rpm程度にすることができる。また、反応槽自身の回転の場合は、周速度が0.5rpm以上とすることが好ましく、上限として特に制限はないが100rpm程度以下が望ましい。 The stirring in the present invention is preferably performed by rotating the stirring blade or the reaction tank itself. At this time, in the case of a stirring blade, the rotational speed of the blade is preferably 0.5 rpm or more. More preferably, it is about 100 to 1000 rpm, but when it is desired to increase the processing speed, it can be about 5000 to 30000 rpm. In the case of rotation of the reaction tank itself, the peripheral speed is preferably 0.5 rpm or more, and the upper limit is not particularly limited, but about 100 rpm or less is desirable.
 本発明では、活性炭も鉄粉末も共に粉末を使用し、上述した活性炭に対する鉄粉末の質量の比およびし尿中における鉄粉末および活性炭の割合等の範囲にすることによって、両者を、流動等によって積極的に接触させ、鉄イオンの溶け出しを促進し、それによってリンを除去する速度を高めることができる。 In the present invention, both activated carbon and iron powder are used as powders, and by setting the ratio of the mass of iron powder to activated carbon and the ratio of iron powder and activated carbon in human waste as described above, Contact to promote dissolution of iron ions, thereby increasing the rate of phosphorus removal.
 さらに、活性炭と鉄粉末の混合物は、回収を容易にするために、通水性を有する容器に収納することができる。
 これによって、リン酸イオンと鉄イオンとの反応によって生成したリン酸鉄を回収することが可能となるとともに、資源として再利用も可能となる。
Additionally, the mixture of activated carbon and iron powder can be stored in a water-permeable container to facilitate recovery.
This makes it possible to recover iron phosphate produced by the reaction of phosphate ion and iron ion, and also to reuse it as a resource.
 鉄粉末と活性炭との混合物を収納する容器は、繊維から作られている容器(袋)が望ましい。その容器は、織物あるいは不織布かあるいは網(メッシュ)である。このような容器であれば、水は通過できるが、粉などは通過できない。また、生成したリン酸鉄も通過できない。処理後には、容器ごと廃棄することも可能である。あるいは、容器中からリン酸鉄を取り出すことも可能である。 The container for containing the mixture of iron powder and activated carbon is preferably a container (bag) made of fiber. The container is woven or non-woven or mesh. With such a container, water can pass but powder etc. can not pass. Moreover, the produced iron phosphate can not pass either. It is also possible to discard the whole container after treatment. Alternatively, it is also possible to take iron phosphate out of the container.
 本発明における活性炭は、粉末状、粒状または線状のいずれか一の形状であることが好ましい。また、その比表面積は300m/g以上で、直径あるいは長辺の一片が2mm以下であることが望ましい。
 なお、粒状とは径の長さが0.1mm超の粒子状であることを指し、粉末状とは径の長さが0.1mm以下の粒子状であることを指す。ここで、径の長さとは、球状粒子の場合には直径を、矩形粒子の場合には対角線の長さを指し、例えば、デジタルCCDマイクロスコープ(モリテックス(株)、MS−804)を使用して測定することができる。
The activated carbon in the present invention is preferably in the form of powder, granules, or linear. Moreover, it is desirable that the specific surface area is 300 m 2 / g or more, and the diameter or one long side is 2 mm or less.
The term "granular" refers to particles having a diameter of more than 0.1 mm, and the term powder refers to particles having a diameter of 0.1 mm or less. Here, the length of the diameter refers to the diameter in the case of spherical particles and the length of the diagonal in the case of rectangular particles. For example, a digital CCD microscope (Mortex, MS-804) is used Can be measured.
 本発明における鉄粉末は、還元鉄粉であることが好ましく、鉄の純度は90質量%以上(残部は不可避的不純物)が望ましい。また、粉末の粒径は円相当径で1mm以下であることが望ましく、より望ましくは250μm以下である。なお、本発明における円相当径は、デジタルCCDマイクロスコープ(モリテックス(株)製、MS−804)を用いて測定した値により求めている。 The iron powder in the present invention is preferably a reduced iron powder, and the purity of iron is preferably 90% by mass or more (the balance is an unavoidable impurity). The particle diameter of the powder is preferably 1 mm or less in equivalent circle diameter, and more preferably 250 μm or less. The equivalent circle diameter in the present invention is determined by a value measured using a digital CCD microscope (Mortex Co., Ltd., MS-804).
 本発明に従うリン等除去の基本システムの一例を図2に示す。し尿、活性炭および鉄粉末は、反応槽で混合され、鉄イオンの生成が行われる。生成した鉄イオンは、し尿中に溶けているリン酸イオンと反応してリン酸鉄を生成する。所定時間反応後、上澄み液(あるいは反応液)は、沈澱槽1に送られる。反応槽の下部に集積する沈澱物は、沈澱槽2に送られる。各沈殿槽では、リン酸鉄が沈下分離する。沈澱物を含まない上澄み液は、放流される。沈澱物は、リン酸鉄などとして回収、再利用される。 An example of a basic system for removing phosphorus etc. according to the present invention is shown in FIG. Human waste, activated carbon and iron powder are mixed in the reaction vessel to produce iron ions. The generated iron ions react with phosphate ions dissolved in human waste to form iron phosphate. After reaction for a predetermined time, the supernatant (or reaction solution) is sent to the precipitation tank 1. The precipitate accumulated in the lower part of the reaction vessel is sent to the settling vessel 2. In each settling tank, iron phosphate precipitates and separates. The supernatant, which contains no precipitate, is drained. The precipitate is recovered and reused as iron phosphate and the like.
 なお、上記した反応槽は、活性炭および鉄粉末に対し、し尿を撹拌することができる構造であれば、特に制限は無いが、反応槽自身が回転する構造または反応槽内部に回転羽根を有する構造であることが好ましい。 The reaction vessel described above is not particularly limited as long as it can stir human waste with respect to activated carbon and iron powder, but the structure in which the reaction vessel itself rotates or the structure in which the rotary vane is provided inside the reaction vessel Is preferred.
 本発明に従う装置の実施形態を以下に示すが、本発明の範囲内であれば、他の実施形態を取ることも妨げないことはいうまでも無い。また、図示はしていないが、活性炭と鉄粉末を収納した容器は、反応槽にそのまま入れるだけでなく、反応槽に固定したり、撹拌羽根方式の場合には吊下げたりすることもできる。
 なお、いずれの実施形態を選択するかは、処理量、処理時間、場所、設置面積など様々な制約があり、現場の実情で判断すればよい。
Embodiments of the device according to the invention are given below, but it goes without saying that within the scope of the invention other embodiments may or may not be taken. Although not shown, the container containing the activated carbon and the iron powder can be fixed not only in the reaction tank but also fixed in the reaction tank or suspended in the case of a stirring blade system.
In addition, there are various restrictions such as the processing amount, the processing time, the place, the installation area, and which embodiment should be selected may be determined based on the situation of the site.
 (1) 反応槽回転方式(図3参照)
 実施例は、この方式で行った。ボールミルの回転台を利用し、この回転台上にし尿、活性炭および鉄粉末をいれた反応槽を置き、所定時間回転することで、リン等の除去を行う。
(1) Reaction tank rotation method (see Figure 3)
The example was performed in this manner. Phosphorus and the like are removed by placing a reaction vessel containing manure, activated carbon and iron powder on a rotating table using a rotating table of a ball mill and rotating for a predetermined time.
 (2) 撹拌方式
 反応槽内にし尿、活性炭および鉄粉末をいれ、リン等の除去を行う。三者の接触を促進するために、撹拌、混合を行うが、撹拌方法によって、様々な方式がある。
 円筒横型で容器回転方式(図4参照)、円筒横型で内部撹拌方式(図5参照)、円筒縦型で内部撹拌方式(図6参照)、円錐縦型で内部撹拌方式(図7参照)などがある。
(2) Stirring method Put urine, activated carbon and iron powder in the reaction tank and remove phosphorus etc. Stirring and mixing are carried out to promote the contact between the three, but there are various methods depending on the stirring method.
Horizontal cylinder type container rotation system (see Fig. 4), cylindrical horizontal type internal stirring system (see Fig. 5), cylindrical vertical type internal stirring system (see Fig. 6), conical vertical type internal stirring system (see Fig. 7), etc. There is.
 (3) 高速撹拌方式
 以下に示す実施例の一部では、ジュサーミキサーを使用して行った。高速で撹拌することや、撹拌用の羽根が反応槽下部にあり、羽根の角度が上向きになっていることから、密度の高い鉄粉末であっても反応槽上部に巻き上げることができる。活性炭との接触も頻度高く生じることができ、本発明には最適な撹拌方式である。
(3) High Speed Stirring Method In some of the examples shown below, a Jucer mixer was used. Since stirring is performed at high speed and blades for stirring are located at the lower part of the reaction vessel and the angle of the blades is upward, even iron powder having high density can be wound up on the upper part of the reaction vessel. Contact with activated carbon can also occur frequently, which is the optimum stirring mode for the present invention.
 (4) 流動床方式(図8参照)
 この反応は、し尿、活性炭および鉄粉末からなる不均質系である。したがって、三者を効率よく接触させる装置の開発が不可欠である。図8に示したような、混合物中に空気を高速で導入する装置とすることで、し尿、活性炭および鉄粉末を接触させ、撹拌および混合をする。
(4) Fluidized bed method (see Fig. 8)
This reaction is a heterogeneous system consisting of human waste, activated carbon and iron powder. Therefore, development of a device that brings the three parties into contact efficiently is essential. By using an apparatus for introducing air into the mixture at a high speed as shown in FIG. 8, human waste, activated carbon and iron powder are brought into contact with each other, stirred and mixed.
 鉄とリンとの反応によって生成したリン酸鉄が、し尿中に分散したり、汚泥中に混入することは、場合によっては問題となる。そのためには、生成したリン酸鉄が回収できるようにしておくことが望ましい。すなわち、リン酸鉄を回収するために反応槽の底部に回収口を設けることができる。
 また、鉄粉末と活性炭とを通水性の容器(袋)内に入れておくことで、リン酸鉄の回収を可能とすることができる。すなわち、容器内には、鉄粉末、活性炭とリン酸鉄とが存在し、し尿中に、リン酸鉄が混入することはない。リン等が除去された後は、容器のみを廃棄することで、リン除去処理をすることもできる。
The dispersion of iron phosphate produced by the reaction of iron and phosphorus in human urine or mixing in sludge may be a problem in some cases. For this purpose, it is desirable to be able to recover the produced iron phosphate. That is, a recovery port can be provided at the bottom of the reaction vessel to recover iron phosphate.
In addition, iron phosphate and activated carbon can be collected in an aqueous container (bag) to enable recovery of iron phosphate. That is, iron powder, activated carbon and iron phosphate are present in the container, and iron phosphate is not mixed in excrement. After the phosphorus and the like are removed, it is possible to remove phosphorus by disposing only the container.
 しかし、通水性の容器(袋)が小さい場合には、鉄粉末と活性炭とが接触したままの状態になる。鉄粉末と活性炭との反応によって生成したリン酸鉄は、絶縁性であることから、鉄イオンの溶け出しは阻害されるので、小さめの袋(容器)の使用は避けた方が良い。その場合は、容器を用いた処理ではなく、鉄粉末と活性炭とを直接に反応槽に投入して処理する方が有利である。このように容器を用いない場合は、鉄とリンが反応後、液体と沈澱物とを分離することで、液体は放流、沈澱物は有用資源として回収する。
 この場合の沈澱物の回収は、通常のろ布を使用する濾過方式、フィルタープレス方式、遠心分離方式など従来公知の方法で回収することが可能である。
However, when the water-permeable container (bag) is small, the iron powder and the activated carbon remain in contact with each other. Since iron phosphate produced by the reaction of iron powder and activated carbon is insulating, dissolution of iron ions is inhibited, so it is better to avoid the use of a smaller bag (container). In that case, it is more advantageous to place iron powder and activated carbon directly into the reaction tank for treatment rather than treatment using a container. As described above, when the container is not used, the liquid is separated by separating the liquid and the precipitate after the reaction of iron and phosphorus, and the precipitate is recovered as a useful resource.
In this case, the precipitate can be recovered by a conventionally known method such as a filtration method using a usual filter cloth, a filter press method, or a centrifugal separation method.
 また、活性炭使用の場合の問題点は価格である。高い性能を有していても、価格が高くては実際に使用することは難しい。かかる問題を解決するために、脱色性と価格面から検討し、廃棄物処理の段階で生成する活性炭にたどり着いた。
 炭素材粉末として上記の活性炭を使用することで、着色したし尿は、5分以内には退色が始まり、無色となった(図9参照)。また、同時に、し尿特有の臭気も減少させることができた。
The problem with using activated carbon is the price. Even if it has high performance, it is difficult to actually use it if the price is high. In order to solve such problems, we examined the color removal property and the price, and reached the activated carbon generated in the waste treatment stage.
By using the above-mentioned activated carbon as a carbon material powder, the colored night soil began to fade within 5 minutes and became colorless (see FIG. 9). At the same time, it was also possible to reduce the odor specific to human waste.
 (実施例1)
 し尿は150mLを2リットルの反応槽(ポリビン)に入れた。鉄粉末は、純鉄粉(還元鉄粉、JFEスチール製、粒径:250μm以下、純度:90質量%以上(残部は不可避的不純物))5.2gを使用した。活性炭はクラレケミカル(株)製、PW−Dを0.8gを用いた。
Example 1
150 mL of human waste was placed in a 2 liter reaction vessel (poly bottle). As iron powder, 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, particle size: 250 μm or less, purity: 90% by mass or more (remainder is inevitable impurity)) was used. As the activated carbon, 0.8 g of PW-D manufactured by Kuraray Chemical Co., Ltd. was used.
 鉄粉末と活性炭のし尿に対する添加率は4質量%であった。添加物は、ポリビンの中で分散させ、ボールミルの回転台上、10rpm(実験39)の条件で回転させた。その際の、pH、COD、全窒素および全リン濃度の変化を表14に示す。30分後にCODは約1/5に、全窒素は約1/3に、全リンは約1/100になった。し尿特有の色は、5分間で消失し、それ以降は無色、透明であった。臭気は、徐々に薄くなった。 The addition rate of iron powder and activated carbon to human waste was 4% by mass. The additives were dispersed in poly bottles and spun on a ball mill at 10 rpm (experiment 39). Changes in pH, COD, total nitrogen and total phosphorus concentration at that time are shown in Table 14. After 30 minutes, the COD was about 1/5, the total nitrogen was about 1/3, and the total phosphorus was about 1/100. The characteristic color of human waste disappeared in 5 minutes, and was colorless and transparent after that. The odor gradually faded.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 なお、大きめの不織布製の袋(容積約400ml)に上記(実験39)記載の条件で純鉄粉と活性炭を入れて、この袋をポリビンの中に入れ、ボールミルの回転台上、10rpmの条件で回転させた。その際の、pH、COD、全窒素および全リン濃度を測定した。所定時間経過後、分析を行ったところ、表14の結果と同様に、30分後にCODは約1/5に、全窒素は約1/3に、全リンは約1/100になった。また、鉄と活性炭との反応によって生成したリン酸鉄が、大量にしみ出る事はなかった。 In addition, pure iron powder and activated carbon are put into a large non-woven bag (volume about 400 ml) under the conditions described above (experiment 39), and this bag is put into a polybin, and the condition of 10 rpm on the rotary table of the ball mill. It was rotated by. At that time, pH, COD, total nitrogen and total phosphorus concentration were measured. After a lapse of a predetermined time, analysis was carried out, and as in the results of Table 14, COD was about 1/5 after 30 minutes, total nitrogen was about 1/3, and total phosphorus was about 1/100. In addition, iron phosphate generated by the reaction of iron and activated carbon did not exude too much.
 (実施例2)
 し尿を150mL、2リットルのポリビンに入れた。鉄粉末は、純鉄粉(還元鉄粉、JFEスチール製、粒径:250μm以下、純度:90質量%以上(残部は不可避的不純物))5.2gを使用した。活性炭はクラレケミカル(株)製、PW−Dを1.6g(実験40)および2.4g(実験41)、用いた。
 鉄粉末と活性炭のし尿に対する添加率は、実験40では4.5質量%、実験41では5.1質量%であった。添加物は、ポリビンの中で分散させ、ボールミル回転台上、10rpmの条件で回転させた。その際のpH、COD、全窒素および全リン濃度の変化を表15に示す。
 30分後には、CODは約1/10に、全窒素は約1/3に、全リンは約1/8~1/16になった。60分後には、CODは約1/13~20に、全窒素は約1/3に、全リンは約1/100になった。し尿特有の色は、5分間で消失し、それ以降は無色、透明であった。においは、徐々に薄くなった。
(Example 2)
150 mL of human waste was placed in a 2 liter polybin. As iron powder, 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, particle size: 250 μm or less, purity: 90% by mass or more (remainder is inevitable impurity)) was used. As the activated carbon, 1.6 g (experiment 40) and 2.4 g (experiment 41) of PW-D manufactured by Kuraray Chemical Co., Ltd. were used.
The addition ratio of iron powder and activated carbon to human waste was 4.5% by mass in Experiment 40 and 5.1% by mass in Experiment 41. The additives were dispersed in poly bottles and spun on a ball mill turntable at 10 rpm. Changes in pH, COD, total nitrogen and total phosphorus concentration at that time are shown in Table 15.
After 30 minutes, the COD was about 1/10, the total nitrogen was about 1/3, and the total phosphorus was about 1/8 to 1/16. After 60 minutes, the COD was about 1 / 13-20, the total nitrogen was about 1/3, and the total phosphorus was about 1/100. The characteristic color of human waste disappeared in 5 minutes, and was colorless and transparent after that. The smell gradually faded.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 (実施例3)
 し尿150mLをジューサーミキサーの反応槽(ポット)(500mL)に入れた。鉄粉末は、純鉄粉(還元鉄粉、JFEスチール製、粒径:250μm以下、純度:90質量%以上(残部は不可避的不純物))5.2gを使用した。活性炭はクラレケミカル(株)製、PW−Dを0.8gを用いた(実験42)。
(Example 3)
150 mL of human waste was placed in a reaction vessel (pot) (500 mL) of a juicer mixer. As iron powder, 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, particle size: 250 μm or less, purity: 90% by mass or more (remainder is inevitable impurity)) was used. As the activated carbon, 0.8 g of PW-D manufactured by Kuraray Chemical Co., Ltd. was used (Experiment 42).
 鉄粉末と活性炭の添加率は4質量%であった。添加物は、ポットの中で分散させ、ポット内の回転羽根を、約13000rpmの条件で回転させた。その際のpH、COD、全窒素および全リン濃度の変化を表16に示す。5分後に、CODは約1/5に、全窒素は約1/3に、全リンは約1/4になった。10分処理では、CODは約1/5に、全窒素は約1/4に、全リンは約1/100になった。15分処理では、CODは約1/8に、全窒素は約1/4に、全リンは約1/700になった。し尿特有の色は、5分間で消失し、それ以降は無色、透明であった。においは、徐々に薄くなった。 The addition ratio of iron powder and activated carbon was 4% by mass. The additives were dispersed in the pot, and the rotating blades in the pot were rotated at about 13000 rpm. Changes in pH, COD, total nitrogen and total phosphorus concentration at that time are shown in Table 16. After 5 minutes, the COD was about 1/5, the total nitrogen was about 1/3, and the total phosphorus was about 1/4. In the 10-minute treatment, the COD was about 1/5, the total nitrogen was about 1/4, and the total phosphorus was about 1/100. In the 15-minute treatment, the COD was about 1/8, the total nitrogen was about 1/4, and the total phosphorus was about 1/700. The characteristic color of human waste disappeared in 5 minutes, and was colorless and transparent after that. The smell gradually faded.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 (実施例4)
 し尿、活性炭および鉄粉末をジューサーミキサー(ポット容積:500mL)中にいれて混合撹拌した。し尿は、150mLをジューサーミキサーのポットに入れた。鉄材は、純鉄粉(還元鉄粉、JFEスチール製、粒径:250μm以下、純度:90質量%以上(残部は不可避的不純物))5.2gを使用した。活性炭はクラレケミカル(株)製、PW−Dを1.6g(実験43)および2.4g(実験44)を加えた。
(Example 4)
Human waste, activated carbon and iron powder were mixed and stirred in a juicer mixer (pot volume: 500 mL). As for the human waste, 150 mL was put into the pot of the juicer mixer. As the iron material, 5.2 g of pure iron powder (reduced iron powder, made of JFE steel, particle size: 250 μm or less, purity: 90 mass% or more (remainder is inevitable impurity)) was used. Activated carbon added by Kuraray Chemical Co., Ltd., and added 1.6 g (experiment 43) and 2.4 g (experiment 44) of PW-D.
 活性炭および鉄粉末の添加率は、実験43では4.5質量%、実験44では5.1質量%であった。添加物は、ポットの中で分散させ、ポット内の回転羽根を、約13000rpmの条件で回転させた。その際のpH、COD、全窒素および全リン濃度の変化を表17に示す。 The addition rates of activated carbon and iron powder were 4.5% by mass in Experiment 43 and 5.1% by mass in Experiment 44. The additives were dispersed in the pot, and the rotating blades in the pot were rotated at about 13000 rpm. Changes in pH, COD, total nitrogen and total phosphorus concentration at that time are shown in Table 17.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実験43では、5分後に、CODは約1/10に、全窒素は約1/3に、全リンは約1/8になった。10分後に、CODは約1/13に、全窒素は約1/3に、全リンは約1/100になった。活性炭量の多い実験44では、5分後に、CODは約1/12に、全窒素は約1/3に、全リンは約1/15になった。10分後に、CODは約1/20に、全窒素は約1/3に、全リンは約1/100になった。し尿特有の色は、5分間で消失し、それ以降は無色、透明であった。においは、徐々に薄くなった。 In Experiment 43, after 5 minutes, the COD was about 1/10, the total nitrogen was about 1/3, and the total phosphorus was about 1/8. After 10 minutes, the COD was about 1/13, the total nitrogen was about 1/3, and the total phosphorus was about 1/100. In the experiment 44 with a large amount of activated carbon, after 5 minutes, the COD was about 1/12, the total nitrogen was about 1/3, and the total phosphorus was about 1/15. After 10 minutes, the COD was about 1/20, the total nitrogen was about 1/3, and the total phosphorus was about 1/100. The characteristic color of human waste disappeared in 5 minutes, and was colorless and transparent after that. The smell gradually faded.
 表17に示したとおり、活性炭量を増やすことで、し尿のCOD、全窒素および全リンの値の低下は、顕著となっていることが分かる。 As shown in Table 17, it can be seen that by increasing the amount of activated carbon, the values of COD, total nitrogen and total phosphorus in the human waste are significantly decreased.
 以上、実施例1~4の本発明に従う、し尿中のリン、COD、窒素、色および臭気の急速除去方法では、いずれもが、し尿中のリン、窒素、色および臭気を急速に除去し、さらにCODも低減化できているのが分かる。 As described above, in the method for rapidly removing phosphorus, COD, nitrogen, color and odor in human urine according to the present invention of Examples 1 to 4, all rapidly remove phosphorus, nitrogen, color and odor in human urine, Furthermore, it can be seen that COD has also been reduced.
 本発明に従う急速除去方法を用いることにより、し尿中のリン、COD、窒素、色および臭気等の除去が効果的に行うことが可能となり、もって環境の維持に大きく貢献する。 By using the rapid removal method according to the present invention, removal of phosphorus, COD, nitrogen, color, odor and the like in human urine can be effectively performed, thereby greatly contributing to the maintenance of the environment.

Claims (13)

  1.  し尿またはし尿排水中に、粉状の活性炭と鉄粉末を供給し、撹拌、流動させることを特徴とする、し尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 A method for rapidly removing phosphorus, COD, nitrogen, color and odor in human waste or excrement, characterized in that powdered activated carbon and iron powder are supplied to excrement or excrement in human waste or excrement.
  2.  前記粉状の活性炭は、粉末状、粒状または線状のいずれか一の形状であって、比表面積:300m/g以上、直径あるいは長辺の一片が2mm以下であることを特徴とする、請求項1に記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 The powdery activated carbon is any one of powdery, granular or linear, and has a specific surface area of 300 m 2 / g or more, and a diameter or long side of 2 mm or less. A method for rapidly removing phosphorus, COD, nitrogen, color and odor in human waste or human waste water according to claim 1.
  3.  前記鉄粉末は、還元鉄粉であって、円相当径が1mm以下であることを特徴とする、請求項1または2に記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 The phosphorus, COD, nitrogen, color and odor in human waste or in human waste water according to claim 1 or 2, wherein the iron powder is a reduced iron powder and has a circle equivalent diameter of 1 mm or less. Rapid removal method.
  4.  前記粉状の活性炭に対する前記鉄粉末の質量の比が1/2~1/15であることを特徴とする、請求項1乃至3のいずれかに記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 The phosphorus or COD in human waste or human waste water according to any one of claims 1 to 3, characterized in that the ratio of the mass of said iron powder to said powdery activated carbon is 1/2 to 1/15. Rapid removal of nitrogen, color and odor.
  5.  前記し尿またはし尿排水中における前記粉状の活性炭と前記鉄粉末の割合が1~20質量%であることを特徴とする、請求項1乃至4のいずれかに記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 The ratio of the said powdery activated carbon and the said iron powder in the said excrement or the manure waste water is 1 to 20 mass%, The phosphorus in the excrement or the manure waste water according to any one of claims 1 to 4 , COD, nitrogen, color and odor rapid removal method.
  6.  前記粉状の活性炭と前記鉄粉末とを、通水性を有する容器に収納して供給することを特徴とする、請求項1乃至5のいずれかに記載のし尿またはし尿排水中のリン、COD、窒素、色および臭気の急速除去方法。 The phosphorus, COD in human waste or human waste water according to any one of claims 1 to 5, characterized in that the powdery activated carbon and the iron powder are contained and supplied in a container having water permeability. Rapid removal of nitrogen, color and odor.
  7.  し尿およびし尿排水中のリン、COD、窒素、色および臭気を除去する装置であって、反応槽と、粉状の活性炭の供給手段と、鉄粉末の供給手段と、該し尿およびし尿排水の撹拌手段とを備えることを特徴とする、除去装置。 An apparatus for removing phosphorus, COD, nitrogen, color and odor in human waste and human waste water, comprising a reaction tank, means for supplying powdered activated carbon, means for supplying iron powder, and stirring of human waste and human waste water. And means for removing.
  8.  前記装置の底部に沈下したリン酸鉄の回収口を備えることを特徴とする、請求項7に記載の除去装置。 The removal device according to claim 7, further comprising a recovery port for iron phosphate which has sunk to the bottom of the device.
  9.  前記粉状の活性炭と前記鉄粉末の供給手段が、前記粉状の活性炭と前記鉄粉末を通水性を有する容器内に収納して供給するものであることを特徴とする、請求項7または8に記載の除去装置。 9. The powdery activated carbon and the iron powder supply means are characterized in that the powdery activated carbon and the iron powder are contained in a container having water permeability and supplied. Remover as described in.
  10.  前記撹拌手段が撹拌羽根であり、該撹拌羽根の回転速度を0.5rpm以上とすることを特徴とする、請求項7乃至9のいずれかに記載の除去装置。 The removal device according to any one of claims 7 to 9, wherein the stirring means is a stirring blade, and the rotation speed of the stirring blade is 0.5 rpm or more.
  11.  前記撹拌手段が反応槽の回転であり、該反応槽の周速度を0.5rpm以上とすることを特徴とする、請求項7乃至9いずれかに記載の除去装置。 10. The removal apparatus according to any one of claims 7 to 9, wherein the stirring means is a rotation of the reaction tank, and a circumferential speed of the reaction tank is 0.5 rpm or more.
  12.  前記通水性を有する容器が前記反応槽上部からし尿またはし尿排水中に吊下げられていることを特徴とする、請求項10に記載の除去装置。 11. The removal device according to claim 10, wherein the water-permeable container is suspended from the upper portion of the reaction tank into the excrement or excrement.
  13.  前記通水性を有する容器が前記反応槽内に固定されていることを特徴とする、請求項10または11に記載の除去装置。 The removal apparatus according to claim 10, wherein the water-permeable container is fixed in the reaction vessel.
PCT/JP2009/068634 2009-10-23 2009-10-23 Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method WO2011048705A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980163089.0A CN102791635A (en) 2009-10-23 2009-10-23 Method of rapidly removing phosphorus, COD substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method
PCT/JP2009/068634 WO2011048705A1 (en) 2009-10-23 2009-10-23 Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method
JP2011537082A JPWO2011048705A1 (en) 2009-10-23 2009-10-23 Method for rapid removal of phosphorus, COD, nitrogen, color and odor in human waste or human waste water and removal apparatus using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068634 WO2011048705A1 (en) 2009-10-23 2009-10-23 Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method

Publications (1)

Publication Number Publication Date
WO2011048705A1 true WO2011048705A1 (en) 2011-04-28

Family

ID=43899951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068634 WO2011048705A1 (en) 2009-10-23 2009-10-23 Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method

Country Status (3)

Country Link
JP (1) JPWO2011048705A1 (en)
CN (1) CN102791635A (en)
WO (1) WO2011048705A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020159A (en) * 2013-07-23 2015-02-02 株式会社東芝 Phosphorus recovery apparatus
JP2021169093A (en) * 2021-07-21 2021-10-28 有限会社エコルネサンス・エンテック Pollution countermeasure method using active carbon
CN116395728A (en) * 2023-03-24 2023-07-07 中国矿业大学 Preparation method of fly ash-based hydrotalcite-like compound, and product and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294683A (en) * 1995-04-26 1996-11-12 Takayasu Ookubo Water deodorizing and purifying agent
JPH08323343A (en) * 1995-05-30 1996-12-10 Iwasaki Electric Co Ltd Adsorption treating material and adsorptive treating device using the same
JP2004174407A (en) * 2002-11-28 2004-06-24 Toshihiro Okita Inorganic sludge modifying/flocculating/purifying agent
JP2005074363A (en) * 2003-09-02 2005-03-24 Miura Co Ltd Water treatment agent and water treatment method
JP2005103518A (en) * 2003-10-02 2005-04-21 Air Water Inc Heavy metal wastewater treatment system and heavy metal wastewater treatment method
JP2006015256A (en) * 2004-07-01 2006-01-19 Masashi Yoshioka Water clarification method utilizing charcoal particle
JP2006110518A (en) * 2004-10-18 2006-04-27 Taiheiyo Cement Corp Method for highly treating waste water
JP2007105557A (en) * 2005-09-15 2007-04-26 Aichi Steel Works Ltd Organic matter decomposition material, and method for decomposing organic matter-containing material to be decomposed by using the same
JP2008067728A (en) * 2006-09-12 2008-03-27 Niigata Shiki Kogyo Kk Simplified urine purifying apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787034B2 (en) * 2002-07-12 2004-09-07 Remediation Products, Inc. Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
CN2729054Y (en) * 2004-02-20 2005-09-28 北京恩菲环保股份有限公司 Telescopic variable current whirl combined reactor
CN201264920Y (en) * 2008-08-04 2009-07-01 清华大学 Apparatus for removing noxious ion in ground water by means of powder sorbent
CN201321400Y (en) * 2008-12-29 2009-10-07 芜湖凯奥尔环保科技有限公司 Novel sewage treatment device
CN101560001A (en) * 2009-05-22 2009-10-21 上海润德环境工程有限公司 Integrated nitrogen and phosphorus recovery device with low energy consumption

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294683A (en) * 1995-04-26 1996-11-12 Takayasu Ookubo Water deodorizing and purifying agent
JPH08323343A (en) * 1995-05-30 1996-12-10 Iwasaki Electric Co Ltd Adsorption treating material and adsorptive treating device using the same
JP2004174407A (en) * 2002-11-28 2004-06-24 Toshihiro Okita Inorganic sludge modifying/flocculating/purifying agent
JP2005074363A (en) * 2003-09-02 2005-03-24 Miura Co Ltd Water treatment agent and water treatment method
JP2005103518A (en) * 2003-10-02 2005-04-21 Air Water Inc Heavy metal wastewater treatment system and heavy metal wastewater treatment method
JP2006015256A (en) * 2004-07-01 2006-01-19 Masashi Yoshioka Water clarification method utilizing charcoal particle
JP2006110518A (en) * 2004-10-18 2006-04-27 Taiheiyo Cement Corp Method for highly treating waste water
JP2007105557A (en) * 2005-09-15 2007-04-26 Aichi Steel Works Ltd Organic matter decomposition material, and method for decomposing organic matter-containing material to be decomposed by using the same
JP2008067728A (en) * 2006-09-12 2008-03-27 Niigata Shiki Kogyo Kk Simplified urine purifying apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020159A (en) * 2013-07-23 2015-02-02 株式会社東芝 Phosphorus recovery apparatus
JP2021169093A (en) * 2021-07-21 2021-10-28 有限会社エコルネサンス・エンテック Pollution countermeasure method using active carbon
JP7005067B2 (en) 2021-07-21 2022-01-21 有限会社エコルネサンス・エンテック Pollution control method using activated carbon
CN116395728A (en) * 2023-03-24 2023-07-07 中国矿业大学 Preparation method of fly ash-based hydrotalcite-like compound, and product and application thereof
CN116395728B (en) * 2023-03-24 2024-02-13 中国矿业大学 Preparation method of fly ash-based hydrotalcite-like compound, and product and application thereof

Also Published As

Publication number Publication date
JPWO2011048705A1 (en) 2013-03-07
CN102791635A (en) 2012-11-21

Similar Documents

Publication Publication Date Title
Park et al. Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal
CN104261536B (en) For quickly removing the efficient flocculant of heavy metal in water
CN106698548A (en) High-efficient phosphate removing agent and preparation method thereof
JPH01503764A (en) Sewage treatment
Ren et al. A cost-effective method for the treatment of reject water from sludge dewatering process using supernatant from sludge lime stabilization
JP2007283223A (en) Method for recovering phosphorus from sludge
Kaleta et al. The use of activated carbons for removing organic matter from groundwater
WO2012040943A1 (en) Method and apparatus for synchronously removing heavy metal and nitrate in drinking water
CN106430833A (en) Treatment method of oil-containing waste water
CN109647850B (en) Treatment system for co-treating waste incineration fly ash and waste leachate
CN107417058B (en) A kind of river embankment bed mud is modified the method and its application of preparation ecology filler
Ha et al. Ammonium-nitrogen recovery as struvite from swine wastewater using various magnesium sources
CN112661231A (en) Multifunctional long-acting composite filler and preparation method thereof
CN106186433B (en) A kind of load flocculation of brine waste removes hard method
WO2011048705A1 (en) Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method
JP3477187B2 (en) Method and apparatus for decolorizing wastewater
CN109851144B (en) Method for removing nitrate nitrogen and inorganic phosphorus strengthened by magnetized powder
KR101269140B1 (en) Manufacturing method of Phosphorus Absorbent with Hydroxide
JPH10277541A (en) Zeolite type water purifying agent
JPH10277307A (en) Adsorption flocculant and water treating method
KR20140128717A (en) Waste water treatment agent for phosphorus removal andpreparation method thereof
JP2004066193A (en) Contaminated soil cleaning method
JP2004089931A (en) Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
JP3013249B1 (en) Coagulating sedimentation agent
WO2019107116A1 (en) Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980163089.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850602

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011537082

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09850602

Country of ref document: EP

Kind code of ref document: A1