JP7005067B2 - Pollution control method using activated carbon - Google Patents

Pollution control method using activated carbon Download PDF

Info

Publication number
JP7005067B2
JP7005067B2 JP2021120091A JP2021120091A JP7005067B2 JP 7005067 B2 JP7005067 B2 JP 7005067B2 JP 2021120091 A JP2021120091 A JP 2021120091A JP 2021120091 A JP2021120091 A JP 2021120091A JP 7005067 B2 JP7005067 B2 JP 7005067B2
Authority
JP
Japan
Prior art keywords
particles
activated carbon
metallic iron
control method
pollution control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021120091A
Other languages
Japanese (ja)
Other versions
JP2021169093A (en
Inventor
新吾 尾張
健一郎 田中
光博 梶原
天行 董
武 長谷川
Original Assignee
有限会社エコルネサンス・エンテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社エコルネサンス・エンテック filed Critical 有限会社エコルネサンス・エンテック
Priority to JP2021120091A priority Critical patent/JP7005067B2/en
Publication of JP2021169093A publication Critical patent/JP2021169093A/en
Application granted granted Critical
Publication of JP7005067B2 publication Critical patent/JP7005067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、土壌中の汚染物質に対し、活性炭粒子による効率的な集約後に、隣接せしめた金属鉄粒子にて誘導される酸化還元反応による除染を図る非生物学的な汚染対策方法に関する。 The present invention relates to a non-biological pollution control method for decontaminating pollutants in soil by a redox reaction induced by adjacent metallic iron particles after efficient aggregation by activated carbon particles.

金属鉄と活性炭を用いる従来の除染技術は、専ら、活性炭粒子に金属鉄を担持させた複合粒子製剤を汚染土壌に添加し、還元的脱ハロゲン化反応によるハロゲン化有機汚染の除染に限定して実施される汚染浄化対策方法であった。 The conventional decontamination technique using metallic iron and activated charcoal is limited to decontamination of halogenated organic pollutants by a reductive dehalogenation reaction by adding a composite particle preparation in which metallic iron is carried on activated charcoal particles to contaminated soil. It was a pollution purification measure method to be implemented.

係る複合粒子製剤を浄化施工に利用する利点として、複合粒子の活性炭部位に吸着された汚染物質が、直ちに同粒子中の金属鉄によって脱塩素化が図られるという、複合粒子ならではの確実性の高い除染機作が挙げられる。 As an advantage of using the composite particle preparation for purification work, the contaminants adsorbed on the activated carbon part of the composite particle are immediately dechlorinated by the metallic iron in the particle, which is highly reliable only by the composite particle. Decontamination machine work can be mentioned.

なお、ここでの“複合粒子ならではの確実性の高い”という判断は、係る金属鉄と活性炭を、各々個別の粒子として汚染に施用した場合の、汚染が吸着された活性炭粒子と分散状態にある別粒子の金属鉄粒子が会合して、汚染の分解に至る効率が、複合粒子の効率を上回ることは確率的に考え難いという、仮定に基づく思考実験での判断である。 The judgment here that "the certainty is high unique to composite particles" is that when the metallic iron and the activated carbon are applied to the contamination as individual particles, they are dispersed with the activated carbon particles to which the contamination is adsorbed. It is a judgment based on the assumption that it is unlikely that the efficiency of the association of metallic iron particles of different particles to decompose the contamination exceeds the efficiency of the composite particles.

ところで、金属鉄と活性炭を一体化して複合粒子を製造する技術は多岐に及ぶが、中でもボール(ビーズ)ミルを用いた金属鉄粒子と炭素粒子を原料とした複合粒子の製造技術は、前世紀のメカニカルアロイング技術や機能性活性炭たる添着活性炭製造技術に端を発した長い歴史がある。 By the way, there are a wide variety of technologies for producing composite particles by integrating metallic iron and activated carbon. Among them, the technology for producing composite particles made from metallic iron particles and carbon particles using a ball (bead) mill was used in the last century. It has a long history that originated from the mechanical alloying technology and the technology for producing functional activated carbon, which is an impregnated activated carbon.

また、ボール(ビーズ)ミルを用いた複合粒子製造技術は、乾式と湿式に大別されるが、それぞれの製造方式の作用・機作は、基本的にボール(ビーズ)同士の接触による摩砕と圧着の単純反復作業であって、単純反復作業であるが故に、製造規模のスケールアップを容易に行い得る利点を有していた。 In addition, composite particle manufacturing technology using ball (bead) mills is roughly divided into dry type and wet type, but the action and mechanism of each manufacturing method is basically grinding by contact between balls (beads). Since it is a simple repetitive work of crimping and crimping, it has an advantage that the scale-up of the manufacturing scale can be easily performed.

米国EPA, Remedial Technology Fact Sheet- Activated Carbon- Based Technology for In Situ Remediation (2018)USA, EPA, Remedial Technology Fact Sheet-Activated Carbon-Based Technology for In Situ Remediation (2018) J.Gao,W.Wang,A.J.Rondinone, F.He and L.Y.Liang,Degradation of trichloroethene with a novel ball milled FeC nanocomposite, J.Hazard. Mater.,2015,300,443-450,J. Gao, W. Wang, A. J. Rondonone, F.M. He and L. Y. Liang, Degradation of trichlorethylene with with a novel ball milled FeC nanocomposite, J. Mol. Hazard. Mater. , 2015,300,443-450, 今井知之、外4名、「ナノ鉄粉/活性炭複合材の調製とそのTCE反応特性の基礎的検討」、第26回 地下水・土壌汚染とその防止対策に関する研究集会講演集、一般社団法人土壌環境センター、令和3年6月、p.241-244Tomoyuki Imai, 4 outsiders, "Preparation of nano-iron powder / activated carbon composite material and basic examination of its TCE reaction characteristics", 26th Workshop on Groundwater / Soil Contamination and its Prevention Measures, Soil Environment Center, June 3rd year of Reiwa, p. 241-244

汚染物質は、多種多様に存在し、汚染物質の活性炭への吸着性や金属鉄による反応性も、汚染物質により各々異なる挙動を示す。
加えて、金属鉄による反応性は、汚染土壌の汚染吸着能、酸化還元電位等の環境要因にも影響され易く、例え同じ土壌汚染濃度でも、対象土壌毎に、浄化に必要とされる金属鉄量と活性炭量やその量比が異なる。
There are a wide variety of pollutants, and the adsorptivity of pollutants to activated carbon and the reactivity with metallic iron also show different behaviors depending on the pollutants.
In addition, the reactivity with metallic iron is easily affected by environmental factors such as the contamination adsorption capacity and oxidation-reduction potential of contaminated soil, and even if the soil contamination concentration is the same, the metallic iron required for purification is required for each target soil. The amount and the amount of activated charcoal and their ratio are different.

ところが、非特許文献1~3にて示される様な、活性炭粒子に金属鉄を担持させた複合粒子製剤に含まれる金属鉄と活性炭の量比は、実質的に生産ロット毎で固定されており、汚染ケース毎に変化する個々の最適な量比条件を厳密に設定するのであれば、画一的な量比の仕様で製造される複合粒子製剤は、必ずしも使い勝手の良い資材ではない。 However, as shown in Non-Patent Documents 1 to 3, the amount ratio of metallic iron to activated carbon contained in the composite particle preparation in which metallic iron is supported on activated carbon particles is substantially fixed for each production lot. If the optimum quantity ratio conditions for each of the contaminated cases are strictly set, the composite particle formulation produced with the uniform volume ratio specifications is not always a convenient material.

例えば、施工直後に現場から引き上げる計画を前提として、複合粒子製剤の施用設計として、製剤に包含される活性炭の吸着容量を勘案し、対象の土壌汚染の溶出濃度を施工直後に環境基準値を達成する様に設定した場合、係る施工では、諸設計の中でも最多の複合粒子製剤が使用されることとなる。
結果、必要とされる分解容量(汚染分解総量)を遥かに超えて施用される過分な金属鉄成分が無駄となり、費用対効果の薄い高コストな浄化となってしまう課題を有していた。
For example, on the premise of a plan to pull up from the site immediately after construction, the elution concentration of the target soil contamination is achieved to the environmental standard value immediately after construction, considering the adsorption capacity of the activated carbon contained in the formulation as the application design of the composite particle formulation. If it is set to be used, the largest number of composite particle formulations among various designs will be used in such construction.
As a result, there is a problem that an excessive amount of metallic iron component applied far exceeding the required decomposition capacity (total amount of pollution decomposition) is wasted, resulting in low cost-effective and high-cost purification.

その反対に、活性炭粒子に金属鉄を担持させた複合粒子製剤の施用設計を、現地の汚染濃度に応じて、製剤に包含される金属鉄の還元反応による汚染分解容量を勘案して施用量が決定された場合、この方法が、製剤費用が最も低コストとなる設計である場合が多い。
但し、係る設計による施工は、浄化終点迄に概ね2か月程度に亘る緩慢な還元反応が続き、汚染濃度が環境基準値に向けて緩やかに減少する。結果、施工からかなりの期間が経過しなければ環境基準が達成されないケースもまま存在し、施工完了時期が極めて不明瞭で、動もすると施工期間が長期に至る課題を有していた。
On the contrary, the application design of the composite particle formulation in which metallic iron is supported on the activated carbon particles is adjusted according to the local contamination concentration, taking into consideration the contamination decomposition capacity due to the reduction reaction of the metallic iron contained in the formulation. If determined, this method is often the design with the lowest formulation cost.
However, in the construction with such a design, a slow reduction reaction continues for about two months until the end point of purification, and the pollution concentration gradually decreases toward the environmental standard value. As a result, there were still cases where the environmental standard was not achieved until a considerable period of time had passed since the construction, and the construction completion time was extremely unclear, and there was a problem that the construction period would be long if it moved.

このように、従前の複合粒子製剤を用いた施工は、複合粒子の活性炭部位に吸着された汚染物質が、直ちに複合粒子中の金属鉄成分によって脱塩素化が図られ、確実性の高い浄化が達成されるとの説明が容易なセールスポイントを有し、また、ボール(ビーズ)ミルを用いた複合粒子の製造は、一般にスケールアップが容易とされ、製剤の販売・製造サイドにおける利点に富む技術であった。
その反面、複合粒子製剤の金属鉄と活性炭の量比が固定的であるが故に、現場施工においては、施工期間の長期化や施工の高コスト化を誘引しかねない等、種々の施工リスクを孕む、施工サイドにおける課題に富む技術であり、また、従前の複合粒子による除染機作が、専ら反応速度が緩速な還元的脱ハロゲン化反応に限定されおり、浄化可能な汚染種は、ほぼハロゲン化有機汚染種に限定されてしまう狭い適用性とその反応速度に課題を有していた。
In this way, in the construction using the conventional composite particle preparation, the contaminants adsorbed on the activated charcoal site of the composite particles are immediately dechlorinated by the metallic iron component in the composite particles, and purification with high reliability is possible. It has a selling point that it is easy to explain that it will be achieved, and the production of composite particles using a ball (bead) mill is generally easy to scale up, and it is a technology that is rich in advantages on the sales and manufacturing side of formulations. Met.
On the other hand, since the amount ratio of metallic iron and activated charcoal in the composite particle preparation is fixed, various construction risks such as prolonging the construction period and increasing the cost of construction may be caused in the on-site construction. It is a technology that is rich in problems on the construction side, and the conventional decontamination machine operation using composite particles is limited to the reductive dehalogenation reaction, which has a slow reaction rate. It had problems with its narrow applicability and its reaction rate, which were almost limited to halogenated organic contaminants.

前述の課題を解決するための本発明の要旨とするところは、次の発明に存する。
活性炭粒子を用いて汚染土壌からの汚染の溶出濃度の低減化を図ると共に、該活性炭粒子に吸着された該汚染の内、非ハロゲン化汚染とハロゲン化汚染の少なくともいずれか一方の汚染を、該活性炭粒子に隣接せしめた還元鉄を主成分とする金属鉄粒子の作用により、酸素化合物の共存下における酸化と該酸素化合物の消失後における還元化の両反応を図って除染する方法であって、金属鉄成分と活性炭成分からなる複合粒子製剤を単独で汚染土壌に施用するのではなく、少なくとも前記活性炭粒子と前記金属鉄粒子とが混在する製剤を、pH3を超える弱酸性からアルカリ条件下にある汚染土壌に対し施用し、前記活性炭粒子と前記金属鉄粒子が相互に付着する凝集を促して除染を図ることを特徴とする活性炭を用いた非生物学的な汚染対策方法。
The gist of the present invention for solving the above-mentioned problems lies in the following invention.
The activated carbon particles are used to reduce the elution concentration of the contamination from the contaminated soil, and at least one of the non-halogenated contamination and the halogenated contamination among the contaminants adsorbed on the activated carbon particles is treated. It is a method of decontaminating by the action of metallic iron particles containing reduced iron as a main component adjacent to activated carbon particles, aiming at both oxidation in the coexistence of an oxygen compound and reduction after the disappearance of the oxygen compound. Rather than applying the composite particle preparation consisting of the metallic iron component and the activated charcoal component to the contaminated soil alone, at least the preparation in which the activated charcoal particles and the metallic iron particles are mixed is subjected to weakly acidic to alkaline conditions exceeding pH 3. A non-biological pollution control method using activated charcoal, which is applied to a certain contaminated soil and promotes decontamination by promoting aggregation in which the activated charcoal particles and the metallic iron particles adhere to each other .

本発明に係る、所定のpH条件下において、金属鉄成分と活性炭成分を、単剤の複合粒子製剤ではなく、少なくとも各々の成分粒子が混在する製剤として汚染土壌に添加し、活性炭粒子に金属鉄粒子を隣接せしめることで、複合粒子と同等の浄化機能を具有させると共に、汚染状況や施工事情に応じて、任意の金属鉄量と活性炭量を採択することが可能となり、金属鉄と活性炭の量比が固定的な複合粒子を用いた除染よりも、自由度が高く、より安価で、施工リスク要因の少ない浄化施工が達成される。
また、係る施工に酸素化合物を常用することにより、複合粒子を用いた従来法での画一的な作用機作であった緩速な還元反応の前段に酸化反応が加わることにより、浄化が格段に高速化された浄化施工が達成されると共に、ハロゲン化汚染のみであった従来法での適用汚染種を、非ハロゲン化汚染全般を網羅するまでの、飛躍的な適用汚染種の拡大が図られた浄化施工が達成される。
Under the predetermined pH conditions according to the present invention, the metallic iron component and the activated charcoal component are added to the contaminated soil as a formulation in which at least each component particle is mixed, instead of a single agent composite particle formulation, and the metallic iron is added to the activated charcoal particles. By adjoining the particles, it has the same purification function as the composite particles, and it is possible to adopt any amount of metallic iron and activated charcoal according to the pollution situation and construction situation, and the amount of metallic iron and activated charcoal. Purification work with a higher degree of freedom, lower cost, and less construction risk factors can be achieved than decontamination using composite particles with a fixed ratio.
In addition, by regularly using oxygen compounds for such construction, purification is remarkably performed by adding an oxidation reaction to the pre-stage of the slow reduction reaction, which was a uniform action mechanism in the conventional method using composite particles. Along with the achievement of high-speed purification work, the number of applicable pollutants by the conventional method, which was only halogenated pollution, has been dramatically expanded to cover all non-halogenated pollutants. The cleansing work that has been done is achieved.

金属鉄粒子と活性炭粒子が水中にて相互に付着し凝集・共沈する現象のpH依存性を示す図である。It is a figure which shows the pH dependence of the phenomenon that metallic iron particles and activated carbon particles adhere to each other in water and aggregate and coprecipitate. 本発明であるところの酸素化合物共存下における金属鉄粒子と活性炭粒子が混在する製剤を用いた汚染物質の分解能に関し、従来法である複合粒子法との比較を実施した結果を示す図である。It is a figure which shows the result of having performed the comparison with the composite particle method which is a conventional method about the resolution of the pollutant using the preparation which mixed the metallic iron particle and the activated carbon particle in the coexistence of an oxygen compound which is the present invention.

以下、本発明を代表する実施の形態を、開発経緯を踏まえて説明する。 Hereinafter, embodiments representative of the present invention will be described based on the development process.

本発明の着想に至った契機の一つとして、金属鉄粒子と活性炭粒子を高濃度に含む黒色の懸濁液を作成後、一定時間放置後に、金属鉄粒子と活性炭粒子の組合せによっては、懸濁液が透明な上清と黒い沈殿物に分離するケースがあることが分かった。 As one of the triggers for the idea of the present invention, after preparing a black suspension containing metal iron particles and activated charcoal particles at a high concentration and leaving it for a certain period of time, depending on the combination of the metallic iron particles and the activated charcoal particles, it may be suspended. It was found that there were cases where the turbid liquid separated into a clear supernatant and a black precipitate.

この結果は、一定の組合せの金属鉄粒子と活性炭粒子が、互いに凝集し共沈する性質を想起させ、条件次第では、金属鉄と活性炭で構成される複合粒子を費用と時間を掛けて製造/購入せずとも、現場にて容易に両粒子の凝集塊を形成させて、複合粒子と同等の浄化機能を具有させることが可能なことを示唆する。 This result reminds us of the property that a certain combination of metallic iron particles and activated charcoal particles aggregate and co-deposit with each other, and depending on the conditions, a composite particle composed of metallic iron and activated charcoal can be produced at a high cost and time. It is suggested that it is possible to easily form agglomerates of both particles in the field without purchasing, and to have a purification function equivalent to that of composite particles.

その後の詳細な検討により、この凝集・共沈現象は、概ねpH3を超える弱酸性からアルカリ条件下であれば、金属鉄粒子と活性炭粒子は、水中にて相互に付着する性質を有し、pH3以下の強酸性領域では、係る共沈現象が強く阻害されることが分かり、本現象に関するpH適用条件に関する新たな知見を得た。結果を図1に示す。 Subsequent detailed examination revealed that this aggregation / coprecipitation phenomenon has the property that the metallic iron particles and the activated charcoal particles adhere to each other in water under weakly acidic to alkaline conditions exceeding pH3, and pH3. It was found that the coprecipitation phenomenon was strongly inhibited in the following strongly acidic regions, and new findings regarding pH application conditions related to this phenomenon were obtained. The results are shown in FIG.

図1を得た試験では、希塩酸又は希水酸化ナトリウム溶液にてpH2~12に調整した水溶液を用いて、金属鉄粒子を一定量含む黒色の懸濁液を、高純度窒素ガスを用いて通気撹拌しながら作成し、作成後、懸濁液の水面から試料を採取してOD750の光学的濁度を測定し、この値をC0とした。
光学的濁度を測定後、活性炭粒子を一定量添加し、再度、高純度窒素ガスを用いて通気撹拌し、活性炭粒子の沈降を加速する為に3000g:1分間の遠心分離処理を実施し、遠心処理後に懸濁液から試料を採取して、改めて光学的濁度を測定し、これをC1とした。
この際、対照区として、各pH条件にて、活性炭粒子のみを添加した懸濁液の遠心処理後の上清の光学的濁度を併せて測定し、C1に対するバックグラウンド補正に使用して、補正値:C2を得た。
なお、係る各pHにおける評価は、各系統で3試験を実施した。
In the test obtained in FIG. 1, a black suspension containing a certain amount of metallic iron particles was aerated with high-purity nitrogen gas using an aqueous solution adjusted to pH 2 to 12 with dilute hydrochloric acid or dilute sodium hydroxide solution. The mixture was prepared with stirring, and after preparation, a sample was taken from the water surface of the suspension and the optical turbidity of OD 750 was measured, and this value was set to C 0 .
After measuring the optical turbidity, a certain amount of activated charcoal particles were added, and the mixture was again aerated and stirred using high-purity nitrogen gas. After centrifugation, a sample was taken from the suspension and the optical turbidity was measured again, which was designated as C 1 .
At this time, as a control group, the optical turbidity of the supernatant after centrifugation of the suspension to which only activated carbon particles were added was also measured under each pH condition and used for background correction for C 1 . , Correction value: C 2 was obtained.
In addition, three tests were carried out in each system for the evaluation at each pH.

図1は、各pH条件における遠心前後の濁度変化の比(C2/C0)をプロットしたものである。
結果、濁度変化の比は、pH5~12の区間では、ほぼ0に近い値が示されたのに対し、pH3~4の区間にて0から1に向けて移行する変化が見られ、pH2では、ほぼ1に近い値が示された。
上記から、概ねpH3を超える弱酸性からアルカリ条件下の水相中であれば、今回、実験に用いた金属鉄粒子と活性炭粒子の組合せは、相互に付着し凝集・共沈する性質を有することが明確に示された。
FIG. 1 is a plot of the ratio of turbidity changes before and after centrifugation (C 2 / C 0 ) under each pH condition.
As a result, the ratio of turbidity change showed a value close to 0 in the section of pH 5 to 12, while a change was observed from 0 to 1 in the section of pH 3 to 4, and pH 2 Then, a value close to 1 was shown.
From the above, the combination of metallic iron particles and activated carbon particles used in this experiment has the property of adhering to each other and agglomerating / coprecipitating in an aqueous phase under weakly acidic to alkaline conditions that generally exceeds pH 3. Was clearly shown.

また、本発明の契機となった別の着想は、四アルキル鉛に対する酸化処理条件に関する検討過程にて、バイアル内に金属鉄粒子と活性炭粒子を含む懸濁液を入れ、気相を空気、或いは窒素で置換して、バイアル気相中の四アルキル鉛の濃度変化を経時的に観察した際に、気相を窒素とした系の四アルキル鉛濃度には変化は見られなかったが、空気とした系の四アルキル鉛濃度には、顕著な減少が観察された事に拠る。
更なる検討の結果、この減少は、気相の酸素濃度が高い程、或いは過酸化水素等の酸化試薬を添加した場合に顕著となり、また係る濃度の減少は、懸濁液へのマンニトールの添加によって阻害されたことから、これらの酸素化合物と金属鉄粒子との相互作用によって、高い酸化還元電位を有するヒドロキシラジカルによる酸化反応を生じた結果と考察された。
Another idea that triggered the present invention is that in the process of examining the oxidation treatment conditions for tetraalkyl lead, a suspension containing metallic iron particles and activated carbon particles is placed in a vial, and the gas phase is changed to air or. When the change in the concentration of tetraalkyl lead in the vial gas phase was observed over time by substituting with nitrogen, no change was observed in the concentration of tetraalkyl lead in the system in which the gas phase was nitrogen, but with air. It is based on the fact that a remarkable decrease was observed in the tetraalkyl lead concentration of the system.
As a result of further studies, this decrease becomes more remarkable as the oxygen concentration in the gas phase is higher, or when an oxidizing reagent such as hydrogen peroxide is added, and the decrease in such concentration is due to the addition of mannitol to the suspension. It was considered that the interaction between these oxygen compounds and metallic iron particles caused an oxidation reaction by hydroxy radicals having a high redox potential.

更なる検討の結果、係る酸化反応は、酸素化合物が金属鉄粒子との反応によって消費し尽くされると止まり、以後は、金属鉄粒子が残存する場合には、還元反応が主体となって、還元的脱ハロゲン反応等による除染が進行することが確認された。 As a result of further studies, the oxidation reaction stops when the oxygen compound is exhausted by the reaction with the metallic iron particles, and thereafter, when the metallic iron particles remain, the reduction reaction becomes the main component and reduction. It was confirmed that decontamination by target dehalogenation reaction etc. progressed.

また、係る本発明であるところの酸化反応付与の効能を確認するために、酸素化合物共存下における金属鉄粒子と活性炭粒子が混在する製剤を用いたトリクロロエチレンの分解能に関し、従来法である複合粒子法との比較を実施した。
実験条件は、非特許文献3に記載の図5を得た試験方法に準拠し、本発明であるところの酸素化合物を添加する場合は、酸化と還元化の両反応後の終点pHを6から8の範囲に収束する様に、過硫酸ナトリウムを系に加えた。
Further, in order to confirm the effect of imparting an oxidation reaction according to the present invention, a composite particle method which is a conventional method regarding the resolution of trichloroethylene using a preparation in which metallic iron particles and activated carbon particles coexist in the coexistence of an oxygen compound is used. Comparison with was carried out.
The experimental conditions are based on the test method obtained in FIG. 5 described in Non-Patent Document 3, and when the oxygen compound according to the present invention is added, the end point pH after both the oxidation and reduction reactions is changed from 6. Sodium persulfate was added to the system so that it converged to the range of 8.

結果を図2に示す。なお、図2における従来法である複合粒子法での経時変化、鉄粒子単独での経時変化、活性炭単独での経時変化に関しては、非特許文献3に記載の図5のグラフから値を引用し図2にプロットした。
図2のグラフにおいて、本発明であるところの実験区は、酸素化合物共存下における金属鉄粒子と活性炭粒子が混在する製剤を用いたpH7の実験区が該当し、また、対照試験として、酸素化合物共存下における金属鉄粒子と活性炭粒子が混在する製剤を用いたpH2の実験区を置いた。
図2のグラフから明確に読み取れることは、本発明であるところの酸素化合物共存下における金属鉄粒子と活性炭粒子が混在する製剤を用いたpH7の実験区が、全ての実験区の中で、初期の分解反応が最も早く、唯一、定量限界濃度である0.001mg/L以下に到達したことである。
また、対照区として置いた酸素化合物共存下における金属鉄粒子と活性炭粒子が混在する製剤を用いたpH2の実験区も、従来法であるところの複合粒子法での実験区よりも良好な分解を示したことから、本発明であるところの酸素化合物共存下における酸化反応は、極めて有効にトリクロロエチレンの浄化に寄与することが明らかとなった。
なお、金属鉄粒子と活性炭粒子が混在する製剤を用いた場合における、pH2実験区とpH7実験区の分解効率の差は、図1が示すところの、金属鉄粒子と活性炭粒子の凝集・共沈現象の有無に起因した差と考察された。
The results are shown in FIG. Regarding the time course of the composite particle method, which is the conventional method in FIG. 2, the time change of the iron particles alone, and the time change of the activated carbon alone, the values are quoted from the graph of FIG. 5 described in Non-Patent Document 3. Plotted in FIG.
In the graph of FIG. 2, the experimental group of the present invention corresponds to an experimental group of pH 7 using a preparation in which metallic iron particles and activated carbon particles coexist in the coexistence of an oxygen compound, and an oxygen compound is used as a control test. An experimental group of pH 2 was set up using a compound in which metallic iron particles and activated carbon particles coexisted.
What can be clearly read from the graph of FIG. 2 is that the experimental group having a pH of 7 using the preparation in which the metallic iron particles and the activated carbon particles coexist in the coexistence of the oxygen compound in the present invention is the initial group among all the experimental groups. The decomposition reaction of iron was the fastest, and it was the only one that reached the limit concentration of 0.001 mg / L or less.
In addition, the pH 2 experimental group using a preparation in which metallic iron particles and activated carbon particles coexist in the coexistence of an oxygen compound placed as a control group also performed better decomposition than the experimental group using the composite particle method, which is a conventional method. From the above, it was clarified that the oxidation reaction in the coexistence of the oxygen compound according to the present invention contributes to the purification of trichloroethylene extremely effectively.
The difference in decomposition efficiency between the pH2 experimental group and the pH7 experimental group when a preparation containing a mixture of metallic iron particles and activated charcoal particles is shown is the aggregation / co-precipitation of the metallic iron particles and the activated charcoal particles as shown in FIG. It was considered that the difference was due to the presence or absence of the phenomenon.

この様に、少なくとも活性炭粒子と金属鉄粒子が混在する製剤と酸素化合物を汚染土壌に添加して酸化条件を設定することで、従来法の複合粒子を用いた還元法を凌駕する汚染浄化を図ることが可能であり、更に所定のpH条件を設定し、活性炭粒子と金属鉄粒子を隣接させることで、更に高い浄化速度にて、極めて効率の良い汚染浄化が図られることが明らかとなった。 In this way, by adding at least a preparation containing a mixture of activated carbon particles and metallic iron particles and an oxygen compound to the contaminated soil and setting the oxidation conditions, we aim to purify the contamination that surpasses the reduction method using the conventional composite particles. Furthermore, it has been clarified that extremely efficient pollution purification can be achieved at a higher purification rate by setting predetermined pH conditions and adjoining activated carbon particles and metallic iron particles.

ここで実施の形態に係る酸素化合物としては、具体的には例えば、分子状酸素、オゾン、過硫酸塩、過酸化カルシウム、過酸化マグネシウム、過酸化水素等を挙げることができる。その他、酸素化合物を含む汚染浄化に資する薬剤・資材であれば、本発明で利用される酸素化合物として有効であることは言うまでもない。 Specific examples of the oxygen compound according to the embodiment include molecular oxygen, ozone, persulfate, calcium peroxide, magnesium peroxide, hydrogen peroxide and the like. Needless to say, any drug or material containing an oxygen compound that contributes to pollution purification is effective as the oxygen compound used in the present invention.

加えて、本発明であるところの活性炭を用いた非生物学的な汚染対策方法にて、浄化可能な汚染物質として、土壌汚染対策法や化管法(特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律)及びその関連法等で規定される化学物質の他、石油系燃料等の炭化水素成分や芳香族炭化水素化合物を挙げる。 In addition, in the non-biological pollution control method using activated charcoal, which is the present invention, as a pollutant that can be purified, the soil pollution control method and the hydrocarbon method (the emission amount of a specific chemical substance into the environment) In addition to the chemical substances specified in the Act on Promotion of Understanding, etc. and Improvement of Management) and related laws, hydrocarbon components such as petroleum-based fuels and aromatic hydrocarbon compounds are listed.

なお、本発明は、酸化反応、或いは還元反応による汚染物質の化学処理を促すと共に、活性炭吸着による吸着処理機能を有する。これらの多岐に亘る処理方法の組合せによって、主として以下の浄化・対策を達成する。
(a)ハロゲン化有機汚染を活性炭吸着後の還元的脱塩素を主とした処理
(b)非ハロゲン化有機汚染を活性炭吸着後の酸化を主とした処理
(c)有機金属等の酸化を主とした処理で無機化後の活性炭による吸着処理
(d)重金属類の酸化或いは還元を主とした処理後の活性炭による吸着処理
(e)上記の組合せによる複合汚染の処理
上記の処理を、汚染種・状況に応じて、必要な酸化反応時間と還元反応時間を酸素化合物濃度と金属鉄粒子濃度を自由に調節して設定し、また、活性炭の吸着能を用いて、土壌からの溶出濃度を環境基準以下に抑制した、施工リスクを十分に低減した汚染対策を実施する。
The present invention promotes chemical treatment of pollutants by oxidation reaction or reduction reaction, and has an adsorption treatment function by adsorption of activated carbon. By combining these various treatment methods, the following purification and countermeasures are mainly achieved.
(A) Treatment of halogenated organic contamination mainly by reductive dechlorination after adsorption of activated carbon (b) Treatment of non-halogenated organic contamination mainly by oxidation after adsorption of activated carbon (c) Main treatment of oxidation of organic metals, etc. Adsorption treatment with activated carbon after mineralization (d) Adsorption treatment with activated carbon after treatment mainly for oxidation or reduction of heavy metals (e) Treatment of complex contamination by the above combination -Depending on the situation, the required oxidation reaction time and reduction reaction time can be set by freely adjusting the oxygen compound concentration and the metal iron particle concentration, and the elution concentration from the soil can be determined by using the adsorption capacity of activated carbon. Implement pollution control measures that reduce construction risks to a level below the standard.

なお、本発明に最も適した施工方法として、柱状改良機を用いた施工方法を挙げる。柱状改良機は、薬剤射出部を有した撹拌混合翼と、薬剤供給管機能を有する長軸ロッドにて構成され、単軸型/多軸型、或いは、スラリー剤供給型/乾剤供給型を問わず、土壌に対して薬剤を精度高く緻密に混合する目的で使用される土壌改良機械である。また、本機の施工範囲は、撹拌混合翼の回転範囲が施工面積となり、長軸ロッド長が最大施工深度となる、長尺のカラム様を呈する。したがって、施工土量に比する大気接触面が極めて小さく、汚染土壌に含まれる揮発性汚染化合物の大気飛散が最少となる特長を有する。
一方、その他の工法としては、バックホウ混合、オンサイト型土壌混合改良機を用いた混合、グラウト注入法を介した土壌への注入、ダブルパッカー法を介した土壌への注入等の施工方法が挙げられるが、汚染土壌を、pH3を超えた弱酸性~アルカリ条件に保ち、金属鉄粒子と活性炭粒子の混合物を汚染土壌に添加し、酸素化合物の共存下における酸化と該酸素化合物の消失後における還元化の両反応を図って除染が図られる方法であれば、本発明であるところの施工方法として有効である。
また、係る施工を帯水層に対して実施することにより、汚染土壌の浄化と同時に汚染地下水も併せて浄化されるので、本発明の施工対象に汚染地下水が含まれることは言うまでもない。
The most suitable construction method for the present invention is a construction method using a columnar improving machine. The columnar improvement machine is composed of a stirring and mixing blade having a drug injection part and a long-axis rod having a drug supply tube function, and can be a single-screw type / multi-screw type or a slurry agent supply type / dry agent supply type. Regardless, it is a soil improvement machine used for the purpose of mixing chemicals with soil with high accuracy and precision. In addition, the construction range of this machine is a long column-like structure in which the rotation range of the stirring and mixing blade is the construction area and the long axis rod length is the maximum construction depth. Therefore, the air contact surface is extremely small compared to the amount of construction soil, and the volatile contaminated compounds contained in the contaminated soil are minimally scattered in the air.
On the other hand, other construction methods include backhoe mixing, mixing using an on-site soil mixing improver, injection into soil via the grout injection method, and injection into soil via the double packer method. However, the contaminated soil is kept under weakly acidic to alkaline conditions exceeding pH 3, and a mixture of metallic iron particles and activated charcoal particles is added to the contaminated soil, and oxidation in the coexistence of the oxygen compound and reduction after the disappearance of the oxygen compound are carried out. Any method that can be decontaminated by both reactions of chemical conversion is effective as the construction method of the present invention.
Further, it is needless to say that the construction target of the present invention includes contaminated groundwater because the contaminated groundwater is also purified at the same time as the purification of the contaminated soil by carrying out such construction on the aquifer.

以上に説明した実施の形態および実施事例より、次の発明概念が導かれる。
(1)活性炭粒子を用いて汚染土壌からの汚染の溶出濃度の低減化を図ると共に、該活性炭粒子に吸着された該汚染の内、非ハロゲン化汚染とハロゲン化汚染の少なくともいずれか一方の汚染を、該活性炭粒子に隣接せしめた還元鉄を主成分とする金属鉄粒子の作用により、酸素化合物の共存下における酸化と該酸素化合物の消失後における還元化の両反応を図って除染する方法であって、金属鉄成分と活性炭成分からなる複合粒子製剤を単独で汚染土壌に施用するのではなく、少なくとも各々の成分粒子が混在する製剤を、pH3を超える弱酸性からアルカリ条件下にある汚染土壌に対し施用することを特徴とする活性炭を用いた非生物学的な汚染対策方法である。
The following invention concept is derived from the embodiments and examples described above.
(1) While reducing the elution concentration of contamination from contaminated soil by using activated carbon particles, at least one of non-halogenated contamination and halogenated contamination among the contaminants adsorbed on the activated carbon particles is contaminated. Is decontaminated by the action of metallic iron particles containing reduced iron as a main component, which are adjacent to the activated carbon particles, to achieve both oxidation in the coexistence of an oxygen compound and reduction after the disappearance of the oxygen compound. Therefore, instead of applying a composite particle preparation composed of a metallic iron component and an activated charcoal component to contaminated soil alone, a preparation in which at least each component particle is mixed is contaminated under weakly acidic to alkaline conditions exceeding pH 3. It is a non-biological pollution control method using activated charcoal, which is characterized by being applied to soil.

(2)前記酸素化合物が、少なくとも分子状酸素、オゾン、過硫酸塩、過酸化カルシウム、過酸化マグネシウム、過酸化水素の少なくともいずれか一つを含むことを特徴とする前記(1)に記載の活性炭を用いた非生物学的な汚染対策方法である。 (2) The above-mentioned (1), wherein the oxygen compound contains at least one of molecular oxygen, ozone, persulfate, calcium peroxide, magnesium peroxide and hydrogen peroxide. It is a non-biological pollution control method using activated carbon.

(3)前記少なくとも各々の成分粒子が混在する製剤の一部として、金属鉄と活性炭にて構成される複合粒子が含まれることを特徴とする前記(1)または(2)に記載の活性炭を用いた非生物学的な汚染対策方法である。 (3) The activated carbon according to (1) or (2) above, which comprises a composite particle composed of metallic iron and activated carbon as a part of the preparation in which at least each of the component particles is mixed. This is the non-biological pollution control method used.

(4)前記酸素化合物の共存下における酸化と該酸素化合物の消失後における還元化の両反応後のpHが6から8の範囲となるように、前記金属鉄粒子と該酸素化合物の施用量比が決定されることを特徴とする前記(1)から(3)のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法である。 (4) The application rate ratio of the metallic iron particles to the oxygen compound so that the pH after both the oxidation in the coexistence of the oxygen compound and the reduction after the disappearance of the oxygen compound is in the range of 6 to 8. Is a non-biological pollution control method using the activated carbon according to any one of (1) to (3) above, wherein the above-mentioned (1) to (3) is determined.

(5)前記施用が、柱状改良機によって図られることを特徴とする前記(1)から(4)のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法である。 (5) The non-biological pollution control method using activated carbon according to any one of (1) to (4) above, wherein the application is carried out by a columnar improving machine.

(6)前記製剤を、粉体として汚染土壌に施用することを特徴とする前記(1)から(5)のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法である。 (6) The non-biological pollution control method using activated carbon according to any one of (1) to (5) above, wherein the preparation is applied to contaminated soil as a powder. ..

(7)前記汚染が、アルキル鉛であることを特徴とする前記(1)から(6)のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法である。 (7) The non-biological pollution control method using activated carbon according to any one of (1) to (6) above, wherein the pollution is alkyl lead.

次に、前述した発明概念の作用効果について説明する。
本開示のうち(1)に係る活性炭を用いた非生物学的な汚染対策方法によれば、pH3を超える弱酸性からアルカリ条件下にて、還元鉄を主成分とする金属鉄粒子と活性炭粒子を水中で混合することにより、両粒子は、水溶液中にて相互に付着するので、コストと時間を掛けて両粒子の複合粒子を作成、又は購入するよりも、安価で効果的な浄化資材を、現場で容易に作成することができる。
Next, the action and effect of the above-mentioned invention concept will be described.
According to the non-biological pollution control method using activated charcoal according to (1) of the present disclosure, metallic iron particles and activated charcoal particles containing reduced iron as a main component under weakly acidic to alkaline conditions exceeding pH 3. By mixing the two particles in water, both particles adhere to each other in the aqueous solution, so it is cheaper and more effective than purchasing or purchasing composite particles of both particles at a cost and time. , Can be easily created in the field.

また、係る金属鉄粒子と活性炭粒子と共に、酸素化合物を共存させることにより、従前技術では専らハロゲン化物汚染を対象とした還元的脱塩素反応に限定された浄化方法の前段に、非ハロゲン化物汚染に対しても有効であり反応速度に富む酸化処理を導入することが可能となり、適用可能な汚染種の飛躍的な拡大と分解の顕著な高速化を図ることができる。 In addition, by coexisting an oxygen compound together with the metallic iron particles and activated charcoal particles, the conventional technology can be used for non-halide contamination before the purification method limited to the reductive dechlorination reaction for halide contamination. On the other hand, it is possible to introduce an oxidation treatment that is effective and has a high reaction rate, and it is possible to dramatically expand the applicable pollutants and significantly speed up the decomposition.

また更に、係る金属鉄粒子と活性炭粒子の量比を、自ら任意に設定できるので、添加する活性炭粒子濃度を、汚染の溶出濃度を浄化目標以下となる様な添加濃度に設定することで、完了の見通しが不明瞭な還元反応等の終点を待つことなく、汚染土壌への資材混合の初期施工のみで現場を離れることが可能となり、手離れの良い計画性を有する浄化施工を実施できる。 Furthermore, since the amount ratio of the metallic iron particles to the activated carbon particles can be set arbitrarily by oneself, the concentration of the activated carbon particles to be added can be set to such that the elution concentration of the contamination is below the purification target. It is possible to leave the site only by the initial construction of mixing materials into contaminated soil without waiting for the end point of the reduction reaction, etc., whose outlook is unclear, and it is possible to carry out purification construction with good planning.

本開示のうち(2)に係る活性炭を用いた非生物学的な汚染対策方法によれば、酸素化合物の種別や共存濃度、また還元鉄を主成分とする金属鉄粒子濃度を自由に調節することで、酸化処理と還元処理の割合を自由に調整することができるので、汚染種や濃度に応じた処理や対策を実施することができる。 According to the non-biological pollution control method using activated carbon according to (2) of the present disclosure, the type and coexistence concentration of the oxygen compound and the concentration of metallic iron particles containing reduced iron as a main component can be freely adjusted. As a result, the ratio of oxidation treatment and reduction treatment can be freely adjusted, so treatment and countermeasures can be implemented according to the contaminated species and concentration.

例えば、混合/注入施工に伴う大気や地下空気の巻き込みによって生じる、極微量の分子状酸素のみを唯一の酸素化合物とした場合には、酸化反応が極端に短い還元反応を主体とする反応を主導することができる。
反対に、オゾン、過硫酸塩、過酸化カルシウム、過酸化マグネシウム、過酸化水素等を、金属鉄粒子量に比して過分に添加した場合には、強力な酸化力を有するラジカル種の大量生成が図られ、専ら酸化反応を主体とした反応を誘導することができる。
この様に、現場の汚染種やその状況に応じて、還元反応の前段での酸化反応が継続する期間や強度を、自由に設定することができる。
For example, when only a very small amount of molecular oxygen generated by the entrainment of air or ground air due to mixing / injection construction is used as the only oxygen compound, the oxidation reaction is led by a reaction mainly consisting of an extremely short reduction reaction. can do.
On the contrary, when ozone, persulfate, calcium peroxide, magnesium peroxide, hydrogen peroxide, etc. are added in excess of the amount of metallic iron particles, a large amount of radical species having strong oxidizing power is produced. It is possible to induce a reaction mainly composed of an oxidation reaction.
In this way, the period and intensity at which the oxidation reaction in the previous stage of the reduction reaction continues can be freely set according to the contaminated species at the site and the situation thereof.

本開示のうち(3)に係る活性炭を用いた非生物学的な汚染対策方法によれば、前記少なくとも各々の成分粒子が混在する製剤の一部として、金属鉄成分と活性炭成分から構成される複合粒子を利用する場合に、複合粒子のみでは、理想的な金属鉄粒子と活性炭粒子の量比を達成できない場合に、不足する金属鉄成分、或いは活性炭成分を各粒子として複合粒子に足して汚染土壌に施用して従前技術を補正することで、上述の(1)と(2)に係る、本発明であるところの活性炭を用いた非生物学的な汚染対策方法による施工上の利点を、複合粒子をベースとした施工においても共有することができる。 According to the non-biological pollution control method using activated charcoal according to (3) of the present disclosure, it is composed of a metallic iron component and an activated charcoal component as a part of a preparation in which at least each component particle is mixed. When using composite particles, if the ideal amount ratio of metallic iron particles and activated charcoal particles cannot be achieved with the composite particles alone, the insufficient metallic iron component or activated charcoal component is added to the composite particles as each particle to contaminate the composite particles. By applying it to the soil and correcting the conventional technique, the construction advantage of the non-biological pollution control method using activated carbon according to the above-mentioned (1) and (2) can be obtained. It can also be shared in construction based on composite particles.

本開示のうち(4)に係る活性炭を用いた非生物学的な汚染対策方法によれば、酸化と還元の両反応後のpHが6から8の中性付近で反応が終結する様な設定とすることで、土壌pHへの影響が少なく、重金属の溶出等の環境リスクの少ない施工を実施できる。 According to the non-biological pollution control method using activated carbon according to (4) of the present disclosure, the reaction is set so that the reaction is terminated when the pH after both the oxidation and reduction reactions is around 6 to 8 neutral. By doing so, it is possible to carry out construction with less influence on soil pH and less environmental risk such as elution of heavy metals.

本開示のうち(5)に係る活性炭を用いた非生物学的な汚染対策方法によれば、柱状改良機を用いた施工を実施することで、汚染土壌への精度の高い製剤の混錬と、施工環境中への揮発性汚染化合物の飛散を最少とする施工を実施できる。 According to the non-biological contamination control method using activated charcoal according to (5) of the present disclosure, by carrying out the construction using the columnar improving machine, highly accurate preparations can be kneaded into the contaminated soil. It is possible to carry out construction that minimizes the scattering of volatile contaminated compounds into the construction environment.

本開示のうち(6)に係る活性炭を用いた非生物学的な汚染対策方法によれば、スラリー状の従来製剤を多用すると、施工時に土壌の泥濘化が起こるので、スラリー製剤の使用量、即ち製剤の有効成分の汚染土壌への添加量には自ずと限界があったが、製剤を粉体に変えて汚染土壌に施用することにより、泥濘化を起こさずに単位土壌あたりの有効成分の施用量を各段に増やすことができるので、高濃度汚染を本発明であるところの工法の適用範疇とすることができる。 According to the non-biological pollution control method using activated charcoal according to (6) of the present disclosure, if a large amount of the conventional slurry-like preparation is used, the soil becomes muddy during construction. That is, there was a limit to the amount of the active ingredient of the pharmaceutical product added to the contaminated soil, but by changing the pharmaceutical product to powder and applying it to the contaminated soil, the active ingredient per unit soil can be applied without causing mud. Since the dose can be increased to each stage, high-concentration contamination can be applied to the construction method according to the present invention.

本開示のうち(7)に係る活性炭を用いた非生物学的な汚染対策方法によれば、毒性が極めて高く、未だに有効な浄化対策方法が提案されていないアルキル鉛に対する新たな浄化対策手段として市場提案できる。 According to the non-biological pollution control method using activated carbon according to (7) of the present disclosure, as a new purification measure for alkyl lead, which is extremely toxic and an effective purification measure has not yet been proposed. You can make market proposals.

以上、本発明の実施の形態および実施例を説明してきたが、具体的な構成は前述した開示に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれることは、言うまでもない。 Although embodiments and examples of the present invention have been described above, the specific configuration is not limited to the above-mentioned disclosure, and the present invention may be changed or added without departing from the gist of the present invention. Needless to say, it is included in.

本発明によるところの汚染対策方法は、活性炭粒子により土壌汚染の溶出濃度の低減化を図り、活性炭粒子に吸着された汚染を、隣接せしめた金属鉄粒子の作用により、酸素化合物の共存下における酸化と該酸素化合物の消失後における還元化の両反応を図って除染する方法であり、浄化施工リスクを最少とし、多様な汚染種に対応可能で効率的な汚染浄化・対策を、土壌地下水汚染対策市場に提供できる。

In the pollution control method according to the present invention, the elution concentration of soil contamination is reduced by the activated carbon particles, and the contamination adsorbed on the activated carbon particles is oxidized in the coexistence of oxygen compounds by the action of the metal iron particles adjacent to each other. It is a method of decontaminating by aiming at both reactions of reduction after the disappearance of the oxygen compound, minimizing the risk of purification work, and providing efficient pollution purification and countermeasures that can deal with various polluted species, soil groundwater contamination. Can be provided to the countermeasure market.

Claims (7)

活性炭粒子を用いて汚染土壌からの汚染の溶出濃度の低減化を図ると共に、該活性炭粒子に吸着された該汚染の内、非ハロゲン化汚染とハロゲン化汚染の少なくともいずれか一方の汚染を、該活性炭粒子に隣接せしめた還元鉄を主成分とする金属鉄粒子の作用により、酸素化合物の共存下における酸化と該酸素化合物の消失後における還元化の両反応を図って除染する方法であって、金属鉄成分と活性炭成分からなる複合粒子製剤を単独で汚染土壌に施用するのではなく、少なくとも前記活性炭粒子と前記金属鉄粒子とが混在する製剤を、pH3を超える弱酸性からアルカリ条件下にある汚染土壌に対し施用し、前記活性炭粒子と前記金属鉄粒子が相互に付着する凝集を促して除染を図ることを特徴とする活性炭を用いた非生物学的な汚染対策方法。 The activated carbon particles are used to reduce the elution concentration of the contamination from the contaminated soil, and at least one of the non-halogenated contamination and the halogenated contamination among the contaminants adsorbed on the activated carbon particles is treated. It is a method of decontaminating by the action of metallic iron particles containing reduced iron as a main component adjacent to activated carbon particles, aiming at both oxidation in the coexistence of an oxygen compound and reduction after the disappearance of the oxygen compound. Rather than applying the composite particle preparation consisting of the metallic iron component and the activated charcoal component to the contaminated soil alone, at least the preparation in which the activated charcoal particles and the metallic iron particles are mixed is subjected to weakly acidic to alkaline conditions exceeding pH 3. A non-biological pollution control method using activated charcoal, which is applied to a certain contaminated soil and promotes decontamination by promoting aggregation in which the activated charcoal particles and the metallic iron particles adhere to each other . 前記酸素化合物が、少なくとも分子状酸素、オゾン、過硫酸塩、過酸化カルシウム、過酸化マグネシウム、過酸化水素の少なくともいずれか一つを含むことを特徴とする請求項1に記載の活性炭を用いた非生物学的な汚染対策方法。 The activated charcoal according to claim 1, wherein the oxygen compound contains at least one of molecular oxygen, ozone, persulfate, calcium peroxide, magnesium peroxide, and hydrogen peroxide. Non-biological pollution control method. 前記少なくとも各々の成分粒子が混在する製剤の一部として、金属鉄と活性炭にて構成される複合粒子が含まれることを特徴とする請求項1または2のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法。 The activated carbon according to any one of claims 1 or 2, wherein the composite particles composed of metallic iron and activated carbon are contained as a part of the preparation in which at least each of the component particles is mixed is used. There was a non-biological pollution control method. 前記酸素化合物の共存下における酸化と該酸素化合物の消失後における還元化の両反応後のpHが6から8の範囲となるように、前記金属鉄粒子と該酸素化合物の施用量比が決定されることを特徴とする請求項1から3のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法。 The application rate ratio of the metallic iron particles to the oxygen compound is determined so that the pH after both the oxidation in the coexistence of the oxygen compound and the reduction after the disappearance of the oxygen compound is in the range of 6 to 8. The non-biological pollution control method using the activated carbon according to any one of claims 1 to 3, wherein the method is characterized by the above. 前記施用が、柱状改良機によって図られることを特徴とする請求項1から4のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法。 The non-biological pollution control method using activated carbon according to any one of claims 1 to 4, wherein the application is carried out by a columnar improving machine. 前記製剤を、粉体として汚染土壌に施用することを特徴とする請求項1から5のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法。 The non-biological pollution control method using activated carbon according to any one of claims 1 to 5, wherein the preparation is applied to contaminated soil as a powder. 前記汚染が、アルキル鉛であることを特徴とする請求項1から6のいずれか一項に記載の活性炭を用いた非生物学的な汚染対策方法。

The non-biological pollution control method using activated carbon according to any one of claims 1 to 6, wherein the pollution is alkyl lead.

JP2021120091A 2021-07-21 2021-07-21 Pollution control method using activated carbon Active JP7005067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021120091A JP7005067B2 (en) 2021-07-21 2021-07-21 Pollution control method using activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021120091A JP7005067B2 (en) 2021-07-21 2021-07-21 Pollution control method using activated carbon

Publications (2)

Publication Number Publication Date
JP2021169093A JP2021169093A (en) 2021-10-28
JP7005067B2 true JP7005067B2 (en) 2022-01-21

Family

ID=78149795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021120091A Active JP7005067B2 (en) 2021-07-21 2021-07-21 Pollution control method using activated carbon

Country Status (1)

Country Link
JP (1) JP7005067B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079233A (en) 2000-09-11 2002-03-19 Kawasaki Steel Corp Underground wall for soil cleaning
JP2002079206A (en) 2000-09-11 2002-03-19 Kawasaki Steel Corp Water shielding wall for preventing contaminated water from flowing out
JP2004249237A (en) 2003-02-21 2004-09-09 Ishihara Sangyo Kaisha Ltd Organic compound decomposer and method of purifying soil using the same
JP2005034696A (en) 2003-07-16 2005-02-10 Tosoh Corp Treatment method for making object to be treated contaminated by organic halogen compound harmless
JP2006231335A (en) 1997-12-19 2006-09-07 Dowa Mining Co Ltd Detoxicating treatment of soil
JP2007105557A (en) 2005-09-15 2007-04-26 Aichi Steel Works Ltd Organic matter decomposition material, and method for decomposing organic matter-containing material to be decomposed by using the same
JP2010264399A (en) 2009-05-15 2010-11-25 Shimizu Corp Resoiling preventing method after contaminated soil cleaning
WO2011048705A1 (en) 2009-10-23 2011-04-28 石井商事株式会社 Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method
JP2017164731A (en) 2016-03-11 2017-09-21 有限会社エコルネサンス・エンテック Countermeasure method for soil contaminant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2255087B (en) * 1991-04-25 1995-06-21 Robert Winston Gillham System for cleaning contaminated water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231335A (en) 1997-12-19 2006-09-07 Dowa Mining Co Ltd Detoxicating treatment of soil
JP2002079233A (en) 2000-09-11 2002-03-19 Kawasaki Steel Corp Underground wall for soil cleaning
JP2002079206A (en) 2000-09-11 2002-03-19 Kawasaki Steel Corp Water shielding wall for preventing contaminated water from flowing out
JP2004249237A (en) 2003-02-21 2004-09-09 Ishihara Sangyo Kaisha Ltd Organic compound decomposer and method of purifying soil using the same
JP2005034696A (en) 2003-07-16 2005-02-10 Tosoh Corp Treatment method for making object to be treated contaminated by organic halogen compound harmless
JP2007105557A (en) 2005-09-15 2007-04-26 Aichi Steel Works Ltd Organic matter decomposition material, and method for decomposing organic matter-containing material to be decomposed by using the same
JP2010264399A (en) 2009-05-15 2010-11-25 Shimizu Corp Resoiling preventing method after contaminated soil cleaning
WO2011048705A1 (en) 2009-10-23 2011-04-28 石井商事株式会社 Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method
JP2017164731A (en) 2016-03-11 2017-09-21 有限会社エコルネサンス・エンテック Countermeasure method for soil contaminant

Also Published As

Publication number Publication date
JP2021169093A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
Youngran et al. Effect of competing solutes on arsenic (V) adsorption using iron and aluminum oxides
Yao et al. Fe-activated peroxymonosulfate enhances the degradation of dibutyl phthalate on ground quartz sand
Mueller et al. Nanoparticles for remediation: solving big problems with little particles
McCormick et al. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions
Mazarji et al. Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: a review
Keane Fate, transport and toxicity of nanoscale zero-valent iron (nZVI) used during superfund remediation
JP6235596B2 (en) NOVEL POWDER, POWDER COMPOSITION, METHOD OF USING THEM, AND USE OF THE POWDER AND POWDER COMPOSITION
JP2009514659A (en) Method using rare earths to remove oxyanions from aqueous streams
EP2828209B1 (en) Environmental remediation process
JP6058708B2 (en) Environmental Reactant Production Method
Pizzigallo et al. Mechanochemical removal of organo-chlorinated compounds by inorganic components of soil
Tsai et al. Remediation of fuel oil-contaminated soils by a three-stage treatment system
Cao et al. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment
Tang et al. Enhanced PAHs-contaminated site soils remediation by mixed persulfate and calcium peroxide
Park et al. Recent developments in engineered nanomaterials for water treatment and environmental remediation
JP7005067B2 (en) Pollution control method using activated carbon
Khan et al. Removal of organic pollutants through hydroxyl radical-based advanced oxidation processes
Heydari et al. Plackett–Burman experimental design for the removal of diazinon pesticide from aqueous system by magnetic bentonite nanocomposites
US20170354837A1 (en) Destruction of dense nonaqueous phase liquids (dnapls) using a time-release formulation
JP2006247483A (en) Treatment method of contaminated soil
CN104556593A (en) Technology for purification treatment of arsenic-containing sewage
Gamallo et al. Nano-based technologies for environmental soil remediation
JP2007521853A (en) Surface decontamination method
Tandon et al. Redox processes in water remediation technologies
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7005067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150