JP5020397B1 - Water treatment system and water treatment method - Google Patents

Water treatment system and water treatment method Download PDF

Info

Publication number
JP5020397B1
JP5020397B1 JP2011143063A JP2011143063A JP5020397B1 JP 5020397 B1 JP5020397 B1 JP 5020397B1 JP 2011143063 A JP2011143063 A JP 2011143063A JP 2011143063 A JP2011143063 A JP 2011143063A JP 5020397 B1 JP5020397 B1 JP 5020397B1
Authority
JP
Japan
Prior art keywords
filter medium
water
phosphorus
phosphorus removal
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011143063A
Other languages
Japanese (ja)
Other versions
JP2013010061A (en
Inventor
龍均 木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Co Ltd
Original Assignee
Asaka Riken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Co Ltd filed Critical Asaka Riken Co Ltd
Priority to JP2011143063A priority Critical patent/JP5020397B1/en
Priority to KR1020120019273A priority patent/KR101393036B1/en
Priority to PCT/JP2012/004126 priority patent/WO2013001791A1/en
Priority to CN201280001777.9A priority patent/CN102958849B/en
Application granted granted Critical
Publication of JP5020397B1 publication Critical patent/JP5020397B1/en
Publication of JP2013010061A publication Critical patent/JP2013010061A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D41/00Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids
    • B01D41/02Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids of loose filtering material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds

Abstract

【課題】スラグを含む燐除去濾材で被処理水に含まれる燐を除去するにおいて、燐の除去効率を高めた水処理装置及び水処理方法を提供する。
【解決手段】被処理水に含まれる燐を燐除去濾材に接触させて除去する水処理システムにおいて、被処理水と接触させる燐除去濾材がスラグを含んでおり、平均粒子径が0.1mm以下のスラグを用いた構成とする。この場合、前記平均粒子径のスラグを選択的に使用することで燐除去濾材が高い燐除去性能を発揮し、その結果、燐の排出基準値が引き下げられたとしても、それに対応することが可能である。
【選択図】図2
Provided are a water treatment apparatus and a water treatment method in which phosphorus removal efficiency is improved in removing phosphorus contained in water to be treated with a phosphorus removal filter medium containing slag.
In a water treatment system for removing phosphorus contained in water to be treated by bringing it into contact with a phosphorus removal filter medium, the phosphorus removal filter medium brought into contact with the water to be treated contains slag, and the average particle size is 0.1 mm or less. The slag is used. In this case, by selectively using the slag having the average particle diameter, the phosphorus removal filter medium exhibits high phosphorus removal performance. As a result, even if the emission standard value of phosphorus is lowered, it is possible to cope with it. It is.
[Selection] Figure 2

Description

本発明は、水処理システム及び水処理方法に関し、特に、被処理水に含まれる燐(リン)を燐除去濾材に接触させて除去する水処理システム及び水処理方法に関する。   The present invention relates to a water treatment system and a water treatment method, and more particularly, to a water treatment system and a water treatment method for removing phosphorus contained in water to be treated by bringing it into contact with a phosphorus removal filter medium.

例えば下水や廃水などの排出基準値は、排出汚濁防止法や条例によって定められている。排出基準は、環境保護のため厳しさが増す傾向にあり、富栄養化原因の一つである燐についても例外でない。海外に目を向けても燐の排出基準が強化される傾向にあり、例えば大韓民国では全リン(T−P)濃度で0.2mg/lまで引き下げられる予定である。   For example, emission standard values such as sewage and wastewater are defined by the Emission Pollution Prevention Law and regulations. Emission standards tend to be more stringent for environmental protection, and phosphorus is one of the causes of eutrophication. Even if we look overseas, there is a tendency for the emission standards of phosphorus to be strengthened. For example, in South Korea, the total phosphorus (TP) concentration will be reduced to 0.2 mg / l.

燐除去能力を発揮する濾材としては、例えば製鐵所等で副生されるスラグが知られている(例えば、特許文献1−4)。しかしながら、従来の方法では除去効率が十分でなく、厳しい排出基準値が設定された場合に実施できなくなる場合がある。   As a filter medium that exhibits phosphorus removal ability, for example, slag produced as a by-product in a steelworks or the like is known (for example, Patent Documents 1-4). However, in the conventional method, the removal efficiency is not sufficient, and there are cases where it cannot be performed when a strict emission reference value is set.

さらに、従来の方法は、スラグの燐除去活性を高めるために被処理水に継続的にアルカリ溶液を添加している。このような被処理水への薬液添加は、環境保護の観点からは省略することが望まれる。しかしながら、従来の燐除去濾材では、アルカリの添加無くしては十分に燐を除去することができない。   Furthermore, in the conventional method, an alkaline solution is continuously added to the water to be treated in order to increase the phosphorus removal activity of the slag. It is desirable to omit such chemical addition to the water to be treated from the viewpoint of environmental protection. However, the conventional phosphorus removing filter medium cannot sufficiently remove phosphorus without adding an alkali.

特開2005−262044号公報Japanese Patent Laid-Open No. 2005-262044 特開2006−341226号公報JP 2006-341226 A 特開平11−57694号公報Japanese Patent Laid-Open No. 11-57694 特開2002−86139号公報JP 2002-86139 A

本発明は、このような事情に基づいてなされたものであり、その目的は、スラグを含む燐除去濾材で被処理水に含まれる燐を除去するにおいて、燐の除去効率を高めた水処理装置及び水処理方法を提供することにある。   The present invention has been made based on such circumstances, and an object of the present invention is to provide a water treatment apparatus with improved phosphorus removal efficiency in removing phosphorus contained in water to be treated with a phosphorus removal filter medium containing slag. And providing a water treatment method.

また、本発明の他の目的は、被処理水への薬液添加を省略しても、安定して燐を除去することのできる水処理装置及び水処理方法を提供することにある。   Another object of the present invention is to provide a water treatment apparatus and a water treatment method capable of stably removing phosphorus even if chemical solution addition to water to be treated is omitted.

本発明の水処理システムは、被処理水に含まれる燐を燐除去濾材に接触させて除去する水処理システムにおいて、前記燐除去濾材は、平均粒子径が0.1mm以下のスラグを粘土質系バインダーと混合し、平均粒子径0.3mm以下の粒状に造粒し、焼成したものであり、前記水処理システムは、前記燐除去濾材を被処理水に添加して撹拌する撹拌槽と、前記燐除去濾材を前記撹拌槽に添加する濾材添加装置と、前記撹拌槽から排出される燐除去濾材を含む被処理水を固液分離して、燐が除去された被処理水から燐除去濾材を分離する沈降分離槽又は固液分離装置と、前記沈降分離槽又は固液分離装置によって被処理水から分離した燐除去濾材、又は分離した中から一部を抜き出して再活性化処理をした燐除去濾材を、新たな被処理水が供給された撹拌槽に再添加する濾材添加装置と、を備えていることを特徴とする。 The water treatment system of the present invention is a water treatment system for removing phosphorus contained in water to be treated by bringing it into contact with a phosphorus removal filter medium, wherein the phosphorus removal filter medium is a clay-based slag having an average particle diameter of 0.1 mm or less. The water treatment system is mixed with a binder, granulated into particles having an average particle diameter of 0.3 mm or less, and baked, and the water treatment system is a stirring tank for adding the phosphorus removal filter medium to the water to be treated and stirring the water. A filter medium addition device for adding a phosphorus removal filter medium to the agitation tank and a water to be treated containing the phosphorus removal filter medium discharged from the agitation tank are subjected to solid-liquid separation, and a phosphorus removal filter medium is removed from the process water from which phosphorus has been removed. A sedimentation separation tank or solid-liquid separation device to be separated, a phosphorus removal filter medium separated from the water to be treated by the sedimentation separation tank or solid-liquid separation device, or a phosphorus removal which is partly removed from the separated and reactivated. New treated water is supplied to filter media It characterized in that it and a filter medium dosing device to re-added to a stirred vessel which was.

なお、「被処理水に含まれる燐」は、水に溶解している燐(リン)の化合物を意味しており、燐除去濾材によって除去することによって全リン濃度(T−P)が下がるものが含まれる。   “Phosphorus contained in water to be treated” means a compound of phosphorus dissolved in water, and the total phosphorus concentration (TP) is reduced by removing it with a phosphorus removing filter medium. Is included.

前記スラグは、高い燐除去活性を得るために、Feの含有率が10質量%〜40質量%の範囲内であることが好ましい。燐除去濾材は、燐の除去を続けていくと次第に活性が低下していく。そのため、水処理システムは、所定時間又は所定量の燐を除去した燐除去濾材の表面を洗浄するための酸性溶液を供給する手段と、酸洗浄後の燐除去濾材を活性化するためのアルカリ溶液を供給する手段と、を備えていることが好ましい。 The slag preferably has a Fe 2 O 3 content of 10 mass% to 40 mass% in order to obtain high phosphorus removal activity. The activity of the phosphorus removal filter medium gradually decreases as the phosphorus removal is continued. Therefore, the water treatment system includes a means for supplying an acidic solution for cleaning the surface of the phosphorus removal filter medium from which phosphorus has been removed for a predetermined time or a predetermined amount, and an alkaline solution for activating the phosphorus removal filter medium after the acid cleaning. And a means for supplying.

本発明の水処理方法は、スラグを含む燐除去濾材に被処理水を接触させて燐を除去する水処理方法において、前記スラグの平均粒子径が0.1mm以下であることを特徴とする。   The water treatment method of the present invention is characterized in that the average particle size of the slag is 0.1 mm or less in the water treatment method of removing phosphorus by bringing the water to be treated into contact with a phosphorus removal filter medium containing slag.

燐除去濾材は、燐の除去を続けていくと次第に活性が低下していく。そのため、所定時間又は所定量の燐を除去した燐除去濾材に酸性溶液を供給して表面を洗浄し、酸洗浄後の燐除去濾材をアルカリ溶液に浸漬させるか、又は熱処理して濾材活性化をすることが好ましい。   The activity of the phosphorus removal filter medium gradually decreases as the phosphorus removal is continued. Therefore, an acidic solution is supplied to a phosphorus removal filter medium from which phosphorus has been removed for a predetermined time or a predetermined amount to clean the surface, and the phosphorus removal filter medium after acid cleaning is immersed in an alkaline solution or heat treatment to activate the filter medium. It is preferable to do.

環境保護に貢献しつつ、燐を除去するために、燐除去濾材の燐除去活性を高めるためのアルカリ溶液を被処理水に継続添加せずに燐の除去を行うことが好ましい。   In order to remove phosphorus while contributing to environmental protection, it is preferable to remove phosphorus without continuously adding an alkaline solution for enhancing the phosphorus removal activity of the phosphorus removal filter medium to the water to be treated.

本発明によれば、被処理水に含まれる燐をスラグを含む燐除去濾材に接触させて除去するにおいて、平均粒子径0.1mm以下のスラグを用いたことにより、スラグが高い燐除去活性を発揮する。従って、排出基準値(例えば、全リン濃度で0.2mg/l)に引き下げられたとしても、排出基準値を下回る濃度にまで燐を除去することが可能である。   According to the present invention, in removing phosphorus contained in water to be treated by bringing it into contact with a phosphorus removal filter medium containing slag, by using slag having an average particle diameter of 0.1 mm or less, phosphorus removal activity with high slag is achieved. Demonstrate. Therefore, even if the emission standard value (for example, 0.2 mg / l in total phosphorus concentration) is lowered, it is possible to remove phosphorus to a concentration below the emission standard value.

さらに本発明によれば、高い燐除去活性を発揮する濾材を用いているので、従来方法のようにスラグの活性を高めるためのアルカリ溶液を被処理水に継続添加しなくとも、安定した燐除去を行うことが可能である。   Furthermore, according to the present invention, since a filter medium that exhibits high phosphorus removal activity is used, stable phosphorus removal can be achieved without the continuous addition of an alkaline solution for increasing the activity of slag as in the conventional method. Can be done.

本発明の第1実施形態に従う水処理システムの全体構成を示す。1 shows an overall configuration of a water treatment system according to a first embodiment of the present invention. スラグの平均粒子径と燐の除去効率の相関関係を示すグラフである。It is a graph which shows the correlation of the average particle diameter of slag, and the removal efficiency of phosphorus. 本発明の第2実施形態に従う水処理システムの全体構成を示す。The whole structure of the water treatment system according to 2nd Embodiment of this invention is shown. 本発明の効果を確認するために行った試験の結果を示す。The result of the test conducted in order to confirm the effect of this invention is shown.

以下、本発明の好ましい実施形態に従う水処理システム及び水処理方法について、添付図面を参照しながら詳しく説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。   Hereinafter, a water treatment system and a water treatment method according to preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical scope of the present invention is not construed as being limited by the embodiments described below.

(第1実施形態)
第1実施形態に従う水処理システムについて、図1を参照しながら説明する。水処理システム1は、図1に示すように、被処理水の原水を貯留する原水槽2と、被処理水に含まれる固形分(特に、濁質)を除去する第1濾過装置3と、原水槽2にある被処理水を第1濾過装置3に供給する第1供給ポンプ31と、第1濾過装置3で濾過された被処理水(一次処理水)を貯留する一次処理水槽32と、被処理水に含まれる燐を除去する第2濾過装置4と、一次処理水槽32にある被処理水を第2濾過装置4に供給する第2供給ポンプ33と、第2濾過装置4で濾過された被処理水(二次処理水)を貯留する二次処理水槽41を備えている。各装置は、例えば配管などの流路を介して連結されており、バルブV1−V15の開閉によって通水流路の切り替えを行う構成である。
(First embodiment)
The water treatment system according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the water treatment system 1 includes a raw water tank 2 that stores raw water to be treated, a first filtration device 3 that removes solid content (particularly, turbidity) contained in the water to be treated, A first supply pump 31 for supplying the water to be treated in the raw water tank 2 to the first filtration device 3, a primary treatment water tank 32 for storing the water to be treated (primary treatment water) filtered by the first filtration device 3, and The second filtration device 4 that removes phosphorus contained in the water to be treated, the second supply pump 33 that supplies the water to be treated in the primary treatment water tank 32 to the second filtration device 4, and the second filtration device 4. In addition, a secondary treated water tank 41 for storing treated water (secondary treated water) is provided. Each device is connected through a flow path such as a pipe, for example, and is configured to switch the water flow path by opening and closing valves V1-V15.

水処理システム1で処理する原水は、例えば本システム1よりも上流の処理工程において生物的処理が行われた下水や廃水などである。一般的に、生物的処理が行われた原水の全リン濃度は、3〜10mg/l又はそれ以上である。但し、原水の種類が限定されることはなく、燐を含むすべての水を処理対象とすることができ、さらに原水中の全リン濃度も制限されない。ただ、原水のpHは5.8〜8.6程度の中性領域であることが好ましい。   The raw water to be treated by the water treatment system 1 is, for example, sewage or wastewater that has been subjected to biological treatment in a treatment process upstream of the system 1. Generally, the total phosphorus concentration of raw water subjected to biological treatment is 3-10 mg / l or more. However, the type of raw water is not limited, all water containing phosphorus can be treated, and the total phosphorus concentration in the raw water is not limited. However, the pH of the raw water is preferably in the neutral range of about 5.8 to 8.6.

第1濾過装置3は、例えば上下に配管が接続された濾過塔34の内部に濾過砂を充填した装置を用いることができる。濾過塔34内には、例えば面内に多数の通水孔が形成された支持部材(例えば、目皿)35の上に濾過砂利などを充填して支持層36が形成され、この支持層36の上に濾過砂を充填して濾過砂層37が形成されている。原水槽2からの被処理水は、濾過塔34の上部から供給され、濾過砂層37及び支持層36を通過して濾過塔34の下部から排出される。他方、後述する逆洗を行う際には、被処理水の供給を中断し、洗浄水を濾過塔34の下部から供給して上部から排出する。なお、濾過砂層37の上にアンスラサイトを充填して、濾過砂層37とアンスラサイト層の2層濾過方式とすることもできる。   As the first filtration device 3, for example, a device in which filtration sand is filled in a filtration tower 34 having pipes connected to the top and bottom can be used. In the filtration tower 34, for example, a support layer 36 is formed by filling filter gravel or the like on a support member (for example, an eye plate) 35 in which a large number of water passage holes are formed in the surface. A filter sand layer 37 is formed by filling the filter sand with the filter sand. The treated water from the raw water tank 2 is supplied from the upper part of the filter tower 34, passes through the filter sand layer 37 and the support layer 36, and is discharged from the lower part of the filter tower 34. On the other hand, when backwashing to be described later is performed, the supply of water to be treated is interrupted, and the cleaning water is supplied from the lower part of the filtration tower 34 and discharged from the upper part. In addition, it can also be set as the two-layer filtration system of the filtration sand layer 37 and the anthracite layer by filling the filtration sand layer 37 with anthracite.

第2濾過装置4は、例えば上下に配管が接続された濾過塔42A(42B)の内部に燐除去濾材を充填した装置を用いることができる。濾過塔42A(42B)内には、例えば面内に多数の通水孔が形成された支持部材(例えば、目皿)43A(43B)の上に濾過砂利などを充填して支持層44A(44B)が形成され、この支持層44A(44B)の上に燐除去濾材を充填して燐除去濾材層45A(45B)が形成されている。被処理水(一次処理水)は、濾過塔42A(42B)の上部から供給され、燐除去濾材層45A(45B)及び支持層44A(44B)を通過して濾過塔42A(42B)の下部から排出される。第2濾過装置4は、このように同一構成の2塔の濾過塔42A(42B)を並列配置した構成である。そして、バルブV12−V15の開閉によって通水する濾過塔42A(42B)を切り替えることができる。従って、連続運転を必要とする場合は、例えば予め決めた通水時間が経過する度に通水する濾過塔42A(42B)を切り替え、休止している濾過塔42A(42B)に対して後述する濾材の再活性化処理を行うように運転することができる。なお、必ずしも2塔方式にしなくともよく、1塔としてもよく、反対に3塔以上であってもよい。   As the second filtration device 4, for example, a device in which a phosphorus removal filter medium is filled in a filtration tower 42 </ b> A (42 </ b> B) having pipes connected to the top and bottom can be used. In the filtration tower 42A (42B), for example, the support member 44A (44B) is filled with filtration gravel on a support member (for example, a plate) 43A (43B) having a large number of water passage holes formed in the surface. ), And the support layer 44A (44B) is filled with a phosphorus removal filter medium to form a phosphorus removal filter medium layer 45A (45B). The water to be treated (primary treated water) is supplied from the upper part of the filtration tower 42A (42B), passes through the phosphorus removal filter material layer 45A (45B) and the support layer 44A (44B), and from the lower part of the filtration tower 42A (42B). Discharged. The second filtration device 4 has a configuration in which two filtration towers 42A (42B) having the same configuration are arranged in parallel. And filtration tower 42A (42B) which lets water flow by opening and closing valve | bulb V12-V15 can be switched. Therefore, when continuous operation is required, for example, the filtration tower 42A (42B) that switches water every time a predetermined water flow time elapses is switched, and the filtration tower 42A (42B) that is stopped will be described later. The filter medium can be operated to perform the reactivation process. It is not always necessary to use the two-column system, and one tower may be used, and conversely three or more towers may be used.

燐除去濾材は、平均粒子径0.1mm以下、好ましくは平均粒子径が0.04〜0.08mmの範囲内にあるスラグ(Slag)を粘土質系のバインダーと混合し、例えば平均粒子径が0.1〜1.5mmの範囲内となる粒状に造粒したものが好ましい。より好ましくは、造粒後に例えば600〜900℃で2時間程度焼成したものである。さらに好ましくは、スラグの平均粒子径が0.1mm以下であって、最大粒子径が0.1〜0.12mmである。粘土質系のバインダーは、例えばベントナイト,モンモリロナイトなどを用いることができる。スラグとバインダーの比率は、例えばスラグ:バインダー=50〜90%:10〜50%とすることができる。また、燐除去濾材は、空塔速度(SV)が3〜10hr−1となるように充填量を決めるのが好ましい。 The phosphorus removal filter medium is prepared by mixing slag (Slag) having an average particle size of 0.1 mm or less, preferably in the range of 0.04 to 0.08 mm with a clay-based binder. What was granulated into the granule which falls in the range of 0.1-1.5 mm is preferable. More preferably, it is fired at 600 to 900 ° C. for about 2 hours after granulation. More preferably, the slag has an average particle size of 0.1 mm or less and a maximum particle size of 0.1 to 0.12 mm. For example, bentonite or montmorillonite can be used as the clay-based binder. The ratio of slag and binder can be, for example, slag: binder = 50 to 90%: 10 to 50%. Moreover, it is preferable to determine the packing amount of the phosphorus removal filter medium so that the superficial velocity (SV) is 3 to 10 hr −1 .

ここで、平均粒子径0.1mm以下のスラグを用いた理由について説明する。背景技術の欄でも述べたように、従来においてもスラグを燐除去濾材とすることが検討されてきたが、厳しい排水基準が設定された場合の適用可能性が懸念されていた。本発明者らは、鋭意研究の結果、図2の試験結果から明らかなように、平均粒子径が0.1mm以下のものを選択的に用いることによって燐の除去効率が飛躍的に向上することを突き止め、その結果、全リン(T−P)濃度0.2mg/l以下にまで燐を除去できる燐除去濾材の具現化に至ったのである。図2は、平均粒子径が異なるスラグを用いて、前述の方法で燐除去濾材を調製し、実際に被処理水を通水したときの燐除去率をそれぞれ示している。特許文献1−4などの従来技術は、平均粒子径が比較的大きいスラグを主体としており、特許文献1においては篩操作によって平均粒子径が0.15mm以下のものを予め除外することまで行っていた。そのため、平均粒子径が0.1mm以下のものを選択的に使用することにより、燐の除去効率が飛躍的に向上することを想到し得なかったのである。   Here, the reason for using slag having an average particle diameter of 0.1 mm or less will be described. As described in the background section, it has been studied to use slag as a phosphorus removal filter medium in the past. However, there is a concern about applicability when strict drainage standards are set. As a result of diligent research, the present inventors have found that the phosphorus removal efficiency is dramatically improved by selectively using particles having an average particle size of 0.1 mm or less, as is apparent from the test results of FIG. As a result, a phosphorus removal filter medium capable of removing phosphorus to a total phosphorus (TP) concentration of 0.2 mg / l or less has been realized. FIG. 2 shows the phosphorus removal rate when a phosphorus removal filter medium is prepared by the above-described method using slag having different average particle diameters and the treated water is actually passed through. Conventional techniques such as Patent Documents 1-4 mainly use slag having a relatively large average particle diameter. In Patent Document 1, a process of sieving is performed in advance to exclude those having an average particle diameter of 0.15 mm or less. It was. For this reason, it has not been possible to conceive that the phosphorus removal efficiency is dramatically improved by selectively using particles having an average particle diameter of 0.1 mm or less.

スラグを構成する各成分の比率は、以下に示す成分表の範囲内であることが好ましい。特に、Feを多く含んでいる方が燐の除去を良好に行うことができるので、Feの含有量が10〜40質量%の範囲内であることが好ましい。このようなスラグとしては、鉄鋼スラグが好ましく、その中でも高炉スラグが好適である。但し、前述した理由により、例えば篩操作又は粉砕することによって、平均粒子径0.1mm以下のスラグを選択的に使用する。なお、成分表中の「その他」は不純物である。 It is preferable that the ratio of each component which comprises slag is in the range of the component table | surface shown below. In particular, because it is can be satisfactorily removed phosphorus containing much Fe 2 O 3, it is preferable that the content of Fe 2 O 3 is in the range of 10 to 40 wt%. As such slag, steel slag is preferable, and among them blast furnace slag is preferable. However, for the reasons described above, slag having an average particle diameter of 0.1 mm or less is selectively used, for example, by sieving or grinding. In addition, “others” in the component table is an impurity.

説明を図1に戻し、水処理システム1は、さらに燐除去濾材の再活性化を行う手段を備えている。再活性化の方法は、従来方法とは異なり、先ず酸性溶液による濾材表面の洗浄を行い、その後にアルカリ溶液を供給して濾材を活性化させる。そのための手段として、洗浄液である酸性溶液を貯留する酸性溶液槽5と、酸性溶液を第2濾過装置4に供給する酸性溶液ポンプ51と、活性化溶液であるアルカリ溶液を貯留するアルカリ溶液槽52と、アルカリ溶液を第2濾過装置4に供給するアルカリ溶液ポンプ53を備えている。さらに、燐除去濾材を洗浄した後の酸性溶液を回収する洗浄液回収槽54を備えている。   Returning to FIG. 1, the water treatment system 1 further includes means for reactivating the phosphorus removal filter medium. In the reactivation method, unlike the conventional method, the surface of the filter medium is first washed with an acidic solution, and then the alkaline medium is supplied to activate the filter medium. As means for this, an acidic solution tank 5 that stores an acidic solution that is a cleaning liquid, an acidic solution pump 51 that supplies the acidic solution to the second filtration device 4, and an alkaline solution tank 52 that stores an alkaline solution that is an activating solution. And an alkaline solution pump 53 for supplying the alkaline solution to the second filtration device 4. Further, a cleaning liquid recovery tank 54 for recovering the acidic solution after cleaning the phosphorus removal filter medium is provided.

酸性溶液は、例えば0.01〜10質量%、好ましくは0.5〜2.0質量%の塩酸を用いることができる。その他、HSO,HNOなどを用いることもできる。また、アルカリ溶液は、例えばNaOHを用いることができる。なお、必ずしもアルカリ溶液による活性化を行わなくともよく、例えば酸洗浄後の濾材を濾過塔42A(42B)から取り出し、焼成することによって活性化するようにしてもよい。 As the acidic solution, for example, 0.01 to 10% by mass, preferably 0.5 to 2.0% by mass of hydrochloric acid can be used. Other, H 2 SO 4, etc. HNO 3 may be used. For example, NaOH can be used as the alkaline solution. Note that activation with an alkaline solution is not necessarily performed. For example, the filter medium after acid cleaning may be activated by removing it from the filtration tower 42A (42B) and baking it.

再活性化は、燐除去濾材の活性が低下し過ぎないように、予め決めた時間で周期的に行うことが好ましい。時間による方法以外にも、所定量の燐を除去する度に再活性化を行うようにしてもよく、或いは、二次処理水の全リン濃度が予め決めた上限値に達する度に再活性化を行うようにしてもよい。   The reactivation is preferably performed periodically at a predetermined time so that the activity of the phosphorus removal filter medium does not decrease too much. In addition to the time-based method, reactivation may be performed each time a predetermined amount of phosphorus is removed, or reactivation is performed every time the total phosphorus concentration of the secondary treatment water reaches a predetermined upper limit value. May be performed.

さらに水処理システム1は、固形分を捕捉して濾過抵抗が次第に増加する第1濾過装置3を洗浄(逆洗)するために、一次処理水を洗浄水として第1濾過装置3に供給する第1逆洗ポンプ38、第1濾過装置3から排出される濁質を含んだ洗浄水を回収する逆洗排水槽39を備えている。また、第2濾過装置4の通水抵抗が増加した場合に、二次処理水を洗浄水として第2濾過装置4に供給する第2逆洗ポンプ46を備えており、第2濾過装置4から排出される洗浄水も逆洗排水槽39で回収する。逆洗は、通水抵抗が増加し過ぎないように、予め決めた時間で周期的に行うことが好ましい。その他にも、圧力センサーで通水抵抗を測定し、通水抵抗が予め決めた上限値に達する度に逆洗を行うようにしてもよい。   Furthermore, the water treatment system 1 supplies the first treated water to the first filtration device 3 as washing water in order to wash (backwash) the first filtration device 3 that captures the solid content and gradually increases the filtration resistance. 1 A backwash pump 38 and a backwash drain 39 for collecting wash water containing turbidity discharged from the first filtration device 3 are provided. Moreover, when the water flow resistance of the 2nd filtration apparatus 4 increases, the 2nd backwash pump 46 which supplies a secondary treated water to the 2nd filtration apparatus 4 as a wash water is provided. The discharged wash water is also collected in the backwash drain 39. The backwashing is preferably performed periodically at a predetermined time so that the water flow resistance does not increase excessively. In addition, the water flow resistance may be measured by a pressure sensor, and backwashing may be performed every time the water flow resistance reaches a predetermined upper limit value.

各装置を連結する流路(例えば、配管)の途中に配置されているバルブV1−V15は、各工程における通水経路を切り替えるために、手動又は自動で開閉制御される。バルブV1−V4は、第1濾過装置3に被処理水を通水して濾過するプロセス工程と、第1濾過装置3を逆洗する洗浄工程との切り替えを行う。バルブV5−V11は、第2濾過装置4に一次処理水を通水して濾過するプロセス工程と、濾材を再活性化する工程と、第2濾過装置4を逆洗する洗浄工程の切り替えを行う。バルブV12−V15は、濾過塔42Aと濾過塔42Bとの通水の切り替えを行う。   The valves V1 to V15 arranged in the middle of the flow paths (for example, pipes) connecting the devices are controlled to be opened or closed manually or automatically in order to switch the water flow path in each process. The valves V <b> 1 to V <b> 4 perform switching between a process step in which the water to be treated is filtered through the first filtration device 3 and a cleaning step in which the first filtration device 3 is backwashed. The valves V <b> 5 to V <b> 11 switch between a process step of passing the primary treated water through the second filtration device 4 and filtering, a step of reactivating the filter medium, and a cleaning step of backwashing the second filtration device 4. . Valves V12-V15 switch water flow between the filtration tower 42A and the filtration tower 42B.

本実施形態の水処理システム1は、環境保護の観点から被処理水への薬液添加は原則として行わない。しかし、原水のpHが放流基準値を外れる場合には、第2濾過装置4の手前で酸性溶液又はアルカリ溶液を添加して中和するようにする。pHの調整範囲は、例えば5.8〜8.6の中性領域とする。そのための手段として、被処理水を中和するための酸性溶液及び/又はアルカリ溶液を貯留する中和液槽6と、中和液槽6にある中和液を被処理水に添加する中和ポンプ61を備えている。そして、配管の途中、又は二次処理水槽41から被処理水をサンプリングしてpHを測定し、pHの測定結果に基づいて中和液を添加する。なお、作図の便宜上、一組みの中和液槽6と中和ポンプ61を記載しているが、酸性溶液とアルカリ溶液の両方を用いてpH調整をする場合には、それぞれ別個の槽とポンプを備えるようにする。   In principle, the water treatment system 1 of this embodiment does not add chemicals to the water to be treated from the viewpoint of environmental protection. However, if the pH of the raw water deviates from the discharge standard value, neutralization is performed by adding an acidic solution or an alkaline solution before the second filtration device 4. The pH adjustment range is, for example, a neutral region of 5.8 to 8.6. As means for that, neutralization liquid tank 6 for storing an acidic solution and / or an alkaline solution for neutralizing water to be treated, and neutralization for adding the neutralizing liquid in neutralizing liquid tank 6 to the water to be treated. A pump 61 is provided. And the to-be-processed water is sampled from the middle of piping, or the secondary treatment water tank 41, pH is measured, and a neutralization liquid is added based on the measurement result of pH. For convenience of drawing, a set of neutralization liquid tank 6 and neutralization pump 61 are described. However, when pH adjustment is performed using both an acidic solution and an alkaline solution, separate tanks and pumps are used. Be prepared.

続いて、上述の水処理システム1で燐を除去する処理方法について説明する。
先ず、燐を除去するプロセス工程においては、原水槽2にある被処理水を第1供給ポンプ31によって第1濾過装置3に供給し、固形分(所謂、SS分)を濾過分離して一次処理水槽32に貯留する。さらに、一次処理水槽32にある被処理水を第2供給ポンプ33によって第2濾過装置4に送液するが、被処理水のpHによっては中和ポンプ61を稼働させてpH調整を行う。
Then, the processing method which removes phosphorus with the above-mentioned water treatment system 1 is demonstrated.
First, in the process step of removing phosphorus, the water to be treated in the raw water tank 2 is supplied to the first filtration device 3 by the first supply pump 31, and the solid content (so-called SS content) is filtered and separated for the primary treatment. Store in the water tank 32. Furthermore, although the to-be-processed water in the primary treated water tank 32 is sent to the 2nd filtration apparatus 4 with the 2nd supply pump 33, depending on pH of to-be-processed water, the neutralization pump 61 is operated and pH adjustment is performed.

第2濾過装置4に供給された被処理水は、燐除去濾材層45A(45B)を通過する際に燐が濾過分離され、二次処理水槽41に貯留される。二次処理水槽41にある被処理水は、ポンプ(不図示)などによって下流の工程に送液されるか、或いは放流される。なお、燐の除去のメカニズムを簡単に説明しておくと、被処理水中の燐成分とスラグ表面とが接触したときに燐成分とスラグ表面とが反応して、燐成分が化学的にスラグ表面に捕捉される。このように化学的に濾過分離が行われるため、燐の除去を続けていくとスラグ表面が燐の反応物で覆われていき、有効表面積の減少に伴い活性が低下することになる。物理的な洗浄で取り除くことは難しい。従って、周期的に以下の再活性化を行う。   The treated water supplied to the second filtration device 4 is filtered and separated when passing through the phosphorus removal filter material layer 45 </ b> A (45 </ b> B) and stored in the secondary treated water tank 41. The treated water in the secondary treated water tank 41 is sent to a downstream process or discharged by a pump (not shown) or the like. The mechanism of phosphorus removal will be briefly explained. When the phosphorus component in the water to be treated and the slag surface come into contact, the phosphorus component reacts with the slag surface, and the phosphorus component chemically reacts with the slag surface. To be captured. Since the filtration and separation are performed chemically in this way, if phosphorus is continuously removed, the surface of the slag is covered with a reaction product of phosphorus, and the activity is reduced as the effective surface area is reduced. It is difficult to remove by physical cleaning. Therefore, the following reactivation is performed periodically.

再活性化は、被処理水の供給を中断して行う。従って第2濾過装置4を2塔方式とし、一方の濾過塔42A(42B)で被処理水を処理しつつ、他方の濾過塔42B(42A)に対して再活性化を行うようにし、プロセス工程を中断しないことが好ましい。再活性化は、先ず、洗浄液である酸性溶液を酸性溶液ポンプ51によって濾過塔42A(42B)に供給し、濾過塔42A(42B)から排出される洗浄液を洗浄液回収槽54で回収する。酸性溶液は、濾過塔42A(42B)内のpHが1以下となる濃度及び流量で供給することが好ましい。また、酸性溶液による洗浄時間は、例えば10〜30分とすることができる。   Reactivation is performed by interrupting the supply of water to be treated. Accordingly, the second filtration device 4 is of a two-column system, and the water to be treated is treated in one filtration tower 42A (42B), while the other filtration tower 42B (42A) is reactivated, and the process steps Is preferably not interrupted. In the reactivation, first, an acidic solution as a cleaning liquid is supplied to the filtration tower 42A (42B) by the acidic solution pump 51, and the cleaning liquid discharged from the filtration tower 42A (42B) is recovered in the cleaning liquid recovery tank 54. The acidic solution is preferably supplied at a concentration and a flow rate such that the pH in the filtration tower 42A (42B) is 1 or less. Moreover, the washing | cleaning time by an acidic solution can be 10-30 minutes, for example.

このように、先ず酸性溶液で洗浄することによって、スラグ表面にある燐の反応物を除去することができ、スラグの有効表面が現れることによって活性が回復する。有効表面積が回復すればそのまま再使用することも可能ではあるが、より確実な再活性化のために、燐除去濾材をアルカリ溶液に浸漬させる処理を行う。アルカリ溶液は、酸性溶液の供給を停止した後、アルカリ溶液ポンプ53によって供給する。そして、例えばpH11〜14の液中に燐除去濾材が浸漬する状態を形成し、この状態を例えば12時間以上維持することによって活性化させる。   Thus, by first washing with an acidic solution, the phosphorus reactant on the slag surface can be removed, and the activity is restored by the appearance of an effective surface of the slag. If the effective surface area is recovered, it can be reused as it is. However, for more reliable reactivation, a treatment for immersing the phosphorus removal filter medium in an alkaline solution is performed. The alkaline solution is supplied by the alkaline solution pump 53 after the supply of the acidic solution is stopped. And the state which a phosphorus removal filter medium immerses in the liquid of pH 11-14, for example is formed, and it activates by maintaining this state for 12 hours or more, for example.

アルカリ溶液による活性化は長時間を要する場合がある。そのため、アルカリ溶液による活性化に代えて、焼成による活性化を行うようにしてもよい。この場合、濾過塔42A(42B)から燐除去濾材を取り出し、例えば600〜900℃で2時間程度焼成する。   Activation with an alkaline solution may take a long time. Therefore, instead of activation with an alkaline solution, activation by firing may be performed. In this case, the phosphorus removal filter medium is taken out from the filtration tower 42A (42B) and baked at, for example, 600 to 900 ° C. for about 2 hours.

なお酸性溶液による洗浄は、スラグ表面にある燐の反応物を除去でき、また、洗浄排水に含まれる燐を抽出すれば、捕捉した燐を有効活用できる特長がある。その反面、酸洗浄することによってスラグの粒子径が次第に小さくなっていくことが懸念される。よって、酸洗浄の回数が多数回に及んだ場合は、燐除去濾材を交換することが好ましい。使用後の燐除去濾材は、土壌改良剤、農業用肥料などとして再利用することができる。   Washing with an acidic solution has the feature that it can remove phosphorus reactants on the slag surface and can effectively use the trapped phosphorus by extracting the phosphorus contained in the washing waste water. On the other hand, there is a concern that the particle size of the slag gradually decreases as a result of acid cleaning. Therefore, when the number of times of acid washing reaches a large number, it is preferable to replace the phosphorus removal filter medium. The phosphorus removal filter medium after use can be reused as a soil conditioner, agricultural fertilizer and the like.

また、第1濾過装置3の通水抵抗が上昇した場合、第1供給ポンプ31を停止し、バルブV1−V4の開閉によってプロセス工程から洗浄工程へラインの切り替えを行う。そして第1逆洗ポンプ38によって洗浄水を濾過塔34の下部から供給し、濾過砂を洗浄する。濾過塔34の上部から排出される洗浄排水は、逆洗排水槽39に回収される。第2濾過装置4の通水抵抗が上昇した場合にも、同様にして逆洗を行う。   Moreover, when the water flow resistance of the 1st filtration apparatus 3 rises, the 1st supply pump 31 is stopped and a line is switched from a process process to a washing process by opening and closing valve | bulb V1-V4. Then, wash water is supplied from the lower part of the filter tower 34 by the first backwash pump 38 to wash the filter sand. The washing wastewater discharged from the upper part of the filtration tower 34 is collected in the backwash drainage tank 39. Even when the water flow resistance of the second filtration device 4 increases, backwashing is performed in the same manner.

上述の実施形態によれば、平均粒子径0.1mm以下のスラグを粘土質系のバインダーと混合し、粒状に造粒した燐除去濾材を用いたことにより、スラグが高い燐除去活性を発揮する。その活性は、排出基準値(例えば、全リン濃度で0.2mg/l)に引き下げられたとしても、排出基準値を下回る濃度にまで燐を除去できるほどに高活性である。   According to the above-described embodiment, slag having a high average particle diameter of 0.1 mm or less is mixed with a clay-based binder, and the slag exhibits a high phosphorus removal activity by using a phosphorus removal filter medium granulated into granules. . Even if the activity is lowered to the emission standard value (for example, 0.2 mg / l in total phosphorus concentration), the activity is high enough to remove phosphorus to a concentration below the emission standard value.

さらに上述の実施形態によれば、高い燐除去活性を発揮する燐除去濾材を用いたことにより、従来方法のように燐除去濾材の活性を高めるためのアルカリ溶液を被処理水に継続添加しなくともよく、環境保護に貢献しつつ安定した燐除去を行うことが可能である。   Furthermore, according to the above-described embodiment, by using a phosphorus removal filter medium that exhibits high phosphorus removal activity, an alkaline solution for increasing the activity of the phosphorus removal filter medium is not continuously added to the water to be treated as in the conventional method. In addition, stable phosphorus removal can be performed while contributing to environmental protection.

さらに上述の実施形態によれば、燐除去濾材の再活性化において、先ず酸性溶液による洗浄を行うようにしたことにより、スラグ表面にある燐の反応物を除去することができ、スラグの有効表面を出現させることによって活性を回復させることができる。さらに、酸洗浄の洗浄排水に含まれる燐を抽出すれば、捕捉した燐を有効活用することも可能となる。   Furthermore, according to the above-described embodiment, in the reactivation of the phosphorus removal filter medium, by first performing washing with an acidic solution, it is possible to remove the phosphorus reactant on the slag surface, and to effectively remove the slag surface. The activity can be restored by the appearance of. Furthermore, if the phosphorus contained in the acid waste water is extracted, the captured phosphorus can be used effectively.

(第2実施形態)
続いて、第2実施形態に従う水処理システムについて、図3を参照しながら説明する。上述の第1実施形態は、被処理水が通水される濾過塔方式の装置構成であったが、本実施形態に従う水処理システムは、被処理水に燐除去濾材を添加して撹拌する撹拌槽方式の装置構成である。
(Second Embodiment)
Next, a water treatment system according to the second embodiment will be described with reference to FIG. The first embodiment described above has a filtration tower type apparatus configuration in which the water to be treated is passed, but the water treatment system according to the present embodiment is agitated by adding a phosphorus removal filter medium to the water to be treated and stirring. It is a tank-type device configuration.

水処理システム100は、一端側に被処理水の供給口71、他端側に排出口72を有する撹拌槽7を備えている。撹拌槽7は、仕切壁73によって複数の領域に区画されており、一端側から順に、濾材添加領域を兼ねた第1撹拌領域74、第2撹拌領域75、濾材回収領域76を形成している。原水槽2にある被処理水は、供給ポンプ31によって供給口71に連続的に供給され、各領域(74→75→76)を通過して排出口72から排出される。なお、必ずしも仕切壁73によって各領域74〜76を形成しなくともよく、各領域74〜76をそれぞれ独立した槽で形成するようにしてもよい。   The water treatment system 100 includes a stirring tank 7 having a supply port 71 of water to be treated on one end side and a discharge port 72 on the other end side. The agitation tank 7 is partitioned into a plurality of regions by a partition wall 73, and forms a first agitation region 74, a second agitation region 75, and a filter material recovery region 76 that also serve as a filter material addition region in order from one end side. . The water to be treated in the raw water tank 2 is continuously supplied to the supply port 71 by the supply pump 31, passes through each region (74 → 75 → 76), and is discharged from the discharge port 72. Note that the regions 74 to 76 are not necessarily formed by the partition wall 73, and the regions 74 to 76 may be formed by independent tanks.

濾材添加領域を兼ねた第1撹拌領域74は、燐除去濾材を被処理水に添加する領域であると共に、燐除去濾材が添加された被処理水を撹拌する領域であり、例えば、駆動モータによって回転される撹拌羽根を備えた撹拌装置74aが配置されている。第2撹拌領域75も、燐除去濾材が添加された被処理水を撹拌する領域であり、例えば、駆動モータによって回転される撹拌羽根を備えた撹拌装置75aが配置されている。第1及び第2撹拌領域74,75が、実質的に燐の除去を行う領域であり、この領域内で燐除去濾材を均一に分散させることによって、燐成分とスラグ表面の反応を促進させる。従って、第1及び第2撹拌領域74,75の容積や被処理水の供給流量などは、燐が所定の目標値以下まで分解できる滞留時間となるように設計されている。供給流量は、流量計31aの検出結果に基づいて調節する。なお、燐が所定の目標値以下まで分解できるのであれば第1撹拌領域75のみとしてもよく、反対に撹拌領域の数を増やすようにしてもよい。   The first agitation region 74 that also serves as a filter medium addition region is a region in which the phosphorus removal filter medium is added to the water to be treated, and is a region in which the water to be treated to which the phosphorus removal filter material is added is agitated. A stirring device 74a having a rotating stirring blade is arranged. The 2nd stirring area | region 75 is also an area | region which stirs the to-be-processed water to which the phosphorus removal filter medium was added, for example, the stirring apparatus 75a provided with the stirring blade rotated by a drive motor is arrange | positioned. The first and second agitation regions 74 and 75 are regions for substantially removing phosphorus, and the reaction of the phosphorus component and the slag surface is promoted by uniformly dispersing the phosphorus removal filter medium in this region. Therefore, the volumes of the first and second stirring regions 74 and 75, the supply flow rate of the water to be treated, and the like are designed so that the residence time is sufficient to decompose phosphorus to a predetermined target value or less. The supply flow rate is adjusted based on the detection result of the flow meter 31a. If phosphorus can be decomposed to a predetermined target value or less, only the first stirring region 75 may be used, and conversely, the number of stirring regions may be increased.

濾材回収領域76は、被処理水から燐除去濾材を分離するための領域である。図3には、一例として被処理水と濾材の比重差を利用して固液分離する沈降分離槽を示している。沈降分離槽の底部には、燐除去濾材を含むスラリー液を底部から抜き出すための濾材回収ポンプ8が接続されている。一方、沈降分離槽の上部側に排出口72が接続されており、燐除去濾材を含まない清澄水がオーバーフローして排出される。但し、濾材回収領域76は、被処理水から燐除去濾材を分離回収できればよく、他の固液分離装置に置き換えることも可能である。他の固液分離装置としては、例えばデカンタなどの遠心分離装置や濾過装置などが一例として挙げられる。   The filter medium recovery area 76 is an area for separating the phosphorus removal filter medium from the water to be treated. FIG. 3 shows, as an example, a sedimentation separation tank that performs solid-liquid separation using the specific gravity difference between the water to be treated and the filter medium. A filter medium recovery pump 8 is connected to the bottom of the settling tank to extract the slurry containing the phosphorus removal filter medium from the bottom. On the other hand, a discharge port 72 is connected to the upper side of the settling tank, so that clear water not containing the phosphorus removal filter medium overflows and is discharged. However, the filter medium recovery region 76 only needs to separate and recover the phosphorus removal filter medium from the water to be treated, and can be replaced with another solid-liquid separator. Examples of other solid-liquid separators include, for example, a centrifugal separator such as a decanter, a filtration device, and the like.

濾材回収ポンプ8は、配管などの流路を介してサイクロン81と接続されており、燐除去濾材を含むスラリー液をサイクロン81に供給する。濾材回収ポンプ8は、濾材回収領域76の液面を制御するために、例えば液面計76aの検出結果に基づいてON−OFF制御する。サイクロン81は、スラリー液から燐除去濾材を分離して回収槽82に供給すると共に、分離水を配管などの流路を介して濾材添加領域を兼ねた第1撹拌領域74に戻す。回収槽82内の燐除去濾材は、再び濾材添加領域を兼ねた第1撹拌領域74に添加され、これにより燐除去濾材を循環使用する。なお、バルブ8aは、第1撹拌領域74及び第2撹拌領域75の底部に濾材が堆積した場合に開閉して、濾材回収ポンプ8の液流を利用して堆積している濾材を舞上げるのに使用する。   The filter medium recovery pump 8 is connected to the cyclone 81 via a flow path such as a pipe, and supplies the slurry liquid containing the phosphorus removal filter medium to the cyclone 81. In order to control the liquid level in the filter medium recovery area 76, the filter medium recovery pump 8 performs ON-OFF control based on the detection result of the liquid level gauge 76a, for example. The cyclone 81 separates the phosphorus removal filter medium from the slurry and supplies it to the recovery tank 82, and returns the separated water to the first stirring area 74 that also serves as the filter medium addition area through a flow path such as a pipe. The phosphorus removal filter medium in the recovery tank 82 is added again to the first stirring area 74 that also serves as the filter medium addition area, and thus the phosphorus removal filter medium is circulated and used. The valve 8a opens and closes when the filter medium is deposited on the bottoms of the first stirring area 74 and the second stirring area 75, and lifts the accumulated filter medium using the liquid flow of the filter medium recovery pump 8. Used for.

但し、燐を除去することで次第に燐除去濾材の活性が低下するので、回収槽82内にある燐除去濾材の一部を周期的又は連続的に抜き出して再活性化の処理を行う。再活性化は、既述したように、先ず燐除去濾材を酸性溶液で洗浄し、次にアルカリ溶液に浸漬させるか、或いは焼成を行う。再活性化された燐除去濾材は、例えばホッパーなどの濾材添加装置83によって濾材添加領域を兼ねた第1撹拌領域74に添加する。燐除去濾材の新規補充もこの濾材添加装置83によって行う。濾材添加装置83は、例えば水分を除去するドライエアーユニット84を介して供給するコンプレッサーエアー(圧縮エアー)を駆動力として濾材を供給する構成である。   However, since the activity of the phosphorus-removing filter medium gradually decreases by removing phosphorus, a part of the phosphorus-removing filter medium in the recovery tank 82 is withdrawn periodically or continuously to perform the reactivation process. In the reactivation, as described above, the phosphorus removal filter medium is first washed with an acidic solution and then immersed in an alkaline solution or calcined. The reactivated phosphorus removal filter medium is added to the first stirring region 74 which also serves as the filter medium addition region by a filter medium addition device 83 such as a hopper. The replenishment of the phosphorus removal filter medium is also performed by the filter medium addition device 83. The filter medium adding device 83 is configured to supply the filter medium using, for example, compressor air (compressed air) supplied via a dry air unit 84 that removes moisture as a driving force.

本実施形態で使用する燐除去濾材は、例えば造粒後の平均粒子径が0.1〜0.3mmの範囲内となる粒状のものを用いるのが好ましい。但し、これに限定はされず、第1実施形態と同様のものを使用してもよく、造粒をしないで平均粒子径0.1mm以下のスラグをそのまま使用してもよい。平均粒子径0.1mm以下のスラグをそのまま使用する場合も、焼成した方が燐の除去効率が安定する。   As the phosphorus removal filter medium used in the present embodiment, for example, a granular material having an average particle diameter after granulation in the range of 0.1 to 0.3 mm is preferably used. However, the present invention is not limited to this, and the same one as in the first embodiment may be used, or slag having an average particle diameter of 0.1 mm or less may be used as it is without granulation. Even when the slag having an average particle diameter of 0.1 mm or less is used as it is, the firing efficiency is stabilized by firing.

このような実施形態においても、第1実施形態と同様の効果を得ることができる。さらに、濾過塔方式との比較において、本実施形態には、接触面積の増加により、反応速度と反応効率を向上するという利点がある。   Also in such an embodiment, the same effect as the first embodiment can be obtained. Furthermore, in comparison with the filtration tower system, this embodiment has an advantage of improving the reaction rate and reaction efficiency by increasing the contact area.

(実施例1)
続いて、本発明の効果を確認するために行った実施例1について説明する。本例は、第1実施形態の濾過塔方式に対応するものであり、濾過カラム(φ75mm,高さ1000mm)に燐除去濾材を充填し、原水を通水して燐を除去した実施例1である。より詳しくは、層厚が700mmとなるように濾過カラム内に燐除去濾材を充填し、全リン濃度が10mg/lの原水を、SV=10hr−1となるように通水した。
Example 1
Then, Example 1 performed in order to confirm the effect of this invention is demonstrated. This example corresponds to the filtration tower system of the first embodiment. In Example 1 in which a filtration column (φ75 mm, height 1000 mm) is filled with a phosphorus removal filter medium, and raw water is passed to remove phosphorus. is there. More specifically, the filtration column was filled with a phosphorus removal filter medium so that the layer thickness was 700 mm, and raw water having a total phosphorus concentration of 10 mg / l was passed through so that SV = 10 hr −1 .

実施例1の結果を表2に示す。表2の結果から明らかなように、95%以上という高い除去率が達成され、目標値(0.2mg/l)以下まで燐を除去できることが確認できた。
The results of Example 1 are shown in Table 2. As is clear from the results in Table 2, it was confirmed that a high removal rate of 95% or more was achieved and phosphorus could be removed to a target value (0.2 mg / l) or less.

(実施例2)
本例は、パイロットプラントを用いたスケールアップ試験である。より詳しくは、濾過塔(φ850mm,高さ2500mm)内に、層厚が800mmとなるように燐除去濾材を充填し、全リン濃度が3mg/lの被処理水を、SV=5hr−1となるように通水した。
(Example 2)
This example is a scale-up test using a pilot plant. More specifically, a filter tower (φ850 mm, height 2500 mm) is filled with a phosphorus removal filter medium so that the layer thickness is 800 mm, and water to be treated having a total phosphorus concentration of 3 mg / l is set to SV = 5 hr −1 . The water was passed.

実施例2の結果を表3に示す。表3の結果から明らかなように、97%以上という高い除去率が達成され、目標値(0.2mg/l)以下まで燐を除去できることが確認できた。
The results of Example 2 are shown in Table 3. As is clear from the results in Table 3, it was confirmed that a high removal rate of 97% or more was achieved and phosphorus could be removed to a target value (0.2 mg / l) or less.

(実施例3)
本例は、第2実施形態の撹拌槽方式に対応するものであり、サイズがL1580mm×D1440mm×H3080mmの撹拌槽7を用い、経時的に燐の濃度を測定し、除去率を算出した。試験1−3は、原水に対する濾材の割合を約0.7質量%に設定した。試験4−5は、原水に対する濾材の割合を約0.3質量%に設定した。その他の詳しい試験条件及び試験結果については、図4に示す。
(Example 3)
This example corresponds to the stirring tank method of the second embodiment, and the concentration of phosphorus was measured over time using a stirring tank 7 having a size of L1580 mm × D1440 mm × H3080 mm, and the removal rate was calculated. Test 1-3 set the ratio of the filter medium with respect to raw | natural water to about 0.7 mass%. In Test 4-5, the ratio of the filter medium to the raw water was set to about 0.3 mass%. Other detailed test conditions and test results are shown in FIG.

図4の試験結果から明らかな通り、いずれの試験においても90%を超える除去率を達成しており、目標値(0.2mg/l)以下にまで燐を除去することができた。今回の試験では、原水の燐濃度を約3mg/lに設定しているが、それ以上又はそれ以下の濃度の原水にも通水速度、ろ材の添加量又は攪拌槽内でのろ材と原水の接触時間を調整することにより対応することが可能である。また、試験4−5の結果に基づけば、原水に対する濾材の割合を約0.3質量%にしても高い除去率を達成できており、濾材の使用量を節約できる利点も確認できた。   As is clear from the test results in FIG. 4, a removal rate exceeding 90% was achieved in all tests, and phosphorus could be removed to a target value (0.2 mg / l) or less. In this test, the phosphorus concentration of the raw water is set to about 3 mg / l. However, the feed rate, the amount of filter medium added, or the filter medium and raw water in the agitation tank are also applied to raw water of higher or lower concentration. It is possible to cope by adjusting the contact time. Moreover, based on the result of Test 4-5, even if the ratio of the filter medium to the raw water was about 0.3% by mass, a high removal rate could be achieved, and the advantage of saving the amount of filter medium used could be confirmed.

以上、本発明を具体的な実施形態に則して詳細に説明したが、形式や細部についての種々の置換、変形、変更等が、特許請求の範囲の記載により規定されるような本発明の精神及び範囲から逸脱することなく行われることが可能であることは、当該技術分野における通常の知識を有する者には明らかである。従って、本発明の範囲は、前述の実施形態及び添付図面に限定されるものではなく、特許請求の範囲の記載及びこれと均等なものに基づいて定められるべきである。   Although the present invention has been described in detail with reference to specific embodiments, various substitutions, modifications, changes, etc. in form and detail are defined in the claims. It will be apparent to those skilled in the art that this can be done without departing from the spirit and scope. Therefore, the scope of the present invention should not be limited to the above-described embodiments and the accompanying drawings, but should be determined based on the description of the claims and equivalents thereof.

1 水処理システム
2 原水槽
3 第1濾過装置
4 第2濾過装置
42A,42B 濾過塔
45A,45B 燐除去濾材層
5 酸性溶液(洗浄液)槽
51 酸性溶液ポンプ
52 アルカリ溶液(再活性化溶液)槽
53 アルカリ溶液ポンプ
DESCRIPTION OF SYMBOLS 1 Water treatment system 2 Raw water tank 3 1st filtration apparatus 4 2nd filtration apparatus 42A, 42B Filter tower 45A, 45B Phosphorus removal filter material layer 5 Acidic solution (washing liquid) tank 51 Acidic solution pump 52 Alkaline solution (reactivation solution) tank 53 Alkaline solution pump

Claims (3)

被処理水に含まれる燐を燐除去濾材に接触させて除去する水処理システムにおいて、
前記燐除去濾材は、平均粒子径が0.1mm以下のスラグを粘土質系バインダーと混合し、平均粒子径0.3mm以下の粒状に造粒し、焼成したものであり、
前記水処理システムは、
前記燐除去濾材を被処理水に添加して撹拌する撹拌槽と、
前記燐除去濾材を前記撹拌槽に添加する濾材添加装置と、
前記撹拌槽から排出される燐除去濾材を含む被処理水を固液分離して、燐が除去された被処理水から燐除去濾材を分離する沈降分離槽又は固液分離装置と、
前記沈降分離槽又は固液分離装置によって被処理水から分離した燐除去濾材、又は分離した中から一部を抜き出して再活性化処理をした燐除去濾材を、新たな被処理水が供給された撹拌槽に再添加する濾材添加装置と、を備えていることを特徴とする水処理システム。
In a water treatment system for removing phosphorus contained in water to be treated by bringing it into contact with a phosphorus removal filter medium,
The phosphorus-removing filter medium is obtained by mixing slag having an average particle size of 0.1 mm or less with a clay-based binder, granulating the slag into particles having an average particle size of 0.3 mm or less, and firing.
The water treatment system comprises:
An agitation tank in which the phosphorus removal filter medium is added to the water to be treated and agitated;
A filter medium addition device for adding the phosphorus removal filter medium to the stirring tank;
A settling separation tank or a solid-liquid separation device for solid-liquid separation of water to be treated containing the phosphorus removal filter medium discharged from the stirring tank, and separating the phosphorus removal filter medium from the water to be treated from which phosphorus has been removed;
The phosphorus removal filter medium separated from the water to be treated by the sedimentation separation tank or the solid-liquid separation apparatus, or the phosphorus removal filter medium that has been partially reactivated from the separated water was supplied with new water to be treated. A water treatment system comprising: a filter medium addition device that re-adds to a stirring tank .
前記スラグは、Feの含有率が10質量%〜40質量%の範囲内であることを特徴とする請求項1に記載の水処理システム。 The slag, water treatment system of claim 1, wherein the content of Fe 2 O 3 is in the range of 10% to 40% by weight. 前記水処理システムは、所定時間又は所定量の燐を除去した燐除去濾材の表面を洗浄するための酸性溶液を供給する手段と、酸洗浄後の燐除去濾材を活性化するためのアルカリ溶液を供給する手段と、を備えていることを特徴とする請求項1又は2に記載の水処理システム。   The water treatment system comprises means for supplying an acidic solution for cleaning the surface of the phosphorus removal filter medium from which phosphorus has been removed for a predetermined time or a predetermined amount, and an alkaline solution for activating the phosphorus removal filter medium after the acid cleaning. The water treatment system according to claim 1, further comprising a supply unit.
JP2011143063A 2011-06-28 2011-06-28 Water treatment system and water treatment method Active JP5020397B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011143063A JP5020397B1 (en) 2011-06-28 2011-06-28 Water treatment system and water treatment method
KR1020120019273A KR101393036B1 (en) 2011-06-28 2012-02-24 Water treatment system and water treatment method
PCT/JP2012/004126 WO2013001791A1 (en) 2011-06-28 2012-06-26 Water treatment system
CN201280001777.9A CN102958849B (en) 2011-06-28 2012-06-26 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143063A JP5020397B1 (en) 2011-06-28 2011-06-28 Water treatment system and water treatment method

Publications (2)

Publication Number Publication Date
JP5020397B1 true JP5020397B1 (en) 2012-09-05
JP2013010061A JP2013010061A (en) 2013-01-17

Family

ID=46980480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143063A Active JP5020397B1 (en) 2011-06-28 2011-06-28 Water treatment system and water treatment method

Country Status (4)

Country Link
JP (1) JP5020397B1 (en)
KR (1) KR101393036B1 (en)
CN (1) CN102958849B (en)
WO (1) WO2013001791A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310781A (en) * 2016-08-29 2017-01-11 山东胜伟园林科技有限公司 Modified fiber filtering material and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241795A (en) * 2013-05-17 2013-08-14 南京理工大学 Method for removing phosphorus pollutants in sewage
CN103736466B (en) * 2013-12-27 2015-10-28 江南大学 A kind of polymerized coordination exchanges dephosphorization adsorbent and preparation method thereof
CN106082531A (en) * 2016-06-21 2016-11-09 福建禹环境科技有限公司 A kind of processing method of breeding wastewater
CN105948398A (en) * 2016-06-21 2016-09-21 福建禹环境科技有限公司 Comprehensive treatment method for livestock and poultry breeding wastewater
CN111804562A (en) * 2020-06-21 2020-10-23 湖南绿茵桥驿环保科技有限公司 Sediment separation system for slag treatment

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651240A (en) * 1979-10-04 1981-05-08 Nippon Kokan Kk <Nkk> Treating material for eluted heavy metals and treatment method therefor
JPS6164392A (en) * 1984-09-07 1986-04-02 Agency Of Ind Science & Technol Dephosphorization treatment
JPS61125483A (en) * 1984-11-20 1986-06-13 Ebara Infilco Co Ltd Method for removing phosphoric acid in liquid
JPS6339632A (en) * 1986-08-05 1988-02-20 Osaka Gas Co Ltd Production of inorganic adsorbent for removal of phosphorus from water
JPH02198690A (en) * 1989-01-30 1990-08-07 Ebara Infilco Co Ltd Phosphorus removing agent and production thereof
JPH03114588A (en) * 1989-09-28 1991-05-15 Tokyo Metropolis Regeneration of dephosphorization material
JPH0623372A (en) * 1992-07-09 1994-02-01 Inax Corp Granular dephosphorizing agent
JPH11197500A (en) * 1998-01-12 1999-07-27 Hirai Kogyo Kk Phosphate ion adsorption filter medium and its production
JP2001029962A (en) * 1999-07-26 2001-02-06 Oji Cornstarch Kk Phosphorous-in-water scavenger and its production
JP2002086139A (en) * 2000-09-13 2002-03-26 Kanta Ishii Water treating method, water treating agent and regenerating method of water treating agent
JP2002336875A (en) * 2001-05-17 2002-11-26 Ebara Corp Recovering method and equipment for phosphorus in water
JP2002370086A (en) * 2001-06-15 2002-12-24 Bio Oriented Technol Res Advancement Inst Dephosphorization method for wastewater
JP2004008865A (en) * 2002-06-04 2004-01-15 Jfe Engineering Kk Dephosphorization method and method of manufacturing melted and solidified product
JP2004089931A (en) * 2002-09-03 2004-03-25 Jfe Engineering Kk Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
JP2005036159A (en) * 2003-07-18 2005-02-10 Denki Kagaku Kogyo Kk Material for decreasing harmful substance and method for treating sewage and soil therewith
JP2005097065A (en) * 2003-09-26 2005-04-14 Soil Engineering Co Ltd Recycling system of phosphorus using glass foamed body
JP2005262044A (en) * 2004-03-17 2005-09-29 Nippon Steel Corp Dephosphorization method from water and dephosphorization agent
JP2006043619A (en) * 2004-08-06 2006-02-16 Mitsuko Ito Sewage cleaning method
JP2006341226A (en) * 2005-06-10 2006-12-21 Nippon Steel Corp Method for removing phosphorus from water
JP2007014923A (en) * 2005-07-11 2007-01-25 Dowa Construction Co Ltd Phosphorus removal material
JP2007283223A (en) * 2006-04-18 2007-11-01 Nippon Steel Corp Method for recovering phosphorus from sludge
JP2008142613A (en) * 2006-12-08 2008-06-26 Nishimatsu Constr Co Ltd Water purification method and apparatus for removing nitrogen and phosphorus
JP2010075780A (en) * 2008-09-24 2010-04-08 Japan Organo Co Ltd Apparatus for treating phosphoric acid-containing water

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591113B2 (en) * 1979-10-03 1984-01-10 工業技術院長 How to remove phosphorus
JPS61281093A (en) * 1985-06-04 1986-12-11 三菱重工業株式会社 Adsorbent treatment
JP3103473B2 (en) * 1993-02-26 2000-10-30 株式会社クレアテラ Water purification material and its production method
JPH1157694A (en) * 1997-08-22 1999-03-02 Chubu Kohan Kk Water treating block
KR100371870B1 (en) 2000-06-26 2003-02-11 김응호 Process and apparatus for recovering and removing orthophosphates from sewage and wastes
JP2003047974A (en) * 2001-08-06 2003-02-18 Toin Gakuen Underwater dephosphorizing agent composition and method for removing phosphor from water by using the same
CN100528768C (en) * 2007-10-30 2009-08-19 东南大学 Industrial residue based compound dephosphorization material
JP4653826B2 (en) * 2008-08-22 2011-03-16 株式会社東芝 Solid-liquid separator
KR20100096825A (en) * 2009-02-25 2010-09-02 현대제철 주식회사 Process for removing phosphate from wastes water
CN101973599A (en) * 2010-10-25 2011-02-16 武汉理工大学 Method for adsorbing phosphorus pollutants in water by using waste residues in iron and steel industry

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651240A (en) * 1979-10-04 1981-05-08 Nippon Kokan Kk <Nkk> Treating material for eluted heavy metals and treatment method therefor
JPS6164392A (en) * 1984-09-07 1986-04-02 Agency Of Ind Science & Technol Dephosphorization treatment
JPS61125483A (en) * 1984-11-20 1986-06-13 Ebara Infilco Co Ltd Method for removing phosphoric acid in liquid
JPS6339632A (en) * 1986-08-05 1988-02-20 Osaka Gas Co Ltd Production of inorganic adsorbent for removal of phosphorus from water
JPH02198690A (en) * 1989-01-30 1990-08-07 Ebara Infilco Co Ltd Phosphorus removing agent and production thereof
JPH03114588A (en) * 1989-09-28 1991-05-15 Tokyo Metropolis Regeneration of dephosphorization material
JPH0623372A (en) * 1992-07-09 1994-02-01 Inax Corp Granular dephosphorizing agent
JPH11197500A (en) * 1998-01-12 1999-07-27 Hirai Kogyo Kk Phosphate ion adsorption filter medium and its production
JP2001029962A (en) * 1999-07-26 2001-02-06 Oji Cornstarch Kk Phosphorous-in-water scavenger and its production
JP2002086139A (en) * 2000-09-13 2002-03-26 Kanta Ishii Water treating method, water treating agent and regenerating method of water treating agent
JP2002336875A (en) * 2001-05-17 2002-11-26 Ebara Corp Recovering method and equipment for phosphorus in water
JP2002370086A (en) * 2001-06-15 2002-12-24 Bio Oriented Technol Res Advancement Inst Dephosphorization method for wastewater
JP2004008865A (en) * 2002-06-04 2004-01-15 Jfe Engineering Kk Dephosphorization method and method of manufacturing melted and solidified product
JP2004089931A (en) * 2002-09-03 2004-03-25 Jfe Engineering Kk Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
JP2005036159A (en) * 2003-07-18 2005-02-10 Denki Kagaku Kogyo Kk Material for decreasing harmful substance and method for treating sewage and soil therewith
JP2005097065A (en) * 2003-09-26 2005-04-14 Soil Engineering Co Ltd Recycling system of phosphorus using glass foamed body
JP2005262044A (en) * 2004-03-17 2005-09-29 Nippon Steel Corp Dephosphorization method from water and dephosphorization agent
JP2006043619A (en) * 2004-08-06 2006-02-16 Mitsuko Ito Sewage cleaning method
JP2006341226A (en) * 2005-06-10 2006-12-21 Nippon Steel Corp Method for removing phosphorus from water
JP2007014923A (en) * 2005-07-11 2007-01-25 Dowa Construction Co Ltd Phosphorus removal material
JP2007283223A (en) * 2006-04-18 2007-11-01 Nippon Steel Corp Method for recovering phosphorus from sludge
JP2008142613A (en) * 2006-12-08 2008-06-26 Nishimatsu Constr Co Ltd Water purification method and apparatus for removing nitrogen and phosphorus
JP2010075780A (en) * 2008-09-24 2010-04-08 Japan Organo Co Ltd Apparatus for treating phosphoric acid-containing water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310781A (en) * 2016-08-29 2017-01-11 山东胜伟园林科技有限公司 Modified fiber filtering material and preparation method thereof

Also Published As

Publication number Publication date
JP2013010061A (en) 2013-01-17
KR101393036B1 (en) 2014-05-08
WO2013001791A1 (en) 2013-01-03
KR20130002249A (en) 2013-01-07
CN102958849B (en) 2015-04-15
CN102958849A (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5020397B1 (en) Water treatment system and water treatment method
Hathaway et al. Removing arsenic from drinking water
US9422170B2 (en) Method for producing potable water and/or purifying water including the elimination of a target compound and filtration within a filter drum
CN100438945C (en) Press filtration type water purification method and device therefor
US8968572B2 (en) Method and apparatus for the purification of water contaminated with sulfate ions and with heavy metal ions
JP2013186025A (en) Treatment apparatus and treatment method of decontamination waste liquid
CN101830536A (en) Adsorption apparatus of drained water
US20140144788A1 (en) System and process for the continuous recovery of metals
CN106517624B (en) Desulfurization wastewater treatment method and system based on multistage fluidized bed crystallization
CN101524703B (en) Petroleum hydrocarbon contaminated soil heterotopic repair system and operating method
JP7464905B2 (en) Oil-water separation device and method for refining scandium using the same
CA2766376C (en) Carbon retention screen with variable discharge head
CN103074503A (en) Wastewater zero discharging system and method for vanadium extraction from stone coal
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
CN114560592A (en) Granular carbon magnetic coagulation sedimentation tank
CN201883124U (en) Chemical industry solid-liquid separation and precious metal recovering device
CN101597115B (en) Self-cleaning iron ion removing separation device
CN201704138U (en) Airtight sewage treatment device for tank car mechanical cleaning
CN101880769B (en) Solid-liquid separation and notable metal recovery process in chemical industry
RU2372408C2 (en) Method of water recycling for steel degassing installations
JP2012200669A (en) Phosphorus removing apparatus
CA2104437C (en) Method for purifying aqueous phases in hydrometallurigical extractions
RU2749416C1 (en) Filter medium of water treatment plant
JP2005052738A (en) Method for regenerating cation exchange resin
KR101267311B1 (en) Wastewater treatment system using absorption and filtration and method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5020397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250