JP5041698B2 - Sewage treatment method - Google Patents

Sewage treatment method Download PDF

Info

Publication number
JP5041698B2
JP5041698B2 JP2005339225A JP2005339225A JP5041698B2 JP 5041698 B2 JP5041698 B2 JP 5041698B2 JP 2005339225 A JP2005339225 A JP 2005339225A JP 2005339225 A JP2005339225 A JP 2005339225A JP 5041698 B2 JP5041698 B2 JP 5041698B2
Authority
JP
Japan
Prior art keywords
tank
anaerobic tank
phosphorus
anaerobic
orp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005339225A
Other languages
Japanese (ja)
Other versions
JP2007144264A (en
Inventor
直哉 高橋
理 三木
敏朗 加藤
久夫 當間
孝雄 村上
浩紀 糸川
浩 瀬戸口
昌春 山里
極 松原
公一郎 甘道
裕三 岡本
崇行 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Nippon Steel Corp
DKK TOA Corp
Metawater Co Ltd
Original Assignee
Japan Sewage Works Agency
Nippon Steel Corp
DKK TOA Corp
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Nippon Steel Corp, DKK TOA Corp, Metawater Co Ltd filed Critical Japan Sewage Works Agency
Priority to JP2005339225A priority Critical patent/JP5041698B2/en
Publication of JP2007144264A publication Critical patent/JP2007144264A/en
Application granted granted Critical
Publication of JP5041698B2 publication Critical patent/JP5041698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、下水中に含まれるリンを安定的かつ効率的に除去する方法に関する。   The present invention relates to a method for stably and efficiently removing phosphorus contained in sewage.

都市下水中の全リン濃度は、通常3〜5mg/L程度あり、リンを除去する方法としては、以下のような方法が公知である。
1) 凝集沈殿法:塩化第二鉄、硫酸第二鉄などの鉄塩や硫酸アルミニウムやポリ塩化アルミニウム等の凝集剤を用いて凝集沈殿法によりリンを除去する。最も確実な方法であるが、凝集剤添加により、余剰汚泥量の増加に伴う処理費や薬品費などランニングコストが上昇する。
2) 生物学的リン除去方法:活性汚泥(微生物の集合体)中の一部の細菌群(以下、ポリリン酸蓄積細菌と述べる)は、嫌気条件下(溶存酸素も硝酸イオン等の結合体酸素もない状態)においてリンを放出させると、好気条件下(溶存酸素が存在する状態)ではリンを過剰に摂取する。この性質を利用し、リン除去を行う。このような方式を採用すると下水の活性汚泥中のリン濃度は2〜3%から5〜6%程度に増大するといわれている。この方法は、都市下水処理の分野で実用化が進んでいる。
The total phosphorus concentration in city sewage is usually about 3 to 5 mg / L, and the following methods are known as methods for removing phosphorus.
1) Aggregation precipitation method: Phosphorus is removed by an aggregation precipitation method using an iron salt such as ferric chloride or ferric sulfate, or an aggregating agent such as aluminum sulfate or polyaluminum chloride. Although it is the most reliable method, the addition of a flocculant increases running costs such as treatment costs and chemical costs associated with an increase in excess sludge.
2) Biological phosphorus removal method: Some bacterial groups in activated sludge (aggregates of microorganisms) (hereinafter referred to as polyphosphate-accumulating bacteria) are subjected to anaerobic conditions (dissolved oxygen is also bound oxygen such as nitrate ions). When phosphorus is released in a state where there is no oxygen, excessive phosphorus is ingested under aerobic conditions (state where dissolved oxygen is present). Utilizing this property, phosphorus removal is performed. If such a system is adopted, the phosphorus concentration in the activated sludge of sewage is said to increase from 2 to 3% to about 5 to 6%. This method has been put into practical use in the field of urban sewage treatment.

生物学的リン除去プロセスは、一般に最初沈殿池、反応槽(嫌気槽と好気槽)、最終沈澱池から構成されている。最初沈殿池は下水中の粗大浮遊物を沈降除去し、反応槽への有機物負荷を減じる。反応槽は、嫌気槽と好気槽からなり、嫌気槽では嫌気性条件下として、活性汚泥中のポリリン酸蓄積細菌からリンを放出させる。さらに、好気槽においてポリリン酸蓄積細菌にリンを放出量以上過剰に摂取させる。最終沈殿池においては、活性汚泥を沈降分離させ上澄液は放流する。最終沈殿池で沈降分離された濃縮活性汚泥は、返送汚泥として、嫌気槽に返送ポンプにより返送され、その一部は余剰汚泥として引き抜く。余剰汚泥は、リンを高濃度に含むため、下水中に含まれていたリンは余剰汚泥の形で系外に引き抜かれることとなる。   The biological phosphorus removal process generally consists of an initial settling tank, a reaction tank (anaerobic tank and an aerobic tank), and a final settling tank. The first sedimentation basin removes coarse suspended solids in the sewage and reduces the organic load on the reaction tank. The reaction tank is composed of an anaerobic tank and an aerobic tank. In the anaerobic tank, phosphorus is released from the polyphosphate-accumulating bacteria in the activated sludge under anaerobic conditions. Furthermore, in the aerobic tank, polyphosphate-accumulating bacteria are caused to ingest phosphorus in excess of the released amount. In the final sedimentation basin, activated sludge is settled and the supernatant is discharged. The concentrated activated sludge settled and separated in the final sedimentation basin is returned to the anaerobic tank as a return sludge by a return pump, and a part thereof is extracted as excess sludge. Since the excess sludge contains phosphorus in a high concentration, the phosphorus contained in the sewage is extracted out of the system in the form of excess sludge.

生物学的リン・窒素同時除去プロセスは、生物学的リン除去プロセスに生物学的窒素除去プロセスを組み合わせたプロセスであり、最初沈殿池、反応槽(嫌気槽、無酸素槽、好気槽)、最終沈澱池から構成されている。最初沈殿池、嫌気槽、好気槽及び最終沈殿池は、生物学的リン除去プロセスと同様の処理が行われる。無酸素槽では、溶存酸素のない無酸素状態とすることで、好気槽から循環返送される硝化液中のNO2-N並びにNO3-Nが、活性汚泥中の脱窒細菌と下水中の有機物との脱窒反応により、窒素空気として除去される。 Biological phosphorus and nitrogen simultaneous removal process is a process that combines biological nitrogen removal process with biological phosphorus removal process, first settling tank, reaction tank (anaerobic tank, anaerobic tank, aerobic tank), It consists of the final sedimentation basin. The initial settling tank, anaerobic tank, aerobic tank and final settling tank are treated in the same manner as the biological phosphorus removal process. In the anaerobic tank, NO 2 -N and NO 3 -N in the nitrification liquid circulated and returned from the aerobic tank are converted into denitrifying bacteria and sewage in the activated sludge by making the oxygen-free state free of dissolved oxygen. Is removed as nitrogen air by denitrification reaction with organic matter.

生物学的リン除去プロセスや生物学的リン・窒素同時除去プロセスでは、処理が不安定化しやすく、生物学的リン除去方法を安定的に稼動させるための適切な運転管理方法の確立が強く望まれている。
例えば、雨水などの下水への混入などにより、下水中での有機物濃度が低下すると嫌気槽でのリンの放出が抑制される。嫌気槽で、リンの放出現象が抑制されると、好気槽でのリンの過剰な取り込み能力が低下する。嫌気槽でのリン放出を良好に行なうためには下水中に大量の有機物が必要であり、その指標としてBODとT-Pの濃度比である(BOD)/(T-P)比が、20〜25以上あればリンの放出は良好であるとされている。(非特許文献1、非特許文献2を参照のこと)。ここで、BOD:生物化学的酸素要求量:mg/L
T-P:全リン濃度:mg/L
を意味する。
In biological phosphorus removal process and biological phosphorus / nitrogen simultaneous removal process, treatment tends to become unstable, and establishment of appropriate operation management method for stable operation of biological phosphorus removal method is strongly desired. ing.
For example, when the organic substance concentration in the sewage is reduced due to mixing in sewage such as rainwater, the release of phosphorus in the anaerobic tank is suppressed. When the release phenomenon of phosphorus is suppressed in the anaerobic tank, the excessive uptake ability of phosphorus in the aerobic tank decreases. A large amount of organic matter is required in the sewage in order to perform phosphorus release well in the anaerobic tank, and the BOD / TP concentration ratio (BOD) / (TP) ratio is 20 to 25 as an index. If it is more than the above, release of phosphorus is said to be good. (See Non-Patent Document 1 and Non-Patent Document 2.) Where BOD: biochemical oxygen demand: mg / L
TP: Total phosphorus concentration: mg / L
Means.

さらに、好気槽でのリンの過剰摂取については、溶存酸素(DO)濃度との関連が多く指摘されている。溶存酸素濃度が不足するとリン摂取が阻害されるため、概ね、好気槽末端の溶存酸素濃度は、1.5〜2.0mg/L (非特許文献1参照)あるいは1.5〜3.0mg/Lが望ましいとされている(非特許文献2参照)。   Furthermore, it has been pointed out that the excessive intake of phosphorus in the aerobic tank is related to the dissolved oxygen (DO) concentration. Insufficient dissolved oxygen concentration inhibits phosphorus intake, so it is generally desirable that the dissolved oxygen concentration at the end of the aerobic tank be 1.5 to 2.0 mg / L (see Non-Patent Document 1) or 1.5 to 3.0 mg / L. (See Non-Patent Document 2).

しかしながら、嫌気槽流入水の嫌気槽流入水の(BOD)/(T-P)比が25以上あっても、嫌気槽でのリンの放出が不良であれば、処理水中に多量のリンが残留するケースがある。   However, even if the (BOD) / (TP) ratio of the anaerobic tank inflow water is 25 or more, if the release of phosphorus in the anaerobic tank is poor, a large amount of phosphorus remains in the treated water. There is.

この原因としては、次のような要因が考えられる。
1) 雨水が混入した下水や返送汚泥からのNOx-N(NO2-NとNO3-Nの和、以下同じ)や溶存酸素の嫌気槽への流入;
2) 無酸素槽に返送される硝化液からのNOx-Nや溶存酸素の嫌気槽への逆流;
3) 嫌気槽での過度の攪拌による溶存酸素の巻き込み;
4) 嫌気槽での短絡流の発生によるHRT(水理学的滞留時間)の短縮。
The following factors can be considered as the cause.
1) Inflow of NOx-N (sum of NO 2 -N and NO 3 -N, the same shall apply hereinafter) and dissolved oxygen from sewage and return sludge mixed with rainwater into an anaerobic tank;
2) Backflow of NOx-N and dissolved oxygen from the nitrification liquid returned to the anaerobic tank to the anaerobic tank;
3) Entrainment of dissolved oxygen by excessive stirring in an anaerobic tank;
4) Shortening of HRT (hydraulic residence time) due to occurrence of short-circuit flow in an anaerobic tank.

これらの嫌気槽の緒条件は、各下水処理場で大きく異なり、このため、嫌気槽流入水の(BOD)/(T-P)比が25以上あっても、嫌気槽でのリンの放出が良好とは限らないと思われる。
これらのことから、リンの除去については、嫌気槽でリンの放出状況を簡易にモニタリングし、この対処方法を開発することが重要となる。
The conditions of these anaerobic tanks vary greatly depending on the sewage treatment plant.For this reason, even if the (BOD) / (TP) ratio of the anaerobic tank inflow water is 25 or more, the release of phosphorus in the anaerobic tank is good. Seems not limited.
For these reasons, it is important for phosphorus removal to simply monitor the release status of phosphorus in an anaerobic tank and develop a countermeasure.

この課題に対して、以下のような検討報告例がある。例えば、嫌気槽でリンの放出状況を簡易にモニタリングする方法として、銀/塩化銀電極基準値のORP(酸化還元電位、以下同じ)値に着目した事例がある。   There are the following examples of reports on this issue. For example, as a method for easily monitoring the state of phosphorus release in an anaerobic tank, there is an example focusing on the ORP (oxidation-reduction potential, hereinafter the same) value of the silver / silver chloride electrode reference value.

例えば、嫌気槽のORP値とリンの吐き出し現象が密接に関係しており、生物学的脱リン処理プロセスの嫌気槽のORP値が-270mVを超えた場合、有機物を多く含む下水(最初沈殿池流入水)や最初沈殿池沈殿汚泥を嫌気槽に流入させ、嫌気槽のORP値を-270mV以下に維持する方法が提案されている(特許文献1参照)。   For example, the ORP value in an anaerobic tank is closely related to the phosphorus discharge phenomenon, and if the ORP value in the anaerobic tank in the biological dephosphorization process exceeds -270 mV, sewage containing a large amount of organic matter (the first sedimentation basin) Inflow water) or first settling basin sediment sludge is introduced into the anaerobic tank and the ORP value of the anaerobic tank is maintained at -270 mV or less (see Patent Document 1).

また、下水(最初沈殿池流入水)や最初沈殿池流出水のORP値を測定し、このORP値に応じて、下水(最初沈殿池流入水)と最初沈殿池流出水の混合割合を変動させ、嫌気槽のORP値を-270mV以下に維持する方法も提案されている(特許文献2参照)。   In addition, the ORP value of the sewage (first sedimentation basin inflow water) and the first sedimentation basin effluent is measured, and the mixing ratio of the sewage (first sedimentation basin inflow water) and the first sedimentation basin effluent is varied according to this ORP value. A method for maintaining the ORP value of the anaerobic tank at −270 mV or less has also been proposed (see Patent Document 2).

さらに、最初沈殿池流出水の有機物濃度と嫌気槽のORP値を測定し、これらの測定値に基づき嫌気状態を制御する方法も提案されている(特許文献3参照)。   Furthermore, a method has also been proposed in which the organic matter concentration of the first settling basin effluent and the ORP value of the anaerobic tank are measured, and the anaerobic state is controlled based on these measured values (see Patent Document 3).

しかしながら、特許文献1あるいは特許文献2のような最初沈殿池流入水を用いる方法は、最初沈殿池流入水自体の有機物濃度が不安定であるばかりでなく、反応槽での有機物負荷、窒素負荷を大きく変動させるため、廃水中の有機物やリンの除去を制御することはかなり難しい。さらに、特許文献3のように原水の有機物濃度を測定して制御を行うためには、連続的に有機酸を測定する必要がある。有機酸の指標としてBOD(生物化学的酸素要求量:mg/L)やCOD(化学的酸素要求量:mg/L)、TOC(有機性炭素量:mg/L)などがあるが、いずれの指標にしても、リアルタイムで測定することは難しいといった問題がある。また、特許文献3では、紫外線吸光度を測定することで有機酸の代替とすることも提案されているが、紫外線吸光度ではベンゼン環を持つ有機物は測定できないように、必ずしも全有機酸を反映した測定結果とならないといった問題もある。   However, the method using the first settling basin influent as in Patent Document 1 or Patent Document 2 not only has an unstable organic substance concentration in the first basin inflow itself, but also reduces the organic load and nitrogen load in the reaction tank. Due to the large fluctuations, it is quite difficult to control the removal of organic matter and phosphorus in the wastewater. Furthermore, as in Patent Document 3, in order to measure and control the organic matter concentration of raw water, it is necessary to continuously measure the organic acid. There are BOD (biochemical oxygen demand: mg / L), COD (chemical oxygen demand: mg / L), TOC (organic carbon quantity: mg / L) as indicators of organic acids. Even if it is an index, there is a problem that it is difficult to measure in real time. In addition, Patent Document 3 proposes replacing the organic acid by measuring the ultraviolet absorbance, but the measurement does not necessarily reflect the total organic acid so that an organic substance having a benzene ring cannot be measured by the ultraviolet absorbance. There is also a problem that results are not obtained.

さらに、下水からの生物学的リン・窒素同時除去技術についても、前述したリン除去の課題を併せ持つが、窒素除去の最適条件とリン除去の最適条件が相反する場合が多いため、課題解決がより難しい。
特開平3−278893 特願2001−252413 特開2001−87793 高度処理施設設計マニュアル、p225-252、日本下水道協会、平成6年 嫌気-無酸素-好気法運転管理マニュアル(案)、東京都下水道サービス、平成9年3月、p21-p53 The effect of organic compounds on biological phosphorus removal, Water Science Technology, Vol.23, No.4/6, p585-p591, 1991 東亜ディーケーケー株式会社 水ジェット洗浄付き浸漬型検出器 JOC-711C型 取扱説明書、P13
Furthermore, the technology for simultaneous removal of biological phosphorus and nitrogen from sewage also has the above-mentioned problem of phosphorus removal, but there are many cases where the optimal conditions for nitrogen removal and the optimal conditions for phosphorus removal are often contradictory. difficult.
JP-A-3-278893 Japanese Patent Application No. 2001-252413 JP 2001-87793 A Advanced treatment facility design manual, p225-252, Japan Sewerage Association, 1994 Anaerobic-anoxic-aerobic operation management manual (draft), Tokyo Sewerage Service, March 1997, p21-p53 The effect of organic compounds on biological phosphorus removal, Water Science Technology, Vol.23, No.4 / 6, p585-p591, 1991 Toa DKK Corporation Immersion detector with water jet cleaning JOC-711C Instruction Manual, P13

即ち、嫌気槽(4)では、溶存酸素も結合体酸素もない状況を維持する必要があるため、ORP計の洗浄においては、図3に示すブラシ洗浄を用いる方法があるが、ブラシ部に毛髪などが絡んだり、ブラシ内部が活性汚泥で汚染されるために、洗浄時にORPが大きく低下して回復に時間がかかるといった課題があった。   That is, in the anaerobic tank (4), it is necessary to maintain a state in which there is neither dissolved oxygen nor conjugate oxygen. Therefore, there is a method using the brush cleaning shown in FIG. There are problems such as entanglement and the inside of the brush is contaminated with activated sludge, so that ORP is greatly reduced during cleaning and recovery takes time.

図5に、ブラシ洗浄装置を付加したORP計で測定した嫌気槽内のORP値の変化を示す。洗浄時間は30秒間とした。この結果、洗浄時にORP値が100mV程度低下し、元のORP値に回復するまでに90分程度必要となることがわかる。ORP値が回復するまでの間は、嫌気槽の正しい値を示さないため、嫌気槽の制御ができなくなる。   FIG. 5 shows the change in the ORP value in the anaerobic tank measured with an ORP meter equipped with a brush cleaning device. The washing time was 30 seconds. As a result, it can be seen that the ORP value is reduced by about 100 mV during washing, and it takes about 90 minutes to recover the original ORP value. Until the ORP value recovers, the correct value of the anaerobic tank is not shown, and the anaerobic tank cannot be controlled.

一方、図4に示すように電極の先端部に設置したノズルにより空気を噴霧する空気洗浄は、ブラシ洗浄のように毛髪などの影響を受けずに長期間使用でき、かつ、嫌気槽内で洗浄できる。
ただし、従来技術として、非特許文献4に示すように、溶存酸素濃度をDO計(溶存酸素濃度測定計)で測定し、測定部位を空気洗浄をするものが開示されており、洗浄効果を発揮させるために、1回の洗浄時間を60秒とするように推奨している。しかしながら、ORP計の電極部に空気洗浄機能を有し、その洗浄時間を規定したものはない。即ち、DO計とORP計は測定するものも、使用環境も異なる。DO計は、もともと好気条件下(溶存酸素がある状況)で使用するものであるが、ORP計は嫌気条件下(溶存酸素が存在しない状況)でも使用するものである。よって、洗浄時間を60秒としてORP計の洗浄に適用すると、ORP指示値の下降幅が大きく、回復するまでに時間がかかる、あるいは嫌気槽内に空気送り込むことで、嫌気槽内のDO値(溶存酸素濃度)が上昇して処理状況を悪化させるという課題が生じる。
On the other hand, as shown in FIG. 4, air cleaning, in which air is sprayed by a nozzle installed at the tip of the electrode, can be used for a long time without being affected by hair or the like, as in brush cleaning, and is cleaned in an anaerobic tank. it can.
However, as shown in Non-Patent Document 4, as a conventional technique, a device that measures the dissolved oxygen concentration with a DO meter (dissolved oxygen concentration measuring meter) and cleans the measurement site with air is disclosed, and exhibits a cleaning effect. Therefore, it is recommended that the cleaning time for each washing be 60 seconds. However, there is no one that has an air cleaning function in the electrode part of the ORP meter and defines the cleaning time. That is, the DO meter and the ORP meter are different from each other in measurement environment. The DO meter is originally used under aerobic conditions (the situation where dissolved oxygen is present), while the ORP meter is used also under anaerobic conditions (a situation where there is no dissolved oxygen). Therefore, when applied to ORP meter cleaning with a cleaning time of 60 seconds, the ORP indicated value has a large drop, and it takes time to recover, or by sending air into the anaerobic tank, the DO value in the anaerobic tank ( A problem arises in that the dissolved oxygen concentration is increased and the treatment state is deteriorated.

そこで本発明者らは、上記の課題を解決すべく検討を重ねた結果、以下の方法により、ORP値を計測し、嫌気槽内の反応状況を制御することで、安定してリンを除去することに成功した。   Therefore, as a result of repeated investigations to solve the above problems, the present inventors stably remove phosphorus by measuring the ORP value and controlling the reaction state in the anaerobic tank by the following method. Succeeded.

本発明の要旨とするところは、次の(1)〜(4)である。
(1)最初沈殿池、嫌気槽、好気槽及び最終沈殿池、又は最初沈殿池、嫌気槽、無酸素槽、好気槽及び最終沈殿池からなる下水からの生物学的なリンの除去方法において、嫌気槽出口のORP(酸化還元電位)の電極部を、圧力0.05〜0.5MPaの空気で3秒以下の時間内で浄することで、ORP値の変動をおさえることを特徴とする、前記方法。
The gist of the present invention is the following (1) to (4).
(1) A method for removing biological phosphorus from sewage comprising an initial sedimentation tank, an anaerobic tank, an aerobic tank and a final sedimentation tank, or an initial sedimentation tank, an anaerobic tank, an anaerobic tank, an aerobic tank and a final sedimentation tank in the electrode portion of the ORP (oxidation-reduction potential) of the anaerobic tank outlet, in 3 seconds or less in washed Kiyoshisu Rukoto with air at a pressure 0.05 to 0.5 MPa, and characterized in that suppress the fluctuation of the ORP value Said method.

(2)嫌気槽出口の前記ORP値(銀/塩化銀電極基準値)が−400mV以上−200mV以下の範囲に維持されるように、有機酸を嫌気槽に添加することを特徴とする前記(1)記載の方法。 (2) The organic acid is added to the anaerobic tank so that the ORP value (silver / silver chloride electrode reference value) at the anaerobic tank outlet is maintained in the range of −400 mV to −200 mV. 1) The method described.

(3)嫌気槽に添加する前記有機酸が、酢酸又は酢酸塩であることを特徴とする前記(2)記載の方法。 (3) The method according to (2) above, wherein the organic acid added to the anaerobic tank is acetic acid or acetate.

(4)嫌気槽出口のORP値が−400mV以上−200mV以下の範囲に維持されるように、嫌気槽の滞留時間を調整することを特徴とする前記(3)記載の方法。 (4) The method according to (3), wherein the residence time of the anaerobic tank is adjusted so that the ORP value at the outlet of the anaerobic tank is maintained in a range of −400 mV to −200 mV.

ORP計の1回当りの空気洗浄時間を3秒以下とすることで、嫌気槽でのDO値の影響と洗浄に伴うORP値の変化を最小限とし、処理に影響を与えないようにできる。   By setting the air cleaning time per ORP meter to 3 seconds or less, it is possible to minimize the influence of the DO value in the anaerobic tank and the change in the ORP value accompanying the cleaning, and not affect the treatment.

図6に、洗浄間隔を1時間に1回、0.3MPaの空気圧で洗浄時間を0.3秒とした場合のORP値の変化を示す。洗浄時にORP値の変化は見られるものの、5〜10mV程度の上昇であり、かつORP値の回復は10分程度であるため、1時間に1回の洗浄を実施しても嫌気槽を制御する上では何ら問題はない。また、洗浄直後の嫌気槽のDO値は0.0mg/Lで変化はなく、リン除去への影響もない。   FIG. 6 shows changes in the ORP value when the cleaning interval is once an hour, the air pressure is 0.3 MPa, and the cleaning time is 0.3 seconds. Although the ORP value changes at the time of cleaning, it increases by about 5 to 10 mV, and the recovery of the ORP value is about 10 minutes, so the anaerobic tank is controlled even if cleaning is performed once an hour. There is no problem above. The DO value in the anaerobic tank immediately after cleaning is 0.0 mg / L, which is unchanged and does not affect phosphorus removal.

表1には1回当りのエア洗浄時間を変更した場合のORP値の変動幅の一例を示す。1回当りの洗浄時間が3秒以下の場合は、ORP値の上昇幅が小さく回復までの時間も20分以下であるが、3秒を越えると上昇幅及び回復までの時間が長くなり、処理に影響を与える傾向にある。よって、洗浄時間は、0超〜3以下とした。 Table 1 shows an example of the fluctuation range of the ORP value when the air cleaning time per change is changed. If the cleaning time per time is 3 seconds or less, the increase rate of the ORP value is small and the recovery time is 20 minutes or less. Tend to affect. Therefore, the cleaning time is set to more than 0 to 3 seconds or less.

Figure 0005041698
Figure 0005041698

洗浄時間は短いほどORPの変化幅を小さくできるため、出来うる限り短くするのが好ましいが、洗浄効果との兼ね合いから適宜時間と間隔は選定する。   The shorter the cleaning time, the smaller the range of change in ORP, so it is preferable to make it as short as possible. However, the time and interval are appropriately selected in consideration of the cleaning effect.

また、洗浄空気の圧力は非特許文献4に示してある0.05〜0.5MPaとすればよい。
発明者らは、先に嫌気槽出口(4)のORP値が−400mV以上−200mV以下の範囲に維持する(好ましくは、連続的にORP値の累積頻度を測定して、その50%以上が−350mV以上−250mV以下の範囲に維持する)ことでリンの除去が良好になることを発見した。-400mV未満になると嫌気槽でのリンの放出量に変化がなくなるので下限とし、−200mVを超えると嫌気槽でのリンの放出量が小さくなり、後段の好気槽でのリンの過剰摂取量が減少してリン処理が悪化するため、上限は−200mV以下とした。
The pressure of the cleaning air may be 0.05 to 0.5 MPa shown in Non-Patent Document 4.
The inventors first maintain the ORP value of the anaerobic tank outlet (4) in the range of −400 mV or more and −200 mV or less (preferably, the cumulative frequency of the ORP value is continuously measured, and 50% or more It has been found that the removal of phosphorus is improved by maintaining it in the range of −350 mV to −250 mV. If it is less than -400mV, there will be no change in the amount of phosphorus released in the anaerobic tank, so the lower limit is set. Decreases and the phosphorus treatment deteriorates, so the upper limit was set to −200 mV or less.

このとき、エア洗浄条件を3秒以下とすることで、洗浄時のORP値変動が操業に影響を与えないようにでき、連続的にORP値を測定できるため、嫌気槽出口の条件を−400mV以上−200mV以下の範囲に常に維持するように有機酸を添加することができる。嫌気槽でのリンの放出には下水中の有機酸や発酵産物が優先的に処理されるため、有機酸を添加することで、その処理を嫌気槽で行うことができる。特に有機酸の中でも酢酸は処理されやすい。   At this time, by setting the air cleaning condition to 3 seconds or less, it is possible to prevent fluctuations in the ORP value during cleaning from affecting the operation, and the ORP value can be continuously measured. The organic acid can be added so as to always maintain the range of −200 mV or less. Since organic acids and fermentation products in sewage are preferentially treated for release of phosphorus in the anaerobic tank, the treatment can be performed in the anaerobic tank by adding the organic acid. In particular, acetic acid is easily treated among organic acids.

さらに、嫌気槽出口の条件を−400mV以上−200mV以下の範囲に維持するように、嫌気槽の滞留時間を変更することもできる。即ち本願の生物学的リン除去方法では、ORP値が−200mV超となった場合には、好気槽の最前列の水槽を嫌気槽とし、空気攪拌から機械攪拌に変更することで、また、生物学的窒素・リン除去プロセスでは、硝化液の流入位置を無酸素槽の最前列の水槽から2列目に変更することで、嫌気槽をリン放出に必要なORP値となるように制御できる。   Furthermore, the residence time of an anaerobic tank can also be changed so that the conditions of an anaerobic tank exit may be maintained in the range of -400 mV or more and -200 mV or less. That is, in the biological phosphorus removal method of the present application, when the ORP value exceeds -200 mV, the water tank in the front row of the aerobic tank is an anaerobic tank and is changed from air agitation to mechanical agitation. In the biological nitrogen / phosphorus removal process, the anaerobic tank can be controlled to have the ORP value required for phosphorus release by changing the inflow position of the nitrification solution from the front tank of the anoxic tank to the second line. .

本発明により、リンを含有する下水から、安定してリンを除去することが可能となる。   According to the present invention, phosphorus can be stably removed from sewage containing phosphorus.

本発明の処理フロ−の一例を図1、図2に示す。
図1は、本発明の生物学的脱リン・プロセスである。反応槽は、嫌気槽(4)と好気槽(6)から成り立っている。
An example of the processing flow of the present invention is shown in FIGS.
FIG. 1 is a biological dephosphorization process of the present invention. The reaction tank consists of an anaerobic tank (4) and an aerobic tank (6).

図2は、脱リン機能に加え、脱窒素機能も有する生物学的脱リン・脱窒素プロセスである。反応槽は、嫌気槽(4)、無酸素槽(5)、好気槽(6)から成り立っている。
生物学的脱リン・脱窒素プロセスは、図1の脱リン・プロセス、及び、図2の生物学的脱リン・脱窒素プロセスを事例として発明の形態を説明する。
まず、下水(1)に含まれる粗大浮遊物(主として汚泥)は、最初沈殿池(2)において沈降除去される。
その後、最初沈殿池流出水(3)は、嫌気槽(4)に流入する。
嫌気槽(4)は、以下のように管理する。
FIG. 2 shows a biological dephosphorization / denitrogenation process having a denitrification function in addition to a dephosphorization function. The reaction tank consists of an anaerobic tank (4), an oxygen-free tank (5), and an aerobic tank (6).
The biological dephosphorization / denitrogenation process will be described with reference to the dephosphorization process of FIG. 1 and the biological dephosphorization / denitrogenation process of FIG.
First, coarse suspended solids (mainly sludge) contained in sewage (1) are settled and removed in the first sedimentation basin (2).
Thereafter, the first settling basin effluent (3) flows into the anaerobic tank (4).
The anaerobic tank (4) is managed as follows.

生物学的リン除去を行なうポリリン酸蓄積細菌は、好気条件下で吸収したPO4-Pを細胞内でポリリン酸の顆粒として保持しており、嫌気槽(4)においては、この顆粒のポリリン酸を加水分解して、PO4-Pとして放出するとともに、下水中の有機物、特に有機酸や発酵産物を優先的に細胞内に摂取する。PO4-Pの放出速度は、基質の種類や濃度によって大きく異なっており、酢酸などの有機酸が基質である場合にPO4-Pの放出速度が大きいとされている。細胞内に摂取された有機物は、グリコーゲンやPHB(ポリハイドロブチレイト)の高分子物質の形で貯蔵される。これらの細胞内物質は、再び、好気条件下に置かれると、酸化分解され減少するが、ポリリン酸蓄積細菌はこの基質利用により増殖していき、また、PO4-Pを過度にとりこみ、細胞内でポリリン酸の顆粒として保持するのである。 Polyphosphate-accumulating bacteria that perform biological phosphorus removal retain PO 4 -P absorbed under aerobic conditions as granules of polyphosphate in the cells. In an anaerobic tank (4), The acid is hydrolyzed and released as PO 4 -P, and organic substances in sewage, especially organic acids and fermentation products, are preferentially taken into cells. The release rate of PO 4 -P varies greatly depending on the type and concentration of the substrate, and it is said that the release rate of PO 4 -P is large when an organic acid such as acetic acid is the substrate. Organic matter taken up into cells is stored in the form of glycogen and PHB (polyhydrobutyrate) polymer. When these intracellular substances are put under aerobic conditions again, they are oxidatively degraded and decrease, but polyphosphate-accumulating bacteria grow by using this substrate, and take up PO 4 -P excessively, It is retained in the cell as polyphosphate granules.

このような生物学的リン除去を行なうポリリン酸蓄積細菌の反応を促進する上で重要なことは、有機酸や発酵産物の存在であるが、これらの有機酸や発酵産物は、BOD成分の一部ではあるものの、下水のBOD濃度が高いからといってこれらの有機酸や発酵産物濃度が高いとは必ずしも限らない。したがって、BODよりも下水中の有機酸(mg/L)濃度などの指標の方が有効である。嫌気槽(4)において、リン放出に必要な有機物の種類や必要量に関しては多くの研究事例があるが、リン放出に対する酢酸利用が、モル比で1.3程度の報告がある(例えば、非特許文献3)。したがって、嫌気槽(4)への有機酸添加量は公知となっているこの数字を参考とすればよい。   The important thing in promoting the reaction of polyphosphate-accumulating bacteria that perform such biological phosphorus removal is the presence of organic acids and fermentation products. These organic acids and fermentation products are one of the BOD components. However, even if the sewage BOD concentration is high, the concentration of these organic acids and fermentation products is not necessarily high. Therefore, indicators such as organic acid (mg / L) concentration in sewage are more effective than BOD. In the anaerobic tank (4), there are many studies on the types and amounts of organic substances necessary for phosphorus release, but there is a report that acetic acid utilization for phosphorus release is about 1.3 in molar ratio (for example, non-patent literature) 3). Therefore, the known amount of organic acid added to the anaerobic tank (4) may be referred to.

しかしながら、実際の処理設備では、雨水や返送汚泥の影響により、嫌気槽(4)にNOx-NやDOが流入する場合がしばしばあり、嫌気槽(4)において、NOx-N、及びDOが存在すると、有機酸は直ちに分解されてしまう。以下に、有機酸として、酢酸を用いた場合の反応を示す。   However, in actual treatment equipment, NOx-N and DO often flow into the anaerobic tank (4) due to the effects of rainwater and return sludge, and NOx-N and DO exist in the anaerobic tank (4). Then, the organic acid is immediately decomposed. The reaction when acetic acid is used as the organic acid is shown below.

8NO3 - + 5CH3COOH → 4N2+10CO2+6H2O+8OH- (5)
8NO2 - + 3CH3COOH → 4N2+6CO2+4H2O+8OH- (6)
2O2 + CH3COOH → 2CO2+2H2O (7)
8NO 3 - + 5CH 3 COOH → 4N 2 + 10CO 2 + 6H 2 O + 8OH - (5)
8NO 2 + 3CH 3 COOH → 4N 2 + 6CO 2 + 4H 2 O + 8OH (6)
2O 2 + CH 3 COOH → 2CO 2 + 2H 2 O (7)

これから、例えば、NO3−Nが1mg/L存在すると、これに伴い、酢酸2.7mg/Lが消費されることとなる。また、NO2−Nが1mg/L存在すると、これに伴い、酢酸1.6mg/Lが消費されることとなる。一方、DOは1mg/L存在すると、これに伴い、酢酸0.9mg/Lが消費されることとなる。この結果から、特に、NO3−Nの存在が酢酸の消費に及ぼす影響が極めて大きいことがわかる。 From this, for example, when NO 3 —N is present at 1 mg / L, acetic acid 2.7 mg / L is consumed accordingly. Further, when NO 2 -N is present at 1 mg / L, acetic acid 1.6 mg / L is consumed accordingly. On the other hand, if 1 mg / L of DO is present, acetic acid 0.9 mg / L is consumed accordingly. From this result, it can be seen that the influence of NO 3 -N on the consumption of acetic acid is extremely large.

NO3−N、NO2−N、及びDOは、調査の結果、雨水が混入する下水(1)や返送汚泥(8)中にも存在する場合がたびたびあるが、特に、好気槽の運転条件(高DO、高ORP運転)によっては、最終沈殿池(7)から嫌気槽(4)に返送される返送汚泥(8)中に高濃度のNO3−Nが存在することがあり、この場合、嫌気槽(4)においてリンの放出が極めて生じにくくなる。例えば、流入下水の酢酸濃度が20mg/Lあったとしても、NO3−Nを10mg/L含む返送汚泥が下水に対して50V/V%混入すると、NO3−N が13.5mg/Lの酢酸を消費してしまう。 As a result of investigation, NO 3 -N, NO 2 -N, and DO are often present in sewage (1) and return sludge (8) mixed with rainwater. Depending on the conditions (high DO, high ORP operation), high concentration of NO 3 -N may be present in the return sludge (8) returned from the final sedimentation tank (7) to the anaerobic tank (4). In this case, phosphorus is hardly released in the anaerobic tank (4). For example, even if the concentration of acetic acid in the influent sewage is 20 mg / L, if return sludge containing 10 mg / L of NO 3 -N is mixed with 50 V / V% of the sewage, NO 3 -N will contain 13.5 mg / L of acetic acid. Will be consumed.

また、下水中あるいは返送汚泥中のNOx-NやDOによる有機酸の消費ばかりでなく、装置特性(脱窒槽からの逆流など)も影響する場合がある。したがって、下水中の有機酸濃度のみで、嫌気槽でのリンの放出を判断するのは難しく、また、この嫌気槽でのリンの吐き出しに関与する要因(有機酸濃度、NOx-N濃度、DO濃度、装置特性など)を、すべて事前に把握して有機酸の添加量を制御することは困難と考えられる。   In addition, not only the consumption of organic acids by NOx-N and DO in sewage or return sludge, but also device characteristics (such as backflow from the denitrification tank) may affect. Therefore, it is difficult to judge the release of phosphorus in the anaerobic tank only by the organic acid concentration in the sewage, and the factors involved in the discharge of phosphorus in this anaerobic tank (organic acid concentration, NOx-N concentration, DO It is considered difficult to control the amount of organic acid added by grasping all of the concentration, device characteristics, etc.) in advance.

そこで、嫌気槽(4)のORP値を−200mV以下−400mV以上に維持されるように有機酸(12)を嫌気槽(4)に添加することで、安定したリン除去ができるようになるが、空気洗浄装置付きのORP計で測定することで、より連続して安定した処理ができるようになる。   Therefore, stable phosphorus removal can be achieved by adding organic acid (12) to the anaerobic tank (4) so that the ORP value of the anaerobic tank (4) is maintained at -200 mV or less and -400 mV or more. By measuring with an ORP meter with an air cleaning device, more continuous and stable treatment can be performed.

嫌気槽(4)は、ORP値が−250mV以上になると、有機酸(12)をポンプ(13)により、嫌気槽(4)に添加し、嫌気槽(4)のORP値が−260mVになると停止させることにより、嫌気槽(4)のORP値を−200mV以上−400mV以下内に納まるように運転する。   When the ORP value of the anaerobic tank (4) becomes −250 mV or more, the organic acid (12) is added to the anaerobic tank (4) by the pump (13), and the ORP value of the anaerobic tank (4) becomes −260 mV. By stopping, operate so that the ORP value of the anaerobic tank (4) is within -200 mV to -400 mV.

あるいは、嫌気槽(4)出口のORP値を−400mV以上−200mV以下の範囲に維持するように、嫌気槽(4)の滞留時間を変更することで、嫌気槽の制御をすることもできる。生物学的リン除去方法では、好気槽(6)を複数の水槽に分割し、最前列の好気槽に機械攪拌機と空気攪拌機の両方を備え、嫌気槽のORP値が制御値以上となった場合には、好気槽(6)の最前列の水槽の攪拌方法を空気攪拌から機械攪拌に変更して嫌気槽(4)とする。また、生物学的窒素・リン除去プロセスでは、無酸素槽(5)を複数の水槽に分割し、嫌気槽のORP値が制御値以上となった場合に、硝化液の流入位置を点線で示すように無酸素槽(5)の最前列の水槽から2列目に変更することで、嫌気槽(4)をリン放出に必要なORP値となるように制御する。   Or an anaerobic tank can also be controlled by changing the residence time of an anaerobic tank (4) so that the ORP value of an anaerobic tank (4) exit may be maintained in the range of -400 mV or more and -200 mV or less. In the biological phosphorus removal method, the aerobic tank (6) is divided into multiple water tanks, and the front row aerobic tank is equipped with both a mechanical stirrer and an air stirrer, and the ORP value of the anaerobic tank exceeds the control value. If this is the case, change the stirring method of the water tank in the front row of the aerobic tank (6) from air stirring to mechanical stirring to make an anaerobic tank (4). Also, in the biological nitrogen / phosphorus removal process, when the anaerobic tank (5) is divided into multiple water tanks and the ORP value of the anaerobic tank exceeds the control value, the inflow position of the nitrification solution is indicated by a dotted line In this way, the anaerobic tank (4) is controlled so as to have the ORP value necessary for phosphorus release by changing the water tank in the front row of the anaerobic tank (5) to the second row.

以下、本発明の実施例を説明する。なお、本発明は本実施例に限定されるものではない。   Examples of the present invention will be described below. In addition, this invention is not limited to a present Example.

実施例1
本発明の方法を都市下水処理へ適用した。
図2に示すように、下水(1)の浮遊物を最初沈殿池(2)で除去した後、最初沈殿池流出水(3)を嫌気槽(4)、続いて無酸素槽(5)、好気槽(6)を置き、更に、最終沈殿池(7)を置くプロセスである。硝化液(17)は、循環ポンプ(18)により下水量(1)に対して150V/V%無酸素槽(5)に返送した。返送汚泥(8)は、返送汚泥ポンプ(9)により、下水量(1)に対して50V/V%の条件で嫌気槽(4)に返送した。各反応槽のMLSS(活性汚泥浮遊物質)は2500〜3000mg/Lに維持した。また、A-SRT(好気槽での汚泥滞留時間)は12〜13日で管理した。
Example 1
The method of the present invention was applied to municipal sewage treatment.
As shown in Figure 2, after removing suspended matter from the sewage (1) in the first sedimentation basin (2), the first sedimentation basin effluent (3) is removed from the anaerobic tank (4), followed by the anoxic tank (5), In this process, an aerobic tank (6) is placed and a final sedimentation tank (7) is placed. The nitrification liquid (17) was returned to the 150V / V% anoxic tank (5) with respect to the amount of sewage (1) by the circulation pump (18). Return sludge (8) was returned to the anaerobic tank (4) by the return sludge pump (9) under the condition of 50V / V% of the sewage volume (1). MLSS (activated sludge suspended solids) in each reaction tank was maintained at 2500 to 3000 mg / L. In addition, A-SRT (sludge residence time in the aerobic tank) was managed in 12-13 days.

最初沈殿池流出水(3)の水質は、BODが平均100mg/L、T−N(全窒素)が平均30mg/L、T−P(全リン)が4.5mg/L、PO4-Pが3.0mg/L程度である。 The water quality of the first sedimentation basin effluent (3) is as follows: BOD average 100 mg / L, TN (total nitrogen) average 30 mg / L, TP (total phosphorus) 4.5 mg / L, PO 4 -P About 3.0 mg / L.

まず、嫌気槽(5)のORP値を指標とし、ORP値が-250mV以上となったときに有機酸(蟻酸、酢酸、プロピオン酸、酢酸塩等)を添加する。本実施例では、有機酸の代表として酢酸(12)を下水流量あたり30mg/Lで嫌気槽(4)に添加し、嫌気槽(4)のORP値が-200mV以下-400mV以上になるようにして、ブラシ洗浄装置付きORP計を使用した場合と、空気洗浄装置付きORP計をした場合で水質を比較した。   First, using the ORP value of the anaerobic tank (5) as an index, an organic acid (formic acid, acetic acid, propionic acid, acetate, etc.) is added when the ORP value becomes -250 mV or more. In this example, acetic acid (12) is added to the anaerobic tank (4) at a flow rate of 30 mg / L as a representative organic acid so that the ORP value of the anaerobic tank (4) is -200 mV or less and -400 mV or more. The water quality was compared between when the ORP meter with a brush cleaning device was used and when the ORP meter with an air cleaning device was used.

ブラシ洗浄装置付きORP計の洗浄頻度は4時間に1回とし、洗浄時間は30秒とした。また、空気洗浄装置付きORP計の洗浄頻度は1時間に1回、0.3Mpaの空気圧で洗浄時間を0.3秒とした。   The cleaning frequency of the ORP meter with a brush cleaning device was once every 4 hours, and the cleaning time was 30 seconds. In addition, the cleaning frequency of the ORP meter with an air cleaning device was once per hour, and the cleaning time was 0.3 seconds with an air pressure of 0.3 MPa.

表2に結果を示す。ブラシ洗浄装置付きORP計で制御した場合は、原水PO4−P濃度が3.0mg/Lに対し処理水は0.9mg/Lであるのに対し、空気洗浄装置付きORP計で制御したときは原水PO4−P濃度が3.3mg/Lに対して処理水は0.2mg/Lと良好な処理水質が得られた。 Table 2 shows the results. When controlled with an ORP meter with a brush cleaning device, the raw water PO 4 -P concentration is 3.0 mg / L, whereas the treated water is 0.9 mg / L, whereas when controlled with an ORP meter with an air cleaning device, the raw water The treated water was as good as 0.2 mg / L for PO 4 -P concentration of 3.3 mg / L.

Figure 0005041698
Figure 0005041698

実施例2
次に、無酸素槽(5)のORP値を指標とし、嫌気槽(4)のORP値が-250mV以上となった場合に、嫌気槽(4)の滞留時間を下水流量基準で2時間から3時間に変更した場合と、滞留時間を2時間として固定した場合の水質を比較した。ここで、滞留時間を2時間から3時間に変更したとは、好気槽(6)の最前列の水槽の攪拌方法を空気攪拌から機械攪拌に変更して、嫌気槽(4)とすることを意味する。
Example 2
Next, when the ORP value of the anaerobic tank (5) is used as an index, and the ORP value of the anaerobic tank (4) becomes -250 mV or more, the residence time of the anaerobic tank (4) starts from 2 hours based on the sewage flow rate. The water quality was compared when the time was changed to 3 hours and when the residence time was fixed at 2 hours. Here, changing the residence time from 2 hours to 3 hours means changing the stirring method of the water tank in the front row of the aerobic tank (6) from air stirring to mechanical stirring to make the anaerobic tank (4) Means.

ORP計の洗浄は空気洗浄とし、洗浄頻度は1時間に1回、0.3Mpaの空気圧で洗浄時間を0.3秒とした。
表3に結果を示す。嫌気槽の滞留時間を固定した場合は、原水PO4−P濃度が2.9mg/Lに対し処理水は1.2mg/Lであるのに対し、嫌気槽のORP値により滞留時間を変化させる制御を実施したときは原水PO4−P濃度が2.8mg/Lに対して処理水は0.1mg/Lと非常に良好な処理水質が得られた。
The ORP meter was cleaned with air, the cleaning frequency was once per hour, and the cleaning time was 0.3 seconds with an air pressure of 0.3 MPa.
Table 3 shows the results. When the residence time in the anaerobic tank is fixed, the raw water PO 4 -P concentration is 2.9 mg / L, while the treated water is 1.2 mg / L. When implemented, the treated water was 0.1 mg / L against the raw water PO 4 -P concentration of 2.8 mg / L, and a very good treated water quality was obtained.

Figure 0005041698
Figure 0005041698

本発明に係る、下水からの生物学的脱リン・プロセスである。Figure 2 is a biological dephosphorization process from sewage according to the present invention. 本発明に係る、下水からの生物学的脱リン及び脱窒プロセスである。2 is a biological dephosphorization and denitrification process from sewage according to the present invention. ブラシ洗浄装置の一例を示した図である。It is the figure which showed an example of the brush washing | cleaning apparatus. 空気洗浄装置の一例を示した図である。It is the figure which showed an example of the air cleaning apparatus. ブラシ洗浄装置によるORP値の時間変化を示した図である。It is the figure which showed the time change of the ORP value by a brush washing | cleaning apparatus. 空気洗浄によるORP値の時間変化を示した図である。It is the figure which showed the time change of the ORP value by air washing.

符号の説明Explanation of symbols

1 下水
2 最初沈殿池
3 最初沈殿池流出水
4 嫌気槽
5 無酸素槽
6 好気槽
7 最終沈殿池
8 返送汚泥
9 返送汚泥ポンプ
10 ブロア
11 機械攪拌機
12 有機酸タンク
13 薬注ポンプ
14 ORP計
15 ジェットノズル
16 DO計
17 硝化液
18 循環ポンプ
19 処理水(最終沈殿池流出水)
1 Sewage
2 First sedimentation basin
3 First settling basin effluent
4 Anaerobic tank
5 Anoxic tank
6 Aerobic tank
7 Final sedimentation basin
8 Return sludge
9 Return sludge pump
10 Blower
11 Mechanical stirrer
12 Organic acid tank
13 Injection pump
14 ORP meter
15 Jet nozzle
16 DO total
17 Nitrification solution
18 Circulation pump
19 Treated water (Final sedimentation basin effluent)

Claims (4)

最初沈殿池、嫌気槽、好気槽及び最終沈殿池、又は最初沈殿池、嫌気槽、無酸素槽、好気槽及び最終沈殿池からなる下水からの生物学的なリンの除去方法において、嫌気槽出口のORP(酸化還元電位)の電極部を、圧力0.05〜0.5MPaの空気で3秒以下の時間内で浄することで、ORP値の変動をおさえることを特徴とする、前記方法。 Primary sedimentation, anaerobic tank, an aerobic tank and settling tank, or primary sedimentation, anaerobic tank, anoxic tank, the biological method for removing phosphorus from sewage consisting aerobic tank and settling tank, the the electrode portion of the ORP (oxidation-reduction potential) of the anaerobic tank outlet, in washing Kiyoshisu Rukoto in 3 seconds or less in air pressure 0.05 to 0.5 MPa, characterized in that suppress the fluctuation of the ORP value, the Method. 嫌気槽出口の前記ORP値が銀/塩化銀電極基準で−400mV以上−200mV以下の範囲に維持されるように、有機酸を嫌気槽に添加することを特徴とする、請求項1に記載の方法。   The organic acid is added to the anaerobic tank so that the ORP value at the outlet of the anaerobic tank is maintained in a range of -400 mV or more and -200 mV or less based on a silver / silver chloride electrode. Method. 嫌気槽に添加する前記有機酸が、酢酸又は酢酸塩であることを特徴とする、請求項2に記載の方法。   The method according to claim 2, wherein the organic acid added to the anaerobic tank is acetic acid or acetate. 嫌気槽出口のORP値が−400mV以上−200mV以下の範囲に維持されるように、嫌気槽の滞留時間を調整することを特徴とする、請求項3に記載の方法。   The method according to claim 3, wherein the residence time of the anaerobic tank is adjusted so that the ORP value at the outlet of the anaerobic tank is maintained in the range of -400 mV or more and -200 mV or less.
JP2005339225A 2005-11-24 2005-11-24 Sewage treatment method Active JP5041698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339225A JP5041698B2 (en) 2005-11-24 2005-11-24 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339225A JP5041698B2 (en) 2005-11-24 2005-11-24 Sewage treatment method

Publications (2)

Publication Number Publication Date
JP2007144264A JP2007144264A (en) 2007-06-14
JP5041698B2 true JP5041698B2 (en) 2012-10-03

Family

ID=38206308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339225A Active JP5041698B2 (en) 2005-11-24 2005-11-24 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP5041698B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384951B2 (en) * 1997-08-25 2003-03-10 株式会社日立製作所 Biological water treatment method and equipment
JP4070174B2 (en) * 2000-07-13 2008-04-02 日本碍子株式会社 Sewage dephosphorization method
JP2003053384A (en) * 2001-08-23 2003-02-25 Nippon Steel Corp Method for removing nitrogen and phosphorus from waste water and facility therefor
JP3961835B2 (en) * 2002-01-07 2007-08-22 株式会社東芝 Sewage treatment plant water quality controller
JP4298405B2 (en) * 2003-07-10 2009-07-22 前澤工業株式会社 Wastewater treatment method

Also Published As

Publication number Publication date
JP2007144264A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
AU2007238520B2 (en) Method and system for nitrifying and denitrifying wastewater
KR101828212B1 (en) Wastewater treatment system using anaerobic ammonium oxidation in mainstream
EP3403996B1 (en) Granule-forming method and waste water treatment method
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP2007136298A (en) Removal method of nitrogen and phosphorus from sewage, and removal apparatus
EP2226296A1 (en) Nitrite type nitrification-reactive sludge, production method therefor, production apparatus therefor, and waste water treatment method and waste water treatment apparatus
JP4409415B2 (en) Method for removing phosphorus and / or nitrogen from sewage
JP4267860B2 (en) Nitrogen and phosphorus simultaneous removal type wastewater treatment method
KR101537755B1 (en) Apparatus for treating landfill leachate using aerobic granular sludge and treatment method using thereof
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JP4678577B2 (en) Wastewater treatment system
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
KR101489134B1 (en) Advanced treatment method for purifying wastewater
JP5981096B2 (en) Wastewater treatment method and apparatus
JP2018099641A (en) Activated sludge method for biological simultaneous removal of nitrogen and phosphorous
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
JP4867099B2 (en) Biological denitrification method
JP5041698B2 (en) Sewage treatment method
JP6605843B2 (en) Waste water treatment method and waste water treatment equipment
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP2018176131A (en) Denitrification treatment apparatus for ammonia nitrogen-containing drainage and method for denitrification treatment
JP2003266096A (en) Wastewater treatment apparatus
JP2004275820A (en) Wastewater treatment apparatus
KR100846693B1 (en) Livestock waste water treatment plant by aerobic denitrification

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080317

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5041698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250