WO2023181276A1 - Water treatment control system and control method for water treatment device - Google Patents

Water treatment control system and control method for water treatment device Download PDF

Info

Publication number
WO2023181276A1
WO2023181276A1 PCT/JP2022/014043 JP2022014043W WO2023181276A1 WO 2023181276 A1 WO2023181276 A1 WO 2023181276A1 JP 2022014043 W JP2022014043 W JP 2022014043W WO 2023181276 A1 WO2023181276 A1 WO 2023181276A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ammonium ion
total nitrogen
treated water
ion concentration
Prior art date
Application number
PCT/JP2022/014043
Other languages
French (fr)
Japanese (ja)
Inventor
健太 霜田
英二 今村
佳史 林
航 吉田
清治 野田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022561621A priority Critical patent/JP7286035B1/en
Priority to PCT/JP2022/014043 priority patent/WO2023181276A1/en
Priority to TW111133539A priority patent/TWI813437B/en
Publication of WO2023181276A1 publication Critical patent/WO2023181276A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present disclosure relates to a water treatment control system that purifies wastewater such as sewage and a method of controlling a water treatment device.
  • Nitrogen in sewage is treated using the activated sludge method.
  • Nitrogen removal is performed by nitrification of ammonia nitrogen (NH4-N) in sewage and denitrification of nitrate nitrogen (NO3-N) produced by nitrification. Since the nitrification reaction proceeds under aerobic conditions, it is necessary to supply air to the activated sludge, that is, to aerate it. In order to maintain good nitrogen removal, it is necessary to successively measure the total nitrogen (TN) concentration at the end of the biological reactor with a measuring instrument to understand the current state of nitrogen removal, and to adjust the aeration amount based on this. It is important to have control.
  • TN total nitrogen
  • Patent Document 1 a total nitrogen concentration meter is installed in a denitrification tank and a subsequent aerobic tank to grasp the biological treatment status and adjust the aeration amount.
  • Patent Document 1 instead of directly measuring the total nitrogen concentration, oxidation-reduction potential (ORP), dissolved oxygen (DO), hydrogen ion index (pH), ultraviolet rays (UltraViolet), Discloses a method for estimating the total nitrogen concentration value from one or more measured values of MLSS (Mixed Liquor Suspended Solids) and MLSS (Mixed Liquor Suspended Solids).
  • ORP oxidation-reduction potential
  • DO dissolved oxygen
  • pH hydrogen ion index
  • UltraViolet ultraviolet rays
  • the present disclosure has been made in view of the above, and the total nitrogen concentration contained in treated water can be estimated with higher accuracy than before without permanently installing a total nitrogen concentration meter in the biological reaction tank.
  • the aim is to obtain a water treatment control system that can
  • a water treatment control system that controls a water treatment device that mixes wastewater with activated sludge and obtains purified treated water. It includes a state observation section, a pretreatment section, and a water quality estimation section.
  • the condition observation unit collects measurement values measured by a measuring device that measures the condition of the wastewater or the condition of the treatment that the wastewater undergoes at a point in the treatment route until the wastewater flowing into the water treatment device becomes treated water, Accumulate measured values at multiple times as time series data.
  • the preprocessing unit performs predetermined processing on time series data to create processed data.
  • the water quality estimation unit uses an estimation model for inferring the total nitrogen concentration in the treated water to generate an estimated total nitrogen concentration in the treated water, which is an estimated value of the total nitrogen concentration in the treated water from the treated data processed in the pre-treatment unit.
  • the pre-processing unit calculates the measured value of the treated water, which is the target of estimation, out of the time-series data, taking into account the residence time in the treatment route of the treated water, which is the target of estimation of the total nitrogen concentration in the water quality estimation unit. Extract and create processing data.
  • the water treatment control system according to the present disclosure is capable of estimating the total nitrogen concentration contained in treated water with higher accuracy than conventional methods without permanently installing a total nitrogen concentration meter in the biological reaction tank. be effective.
  • Diagram schematically showing an example of a neural network used by the estimation model generation unit Diagram showing an example of the relationship between aerobic tank ammonium ion concentration and nitrogen removal amount Flowchart showing an example of the steps of the estimation model generation method Flowchart showing an example of the procedure for estimating the estimated total nitrogen concentration of treated water Flowchart showing an example of the procedure for calculating the control target value
  • FIG. 1 is a diagram schematically showing an example of the configuration of a water treatment system according to the first embodiment.
  • the water treatment system 100 is a system that purifies wastewater such as sewage using biological purification technology using activated sludge.
  • the water treatment system 100 includes a water treatment device 110 that mixes wastewater with activated sludge to obtain purified treated water, and a water treatment control system 120 that controls the water treatment device 110.
  • the water treatment device 110 includes an anoxic tank 2, an aerobic tank 3, and a final settling tank 4, which are examples of biological reaction tanks.
  • the anoxic tank 2 is a water tank that receives wastewater to be treated.
  • the aerobic tank 3 is a water tank that receives the anoxic tank processing liquid that is the processing liquid that has flowed out from the anoxic tank 2.
  • the final settling tank 4 is a tank that receives the aerobic tank treated liquid that is the treated liquid flowing out from the aerobic tank 3 and separates activated sludge contained in the aerobic tank treated liquid by solid-liquid separation to obtain treated water. .
  • the water treatment device 110 also includes a nitrified liquid circulation pump 5 and a sludge extraction pump 9.
  • the nitrification liquid circulation pump 5 sends activated sludge staying in the aerobic tank 3 to the anoxic tank 2.
  • the sludge drawing pump 9 draws out activated sludge deposited at the bottom of the final settling tank 4.
  • An inflow water pipe 1 is connected to the anoxic tank 2, and waste water flows into the anoxic tank 2 via the inflow water pipe 1.
  • the anoxic tank 2 has an underwater stirrer 8.
  • the underwater agitator 8 mixes the activated sludge and wastewater that have accumulated in the anoxic tank 2. That is, wastewater is treated with activated sludge in an anoxic environment, that is, in a state where the molecular oxygen concentration is extremely low.
  • denitrification is a process in which nitrate ions (NO 3 - ) contained in the nitrified solution returned by the nitrified solution circulation pump 5 are reduced by the action of microorganisms, converted into nitrogen gas, and removed from the water. This is done in oxygen tank 2.
  • the nitrification liquid is an activated sludge mixture that has remained in the aerobic tank 3.
  • the activated sludge mixture flowing out from the anoxic tank 2 flows into the aerobic tank 3.
  • the aerobic tank 3 includes an aeration device 6 that is provided at the bottom and supplies oxygen to the activated sludge mixture remaining in the aerobic tank 3, and an oxygen-containing gas such as air to the aeration device 6 via piping.
  • a blower 7 that pumps out the air is provided.
  • wastewater is treated under aerobic conditions.
  • nitrification in which ammonium ions (NH 4 + ) contained in the activated sludge mixture flowing out from the anoxic tank 2 is oxidized by the action of microorganisms and converted into nitrate ions, is performed in the aerobic tank 3. .
  • the nitrified liquid circulation pump 5 is connected to the aerobic tank 3.
  • the nitrification liquid circulation pump 5 draws out a part of the nitrification liquid, which is an activated sludge mixture, that remains in the aerobic tank 3 and returns it to the anoxic tank 2 .
  • the activated sludge mixture flowing out from the aerobic tank 3 flows into the final settling tank 4.
  • the final settling tank 4 separates the activated sludge mixture from the aerobic tank 3 into solid and liquid. Specifically, the activated sludge in the activated sludge mixture that has flowed in is separated by gravity sedimentation to the lower part of the final settling tank 4, and the supernatant water flows out from the upper part of the final settling tank 4, and is treated as treated water and subjected to chlorine disinfection. etc. are sent to subsequent processing.
  • a sludge drawing pump 9 is connected to the final settling tank 4.
  • the sludge extraction pump 9 extracts a portion of the activated sludge deposited at the bottom of the final settling tank 4 and returns it to the anoxic tank 2 or discharges it to a sludge treatment process such as a thickening device or a dehydrator.
  • the supernatant water in the final settling tank 4 will mean the activated sludge mixture immediately after flowing in from the aerobic tank 3.
  • the effluent water flowing out from the final settling tank 4 refers to the liquid that has been separated into solid and liquid in the final settling tank 4.
  • the treated water is the outflow water from the final sedimentation tank 4, but it may also be the supernatant water in the final sedimentation tank 4.
  • the aerobic tank 3 is installed for the purpose of nitrification, and the more the amount of aeration is increased, the more nitrification can be promoted. However, if the amount of aeration is increased blindly, the power consumption of the blower 7 will increase, and the dissolved oxygen concentration in the nitrification solution will increase, resulting in a loss of nitrification solution returned to the anoxic tank 2 by the nitrification solution circulation pump 5. Denitrification in the oxygen tank 2 is inhibited.
  • aeration control that only considers the nitrification process is not necessarily optimal for the water treatment system 100 as a whole, and it is necessary to perform control that takes into account the denitrification process and pays attention to the nitrogen removal performance of the water treatment system 100 as a whole. It is. In other words, it is desirable to adjust the aeration amount by focusing on the total nitrogen concentration, which can be evaluated including the nitrate ion concentration, rather than the ammonium ion concentration of the treated water.
  • the water treatment control system 120 of the water treatment system 100 uses artificial intelligence (AI) such as machine learning from information obtained from several measuring instruments installed in the water treatment equipment 110. is used to estimate the total nitrogen concentration of treated water and control the aeration amount.
  • AI artificial intelligence
  • the water treatment device 110 includes a measuring device that measures the state of the wastewater or the state of the treatment that the wastewater undergoes at points in the treatment route until the wastewater flowing into the water treatment device 110 becomes treated water.
  • the water treatment device 110 includes measuring instruments such as an inflow water flow meter 10, an inflow water ammonium ion concentration meter 11, an aerobic tank ammonium ion concentration meter 12, an aerobic tank dissolved oxygen concentration meter 13, and an aeration tank.
  • a quantity meter 14 is provided.
  • the inflow water meter 10 is provided in the inflow water pipe 1 and measures the amount of inflow water that is the amount of inflow water.
  • the inflow water ammonium ion concentration meter 11 is provided in the inflow water pipe 1 and measures the inflow water ammonium ion concentration, which is the ammonium concentration of the inflow water.
  • the aerobic tank ammonium ion concentration meter 12 is provided in the aerobic tank 3 and measures the aerobic tank ammonium ion concentration, which is the ammonium ion concentration in the aerobic tank 3.
  • the aerobic tank dissolved oxygen concentration meter 13 is provided in the aerobic tank 3 and measures the aerobic tank dissolved oxygen concentration, which is the dissolved oxygen concentration in the aerobic tank 3.
  • the aeration meter 14 measures the amount of aeration, which is the amount of air supplied to the aerobic tank 3 .
  • the aeration amount meter 14 is provided in a pipe that blows air from the blower 7 to the aerobic tank 3, and measures the amount of aeration from the blower 7 to the aerobic tank 3.
  • Examples of the state of wastewater are the amount of inflow water, the ammonium ion concentration in the inflow water, the ammonium ion concentration in the aerobic tank, and the dissolved oxygen concentration in the aerobic tank.
  • An example of the state of treatment that wastewater undergoes is the state of aeration treatment that wastewater undergoes, and the amount of aeration indicates the state of aeration treatment.
  • the influent ammonium ion concentration meter 11 corresponds to the first ammonium ion concentration meter
  • the aerobic tank ammonium ion concentration meter 12 corresponds to the second ammonium ion concentration meter
  • the aerobic tank dissolved oxygen concentration meter 13 corresponds to the dissolved oxygen concentration meter. Compatible with oxygen concentration meters.
  • these measuring instruments transmit measured values to the state observation unit 21 of the water treatment control system 120 every few seconds to every few tens of minutes. If the transmission frequency is too far apart, the estimation of the total nitrogen concentration of the treated water will become less frequent, and in some cases, the control of the aeration amount based on the estimated total nitrogen concentration of the treated water may be based on the estimated value of the total nitrogen concentration of the treated water. There is a possibility that it will not be possible to follow load fluctuations, which are fluctuations in the concentration of pollutants such as nitrogen. For this reason, the cycle of transmitting measured values is usually set to 1 minute or more and about 10 minutes or less. However, it can be adjusted depending on the load characteristics of the wastewater flowing into the water treatment system 100, and is not limited to this range.
  • the total nitrogen concentration of the treated water will be referred to as the treated water total nitrogen concentration
  • the estimated value of the total nitrogen concentration of the treated water will be referred to as the estimated treated water total nitrogen concentration.
  • the inflow water ammonium ion concentration meter 11 does not necessarily need to be installed upstream of the anoxic tank 2, and may be installed inside the anoxic tank 2.
  • the measurement of the ammonium ion concentration in the anoxic tank 2 is not necessarily the same as the inflow water ammonium ion concentration due to dilution with activated sludge.
  • grasping the ammonium ion load supplied to the water treatment device 110 it has the same meaning as measuring the inflow water ammonium ion concentration, and can be used for later multivariate processing.
  • the water treatment system 100 includes a water treatment control system 120 that controls the amount of aeration to the aerobic tank 3 based on the nitrogen removal performance of the entire water treatment system 100, including the denitrification process in the anoxic tank 2.
  • the water treatment control system 120 includes a state observation section 21, a plant information storage section 22, a pretreatment section 23, an estimation model generation section 24, a water quality estimation section 25, a control target value calculation section 26, and an aeration amount control section. 27.
  • the state observation unit 21 collects measured values that are the values of the measuring instruments transmitted from each measuring device, and stores the measured values at a plurality of times as time series data.
  • the time-series data is measured values accumulated in chronological order by the state observation unit 21.
  • measuring instruments employ an analog output method that expresses the magnitude of concentration or flow rate by a voltage value of 1 V or more and 5 V or less, or a current value of 4 mA or more and 20 mA or less.
  • the state observation unit 21 is a device that can receive such a signal and convert it into concentration or flow rate.
  • a programmable logic controller (PLC) or a general-purpose personal computer with an analog signal input/output function is used for the state observation unit 21.
  • PLC programmable logic controller
  • the measuring instrument is not limited to analog output specifications, and the condition observation section 21 also takes into account the specifications of the measuring instrument and the purpose of the condition observation section 21.
  • the specifications can be determined by There is no particular limit to the amount of data from each measuring device that is stored in the state observation unit 21.
  • the state observation unit 21 provides part or all of the received measurement value data to the preprocessing unit 23 . Further, when generating an estimated model, the state observation unit 21 provides the estimated model generation unit 24 with some or all of the received measured value data.
  • the plant information storage unit 22 stores plant information that is mainly information regarding the configuration and structure of the water treatment device 110.
  • the plant information includes the effective volumes of the water tanks that constitute the water treatment device 110, in the example of FIG. 1, the anoxic tank 2, the aerobic tank 3, and the final settling tank 4. Effective volume is the net liquid storage capacity in each tank, excluding headspace.
  • the preprocessing unit 23 performs predetermined processing on the time series data received from the condition observation unit 21 to create processed data in preparation for subsequent data processing in the water quality estimation unit 25.
  • the processed data is a measurement value processed by the preprocessing unit 23.
  • the preprocessing unit 23 mainly performs (A) data adjustment processing and (B) delay time correction processing. Below, (A) data adjustment processing and (B) delay time correction processing will be explained in order.
  • the preprocessing unit 23 removes abnormal values or outliers from the data obtained from each measuring instrument, or interpolates missing values. If the frequency of data transmission to the status observation unit 21 differs depending on each measuring device, adjustments may be made by removing unnecessary data or interpolating so that the data transmission frequency appears to be the same for each measuring device. Included in data adjustment processing.
  • the necessary data frequency is desirably determined by the operation manager in consideration of the required specifications of the estimation model for the total nitrogen concentration of the treated water, which will be constructed later in the estimation model generating section 24. For example, when constructing and operating a model that outputs estimated values at 5-minute intervals, it is desirable to adjust the data transmission frequency of each measuring device data to be at 5-minute intervals.
  • a method for interpolating missing values a method such as linear interpolation or spline interpolation using the preceding and following normal values as both ends can be used, for example.
  • Abnormal values or outliers may be removed by defining outliers as in the following equations (1) and (2) with reference to the interquartile range.
  • the quartile is a number that indicates the dividing value divided into four by the number of data when the data is arranged in descending order
  • the first quartile is the dividing value of 25% from the smallest. Yes
  • the third quartile is the 75% cutoff from the smallest.
  • the interquartile range is the range from the first quartile to the third quartile.
  • a plant operation manager or the like sets a threshold value for each measuring device in advance to determine abnormal values or outliers, and the preprocessing unit 23 performs removal by comparing the data with the threshold value. There may be. In this case, it is necessary to read the threshold value into the preprocessing unit 23 in advance, and either the preprocessing unit 23 is configured to have a threshold input unit, or the plant information storage unit 22 has threshold information indicating the threshold value for each measuring device. may be stored, and the threshold information may be provided from the plant information storage section 22 to the preprocessing section 23.
  • the absolute value of the flow rate or concentration may be set as the threshold value, or the amount of change in these data over time may be set.
  • the preprocessing unit 23 calculates the amount of change over time of each variable and compares it with the threshold value. In other words, although the measured value always fluctuates, there is an appropriate range for the amount of increase/decrease per hour. If the speed changes at a rate that deviates from this, it may be because the measurement environment is no longer in a normal state for some reason, or an error has occurred in the measuring instrument itself. Therefore, it can be said that it is reasonable to determine abnormal values or outliers based on the amount of change in measured values over time.
  • the preprocessing unit 23 may calculate a moving average of the measured values to alleviate the influence of abnormal values or outliers.
  • the moving average may be calculated using the measured values after removing abnormal values or outliers.
  • the water treatment control system 120 estimates the total nitrogen concentration contained in the treated water using data from other measuring instruments.
  • the water treatment control system 120 of the first embodiment performs the above-mentioned preprocessing on the measured values of the inflow water ammonium ion concentration meter 11, the aerobic tank ammonium ion concentration meter 12, the aerobic tank dissolved oxygen concentration meter 13, and the aeration amount meter 14. Use it after doing the following.
  • the total nitrogen concentration of the treated water at a certain time is determined by the amount of wastewater that has entered the anoxic tank 2, the aerobic tank 3, and the final settling tank 4 before the total residence time of the wastewater in the anoxic tank 2, aerobic tank 3, and final settling tank 4. This is determined by the results of the processing performed. Therefore, there is a possibility that there is no strong relationship between the total nitrogen concentration of treated water at a certain time and data from other measuring instruments at the same time. In other words, when estimating the total nitrogen concentration of treated water at a certain time T from data obtained from other measuring instruments installed upstream, the final settling tank 4 is estimated from the location where each measuring instrument is installed.
  • the preprocessing unit 23 performs a process of arranging the time-series data collected by each measuring device in the same line so that each measurement item measured for wastewater flowing in at the same time can be compared side by side.
  • the pretreatment unit 23 calculates the flow time to the outlet of the final settling tank 4 based on the plant information stored in the plant information storage unit 22, and uses the calculated flow time to calculate the flow time collected by each measuring instrument. Performs processing to arrange time series data in the same column.
  • the pre-processing unit 23 receives time-series data from the condition observation unit 21 and performs processing from the measuring instrument point to the point where the water becomes treated based on the plant information stored in the plant information storage unit 22. Calculate the residence time, which is the time the wastewater stays in the route. Then, the pre-processing unit 23 traces the residence time from the time when the time-series data was received to the point of measurement so that the measured values by the measuring device are those measured for wastewater that entered at the same time. A measured value that takes into account residence time, which is a measured value of time, is extracted and processed data is created. One data set is obtained by extracting the measured values of each measuring device in consideration of the residence time.
  • the residence time can be determined by the amount of inflow water Q and the effective volume V of the water tank that passes from the measurement point by each measuring device to the point to be estimated.
  • the average amount of inflow water calculated from the amount of inflow water for the past 24 hours, which is the amount of inflow water per hour, can be set as Q, and the value calculated by Q/V can be set as the residence time t.
  • the effective volume of each water tank can be obtained by referring to the plant information in the plant information storage section 22.
  • the residence time from the inflow water piping 1 to the final settling tank 4 is calculated.
  • the residence time from the inflow water pipe 1 to the aerobic tank 3 immediately before the final settling tank 4 is calculated.
  • the residence time t may be determined.
  • FIG. 2 is a diagram illustrating an example of the configuration of a water treatment device of the water treatment system according to Embodiment 1.
  • FIG. 2 shows an example of the configuration of the water treatment device 110 when water treatment is performed using an anaerobic-anoxic-oxic method (A2O method) that aims to simultaneously remove nitrogen and phosphorus.
  • the water treatment device 110 in FIG. 2 further includes an anaerobic tank 15 upstream of the anoxic tank 2, compared to the case in FIG.
  • the anaerobic tank 15 is a water tank that receives wastewater to be treated. In the anaerobic tank 15, the wastewater is stirred without sending air, and phosphorus is released from the phosphorus-accumulating bacteria.
  • the anoxic tank 2 serves as a water tank that receives the anaerobic tank processing liquid that is the processing liquid that has flowed out from the anaerobic tank 15.
  • the activated sludge remaining in the aerobic tank 3 is returned to the anoxic tank 2 by the nitrification liquid circulation pump 5. Furthermore, the activated sludge deposited at the bottom of the final settling tank 4 is returned to the anaerobic tank 15 by the sludge extraction pump 9. In other words, the inflow points of the returned sludge and the nitrification liquid are different.
  • the inflow amount of wastewater from the inflow water pipe 1 is defined as Q1
  • the inflow amount of return sludge from the final settling tank 4 is defined as Q2
  • the inflow amount of nitrification liquid from the aerobic tank 3 is defined as Q3.
  • the nitrification liquid or return sludge is Flowmeters 16 and 17 are installed on the flowing pipes, respectively. It is desirable that the measured values from each of the flowmeters 16 and 17 can be input to the preprocessing section 23 via the state observation section 21. For these flow rates as well, in one example, the average flow rate for the past 24 hours is calculated and used, just like the inflow water amount.
  • the treated water is defined as the outflow water from the final sedimentation tank 4, but in one example, it may be the supernatant water in the final sedimentation tank 4, and any point in the water treatment device 110 can be treated.
  • Whether water is defined as water can be determined as appropriate by the operation manager of the water treatment system 100. In short, it is only necessary to determine a position where the residence time from the point where each measuring device is installed to the point of the treated water whose total nitrogen concentration is to be estimated can be calculated.
  • the preprocessing unit 23 performs (A) data adjustment processing and (B) delay time correction processing to adjust and correct the measured value. Specifically, the pre-treatment unit 23 calculates the measured values in the time-series data between the measuring instruments, taking into consideration the residence time in each water tank from when the wastewater flows in until it is discharged as treated water. After adjustment and correction, a combination of measured values measured by each measuring device for wastewater flowing in at the same time is made into one data set. In other words, the pre-processing unit 23 combines the measurement values measured by each measuring device when the wastewater treated as treated water passes through the treatment route into one data set.
  • the preprocessing unit 23 outputs the data set after the delay time correction to the water quality estimation unit 25.
  • the estimation model generation unit 24 uses the data set after the delay time correction in the preprocessing unit 23 to construct an estimation model for estimating the estimated total nitrogen concentration of the treated water.
  • the estimated model generating unit 24 executes the process of generating an estimated model when the water quality estimating unit 25 does not hold an estimated model for the total nitrogen concentration of treated water.
  • the total nitrogen concentration in the treated water strongly depends on the inflow water quality and the treatment state in the aerobic tank 3, and in particular, the inflow water ammonium ion concentration, the aerobic tank ammonium ion concentration, the aerobic tank dissolved oxygen concentration, and the aerobic tank 3.
  • the results of the study revealed that there is a strong relationship with the amount of aeration. In other words, by using these values, it becomes possible to quantitatively and accurately estimate the total nitrogen concentration of the treated water.
  • the estimation model generation unit 24 uses the data set after the delay time correction and calculates the inflow water ammonium ion concentration value, the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, and the aerobic tank 3
  • a model for estimating the total nitrogen concentration of treated water is constructed by performing multivariate processing such as machine learning with the amount of aeration as an explanatory variable and the total nitrogen concentration of treated water as an objective variable.
  • multivariate processing include multiple regression, principal component regression, partial least squares regression (PLS), support vector regression (SVR), and deep learning using neural networks. I can do it.
  • the estimation model generation unit 24 holds the true value of the total nitrogen concentration of the treated water, which is the correct data, together with the data set after delay time correction corresponding to the acquisition time of the correct data, and uses these data to By performing analysis, a more accurate model can be obtained.
  • the true value of the total nitrogen concentration of the treated water can be obtained by temporarily installing a treated water total nitrogen concentration meter for measuring the total nitrogen concentration of the treated water in the final settling tank 4 only during the learning period.
  • each measuring device measures the total nitrogen concentration of the treated water. Let the measured values be one data set.
  • the treated water total nitrogen concentration meter outputs the measured value of the treated water total nitrogen concentration to the condition observation section 21, and the preprocessing section 23 performs a predetermined preprocessing and outputs it to the estimation model generation section 24. You may also do so. In this case, there is no need to permanently install a treated water total nitrogen concentration meter in the water treatment apparatus 110. Furthermore, in the water treatment system 100, a plurality of water treatment apparatuses 110 are often provided in parallel, so the treated water total nitrogen concentration meter can be used for the plurality of water treatment apparatuses 110.
  • the true value of the total nitrogen concentration of the treated water may be the result of an operation manager performing water quality analysis at arbitrary intervals.
  • the operation manager may input the results of the water quality analysis into the condition observation section 21 or directly into the estimation model generation section 24.
  • the period and number of data required for learning can be adjusted depending on the estimation model to be constructed. For example, when assuming an estimation model that outputs estimated values every few minutes, it is preferable to acquire at least 24 hours of data at a frequency similar to the output frequency of estimated values and use it as learning data.
  • the estimated model generation unit 24 performs processing based on the learning data created based on the combination of the data set after delay time correction output from the preprocessing unit 23 and the true value of the total nitrogen concentration of the treated water.
  • Learn estimated water total nitrogen concentration That is, an estimation model that is a trained model that infers an optimal estimated value of total nitrogen concentration in treated water is generated from the data set after the delay time correction of water treatment device 110 and the true value of total nitrogen concentration in treated water.
  • the learning data is data in which the data set after delay time correction and the true value of the total nitrogen concentration of treated water are associated with each other.
  • the data set after delay time correction is the inflow water ammonium ion concentration value at the time from the measurement time, which is the time when the true value of the treated water total nitrogen concentration was measured, to the residence time of wastewater at each measuring instrument point, This is a combination of the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, and the aeration amount to the aerobic tank 3.
  • the inflow water ammonium ion concentration value corresponds to the first ammonium ion concentration value
  • the aerobic tank ammonium ion concentration value corresponds to the second ammonium ion concentration value
  • the aerobic tank dissolved oxygen concentration value corresponds to the dissolved oxygen concentration value. corresponds to
  • the estimated model generation unit 24 may be configured by a learning device independent from the water treatment system 100. This learning device is used to learn the estimated total nitrogen concentration in the treated water of the water treatment system 100, and is connected to the water treatment control system 120 of the water treatment system 100 via a network, for example. Control system 120 may be a separate device. Further, the learning device may exist on a cloud server.
  • the learning algorithm used by the estimated model generation unit 24 can be a known algorithm such as supervised learning. As an example, a case where a neural network is applied will be explained.
  • the estimated model generation unit 24 learns the estimated total nitrogen concentration of the treated water by, for example, so-called supervised learning according to a neural network model.
  • supervised learning refers to a method in which a set of data consisting of input and a label as a result is given to a learning device, thereby learning features in the learning data and inferring a result from the input.
  • a neural network is composed of an input layer consisting of multiple neurons, an intermediate layer consisting of multiple neurons, and an output layer consisting of multiple neurons.
  • the intermediate layer is also called a hidden layer, and may have one layer or two or more layers.
  • FIG. 3 is a diagram schematically showing an example of a neural network used by the estimation model generation section.
  • a neural network used by the estimation model generation section.
  • FIG. 3 when multiple inputs are input from input layer X1 to input layer It is input from Y1 to intermediate layer Y2. Weights w11 to w16 are referred to as weights w1 when not individually distinguished. Furthermore, the results from the intermediate layer Y1 to Y2 are further multiplied by weights shown by w21 to w26 and output from the output layers Z1 to Z3. Weights w21 to w26 are referred to as weights w2 if not distinguished individually.
  • the output results from output layer Z1 to output layer Z3 vary depending on the values of weights w1 and w2.
  • the neural network is created based on a combination of the data set after delay time correction acquired by the state observation unit 21 and processed by the preprocessing unit 23 and the true value of the total nitrogen concentration of the treated water. According to the learning data, the estimated total nitrogen concentration of the treated water is learned by so-called supervised learning.
  • the neural network inputs the data set after delay time correction to the input layer and adjusts the weight w1 and the weight w2 so that the result output from the output layer approaches the true value of the total nitrogen concentration of the treated water. Learn by doing.
  • the estimated model generation unit 24 generates and outputs an estimated model by performing the above learning.
  • the above estimation model generation process is not necessarily necessary if the operation manager etc. constructs the estimation model in advance and inputs it to the water quality estimation unit 25, and the operation manager etc. can decide whether to perform it as necessary. .
  • the estimation model may be updated by performing processing.
  • the water quality estimating unit 25 estimates the total nitrogen concentration of the treated water from the measured values input from the pre-processing unit 23, taking into account the residence time, using the constructed estimation model or the estimation model input in advance. Estimate the value. Specifically, the water quality estimating unit 25 inputs the latest data set after delay time correction of each measuring instrument among the data sets after delay time correction output from the preprocessing unit 23 into the estimation model. Calculate the estimated total nitrogen concentration of treated water at the estimated time.
  • the frequency of data provision from the condition observation unit 21 to the pretreatment unit 23 and the water quality from the pretreatment unit 23 are It is desirable that the frequency of providing data to the estimation unit 25 is equal to or higher than the frequency estimated by the estimation model.
  • the data passed from the pre-processing unit 23 to the water quality estimating unit 25 is the time required to calculate the estimated total nitrogen concentration of the treated water at the current time. All you need is data.
  • the control target value calculation unit 26 determines that the amount of nitrogen removed is maximized based on the relationship between the amount of nitrogen removed in the water treatment device 110 calculated from the accumulated estimated total nitrogen concentration of the treated water and the ammonium ion concentration value of the influent water. Obtain the inflow water ammonium ion concentration value as the control target value.
  • the amount of aeration in the aerobic tank 3 is adjusted using the amount of nitrogen removed as an index.
  • the amount of nitrogen removed can be determined from the difference between the total nitrogen concentration of the treated water and the total nitrogen concentration of the inflow water. For example, in the case of wastewater that mainly contains domestic wastewater such as urban sewage, the nitrogen contained in the inflow water is almost entirely ammonium ions, so the amount of nitrogen removed is determined by the ammonium ion concentration value of the inflow water and the treatment. It can be determined by the difference from the water total nitrogen concentration value.
  • the estimated value of total nitrogen concentration in the treated water calculated by the estimation model and the estimated target at the time when the residence time has gone back from the estimated time to the installation position of the inflow water ammonium ion concentration meter 11 are used. Treat the difference between the inflow ammonium ion concentration and the treated water as the amount of nitrogen removed.
  • FIG. 4 is a diagram showing an example of the relationship between the aerobic tank ammonium ion concentration and the amount of nitrogen removed.
  • the horizontal axis shows the aerobic tank ammonium ion concentration
  • the vertical axis shows the amount of nitrogen removed. As shown in FIG. 4, it can be seen that the amount of nitrogen removed with respect to the ammonium ion concentration in the aerobic tank has an upwardly convex relationship.
  • the ammonium ion concentration in the aerobic tank 3 depends on the progress of the nitrification reaction, that is, the amount of aeration.
  • the ammonium ion concentration in the aerobic tank is low, it means that the amount of aeration is large and nitrification is progressing sufficiently, but at the same time, the dissolved oxygen concentration in the nitrified solution is also high, making it difficult for denitrification to proceed. In terms of the amount of nitrogen removed, there seems to be room for improvement.
  • the ammonium ion concentration in the aerobic tank is high, nitrification is insufficient and ammonium ions are flowing into the treated water, and the amount of nitrogen removed is still low, so there is room for improvement. It is thought that such a mechanism provides an upwardly convex relationship as shown in FIG. 4. However, this relationship is not always constant and is thought to change depending on the season, water temperature, amount of inflow water, water quality, especially ammonium ion concentration, etc.
  • the control target value calculation unit 26 calculates the estimated value of the treated water total nitrogen concentration sequentially estimated by the estimation model and the corresponding inflow water ammonium ion concentration value. The amount of nitrogen removed is calculated from the difference and accumulated. Furthermore, the control target value calculation unit 26 simultaneously records the aerobic tank ammonium ion concentration used to calculate the estimated treated water total nitrogen concentration at the estimated time that is the time when the estimated treated water total nitrogen concentration is estimated. By accumulating these data, it is possible to obtain the relationship between the aerobic tank ammonium ion concentration and the amount of nitrogen removed as shown in FIG. Then, the relationship shown in FIG. 4 is approximated by an upwardly convex quadratic function. The aerobic tank ammonium ion concentration value that maximizes the nitrogen removal amount is calculated from this approximate expression, and this aerobic tank ammonium ion concentration value is set as the control target value.
  • Nitrification or denitrification is affected by water temperature, and creating an approximate curve by mixing information from periods when water temperatures are significantly different may cause inaccuracies in calculating aerobic tank ammonium ion concentration. .
  • the control target value calculation unit 26 calculates the approximate expression using data within a predetermined period from the estimated time of the estimated total nitrogen concentration of the treated water.
  • the aeration amount control unit 27 controls the aeration amount so that the aerobic tank ammonium ion concentration value of the aerobic tank 3 becomes the control target value.
  • the aeration amount control unit 27 controls the blower 7 so that the aerobic tank ammonium ion concentration approaches the control target value set by the control target value calculation unit 26.
  • control examples include P (Proportional) control, PI (Proportional-Integral) control, PD (Proportional-Differential) control, PID (Proportional-Integral-Differential) control, etc.
  • the ammonium ion concentration in the aerobic tank 3 is Any device that can adjust the aeration amount so as to approach the control target value may be used.
  • the output of the blower 7 is directly operated, but for example, a valve for adjusting the amount of aeration is provided in the secondary side piping of the blower 7, and the opening degree of this valve is adjusted. The amount of aeration may be adjusted.
  • FIG. 5 is a flowchart illustrating an example of the procedure of the estimation model generation method.
  • the condition observation unit 21 generates a time series including true values of the inflow water ammonium ion concentration value, the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, the aeration amount to the aerobic tank 3, and the treated water total nitrogen concentration. Data is acquired (step S11).
  • the preprocessing unit 23 performs data adjustment and processing on the acquired time series data of the inflow water ammonium ion concentration value, the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, and the aeration amount to the aerobic tank 3.
  • the delay time is corrected, and a data set after the delay time correction is generated (step S12).
  • the preprocessing unit 23 generates learning data by associating the true value of the total nitrogen concentration of the treated water with the data set after the delay time correction (step S13).
  • the true value of the total nitrogen concentration in the treated water is corrected by the delay time from the time when the true value of the total nitrogen concentration in the treated water is acquired, taking into account the residence time to the point of each measuring instrument. map the datasets.
  • the data set after delay time correction and the true value of the total nitrogen concentration in treated water were acquired at the same time, it is sufficient if the data set after delay time correction and the true value of total nitrogen concentration in treated water can be input in association with each other.
  • the data set after the delay time correction and the data of the true value of the total nitrogen concentration of the treated water may be acquired at different timings.
  • the estimation model generation unit 24 estimates the total nitrogen concentration of the treated water by so-called supervised learning, according to the learning data created based on the combination of the data set after delay time correction and the true value of the total nitrogen concentration of the treated water. The value is learned and an estimated model that is a learned model is generated (step S14).
  • the estimated model generation unit 24 outputs the generated estimated model to the water quality estimation unit 25 (step S15). Thereby, the water quality estimating unit 25 obtains the estimated model. With this, the estimation model learning process in the estimation model generation unit 24 is completed.
  • FIG. 6 is a flowchart illustrating an example of a procedure for estimating the estimated total nitrogen concentration of treated water.
  • the condition observation unit 21 acquires time series data including the inflow water ammonium ion concentration value, the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, and the aeration amount to the aerobic tank 3 (step S31 ).
  • the preprocessing unit 23 performs data adjustment and delay time correction on the acquired inflow water ammonium ion concentration value, aerobic tank ammonium ion concentration value, aerobic tank dissolved oxygen concentration value, and aeration amount to the aerobic tank 3. and generates a data set after delay time correction (step S32).
  • the water quality estimation unit 25 inputs the data set after the delay time correction to the estimation model, and obtains the estimated total nitrogen concentration of the treated water (step S33).
  • the water quality estimation unit 25 outputs the estimated total nitrogen concentration of the treated water obtained by the estimation model to the control target value calculation unit 26 (step S34).
  • control target value calculation unit 26 calculates the nitrogen removal amount based on the relationship between the accumulated aerobic tank ammonium ion concentration value and the amount of nitrogen removed in the water treatment device 110 calculated from the estimated total nitrogen concentration value of the treated water.
  • the aerobic tank ammonium ion concentration value with the maximum amount is calculated as the control target value (step S35).
  • the control target value calculation section 26 passes the calculated control target value to the aeration amount control section 27, and the aeration amount control section 27 controls the aeration amount so that the aerobic tank ammonium ion concentration becomes the control target value.
  • the amount of aeration is controlled in the aerobic tank 3 so that the amount of nitrogen removed is maximized, so that it is possible to control the amount of aeration that comprehensively considers nitrification and denitrification.
  • the estimated model generation unit 24 may learn the estimated total nitrogen concentration of the treated water according to learning data created for the plurality of water treatment systems 100.
  • the estimated model generation unit 24 may acquire learning data from a plurality of water treatment systems 100 used in the same area, or may acquire learning data from a plurality of water treatment systems 100 that operate independently in different areas.
  • the estimated total nitrogen concentration of the treated water may be learned using the learning data.
  • estimation model generation unit 24 which is a learning device that has learned the estimated total nitrogen concentration of treated water with respect to a certain water treatment system 100, is applied to another water treatment system 100, and The estimated total nitrogen concentration of the treated water may be re-learned and updated.
  • deep learning which learns the extraction of the feature values themselves, can be used, and other known methods such as genetic programming, functional logic programming, etc. , support vector machines, etc. may be performed.
  • FIG. 7 is a flowchart illustrating an example of a procedure for calculating a control target value.
  • the control target value calculation section 26 calculates the estimated total nitrogen concentration of the treated water from the water quality estimating section 25, the ammonium ion concentration value of the inflow water and the aerobic tank ammonium The ion concentration value is acquired (step S51).
  • control target value calculation unit 26 calculates the amount of nitrogen removed from the difference between the estimated total nitrogen concentration of the treated water and the ammonium ion concentration of the inflow water (step S52). Further, the control target value calculation unit 26 stores the calculated nitrogen removal amount in association with the aerobic tank ammonium ion concentration value (step S53). That is, data of a set of nitrogen removal amount and aerobic tank ammonium ion concentration value is accumulated.
  • control target value calculation unit 26 uses a plurality of sets of accumulated nitrogen removal amount and aerobic tank ammonium ion concentration value to calculate an approximate formula for the nitrogen removal amount with respect to the aerobic tank ammonium ion concentration value. Calculate (step S54). Further, the control target value calculation unit 26 acquires the aerobic tank ammonium ion concentration value that maximizes the nitrogen removal amount from the calculated approximate expression, and sets it as the control target value (step S55). The control target value calculation unit 26 outputs the control target value to the aeration amount control unit 27. With this, the process ends. After that, the aeration amount control unit 27 controls the aeration amount so that the aerobic tank ammonium ion concentration value obtained from the aerobic tank ammonium ion concentration meter 12 becomes the control target value.
  • the pretreatment unit 23 starts the measurement from the time when the data is received so that the data from each measuring device is measured for wastewater flowing in at the same time.
  • a data set is generated by extracting the measured value of the time of residence up to the point of the vessel.
  • the water quality estimation unit 25 inputs the generated data set into the estimation model and estimates the estimated total nitrogen concentration of the treated water at the estimated time. This has the effect that the total nitrogen concentration contained in treated water can be estimated with higher accuracy than before without permanently installing a total nitrogen concentration meter in the final settling tank 4, which is a biological reaction tank. has. Further, in understanding the total nitrogen concentration contained in the treated water, it is not necessary to permanently install an expensive total nitrogen concentration meter, so the cost of the water treatment system 100 can be significantly reduced.
  • control target value calculation unit 26 calculates the amount of nitrogen removed from the difference between the estimated total nitrogen concentration of the treated water and the ammonium ion concentration value of the wastewater inflow, which is the target of estimation of the estimated total nitrogen concentration of the treated water. .
  • control target value calculation unit 26 acquires the value of the aerobic tank ammonium ion concentration that maximizes the nitrogen removal amount using data that has accumulated the combination of the nitrogen removal amount and the aerobic tank ammonium ion concentration value, The obtained value of the aerobic tank ammonium ion concentration is set as the control target value.
  • the aeration amount control unit 27 controls the aeration amount so that the aerobic tank ammonium ion concentration becomes a control target value.
  • the aeration amount is controlled by focusing not only on the ammonium ion concentration of the treated water but also on the total nitrogen concentration, which can be evaluated including the nitrate ion concentration of the treated water. Good quality of treated water can be obtained while reducing operating costs in the system 100.
  • the water treatment device 110 includes one anoxic tank 2 and one aerobic tank 3 is shown, but the form of the water treatment device 110 is not limited.
  • the water treatment device 110 may have a configuration to which an anaerobic anoxic aerobic method is applied, in which an anaerobic tank 15, an anoxic tank 2, and an aerobic tank 3 are lined up as shown in FIG.
  • a structure to which the Anaerobic-Oxic method (AO method) is applied may also be used.
  • the number of water tanks for each treatment process is not limited to one, and a plurality of water tanks for each of the anaerobic process, anoxic process, and aerobic process may be arranged. In either case, it is only necessary to be able to measure the ammonium ion concentration of inflow water, the amount of inflow water, and, if necessary, the amount of nitrified liquid circulated or the flow rate of returned sludge.
  • the amount of aeration as an explanatory variable
  • the total amount of aeration supplied to each aerobic tank 3 may be determined and used as an explanatory variable, or the amount of aeration given to each aquarium 3 may be determined and used as an explanatory variable.
  • Each quantity may be measured using a measuring instrument and used as an explanatory variable.
  • an aerobic tank ammonium ion concentration meter 12 and an aerobic tank dissolved oxygen concentration meter 13 are installed in each aerobic tank 3, and each is fully explained. It may be possible to use it as a variable.
  • an aerobic tank ammonium ion concentration meter 12 and an aerobic tank dissolved oxygen concentration meter 13 may be installed at least in the aerobic tank 3 located most downstream so that they can be used as explanatory variables.
  • Some water treatment apparatuses 110 have a structure in which the inflow water pipe 1 branches and the wastewater flows into the water treatment apparatus 110 not only at the most upstream section but also at the midstream section.
  • the measurement point for the inflow water ammonium ion concentration may be on the inflow water pipe 1, but the inflow amount to each inflow point is measured and the total nitrogen concentration of the treated water is determined based on this. It is best to calculate the residence time to the estimated or measured point, and use the ammonium ion concentration of the wastewater flowing in from each point as an explanatory variable in building the model.
  • the explanatory variables used to estimate the estimated total nitrogen concentration of treated water are merely examples, and this does not negate the inclusion or omission of other measured values in the explanatory variables.
  • the suspended solids concentration of the sludge mixture in one of the water tanks, the water temperature, the oxidation-reduction potential of the anoxic tank 2, etc. are measured and transmitted to the condition observation section 21, and the pretreatment section 23 performs the above-described pretreatment. It may also be used as an explanatory variable in the water quality estimating section 25.
  • the state observation section 21, pretreatment section 23, plant information storage section 22, estimation model generation section 24, water quality estimation section 25, control target value calculation section 26, and aeration amount control section 27 shown in the water treatment control system 120 are each
  • the computers may be configured to perform data linkage as independent computers, or each may be configured as a program in one computer, and data linkage may be performed between the programs. In any case, it may be configured as a device that can receive data from each measuring device and has an interface that can output an aeration amount control target value to the blower 7 or an attached inverter or an aeration amount adjustment valve.
  • FIG. 8 is a diagram schematically showing an example of the configuration of a water treatment system according to the second embodiment. Note that the same components as in Embodiment 1 are given the same reference numerals, and the explanation thereof will be omitted, and only the different parts from Embodiment 1 will be explained.
  • the water treatment control system 120 further includes an operation information recording section 28.
  • the operating information recording unit 28 acquires operating information including the operating conditions of the water treatment device 110 or the operating environment when the water treatment device 110 is operated.
  • An example of the operating conditions is a control method for the amount of aeration in the aerobic tank 3.
  • Examples of operating environments are weather, water temperature, rainfall, date, day of the week, and season.
  • the estimated model generation unit 24 uses data from various measuring instruments as described in the first embodiment to construct a model for estimating the estimated total nitrogen concentration of the treated water.
  • the handling of measuring instrument data within the estimation model that is, the coefficients related to the data of each measuring instrument within the estimation model, may change depending on operating conditions or operating environments such as water temperature and weather. Therefore, by constructing and using appropriate estimation models depending on the situation, it is possible to maintain a high estimation accuracy of the estimated total nitrogen concentration in treated water.
  • the operation information recording unit 28 records operation information such as the weather, water temperature, rainfall amount, date, day of the week, season, and aeration amount control method on the day of operation, and The information is provided to the processing unit 23.
  • the aeration amount control method is information indicating the aeration amount control method in the aerobic tank 3.
  • An example of the aeration amount control method is a dissolved oxygen control mode, which is a mode in which a target value is set for the aerobic tank dissolved oxygen concentration and the aeration amount is automatically adjusted so that the aerobic tank dissolved oxygen concentration changes around the target value;
  • the ammonium ion control mode is a mode in which the aeration amount is controlled by setting a target value for the aerobic tank ammonium ion concentration
  • the flow rate is a mode in which the aeration amount is controlled in proportion to the inflow water amount. Includes multiple modes such as proportional control mode.
  • the estimated total nitrogen concentration of the treated water was used to control the aeration amount.
  • the estimated total nitrogen concentration of the treated water is not used to control the aeration amount, but is used to successively grasp the total nitrogen concentration of the treated water. That is, the estimated total nitrogen concentration of treated water may be used to confirm the treatment status.
  • the ammonium ion control mode that uses the control target value from the control target value calculation unit 26 is turned off and the mode shifts to the dissolved oxygen control mode, and the estimated total nitrogen concentration of the treated water is used only for the purpose of sequentially understanding the treatment status. Sometimes it is done. In such a case, the operation information recording unit 28 records that the aeration amount control method has been changed, and records the changed mode as the current control method.
  • the preprocessing unit 23 classifies the time series data collected by the state observation unit 21 into categories based on the driving information, and distributes the data.
  • the preprocessing unit 23 performs category classification in dissolved oxygen control mode, ammonium ion control mode, and flow rate proportional control mode, and aggregates data from measuring instruments for each category. , perform pre-processing determined for each category to create a dataset.
  • the categories are classified according to whether it is sunny or rainy, and preprocessing is performed in the same way to create a dataset.
  • the data is classified into categories by each day of the week from Monday to Sunday, and a data set is created by performing preprocessing in the same way.
  • the data is classified into categories within a predetermined date range, and a data set is created by performing preprocessing in the same way.
  • the operation manager may arbitrarily set a threshold value that serves as a standard for classification, and the classification may be automatically performed. Alternatively, statistical analysis may be performed to define categories from multiple perspectives and clustering may be performed.
  • the driving information used for classification is not limited to those listed above, but data determined to be necessary can be recorded as driving information in the driving information recording section 28, and a threshold value is set to classify this data into categories. May be used for
  • the estimated model generation unit 24 generates an estimated model using time series data for each category. That is, the estimated model generation unit 24 receives the data set of each category from the preprocessing unit 23, and generates an estimated model for each category.
  • the generated estimation model is associated with a category.
  • the water quality estimation unit 25 estimates the estimated total nitrogen concentration of the treated water using the estimation model of the category corresponding to the driving information at the time of estimating the estimated total nitrogen concentration of the treated water. That is, the water quality estimating unit 25 selects a category that corresponds to the current state of the operating information of the water treatment system 100, and uses the estimation model of the selected category to estimate the estimated total nitrogen concentration of the treated water.
  • the driving information may be inputted into the driving information recording unit 28, for example, by the driving manager as appropriate, or by other systems such as a monitoring control system that acquires and manages each driving information.
  • the data may be sequentially transferred from the system.
  • the water treatment control system 120 includes an operation information recording unit 28 that acquires operation information including the operating conditions or environment during operation of the water treatment apparatus 110 and outputs it to the preprocessing unit 23.
  • the preprocessing unit 23 uses the acquired driving information to classify the data acquired from each measuring device into categories, and the estimation model generation unit 24 constructs an estimation model using the data classified into each category.
  • the coefficients related to each measurement data in the estimation model change depending on the driving conditions or the driving environment, it is possible to construct an estimation model classified according to the driving conditions or the driving environment. Further, by estimating the estimated total nitrogen concentration of treated water using an estimation model created according to such a category, it is possible to improve the estimation accuracy.
  • the water treatment control system 120 corresponds to a control device and may be provided for each water treatment device 110.
  • Water treatment control system 120 may be implemented by a computer system.
  • FIG. 9 is a diagram showing an example of the configuration of a computer system that implements the water treatment control system according to the first and second embodiments. As shown in FIG. 9, this computer system 80 includes a control section 81, an input section 82, a storage section 83, a display section 84, a communication section 85, and an output section 86, which are connected via a system bus 87. ing.
  • control unit 81 is, for example, a CPU (Central Processing Unit).
  • the control unit 81 executes a program in which each process performed by the water treatment control system 120 is described.
  • the input unit 82 includes, for example, a touch sensor, a keyboard, a mouse, etc., and is used by the user of the computer system 80 to input various information. In the embodiment described above, when accepting input from the operation manager, the input by the operation manager can be performed using the input unit 82.
  • the storage unit 83 includes various memories such as RAM (Random Access Memory) and ROM (Read Only Memory), and storage devices such as hard disks, and stores programs to be executed by the control unit 81 and necessary information obtained in the process. Store data etc.
  • the storage unit 83 is also used as a temporary storage area for programs.
  • the display unit 84 is composed of a liquid crystal display panel (LCD) or the like, and displays various screens to the user of the computer system 80.
  • the communication unit 85 is a communication circuit or the like that performs communication processing.
  • the communication unit 85 may be configured with a plurality of communication circuits each corresponding to a plurality of communication methods.
  • the output unit 86 is an output interface that outputs data to an external device such as a printer or an external storage device.
  • FIG. 9 is an example, and the configuration of the computer system 80 is not limited to the example of FIG. 9.
  • computer system 80 may not include output unit 86.
  • all of these computer systems 80 do not need to be the computer systems 80 shown in FIG.
  • some computer systems 80 may not include at least one of the display section 84, output section 86, and input section 82 shown in FIG.
  • the computer system 80 is operated until the program in which the method of generating an estimation model, the method of estimating the total nitrogen concentration of treated water, or the method of calculating a control target value, executed by the water treatment control system 120, becomes executable.
  • the computer system 80 having the above-described configuration includes, for example, a water treatment control system from a CD-ROM or DVD-ROM set in a CD (Compact Disc)-ROM drive or a DVD (Digital Versatile Disc)-ROM drive (not shown).
  • a program is installed in the storage unit 83 in which the operations of the method of generating the estimation model 120, the method of estimating the total nitrogen concentration of treated water, or the method of calculating the control target value are described.
  • the control unit 81 executes the processing of the water treatment control system 120 according to the program stored in the storage unit 83.
  • a CD-ROM or DVD-ROM is used as a recording medium to provide a program that describes the processing in the water treatment control system 120, but the configuration of the computer system 80 and the provision of the program are not limited to this.
  • a program provided via a transmission medium such as the Internet via the communication unit 85 may be used.
  • the estimation model generation process is performed by causing a computer to execute a program in which the procedure shown in FIG. 5 is described.
  • the process of estimating the total nitrogen concentration of the treated water is performed by causing a computer to execute a program in which the procedure shown in FIG. 6 is described.
  • the control target value calculation process is performed by causing a computer to execute a program in which the procedure shown in FIG. 7 is described.
  • the plant information storage section 22 shown in FIGS. 1 and 8 is part of the storage section 83 shown in FIG. 9.
  • Each of the state observation unit 21, preprocessing unit 23, estimation model generation unit 24, water quality estimation unit 25, control target value calculation unit 26, aeration amount control unit 27, and operation information recording unit 28 shown in FIGS. 1 and 8 is , a control section 81, an input section 82, a storage section 83, and a display section 84.
  • each processing section may be configured with one device, or some processing tools may be configured with one device.
  • the water treatment control system 120 may be constructed in a cloud environment.
  • a cloud environment includes computer resources provided in a cloud service platform.
  • a cloud service platform is provided by a cloud service provider, and includes, for example, PaaS (Platform as a Service). Since the water treatment control system 120 is constructed in a cloud environment, it may also be called a cloud server. Note that the water treatment control system 120 may be constructed in an environment other than a cloud environment, and is not limited to a cloud server.

Abstract

Provided is a water treatment control system that controls a water treatment device that mixes wastewater with activated sludge and obtains purified treated water, the water treatment control system comprising a state observation unit, a preprocessing unit, and a water quality estimation unit. The state observation unit: collects measurement values measured with a measurement instrument that measures the state of wastewater, or the state of treatment that the wastewater undergoes, at a point in a treatment path through which wastewater flowing into the water treatment device turns into treated water; and accumulates the measurement values at a plurality of times as time-series data. The preprocessing unit performs a predetermined process on the time-series data, and produces processed data. The water quality estimation unit uses an estimation model for inferring the total nitrogen concentration in the treated water, to estimate, from the processed data obtained by the processing in the preprocessing unit, a treated water total nitrogen concentration estimation value that is an estimation value of the total nitrogen concentration in the treated water. The preprocessing unit produces the processed data by considering, among the time-series data, the residence time in the treatment path of the treated water to be subjected to the estimation of total nitrogen concentration in the water quality estimation unit, and extracting the measurement values measured for the treated water to be subjected to the estimation.

Description

水処理制御システムおよび水処理装置の制御方法Water treatment control system and water treatment equipment control method
 本開示は、下水などの排水を浄化する水処理制御システムおよび水処理装置の制御方法に関する。 The present disclosure relates to a water treatment control system that purifies wastewater such as sewage and a method of controlling a water treatment device.
 下水中の窒素は活性汚泥法により処理されている。窒素除去は下水中のアンモニア態窒素(NH4-N)の硝化と、硝化により生成した硝酸態窒素(NO3-N)の脱窒と、によってなされる。硝化反応は好気的な条件で進行するので、活性汚泥に空気を供給する、すなわち曝気する必要がある。窒素除去を良好に維持するためには、生物反応槽末端の全窒素(Total Nitrogen:TN)濃度を計測器により逐次計測して窒素除去の現状を把握すること、およびこれに基づいた曝気量の制御を行うことが重要である。特許文献1では、脱窒タンクおよび後段の好気タンクに全窒素濃度計を設置して、生物処理状況を把握し、曝気量を調整している。また、特許文献1では、全窒素濃度を直接計測することに代えて、酸化還元電位(Oxidation-Reduction Potential:ORP)、溶存酸素(Dissolved Oxygen:DO)、水素イオン指数(pH)、紫外線(UltraViolet:UV)、汚泥混合液の浮遊物質(Mixed Liquor Suspended Solids:MLSS)の内1つ以上の計測値から全窒素濃度の値を推定する方法を開示している。 Nitrogen in sewage is treated using the activated sludge method. Nitrogen removal is performed by nitrification of ammonia nitrogen (NH4-N) in sewage and denitrification of nitrate nitrogen (NO3-N) produced by nitrification. Since the nitrification reaction proceeds under aerobic conditions, it is necessary to supply air to the activated sludge, that is, to aerate it. In order to maintain good nitrogen removal, it is necessary to successively measure the total nitrogen (TN) concentration at the end of the biological reactor with a measuring instrument to understand the current state of nitrogen removal, and to adjust the aeration amount based on this. It is important to have control. In Patent Document 1, a total nitrogen concentration meter is installed in a denitrification tank and a subsequent aerobic tank to grasp the biological treatment status and adjust the aeration amount. In addition, in Patent Document 1, instead of directly measuring the total nitrogen concentration, oxidation-reduction potential (ORP), dissolved oxygen (DO), hydrogen ion index (pH), ultraviolet rays (UltraViolet), Discloses a method for estimating the total nitrogen concentration value from one or more measured values of MLSS (Mixed Liquor Suspended Solids) and MLSS (Mixed Liquor Suspended Solids).
特開2004-275826号公報Japanese Patent Application Publication No. 2004-275826
 ところで、全窒素濃度計は高価であるので、特許文献1に記載の技術のように他の安価なセンサを利用する方法の積極的な活用が望まれる。しかし、生物反応槽末端の全窒素濃度は、流入水質または硝化工程における曝気量に強く影響を受けるので、特許文献1に記載の技術のように生物反応槽内の酸化還元電位、溶存酸素、水素イオン指数、紫外線および汚泥混合液の浮遊物質の内1つ以上の計測値を説明変数としても、全窒素濃度を精度よく推定することは困難である。このため、生物反応槽に全窒素濃度計を恒久的に設置することなく、処理水に含まれる全窒素濃度を従来に比して高い精度で推定することができる技術が望まれていた。 Incidentally, since the total nitrogen concentration meter is expensive, it is desired to actively utilize a method using other inexpensive sensors, such as the technique described in Patent Document 1. However, since the total nitrogen concentration at the end of the biological reactor is strongly affected by the quality of inflow water or the amount of aeration in the nitrification process, the technology described in Patent Document 1 Even if one or more of the measured values of the ion index, ultraviolet rays, and suspended solids of the sludge mixture are used as explanatory variables, it is difficult to accurately estimate the total nitrogen concentration. Therefore, there has been a desire for a technology that can estimate the total nitrogen concentration contained in treated water with higher accuracy than before without permanently installing a total nitrogen concentration meter in the biological reaction tank.
 本開示は、上記に鑑みてなされたものであって、生物反応槽に全窒素濃度計を恒久的に設置することなく、処理水に含まれる全窒素濃度を従来に比して高い精度で推定することができる水処理制御システムを得ることを目的とする。 The present disclosure has been made in view of the above, and the total nitrogen concentration contained in treated water can be estimated with higher accuracy than before without permanently installing a total nitrogen concentration meter in the biological reaction tank. The aim is to obtain a water treatment control system that can
 上述した課題を解決し、目的を達成するために、本開示に係る水処理制御システムは、排水を活性汚泥と混合し、浄化させた処理水を得る水処理装置を制御する水処理制御システムであって、状態観測部と、前処理部と、水質推定部と、を備える。状態観測部は、水処理装置に流入する排水が処理水となるまでの処理経路内の地点における排水の状態または排水が受ける処理の状態を計測する計測器で計測された計測値を収集し、複数の時刻における計測値を時系列データとして蓄積する。前処理部は、時系列データに対して定められた処理を行い、処理データを作成する。水質推定部は、処理水中の全窒素濃度を推論するための推定モデルを用いて、前処理部で処理された処理データから処理水中の全窒素濃度の推定値である処理水全窒素濃度推定値を推定する。前処理部は、時系列データの内、水質推定部での全窒素濃度の推定対象となる処理水の処理経路における滞留時間を考慮して、推定対象となる処理水について計測された計測値を抽出して処理データを作成する。 In order to solve the above-mentioned problems and achieve the objectives, a water treatment control system according to the present disclosure is a water treatment control system that controls a water treatment device that mixes wastewater with activated sludge and obtains purified treated water. It includes a state observation section, a pretreatment section, and a water quality estimation section. The condition observation unit collects measurement values measured by a measuring device that measures the condition of the wastewater or the condition of the treatment that the wastewater undergoes at a point in the treatment route until the wastewater flowing into the water treatment device becomes treated water, Accumulate measured values at multiple times as time series data. The preprocessing unit performs predetermined processing on time series data to create processed data. The water quality estimation unit uses an estimation model for inferring the total nitrogen concentration in the treated water to generate an estimated total nitrogen concentration in the treated water, which is an estimated value of the total nitrogen concentration in the treated water from the treated data processed in the pre-treatment unit. Estimate. The pre-processing unit calculates the measured value of the treated water, which is the target of estimation, out of the time-series data, taking into account the residence time in the treatment route of the treated water, which is the target of estimation of the total nitrogen concentration in the water quality estimation unit. Extract and create processing data.
 本開示に係る水処理制御システムは、生物反応槽に全窒素濃度計を恒久的に設置することなく、処理水に含まれる全窒素濃度を従来に比して高い精度で推定することができるという効果を奏する。 The water treatment control system according to the present disclosure is capable of estimating the total nitrogen concentration contained in treated water with higher accuracy than conventional methods without permanently installing a total nitrogen concentration meter in the biological reaction tank. be effective.
実施の形態1に係る水処理システムの構成の一例を模式的に示す図A diagram schematically showing an example of the configuration of a water treatment system according to Embodiment 1. 実施の形態1に係る水処理システムの水処理装置の構成の一例を示す図A diagram showing an example of the configuration of a water treatment device of the water treatment system according to Embodiment 1. 推定モデル生成部が使用するニューラルネットワークの一例を模式的に示す図Diagram schematically showing an example of a neural network used by the estimation model generation unit 好気槽アンモニウムイオン濃度と窒素除去量との関係の一例を示す図Diagram showing an example of the relationship between aerobic tank ammonium ion concentration and nitrogen removal amount 推定モデルの生成方法の手順の一例を示すフローチャートFlowchart showing an example of the steps of the estimation model generation method 処理水全窒素濃度推定値の推定方法の手順の一例を示すフローチャートFlowchart showing an example of the procedure for estimating the estimated total nitrogen concentration of treated water 制御目標値の算出方法の手順の一例を示すフローチャートFlowchart showing an example of the procedure for calculating the control target value 実施の形態2に係る水処理システムの構成の一例を模式的に示す図A diagram schematically showing an example of the configuration of a water treatment system according to Embodiment 2. 実施の形態1,2に係る水処理制御システムを実現するコンピュータシステムの構成の一例を示す図A diagram showing an example of the configuration of a computer system that implements the water treatment control system according to Embodiments 1 and 2.
 以下に、本開示の実施の形態に係る水処理制御システムおよび水処理装置の制御方法を図面に基づいて詳細に説明する。 Below, a water treatment control system and a water treatment device control method according to an embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係る水処理システムの構成の一例を模式的に示す図である。水処理システム100は、下水などの排水を活性汚泥による生物学的浄化技術によって浄化するシステムである。水処理システム100は、排水を活性汚泥と混合し、浄化させた処理水を得る水処理装置110と、水処理装置110を制御する水処理制御システム120と、を備える。
Embodiment 1.
FIG. 1 is a diagram schematically showing an example of the configuration of a water treatment system according to the first embodiment. The water treatment system 100 is a system that purifies wastewater such as sewage using biological purification technology using activated sludge. The water treatment system 100 includes a water treatment device 110 that mixes wastewater with activated sludge to obtain purified treated water, and a water treatment control system 120 that controls the water treatment device 110.
 水処理装置110は、生物反応槽の一例である、無酸素槽2と、好気槽3と、最終沈殿池4と、を備える。無酸素槽2は、処理の対象となる排水を受け入れる水槽である。好気槽3は、無酸素槽2から流出した処理液である無酸素槽処理液を受け入れる水槽である。最終沈殿池4は、好気槽3から流出した処理液である好気槽処理液を受入れ、好気槽処理液に含まれる活性汚泥を固液分離により分離して処理水を得る水槽である。また、水処理装置110は、硝化液循環ポンプ5と、汚泥引抜ポンプ9と、を備える。硝化液循環ポンプ5は、好気槽3に滞留している活性汚泥を無酸素槽2に送る。汚泥引抜ポンプ9は、最終沈殿池4の底部に堆積した活性汚泥を引き抜く。 The water treatment device 110 includes an anoxic tank 2, an aerobic tank 3, and a final settling tank 4, which are examples of biological reaction tanks. The anoxic tank 2 is a water tank that receives wastewater to be treated. The aerobic tank 3 is a water tank that receives the anoxic tank processing liquid that is the processing liquid that has flowed out from the anoxic tank 2. The final settling tank 4 is a tank that receives the aerobic tank treated liquid that is the treated liquid flowing out from the aerobic tank 3 and separates activated sludge contained in the aerobic tank treated liquid by solid-liquid separation to obtain treated water. . The water treatment device 110 also includes a nitrified liquid circulation pump 5 and a sludge extraction pump 9. The nitrification liquid circulation pump 5 sends activated sludge staying in the aerobic tank 3 to the anoxic tank 2. The sludge drawing pump 9 draws out activated sludge deposited at the bottom of the final settling tank 4.
 無酸素槽2には、流入水配管1が接続され、流入水配管1を介して排水が無酸素槽2に流入する。無酸素槽2は、水中撹拌機8を有する。水中撹拌機8は、無酸素槽2に滞留している活性汚泥と排水とを混合する。つまり、排水は、無酸素環境下、すなわち分子状酸素濃度が極端に低い状態で、活性汚泥によって処理される。具体的には、硝化液循環ポンプ5によって返送されてきた硝化液に含まれる硝酸イオン(NO3 -)を微生物の作用によって還元し、窒素ガスに変換して水中から除去する脱窒が、無酸素槽2で行われる。硝化液は、好気槽3に滞留していた活性汚泥混合液である。無酸素槽2から流出した活性汚泥混合液は好気槽3に流入する。 An inflow water pipe 1 is connected to the anoxic tank 2, and waste water flows into the anoxic tank 2 via the inflow water pipe 1. The anoxic tank 2 has an underwater stirrer 8. The underwater agitator 8 mixes the activated sludge and wastewater that have accumulated in the anoxic tank 2. That is, wastewater is treated with activated sludge in an anoxic environment, that is, in a state where the molecular oxygen concentration is extremely low. Specifically, denitrification is a process in which nitrate ions (NO 3 - ) contained in the nitrified solution returned by the nitrified solution circulation pump 5 are reduced by the action of microorganisms, converted into nitrogen gas, and removed from the water. This is done in oxygen tank 2. The nitrification liquid is an activated sludge mixture that has remained in the aerobic tank 3. The activated sludge mixture flowing out from the anoxic tank 2 flows into the aerobic tank 3.
 好気槽3は、底部に設けられ、好気槽3内に滞留する活性汚泥混合液への酸素供給を行う散気装置6と、配管を介して散気装置6に空気等の酸素含有ガスを圧送するブロア7と、を備える。好気槽3では、好気的条件で排水が処理される。具体的には、無酸素槽2から流出した活性汚泥混合液中に含まれるアンモニウムイオン(NH4 +)を微生物の作用により酸化し、硝酸イオンに変換する硝化が、好気槽3で行われる。上記したように、好気槽3には硝化液循環ポンプ5が接続されている。硝化液循環ポンプ5は、好気槽3内に滞留する活性汚泥混合液である硝化液の一部を引き抜き、無酸素槽2に返送する。好気槽3から流出した活性汚泥混合液は最終沈殿池4に流入する。 The aerobic tank 3 includes an aeration device 6 that is provided at the bottom and supplies oxygen to the activated sludge mixture remaining in the aerobic tank 3, and an oxygen-containing gas such as air to the aeration device 6 via piping. A blower 7 that pumps out the air is provided. In the aerobic tank 3, wastewater is treated under aerobic conditions. Specifically, nitrification, in which ammonium ions (NH 4 + ) contained in the activated sludge mixture flowing out from the anoxic tank 2 is oxidized by the action of microorganisms and converted into nitrate ions, is performed in the aerobic tank 3. . As described above, the nitrified liquid circulation pump 5 is connected to the aerobic tank 3. The nitrification liquid circulation pump 5 draws out a part of the nitrification liquid, which is an activated sludge mixture, that remains in the aerobic tank 3 and returns it to the anoxic tank 2 . The activated sludge mixture flowing out from the aerobic tank 3 flows into the final settling tank 4.
 最終沈殿池4は、好気槽3からの活性汚泥混合液を固液分離する。具体的には、流入した活性汚泥混合液の内、活性汚泥は重力沈降によって、最終沈殿池4下方へ沈降分離され、上澄水は最終沈殿池4の上部から流出し、処理水として、塩素消毒等の後段の処理に送られる。最終沈殿池4には汚泥引抜ポンプ9が接続されている。汚泥引抜ポンプ9は、最終沈殿池4の底部に堆積した活性汚泥の一部を引き抜いて無酸素槽2に返送するか、あるいは濃縮装置または脱水機などの汚泥処理プロセスに排出する。以下では、最終沈殿池4における上澄水は、好気槽3から流入した直後の活性汚泥混合液を意味するものとする。また、最終沈殿池4から流出した流出水は、最終沈殿池4で固液分離された液体を意味するものとする。さらに、以下の説明では、処理水は最終沈殿池4からの流出水であるものとするが、最終沈殿池4における上澄水としてもよい。 The final settling tank 4 separates the activated sludge mixture from the aerobic tank 3 into solid and liquid. Specifically, the activated sludge in the activated sludge mixture that has flowed in is separated by gravity sedimentation to the lower part of the final settling tank 4, and the supernatant water flows out from the upper part of the final settling tank 4, and is treated as treated water and subjected to chlorine disinfection. etc. are sent to subsequent processing. A sludge drawing pump 9 is connected to the final settling tank 4. The sludge extraction pump 9 extracts a portion of the activated sludge deposited at the bottom of the final settling tank 4 and returns it to the anoxic tank 2 or discharges it to a sludge treatment process such as a thickening device or a dehydrator. Hereinafter, the supernatant water in the final settling tank 4 will mean the activated sludge mixture immediately after flowing in from the aerobic tank 3. In addition, the effluent water flowing out from the final settling tank 4 refers to the liquid that has been separated into solid and liquid in the final settling tank 4. Furthermore, in the following explanation, it is assumed that the treated water is the outflow water from the final sedimentation tank 4, but it may also be the supernatant water in the final sedimentation tank 4.
 好気槽3における酸素供給、すなわち曝気にはブロア7を動作させる動力を要するので、この消費電力量を最小限に抑えるように必要十分な曝気量を見極めて曝気を実施することが求められている。好気槽3は硝化を目的に設置され、曝気量を増やすほど硝化促進が可能になる。しかしながら、やみくもに曝気量を増やすとブロア7の消費電力量が大きくなり、また硝化液に含まれる溶存酸素濃度が高くなり、硝化液循環ポンプ5で無酸素槽2に返送される硝化液の無酸素槽2での脱窒が阻害される。このように、硝化プロセスのみを考慮した曝気制御は必ずしも水処理システム100全体として最適とは言えず、脱窒プロセスまで考慮した水処理システム100全体としての窒素除去性能に注意を払った制御が必要である。つまり、処理水のアンモニウムイオン濃度ではなく、硝酸イオン濃度まで含めて評価可能な全窒素濃度に着目して曝気量を調整することが望ましい。実施の形態1に係る水処理システム100の水処理制御システム120では、水処理装置110内に設置されたいくつかの計測器から得られた情報から機械学習等の人工知能(Artificial Intelligence:AI)を用いて処理水の全窒素濃度を推定し、曝気量制御を行う。 Oxygen supply in the aerobic tank 3, that is, aeration, requires power to operate the blower 7, so it is necessary to determine the necessary and sufficient amount of aeration and carry out aeration so as to minimize this power consumption. There is. The aerobic tank 3 is installed for the purpose of nitrification, and the more the amount of aeration is increased, the more nitrification can be promoted. However, if the amount of aeration is increased blindly, the power consumption of the blower 7 will increase, and the dissolved oxygen concentration in the nitrification solution will increase, resulting in a loss of nitrification solution returned to the anoxic tank 2 by the nitrification solution circulation pump 5. Denitrification in the oxygen tank 2 is inhibited. In this way, aeration control that only considers the nitrification process is not necessarily optimal for the water treatment system 100 as a whole, and it is necessary to perform control that takes into account the denitrification process and pays attention to the nitrogen removal performance of the water treatment system 100 as a whole. It is. In other words, it is desirable to adjust the aeration amount by focusing on the total nitrogen concentration, which can be evaluated including the nitrate ion concentration, rather than the ammonium ion concentration of the treated water. The water treatment control system 120 of the water treatment system 100 according to the first embodiment uses artificial intelligence (AI) such as machine learning from information obtained from several measuring instruments installed in the water treatment equipment 110. is used to estimate the total nitrogen concentration of treated water and control the aeration amount.
 水処理装置110は、水処理装置110に流入する排水が処理水となるまでの処理経路内の地点における排水の状態または排水が受ける処理の状態を計測する計測器を備える。一例では、水処理装置110は、計測器である、流入水量計10と、流入水アンモニウムイオン濃度計11と、好気槽アンモニウムイオン濃度計12と、好気槽溶存酸素濃度計13と、曝気量計14と、を備える。流入水量計10は、流入水配管1に設けられ、流入水の水量である流入水量を計測する。流入水アンモニウムイオン濃度計11は、流入水配管1に設けられ、流入水のアンモニウム濃度である流入水アンモニウムイオン濃度を計測する。好気槽アンモニウムイオン濃度計12は、好気槽3に設けられ、好気槽3内のアンモニウムイオン濃度である好気槽アンモニウムイオン濃度を計測する。好気槽溶存酸素濃度計13は、好気槽3に設けられ、好気槽3内の溶存酸素濃度である好気槽溶存酸素濃度を計測する。曝気量計14は、好気槽3への空気の供給量である曝気量を計測する。一例では、曝気量計14は、ブロア7から好気槽3に空気を送風する配管に設けられ、ブロア7から好気槽3への曝気量を計測する。排水の状態の一例は、流入水量、流入水アンモニウムイオン濃度、好気槽アンモニウムイオン濃度、および好気槽溶存酸素濃度である。排水が受ける処理の状態の一例は、排水が受ける曝気処理の状態であり、曝気処理の状態を示すものが曝気量である。流入水アンモニウムイオン濃度計11は、第1アンモニウムイオン濃度計に対応し、好気槽アンモニウムイオン濃度計12は、第2アンモニウムイオン濃度計に対応し、好気槽溶存酸素濃度計13は、溶存酸素濃度計に対応する。 The water treatment device 110 includes a measuring device that measures the state of the wastewater or the state of the treatment that the wastewater undergoes at points in the treatment route until the wastewater flowing into the water treatment device 110 becomes treated water. In one example, the water treatment device 110 includes measuring instruments such as an inflow water flow meter 10, an inflow water ammonium ion concentration meter 11, an aerobic tank ammonium ion concentration meter 12, an aerobic tank dissolved oxygen concentration meter 13, and an aeration tank. A quantity meter 14 is provided. The inflow water meter 10 is provided in the inflow water pipe 1 and measures the amount of inflow water that is the amount of inflow water. The inflow water ammonium ion concentration meter 11 is provided in the inflow water pipe 1 and measures the inflow water ammonium ion concentration, which is the ammonium concentration of the inflow water. The aerobic tank ammonium ion concentration meter 12 is provided in the aerobic tank 3 and measures the aerobic tank ammonium ion concentration, which is the ammonium ion concentration in the aerobic tank 3. The aerobic tank dissolved oxygen concentration meter 13 is provided in the aerobic tank 3 and measures the aerobic tank dissolved oxygen concentration, which is the dissolved oxygen concentration in the aerobic tank 3. The aeration meter 14 measures the amount of aeration, which is the amount of air supplied to the aerobic tank 3 . In one example, the aeration amount meter 14 is provided in a pipe that blows air from the blower 7 to the aerobic tank 3, and measures the amount of aeration from the blower 7 to the aerobic tank 3. Examples of the state of wastewater are the amount of inflow water, the ammonium ion concentration in the inflow water, the ammonium ion concentration in the aerobic tank, and the dissolved oxygen concentration in the aerobic tank. An example of the state of treatment that wastewater undergoes is the state of aeration treatment that wastewater undergoes, and the amount of aeration indicates the state of aeration treatment. The influent ammonium ion concentration meter 11 corresponds to the first ammonium ion concentration meter, the aerobic tank ammonium ion concentration meter 12 corresponds to the second ammonium ion concentration meter, and the aerobic tank dissolved oxygen concentration meter 13 corresponds to the dissolved oxygen concentration meter. Compatible with oxygen concentration meters.
 これらの計測器は、一例では数秒置きから数10分置きに計測値を水処理制御システム120の状態観測部21に伝送する。伝送頻度の間隔が空きすぎると、処理水の全窒素濃度の推定の頻度が低下し、場合によっては処理水の全窒素濃度の推定値を根拠とした曝気量の制御が、排水の流入量または窒素などの汚濁物質濃度の変動である負荷変動に追従できなくなる可能性が生じる。このため、通常、計測値を伝送する周期は、1分以上10分程度以下に設定される。ただし、水処理システム100に流入する排水の負荷特性などによって調整が可能であり、この範囲に限定されるというわけではない。以下では、処理水の全窒素濃度は、処理水全窒素濃度と称され、処理水の全窒素濃度の推定値は、処理水全窒素濃度推定値と称される。 In one example, these measuring instruments transmit measured values to the state observation unit 21 of the water treatment control system 120 every few seconds to every few tens of minutes. If the transmission frequency is too far apart, the estimation of the total nitrogen concentration of the treated water will become less frequent, and in some cases, the control of the aeration amount based on the estimated total nitrogen concentration of the treated water may be based on the estimated value of the total nitrogen concentration of the treated water. There is a possibility that it will not be possible to follow load fluctuations, which are fluctuations in the concentration of pollutants such as nitrogen. For this reason, the cycle of transmitting measured values is usually set to 1 minute or more and about 10 minutes or less. However, it can be adjusted depending on the load characteristics of the wastewater flowing into the water treatment system 100, and is not limited to this range. Hereinafter, the total nitrogen concentration of the treated water will be referred to as the treated water total nitrogen concentration, and the estimated value of the total nitrogen concentration of the treated water will be referred to as the estimated treated water total nitrogen concentration.
 また、流入水アンモニウムイオン濃度計11は、必ずしも無酸素槽2よりも上流側に設置される必要はなく、無酸素槽2内に設置されてもよい。無酸素槽2では脱窒のみが発生してアンモニウムイオンの硝化、つまりアンモニウムイオンの分解は生じない。従って、無酸素槽2内のアンモニウムイオン濃度の計測は、活性汚泥による希釈のために、流入水アンモニウムイオン濃度と必ずしも同じにはならない。しかし、水処理装置110に供給されるアンモニウムイオンの負荷を把握する意味では流入水アンモニウムイオン濃度の計測と同じ意味を持っており、後の多変量処理に使用することができる。 Furthermore, the inflow water ammonium ion concentration meter 11 does not necessarily need to be installed upstream of the anoxic tank 2, and may be installed inside the anoxic tank 2. In the anoxic tank 2, only denitrification occurs, and nitrification of ammonium ions, that is, decomposition of ammonium ions does not occur. Therefore, the measurement of the ammonium ion concentration in the anoxic tank 2 is not necessarily the same as the inflow water ammonium ion concentration due to dilution with activated sludge. However, in terms of grasping the ammonium ion load supplied to the water treatment device 110, it has the same meaning as measuring the inflow water ammonium ion concentration, and can be used for later multivariate processing.
 水処理システム100は、無酸素槽2での脱窒プロセスまでを考慮した水処理システム100全体の窒素除去性能に基づいて、好気槽3への曝気量を制御する水処理制御システム120を備える。水処理制御システム120は、状態観測部21と、プラント情報記憶部22と、前処理部23と、推定モデル生成部24と、水質推定部25と、制御目標値算出部26と、曝気量制御部27と、を備える。 The water treatment system 100 includes a water treatment control system 120 that controls the amount of aeration to the aerobic tank 3 based on the nitrogen removal performance of the entire water treatment system 100, including the denitrification process in the anoxic tank 2. . The water treatment control system 120 includes a state observation section 21, a plant information storage section 22, a pretreatment section 23, an estimation model generation section 24, a water quality estimation section 25, a control target value calculation section 26, and an aeration amount control section. 27.
 状態観測部21は、各計測器から伝送されてきた計測器の値である計測値を収集し、複数の時刻における計測値を時系列データにして蓄積する。時系列データは、状態観測部21によって時系列順に蓄積された計測値である。多くの場合、計測器は、1V以上5V以下の電圧値、または4mA以上20mA以下の電流値によって濃度または流量の大小を表現するアナログ出力方式が採用される。状態観測部21は、このような信号を受信し、濃度または流量に換算できる装置である。一例では、プログラマブルロジックコントローラ(Programmable Logic Controller:PLC)またはアナログ信号の入出力機能を付加した汎用のパーソナルコンピュータが状態観測部21に使用される。ただし、計測器での計測値を受信して記録できればよいので、計測器は、アナログ出力仕様に限定されるわけではないし、状態観測部21も計測器の仕様と状態観測部21の目的を勘案して仕様が決められればよい。状態観測部21に蓄積する各計測器のデータ量に特に制限はない。状態観測部21は、受信した計測値のデータの一部、または全部を前処理部23に提供する。また、推定モデルを生成する場合には、状態観測部21は、受信した計測値のデータの一部、または全部を推定モデル生成部24に提供する。 The state observation unit 21 collects measured values that are the values of the measuring instruments transmitted from each measuring device, and stores the measured values at a plurality of times as time series data. The time-series data is measured values accumulated in chronological order by the state observation unit 21. In many cases, measuring instruments employ an analog output method that expresses the magnitude of concentration or flow rate by a voltage value of 1 V or more and 5 V or less, or a current value of 4 mA or more and 20 mA or less. The state observation unit 21 is a device that can receive such a signal and convert it into concentration or flow rate. In one example, a programmable logic controller (PLC) or a general-purpose personal computer with an analog signal input/output function is used for the state observation unit 21. However, since it is sufficient to be able to receive and record measured values from the measuring instrument, the measuring instrument is not limited to analog output specifications, and the condition observation section 21 also takes into account the specifications of the measuring instrument and the purpose of the condition observation section 21. The specifications can be determined by There is no particular limit to the amount of data from each measuring device that is stored in the state observation unit 21. The state observation unit 21 provides part or all of the received measurement value data to the preprocessing unit 23 . Further, when generating an estimated model, the state observation unit 21 provides the estimated model generation unit 24 with some or all of the received measured value data.
 プラント情報記憶部22は、主に水処理装置110の構成および構造に関する情報であるプラント情報を記憶する。プラント情報は、水処理装置110を構成する水槽、図1の例では、無酸素槽2、好気槽3および最終沈殿池4の有効容積を含む。有効容積は、各水槽におけるヘッドスペースを除く、正味の液体貯留可能量である。 The plant information storage unit 22 stores plant information that is mainly information regarding the configuration and structure of the water treatment device 110. The plant information includes the effective volumes of the water tanks that constitute the water treatment device 110, in the example of FIG. 1, the anoxic tank 2, the aerobic tank 3, and the final settling tank 4. Effective volume is the net liquid storage capacity in each tank, excluding headspace.
 前処理部23は、続く水質推定部25でのデータ処理に備え、状態観測部21から受けとった時系列データに対して定められた処理を行い、処理データを作成する。処理データは、前処理部23によって処理が行われた計測値である。一例では、前処理部23は、主に、(A)データ調整処理および(B)遅れ時間補正処理を実施する。以下に、(A)データ調整処理および(B)遅れ時間補正処理について順に説明する。 The preprocessing unit 23 performs predetermined processing on the time series data received from the condition observation unit 21 to create processed data in preparation for subsequent data processing in the water quality estimation unit 25. The processed data is a measurement value processed by the preprocessing unit 23. In one example, the preprocessing unit 23 mainly performs (A) data adjustment processing and (B) delay time correction processing. Below, (A) data adjustment processing and (B) delay time correction processing will be explained in order.
(A)データ調整処理
 データ調整処理では、前処理部23は、各計測器から得られたデータの異常値または外れ値の除去、あるいは欠損値の補間等を行う。各計測器によって、状態観測部21へのデータ伝送頻度が異なる場合には、それぞれの計測器で見かけ上、データ伝送頻度が等しくなるように不要なデータの除去または補間を行って調整することもデータ調整処理に含まれる。必要なデータ頻度は、後の推定モデル生成部24において構築する処理水全窒素濃度の推定モデルの要求仕様を考慮して運転管理者が決めるのが望ましい。一例では、5分間隔で推定値を出力するモデルを構築、運用する場合には、各計測器データのデータ伝送頻度も5分間隔となるように調整するのが望ましい。
(A) Data Adjustment Process In the data adjustment process, the preprocessing unit 23 removes abnormal values or outliers from the data obtained from each measuring instrument, or interpolates missing values. If the frequency of data transmission to the status observation unit 21 differs depending on each measuring device, adjustments may be made by removing unnecessary data or interpolating so that the data transmission frequency appears to be the same for each measuring device. Included in data adjustment processing. The necessary data frequency is desirably determined by the operation manager in consideration of the required specifications of the estimation model for the total nitrogen concentration of the treated water, which will be constructed later in the estimation model generating section 24. For example, when constructing and operating a model that outputs estimated values at 5-minute intervals, it is desirable to adjust the data transmission frequency of each measuring device data to be at 5-minute intervals.
 欠損値の補間方法として、例えば前後の正常値を両端とした線形補間、スプライン補間等の手法を使用することができる。異常値または外れ値の除去には、四分位範囲を参考に、次式(1),(2)のように外れ値を定義することによって除去してもよい。なお、四分位数は、データを小さい順に並べたときに、データの数で4等分した区切り値を指す数であり、第1四分位数は、小さい方から25%の区切り値であり、第3四分位数は、小さい方から75%の区切り値である。また、四分位範囲は、第1四分位数から第3四分位数までの範囲である。 As a method for interpolating missing values, a method such as linear interpolation or spline interpolation using the preceding and following normal values as both ends can be used, for example. Abnormal values or outliers may be removed by defining outliers as in the following equations (1) and (2) with reference to the interquartile range. Note that the quartile is a number that indicates the dividing value divided into four by the number of data when the data is arranged in descending order, and the first quartile is the dividing value of 25% from the smallest. Yes, and the third quartile is the 75% cutoff from the smallest. Also, the interquartile range is the range from the first quartile to the third quartile.
外れ値<第1四分位数-(1.5×四分位範囲) ・・・(1)
外れ値>第3四分位数+(1.5×四分位範囲) ・・・(2)
Outlier < 1st quartile - (1.5 x interquartile range) ... (1)
Outlier > 3rd quartile + (1.5 x interquartile range) ... (2)
 また、プラントの運転管理者等が予め異常値または外れ値を判定する閾値を計測器毎に設定しておいて、前処理部23が、データと閾値との比較による判定によって除去を行うものであってもよい。この場合、閾値を予め前処理部23に読み込ませておく必要があり、前処理部23が閾値入力部を有する構成とするか、あるいはプラント情報記憶部22に計測機毎の閾値を示す閾値情報を記憶しておき、プラント情報記憶部22から前処理部23に閾値情報を提供する構成にしてもよい。 In addition, a plant operation manager or the like sets a threshold value for each measuring device in advance to determine abnormal values or outliers, and the preprocessing unit 23 performs removal by comparing the data with the threshold value. There may be. In this case, it is necessary to read the threshold value into the preprocessing unit 23 in advance, and either the preprocessing unit 23 is configured to have a threshold input unit, or the plant information storage unit 22 has threshold information indicating the threshold value for each measuring device. may be stored, and the threshold information may be provided from the plant information storage section 22 to the preprocessing section 23.
 閾値に、一例では流量または濃度の絶対値が設定されてもよいし、これらのデータの時間変化量が設定されてもよい。データの時間変化量が閾値に設定される場合には、前処理部23は、各変数の時間変化量を算出した上で、閾値と比較する。つまり、計測値は常に変動するが、時間当たりの増減幅には適正な範囲が存在する。これから逸脱する速度で変化した場合には、計測環境が何らかの理由で正常な状態でなくなったか、計測器自身にエラーが起きた場合などが考えられる。このため、計測値の時間変化量による異常値または外れ値の判断は合理的であると言える。 For example, the absolute value of the flow rate or concentration may be set as the threshold value, or the amount of change in these data over time may be set. When the amount of change over time of data is set as a threshold value, the preprocessing unit 23 calculates the amount of change over time of each variable and compares it with the threshold value. In other words, although the measured value always fluctuates, there is an appropriate range for the amount of increase/decrease per hour. If the speed changes at a rate that deviates from this, it may be because the measurement environment is no longer in a normal state for some reason, or an error has occurred in the measuring instrument itself. Therefore, it can be said that it is reasonable to determine abnormal values or outliers based on the amount of change in measured values over time.
 また、前処理部23は、計測値の移動平均を算出して異常値または外れ値の影響を緩和してもよい。この場合には、当然、異常値または外れ値を除去した後の計測値で移動平均を算出してもよい。 Additionally, the preprocessing unit 23 may calculate a moving average of the measured values to alleviate the influence of abnormal values or outliers. In this case, of course, the moving average may be calculated using the measured values after removing abnormal values or outliers.
(B)遅れ時間補正処理
 前述のように水処理制御システム120は、処理水中に含まれる全窒素濃度を、他の計測器のデータを使用して推定する。実施の形態1の水処理制御システム120は、流入水アンモニウムイオン濃度計11、好気槽アンモニウムイオン濃度計12、好気槽溶存酸素濃度計13および曝気量計14の計測値を前述の前処理を行った上で使用する。
(B) Delay Time Correction Process As described above, the water treatment control system 120 estimates the total nitrogen concentration contained in the treated water using data from other measuring instruments. The water treatment control system 120 of the first embodiment performs the above-mentioned preprocessing on the measured values of the inflow water ammonium ion concentration meter 11, the aerobic tank ammonium ion concentration meter 12, the aerobic tank dissolved oxygen concentration meter 13, and the aeration amount meter 14. Use it after doing the following.
 ここで、ある時刻の処理水全窒素濃度は、ある時刻よりも無酸素槽2、好気槽3および最終沈殿池4における排水の合計滞留時間以前に流入した排水が、これらの各水槽で定められた処理を受けた結果によって決定されるものである。このため、ある時刻の処理水全窒素濃度と、同じある時刻の他の計測器のデータと、の間に強い関係が存在しない可能性もある。つまり、ある時刻Tの処理水全窒素濃度を上流側に設置された他の計測器で得られたデータから推定する場合には、それぞれの計測器が設置されている場所から、最終沈殿池4から流出する地点までの排水の流下時間すなわち滞留時間を考慮することがより正確な推定に必要であると考えられる。そこで、実施の形態1では、ある時刻Tから定められた滞留時間t分だけ遡った時刻の各計測器のデータが、処理水窒素濃度を推定するための説明変数に使用される。 Here, the total nitrogen concentration of the treated water at a certain time is determined by the amount of wastewater that has entered the anoxic tank 2, the aerobic tank 3, and the final settling tank 4 before the total residence time of the wastewater in the anoxic tank 2, aerobic tank 3, and final settling tank 4. This is determined by the results of the processing performed. Therefore, there is a possibility that there is no strong relationship between the total nitrogen concentration of treated water at a certain time and data from other measuring instruments at the same time. In other words, when estimating the total nitrogen concentration of treated water at a certain time T from data obtained from other measuring instruments installed upstream, the final settling tank 4 is estimated from the location where each measuring instrument is installed. For more accurate estimation, it is considered necessary to consider the flow time, that is, the residence time, of wastewater from the point to the point where it flows out. Therefore, in the first embodiment, data from each measuring device at a time that is a predetermined residence time t back from a certain time T is used as an explanatory variable for estimating the treated water nitrogen concentration.
 遅れ時間補正処理では、前処理部23は、同じ時期に流入した排水について計測された各計測項目を横並びに比較できるように、各計測器で収集した時系列データを同列に並べる処理を行う。つまり、前処理部23は、プラント情報記憶部22に記憶されるプラント情報に基づいて最終沈殿池4の出口までの流下時間を算出し、算出した流下時間を用いて、各計測器で収集した時系列データを同列に並べる処理を行う。 In the delay time correction process, the preprocessing unit 23 performs a process of arranging the time-series data collected by each measuring device in the same line so that each measurement item measured for wastewater flowing in at the same time can be compared side by side. In other words, the pretreatment unit 23 calculates the flow time to the outlet of the final settling tank 4 based on the plant information stored in the plant information storage unit 22, and uses the calculated flow time to calculate the flow time collected by each measuring instrument. Performs processing to arrange time series data in the same column.
 具体的には、前処理部23は、状態観測部21から時系列データを受け取り、プラント情報記憶部22に記憶されるプラント情報に基づいて、計測器の地点から処理水となる地点までの処理経路を排水が滞留する時間である滞留時間を算出する。そして、前処理部23は、計測器による計測値が同じ時期に流入した排水について測定されたものとなるように、時系列データを受け取った時刻から、測定器の地点までの滞留時間を遡った時刻の計測値である滞留時間を考慮した計測値を抽出し、処理データを作成する。各計測器について滞留時間を考慮した計測値を抽出したものが1つのデータセットとなる。 Specifically, the pre-processing unit 23 receives time-series data from the condition observation unit 21 and performs processing from the measuring instrument point to the point where the water becomes treated based on the plant information stored in the plant information storage unit 22. Calculate the residence time, which is the time the wastewater stays in the route. Then, the pre-processing unit 23 traces the residence time from the time when the time-series data was received to the point of measurement so that the measured values by the measuring device are those measured for wastewater that entered at the same time. A measured value that takes into account residence time, which is a measured value of time, is extracted and processed data is created. One data set is obtained by extracting the measured values of each measuring device in consideration of the residence time.
 滞留時間は、流入水量Qと、各計測器による計測地点から推定対象となる地点までに通過する水槽の有効容積Vで求めることができる。一例では、過去24時間の流入水量から1時間当たりの流入水量である平均流入水量を算出したものをQとし、Q/Vで求まる値を滞留時間tとすることができる。なお、各水槽の有効容積は、プラント情報記憶部22のプラント情報を参照して得ることができる。図1で最終沈殿池4から排出される流出水を処理水として処理水全窒素濃度推定値を求めたい場合には、流入水配管1から最終沈殿池4までの滞留時間が算出される。また、図1で上澄水を処理水として処理水全窒素濃度推定値を求めたい場合には、流入水配管1から最終沈殿池4の直前の好気槽3までの滞留時間が算出される。 The residence time can be determined by the amount of inflow water Q and the effective volume V of the water tank that passes from the measurement point by each measuring device to the point to be estimated. In one example, the average amount of inflow water calculated from the amount of inflow water for the past 24 hours, which is the amount of inflow water per hour, can be set as Q, and the value calculated by Q/V can be set as the residence time t. Note that the effective volume of each water tank can be obtained by referring to the plant information in the plant information storage section 22. In FIG. 1, when it is desired to obtain the estimated total nitrogen concentration of the treated water using the outflow water discharged from the final settling tank 4 as the treated water, the residence time from the inflow water piping 1 to the final settling tank 4 is calculated. Moreover, when it is desired to obtain the estimated total nitrogen concentration of the treated water using the supernatant water as the treated water in FIG. 1, the residence time from the inflow water pipe 1 to the aerobic tank 3 immediately before the final settling tank 4 is calculated.
 また、硝化液または最終沈殿池4からの返送汚泥が滞留時間に影響を与えると判断される場合には、これらの流量あるいはこれらの流入地点によってはいずれか一方を流入水量と合算してQとし、滞留時間tを求めてもよい。 In addition, if it is determined that the nitrification liquid or the sludge returned from the final settling tank 4 affects the retention time, either the flow rate of these liquids or, depending on the point of inflow, either one of them can be added to the inflow water volume and calculated as Q. , the residence time t may be determined.
 図2は、実施の形態1に係る水処理システムの水処理装置の構成の一例を示す図である。図2では、窒素とリンの同時除去を目的とする嫌気無酸素好気法(Anaerobic-Anoxic-Oxic法:A2O法)で水処理を行う場合の水処理装置110の構成の一例を示している。図2の水処理装置110は、図1の場合に比して、無酸素槽2の前段に嫌気槽15をさらに備える。嫌気槽15は、処理対象となる排水を受け入れる水槽である。嫌気槽15では空気を送らない状態で排水を撹拌し、リン蓄積細菌からリンを放出させる。無酸素槽2は、嫌気槽15から流出した処理液である嫌気槽処理液を受け入れる水槽となる。 FIG. 2 is a diagram illustrating an example of the configuration of a water treatment device of the water treatment system according to Embodiment 1. FIG. 2 shows an example of the configuration of the water treatment device 110 when water treatment is performed using an anaerobic-anoxic-oxic method (A2O method) that aims to simultaneously remove nitrogen and phosphorus. . The water treatment device 110 in FIG. 2 further includes an anaerobic tank 15 upstream of the anoxic tank 2, compared to the case in FIG. The anaerobic tank 15 is a water tank that receives wastewater to be treated. In the anaerobic tank 15, the wastewater is stirred without sending air, and phosphorus is released from the phosphorus-accumulating bacteria. The anoxic tank 2 serves as a water tank that receives the anaerobic tank processing liquid that is the processing liquid that has flowed out from the anaerobic tank 15.
 図2の場合には、好気槽3に滞留している活性汚泥が硝化液循環ポンプ5によって無酸素槽2に返送される。また、最終沈殿池4の底部に堆積した活性汚泥が汚泥引抜ポンプ9によって嫌気槽15に返送される。つまり、返送汚泥と硝化液との流入地点が異なっている。このような場合には、流入水配管1からの排水の流入量をQ1とし、最終沈殿池4からの返送汚泥の流入量をQ2とし、好気槽3からの硝化液の流入量をQ3とし、嫌気槽15の有効容積をV1とし、無酸素槽2の有効容積をV2すると、嫌気槽15での滞留時間T1と、無酸素槽2での滞留時間T2とは、それぞれ次式(3),(4)によって算出される。 In the case of FIG. 2, the activated sludge remaining in the aerobic tank 3 is returned to the anoxic tank 2 by the nitrification liquid circulation pump 5. Furthermore, the activated sludge deposited at the bottom of the final settling tank 4 is returned to the anaerobic tank 15 by the sludge extraction pump 9. In other words, the inflow points of the returned sludge and the nitrification liquid are different. In such a case, the inflow amount of wastewater from the inflow water pipe 1 is defined as Q1, the inflow amount of return sludge from the final settling tank 4 is defined as Q2, and the inflow amount of nitrification liquid from the aerobic tank 3 is defined as Q3. , when the effective volume of the anaerobic tank 15 is V1 and the effective volume of the anoxic tank 2 is V2, the residence time T1 in the anaerobic tank 15 and the residence time T2 in the anoxic tank 2 are expressed by the following equations (3). , (4).
T1=(Q1+Q2)/V1 ・・・(3)
T2=(Q1+Q2+Q3)/V2 ・・・(4)
T1=(Q1+Q2)/V1...(3)
T2=(Q1+Q2+Q3)/V2...(4)
 これらのように硝化液または返送汚泥が滞留時間に影響を与えると判断される場合、硝化液循環ポンプ5の二次側、および汚泥引抜ポンプ9の二次側で、かつ硝化液および返送汚泥が流れる配管上に、それぞれ流量計16,17が設置される。そして、それぞれの流量計16,17での計測値は、状態観測部21を経由して前処理部23に入力できるようされることが望ましい。これらの流量についても、流入水量と同じく、一例では、過去24時間の平均流量を算出して使用される。なお、実施の形態1では、処理水を最終沈殿池4の流出水であると定義したが、一例では最終沈殿池4内の上澄水にしてもよく、水処理装置110におけるいずれの点を処理水と定義するかは、水処理システム100の運転管理者が適宜設定することができる。要は各計測器が設置されている地点から全窒素濃度を推定したい処理水の地点までの滞留時間を算出することができる位置が定められていればよい。 If it is determined that the nitrification liquid or return sludge affects the retention time, the nitrification liquid or return sludge is Flowmeters 16 and 17 are installed on the flowing pipes, respectively. It is desirable that the measured values from each of the flowmeters 16 and 17 can be input to the preprocessing section 23 via the state observation section 21. For these flow rates as well, in one example, the average flow rate for the past 24 hours is calculated and used, just like the inflow water amount. In the first embodiment, the treated water is defined as the outflow water from the final sedimentation tank 4, but in one example, it may be the supernatant water in the final sedimentation tank 4, and any point in the water treatment device 110 can be treated. Whether water is defined as water can be determined as appropriate by the operation manager of the water treatment system 100. In short, it is only necessary to determine a position where the residence time from the point where each measuring device is installed to the point of the treated water whose total nitrogen concentration is to be estimated can be calculated.
 図1に戻り、前処理部23は、(A)データ調整処理を行った上で、(B)遅れ時間補正処理を実施し、計測値を調整し、補正する。具体的には、前処理部23は、排水が流入してから処理水として排出されるまでの間の各水槽での滞留時間を考慮して、各計測器間の時系列データにおける計測値を調整および補正して、同じ時期に流入した排水について各計測器で計測された計測値の組み合わせを1つのデータセットとする。つまり、前処理部23は、処理水として処理された排水が処理経路を通過したときに各計測器で計測された計測値を組み合わせたものを1つのデータセットとする。このため、同じ時刻における各計測器の計測値を1つのデータセットとするのではなく、処理経路における処理水全窒素濃度を推定したい地点から計測器が設置されている地点までの滞留時間を考慮して遡った時間の各計測器の計測値を1つのデータセットとする。このように調整、補正されたデータセットは、以下では遅れ時間補正後のデータセットと称され、処理データに対応する。前処理部23は、遅れ時間補正後のデータセットを水質推定部25に出力する。 Returning to FIG. 1, the preprocessing unit 23 performs (A) data adjustment processing and (B) delay time correction processing to adjust and correct the measured value. Specifically, the pre-treatment unit 23 calculates the measured values in the time-series data between the measuring instruments, taking into consideration the residence time in each water tank from when the wastewater flows in until it is discharged as treated water. After adjustment and correction, a combination of measured values measured by each measuring device for wastewater flowing in at the same time is made into one data set. In other words, the pre-processing unit 23 combines the measurement values measured by each measuring device when the wastewater treated as treated water passes through the treatment route into one data set. For this reason, instead of using the measured values of each measuring device at the same time as one data set, we consider the residence time from the point in the treatment route where you want to estimate the total nitrogen concentration of the treated water to the point where the measuring device is installed. The measured values of each measuring device over the time taken back to that time are set as one data set. The data set adjusted and corrected in this way is hereinafter referred to as a data set after delay time correction, and corresponds to processed data. The preprocessing unit 23 outputs the data set after the delay time correction to the water quality estimation unit 25.
 推定モデル生成部24は、前処理部23で遅れ時間補正後のデータセットを使用して、処理水全窒素濃度推定値を推定する推定モデルを構築する。 The estimation model generation unit 24 uses the data set after the delay time correction in the preprocessing unit 23 to construct an estimation model for estimating the estimated total nitrogen concentration of the treated water.
 推定モデル生成部24は、水質推定部25が処理水全窒素濃度の推定モデルを保持していない場合に、推定モデルの生成処理を実行する。処理水全窒素濃度は、流入水質および好気槽3での処理状態に強く依存し、特に、流入水アンモニウムイオン濃度、好気槽アンモニウムイオン濃度、好気槽溶存酸素濃度、および好気槽3への曝気量との関係が強いことが検討の結果明らかとなった。つまり、これらの値を使用することで、処理水全窒素濃度を定量的に精度よく推定可能となる。すなわち、推定モデル生成部24は、遅れ時間補正後のデータセットを使用し、流入水アンモニウムイオン濃度値、好気槽アンモニウムイオン濃度値、好気槽溶存酸素濃度値、および好気槽3への曝気量を説明変数とし、処理水全窒素濃度値を目的変数として機械学習などの多変量処理を行うことで処理水全窒素濃度の推定モデルを構築する。多変量処理には、一例では重回帰、主成分回帰、部分的最小二乗法(Partial Least Squares Regression:PLS)、サポートベクタ回帰(Support Vector Regression:SVR)、ニューラルネットワークによる深層学習等を使用することができる。 The estimated model generating unit 24 executes the process of generating an estimated model when the water quality estimating unit 25 does not hold an estimated model for the total nitrogen concentration of treated water. The total nitrogen concentration in the treated water strongly depends on the inflow water quality and the treatment state in the aerobic tank 3, and in particular, the inflow water ammonium ion concentration, the aerobic tank ammonium ion concentration, the aerobic tank dissolved oxygen concentration, and the aerobic tank 3. The results of the study revealed that there is a strong relationship with the amount of aeration. In other words, by using these values, it becomes possible to quantitatively and accurately estimate the total nitrogen concentration of the treated water. That is, the estimation model generation unit 24 uses the data set after the delay time correction and calculates the inflow water ammonium ion concentration value, the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, and the aerobic tank 3 A model for estimating the total nitrogen concentration of treated water is constructed by performing multivariate processing such as machine learning with the amount of aeration as an explanatory variable and the total nitrogen concentration of treated water as an objective variable. Examples of multivariate processing include multiple regression, principal component regression, partial least squares regression (PLS), support vector regression (SVR), and deep learning using neural networks. I can do it.
 推定モデルを構築する場合には、正解データを使用した学習が実施される。つまり、推定モデル生成部24は、正解データである処理水全窒素濃度の真値を、正解データの取得時刻に対応する遅れ時間補正後のデータセットと併せて保持し、これらのデータを用いて解析を行うことで、より高精度なモデルを得ることができる。処理水全窒素濃度の真値は、一例では、処理水の全窒素濃度を計測する処理水全窒素濃度計を最終沈殿池4に学習期間のみ仮設置することで得られる。前処理部23では、上記したように、処理水全窒素濃度の計測対象となる処理水が、流入水配管1から処理水が流出する地点までの処理経路を通過するときに、各計測器で計測された計測値を1つのデータセットとする。 When constructing an estimation model, learning is performed using correct data. In other words, the estimation model generation unit 24 holds the true value of the total nitrogen concentration of the treated water, which is the correct data, together with the data set after delay time correction corresponding to the acquisition time of the correct data, and uses these data to By performing analysis, a more accurate model can be obtained. In one example, the true value of the total nitrogen concentration of the treated water can be obtained by temporarily installing a treated water total nitrogen concentration meter for measuring the total nitrogen concentration of the treated water in the final settling tank 4 only during the learning period. In the pretreatment unit 23, as described above, when the treated water whose total nitrogen concentration is to be measured passes through the treatment route from the inflow water pipe 1 to the point where the treated water flows out, each measuring device measures the total nitrogen concentration of the treated water. Let the measured values be one data set.
 この場合、処理水全窒素濃度計は、処理水全窒素濃度の計測値を状態観測部21に出力し、前処理部23は、定められた前処理を行って、推定モデル生成部24に出力するようにしてもよい。この場合、処理水全窒素濃度計を恒常的に水処理装置110に設置する必要がない。また、通常、水処理システム100においては、複数の水処理装置110が並列して設けられることが多いので、処理水全窒素濃度計を複数の水処理装置110で使い回すことができる。 In this case, the treated water total nitrogen concentration meter outputs the measured value of the treated water total nitrogen concentration to the condition observation section 21, and the preprocessing section 23 performs a predetermined preprocessing and outputs it to the estimation model generation section 24. You may also do so. In this case, there is no need to permanently install a treated water total nitrogen concentration meter in the water treatment apparatus 110. Furthermore, in the water treatment system 100, a plurality of water treatment apparatuses 110 are often provided in parallel, so the treated water total nitrogen concentration meter can be used for the plurality of water treatment apparatuses 110.
 あるいは、処理水全窒素濃度の真値は、他の例では、運転管理者が、任意の間隔で水質分析を行った結果にしてもよい。この場合、運転管理者は、水質分析の結果を状態観測部21に入力してもよいし、推定モデル生成部24に直接入力してもよい。学習に必要な期間およびデータ数は、構築する推定モデルによって調整可能である。一例では、数分置きに推定値を出力する推定モデルを想定する場合には、推定値の出力頻度と同様な頻度で少なくとも24時間以上のデータを取得し、学習用データとするのがよい。 Alternatively, in another example, the true value of the total nitrogen concentration of the treated water may be the result of an operation manager performing water quality analysis at arbitrary intervals. In this case, the operation manager may input the results of the water quality analysis into the condition observation section 21 or directly into the estimation model generation section 24. The period and number of data required for learning can be adjusted depending on the estimation model to be constructed. For example, when assuming an estimation model that outputs estimated values every few minutes, it is preferable to acquire at least 24 hours of data at a frequency similar to the output frequency of estimated values and use it as learning data.
 ここで、機械学習によって推定モデルを生成する場合を例に挙げて、推定モデル生成部24の処理を説明する。推定モデル生成部24は、前処理部23から出力される遅れ時間補正後のデータセットと、処理水全窒素濃度の真値と、の組合せに基づいて作成される学習用データに基づいて、処理水全窒素濃度推定値を学習する。すなわち、水処理装置110の遅れ時間補正後のデータセットおよび処理水全窒素濃度の真値から最適な処理水全窒素濃度推定値を推論する学習済モデルである推定モデルを生成する。ここで、学習用データは、遅れ時間補正後のデータセットおよび処理水全窒素濃度の真値を互いに関連付けたデータである。遅れ時間補正後のデータセットは、処理水全窒素濃度の真値を測定した時刻である測定時刻から、それぞれの計測器の地点の排水の滞留時間まで遡った時刻における流入水アンモニウムイオン濃度値、好気槽アンモニウムイオン濃度値、好気槽溶存酸素濃度値および好気槽3への曝気量の組合せである。流入水アンモニウムイオン濃度値は、第1アンモニウムイオン濃度値に対応し、好気槽アンモニウムイオン濃度値は、第2アンモニウムイオン濃度値に対応し、好気槽溶存酸素濃度値は、溶存酸素濃度値に対応する。 Here, the processing of the estimated model generation unit 24 will be explained using an example in which an estimated model is generated by machine learning. The estimated model generation unit 24 performs processing based on the learning data created based on the combination of the data set after delay time correction output from the preprocessing unit 23 and the true value of the total nitrogen concentration of the treated water. Learn estimated water total nitrogen concentration. That is, an estimation model that is a trained model that infers an optimal estimated value of total nitrogen concentration in treated water is generated from the data set after the delay time correction of water treatment device 110 and the true value of total nitrogen concentration in treated water. Here, the learning data is data in which the data set after delay time correction and the true value of the total nitrogen concentration of treated water are associated with each other. The data set after delay time correction is the inflow water ammonium ion concentration value at the time from the measurement time, which is the time when the true value of the treated water total nitrogen concentration was measured, to the residence time of wastewater at each measuring instrument point, This is a combination of the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, and the aeration amount to the aerobic tank 3. The inflow water ammonium ion concentration value corresponds to the first ammonium ion concentration value, the aerobic tank ammonium ion concentration value corresponds to the second ammonium ion concentration value, and the aerobic tank dissolved oxygen concentration value corresponds to the dissolved oxygen concentration value. corresponds to
 なお、推定モデル生成部24は、水処理システム100から独立した学習装置によって構成されていてもよい。この学習装置は、水処理システム100の処理水全窒素濃度推定値を学習するために使用されるが、例えば、ネットワークを介して水処理システム100の水処理制御システム120に接続され、この水処理制御システム120とは別個の装置であってもよい。また、学習装置は、クラウドサーバ上に存在していてもよい。 Note that the estimated model generation unit 24 may be configured by a learning device independent from the water treatment system 100. This learning device is used to learn the estimated total nitrogen concentration in the treated water of the water treatment system 100, and is connected to the water treatment control system 120 of the water treatment system 100 via a network, for example. Control system 120 may be a separate device. Further, the learning device may exist on a cloud server.
 推定モデル生成部24が用いる学習アルゴリズムは教師あり学習等の公知のアルゴリズムを用いることができる。一例として、ニューラルネットワークを適用した場合について説明する。 The learning algorithm used by the estimated model generation unit 24 can be a known algorithm such as supervised learning. As an example, a case where a neural network is applied will be explained.
 推定モデル生成部24は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習により、処理水全窒素濃度推定値を学習する。ここで、教師あり学習とは、入力と結果であるラベルとのデータの組を学習装置に与えることで、それらの学習用データにある特徴を学習し、入力から結果を推論する手法をいう。 The estimated model generation unit 24 learns the estimated total nitrogen concentration of the treated water by, for example, so-called supervised learning according to a neural network model. Here, supervised learning refers to a method in which a set of data consisting of input and a label as a result is given to a learning device, thereby learning features in the learning data and inferring a result from the input.
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層、および複数のニューロンからなる出力層で構成される。中間層は、隠れ層とも称され、1層でもよいし、2層以上でもよい。 A neural network is composed of an input layer consisting of multiple neurons, an intermediate layer consisting of multiple neurons, and an output layer consisting of multiple neurons. The intermediate layer is also called a hidden layer, and may have one layer or two or more layers.
 図3は、推定モデル生成部が使用するニューラルネットワークの一例を模式的に示す図である。例えば、図3に示されるような3層のニューラルネットワークであれば、複数の入力が入力層X1から入力層X3に入力されると、その値にw11からw16で示される重みを掛けて中間層Y1から中間層Y2に入力される。重みw11からw16は、個々に区別しない場合には、重みw1と称される。また、中間層Y1から中間層Y2の結果にさらにw21からw26で示される重みを掛けて出力層Z1から出力層Z3から出力される。重みw21からw26は、個々に区別しない場合には、重みw2と称される。出力層Z1から出力層Z3の出力結果は、重みw1,w2の値によって変わる。 FIG. 3 is a diagram schematically showing an example of a neural network used by the estimation model generation section. For example, in a three-layer neural network as shown in FIG. 3, when multiple inputs are input from input layer X1 to input layer It is input from Y1 to intermediate layer Y2. Weights w11 to w16 are referred to as weights w1 when not individually distinguished. Furthermore, the results from the intermediate layer Y1 to Y2 are further multiplied by weights shown by w21 to w26 and output from the output layers Z1 to Z3. Weights w21 to w26 are referred to as weights w2 if not distinguished individually. The output results from output layer Z1 to output layer Z3 vary depending on the values of weights w1 and w2.
 実施の形態1において、ニューラルネットワークは、状態観測部21によって取得され、前処理部23によって処理される遅れ時間補正後のデータセットおよび処理水全窒素濃度の真値の組合せに基づいて作成される学習用データに従って、いわゆる教師あり学習により、処理水全窒素濃度推定値を学習する。 In the first embodiment, the neural network is created based on a combination of the data set after delay time correction acquired by the state observation unit 21 and processed by the preprocessing unit 23 and the true value of the total nitrogen concentration of the treated water. According to the learning data, the estimated total nitrogen concentration of the treated water is learned by so-called supervised learning.
 すなわち、ニューラルネットワークは、入力層に遅れ時間補正後のデータセットを入力して出力層から出力された結果が、処理水全窒素濃度の真値に近づくように重みw1と重みw2とを調整することで学習する。 That is, the neural network inputs the data set after delay time correction to the input layer and adjusts the weight w1 and the weight w2 so that the result output from the output layer approaches the true value of the total nitrogen concentration of the treated water. Learn by doing.
 推定モデル生成部24は、以上のような学習を実行することで推定モデルを生成し、出力する。 The estimated model generation unit 24 generates and outputs an estimated model by performing the above learning.
 以上の推定モデルの生成処理は、運転管理者等が予め推定モデルを構築し、水質推定部25に入力しておけば必ずしも必要ではなく、必要に応じて運転管理者等が実施の判断を行う。また、推定モデルが予め入力されている場合であっても、推定モデルの更新が必要と判断される場合には、処理水全窒素濃度の真値を上述の通り取得して、推定モデルの生成処理を実施し、推定モデルを更新してもよい。 The above estimation model generation process is not necessarily necessary if the operation manager etc. constructs the estimation model in advance and inputs it to the water quality estimation unit 25, and the operation manager etc. can decide whether to perform it as necessary. . In addition, even if the estimation model has been input in advance, if it is determined that the estimation model needs to be updated, the true value of the total nitrogen concentration of the treated water is obtained as described above, and the estimation model is generated. The estimation model may be updated by performing processing.
 図1に戻り、水質推定部25は、構築した推定モデル、あるいは予め入力されている推定モデルを用いて、前処理部23から入力される滞留時間を考慮した計測値から処理水全窒素濃度推定値を推定する。具体的には、水質推定部25は、前処理部23から出力された遅れ時間補正後のデータセットの内、各計測器の最も新しい遅れ時間補正後のデータセットを推定モデルに入力して、推定時刻における処理水全窒素濃度推定値を算出する。実施の形態1に係る水処理システム100は、逐次現時刻の処理水全窒素濃度推定値を出力するので、状態観測部21から前処理部23へのデータ提供頻度、および前処理部23から水質推定部25へのデータ提供頻度は、推定モデルによる推定頻度以上であることが望ましい。また、前処理部23から水質推定部25に受け渡すデータは、推定モデルを構築済みで推定のみを行う場合には、現時刻の処理水全窒素濃度推定値を算出する上で必要な時刻のデータのみあればよい。 Returning to FIG. 1, the water quality estimating unit 25 estimates the total nitrogen concentration of the treated water from the measured values input from the pre-processing unit 23, taking into account the residence time, using the constructed estimation model or the estimation model input in advance. Estimate the value. Specifically, the water quality estimating unit 25 inputs the latest data set after delay time correction of each measuring instrument among the data sets after delay time correction output from the preprocessing unit 23 into the estimation model. Calculate the estimated total nitrogen concentration of treated water at the estimated time. Since the water treatment system 100 according to the first embodiment sequentially outputs the estimated total nitrogen concentration of the treated water at the current time, the frequency of data provision from the condition observation unit 21 to the pretreatment unit 23 and the water quality from the pretreatment unit 23 are It is desirable that the frequency of providing data to the estimation unit 25 is equal to or higher than the frequency estimated by the estimation model. In addition, if the estimation model has already been constructed and only estimation is performed, the data passed from the pre-processing unit 23 to the water quality estimating unit 25 is the time required to calculate the estimated total nitrogen concentration of the treated water at the current time. All you need is data.
 なお、ここでは、水処理制御システム120の推定モデル生成部24で学習した推定モデルを用いて処理水全窒素濃度推定値を出力するものとして説明したが、他の水処理システム100等の外部から推定モデルを取得し、この推定モデルに基づいて処理水全窒素濃度推定値を出力するようにしてもよい。 It should be noted that although the explanation has been made here assuming that the estimated total nitrogen concentration value of the treated water is output using the estimation model learned by the estimation model generation unit 24 of the water treatment control system 120, it is assumed that the estimated value of total nitrogen concentration in the treated water is output. An estimated model may be obtained, and the estimated total nitrogen concentration of the treated water may be output based on this estimated model.
 制御目標値算出部26は、蓄積された、処理水全窒素濃度推定値から算出される水処理装置110での窒素除去量と流入水アンモニウムイオン濃度値との関係から窒素除去量が最大となる流入水アンモニウムイオン濃度値を制御目標値として取得する。 The control target value calculation unit 26 determines that the amount of nitrogen removed is maximized based on the relationship between the amount of nitrogen removed in the water treatment device 110 calculated from the accumulated estimated total nitrogen concentration of the treated water and the ammonium ion concentration value of the influent water. Obtain the inflow water ammonium ion concentration value as the control target value.
 上述のとおり、排水の処理においては、硝化、脱窒を総合的にとらえた曝気量制御が理想的である。このため、実施の形態1に係る水処理制御システム120では、窒素除去量を指標にして好気槽3における曝気量を調整する。窒素除去量は、処理水全窒素濃度と流入水の全窒素濃度との差から求めることができる。一例では、都市下水などの生活排水が主に含まれる排水の場合には、流入水に含まれる窒素は、ほぼ全量がアンモニウムイオンであるので、窒素除去量は流入水のアンモニウムイオン濃度値と処理水全窒素濃度値との差で求めることができる。より厳密に窒素除去量を推定する場合には、あるいはアンモニウムイオン濃度のみでは流入水全窒素濃度を推定できないことが明らかな場合には、流入水の全窒素濃度を計測可能な全窒素濃度計が設置される。 As mentioned above, in wastewater treatment, it is ideal to control the amount of aeration that comprehensively considers nitrification and denitrification. Therefore, in the water treatment control system 120 according to the first embodiment, the amount of aeration in the aerobic tank 3 is adjusted using the amount of nitrogen removed as an index. The amount of nitrogen removed can be determined from the difference between the total nitrogen concentration of the treated water and the total nitrogen concentration of the inflow water. For example, in the case of wastewater that mainly contains domestic wastewater such as urban sewage, the nitrogen contained in the inflow water is almost entirely ammonium ions, so the amount of nitrogen removed is determined by the ammonium ion concentration value of the inflow water and the treatment. It can be determined by the difference from the water total nitrogen concentration value. If you want to estimate the amount of nitrogen removal more precisely, or if it is clear that the total nitrogen concentration of the influent cannot be estimated from ammonium ion concentration alone, a total nitrogen concentration meter that can measure the total nitrogen concentration of the influent is recommended. will be installed.
 実施の形態1に係る水処理制御システム120では、推定モデルによって算出した処理水全窒素濃度推定値と、推定時刻から流入水アンモニウムイオン濃度計11の設置位置まで滞留時間分遡った時刻における推定対象の処理水についての流入水アンモニウムイオン濃度と、の差を窒素除去量として扱う。検討の結果、窒素除去量と好気槽アンモニウムイオン濃度との間には強い相関があり、窒素除去量が最大となる好気槽アンモニウムイオン濃度が存在することが明らかとなった。図4は、好気槽アンモニウムイオン濃度と窒素除去量との関係の一例を示す図である。図4において、横軸は、好気槽アンモニウムイオン濃度を示し、縦軸は、窒素除去量を示している。図4に示されるように、好気槽アンモニウムイオン濃度に対する窒素除去量は、上に凸の関係にあることが分かる。 In the water treatment control system 120 according to the first embodiment, the estimated value of total nitrogen concentration in the treated water calculated by the estimation model and the estimated target at the time when the residence time has gone back from the estimated time to the installation position of the inflow water ammonium ion concentration meter 11 are used. Treat the difference between the inflow ammonium ion concentration and the treated water as the amount of nitrogen removed. As a result of the study, it was revealed that there is a strong correlation between the amount of nitrogen removed and the ammonium ion concentration in the aerobic tank, and that there is an aerobic tank ammonium ion concentration at which the amount of nitrogen removed is maximum. FIG. 4 is a diagram showing an example of the relationship between the aerobic tank ammonium ion concentration and the amount of nitrogen removed. In FIG. 4, the horizontal axis shows the aerobic tank ammonium ion concentration, and the vertical axis shows the amount of nitrogen removed. As shown in FIG. 4, it can be seen that the amount of nitrogen removed with respect to the ammonium ion concentration in the aerobic tank has an upwardly convex relationship.
 好気槽3におけるアンモニウムイオン濃度は硝化反応の進行具合、すなわち曝気量の大小に依存する。好気槽アンモニウムイオン濃度が低い状況は、曝気量が多く硝化が十分に進行している状況であるが、同時に硝化液に含まれる溶存酸素濃度も高くなっており、脱窒が進みにくくなり、窒素除去量でみれば改善の余地がある状況でもあると考えられる。一方、好気槽アンモニウムイオン濃度が高い状況は、硝化が不十分で処理水にアンモニウムイオンが流出している状態であり、やはり窒素除去量でみれば低く、改善の余地がある状況である。このようなメカニズムによって、図4に示されるような上に凸の関係が得られると考えられる。ただし、この関係性は常に一定でなく、季節または水温、流入水量、水質、特にアンモニウムイオン濃度等によって変化すると考えられる。 The ammonium ion concentration in the aerobic tank 3 depends on the progress of the nitrification reaction, that is, the amount of aeration. When the ammonium ion concentration in the aerobic tank is low, it means that the amount of aeration is large and nitrification is progressing sufficiently, but at the same time, the dissolved oxygen concentration in the nitrified solution is also high, making it difficult for denitrification to proceed. In terms of the amount of nitrogen removed, there seems to be room for improvement. On the other hand, when the ammonium ion concentration in the aerobic tank is high, nitrification is insufficient and ammonium ions are flowing into the treated water, and the amount of nitrogen removed is still low, so there is room for improvement. It is thought that such a mechanism provides an upwardly convex relationship as shown in FIG. 4. However, this relationship is not always constant and is thought to change depending on the season, water temperature, amount of inflow water, water quality, especially ammonium ion concentration, etc.
 そこで、実施の形態1に係る水処理制御システム120では、制御目標値算出部26は、推定モデルにより逐次推定された処理水全窒素濃度推定値と、対応する流入水アンモニウムイオン濃度値と、の差分から窒素除去量を求め、蓄積する。さらに、制御目標値算出部26は、処理水全窒素濃度推定値を推定した時刻である推定時刻に、処理水全窒素濃度推定値の算出に使用した好気槽アンモニウムイオン濃度も同時に記録する。これらのデータを蓄積することで、図4に示されるような好気槽アンモニウムイオン濃度と窒素除去量との関係を得ることができる。そして、図4に示されるような関係について、上に凸の二次関数で近似を行う。この近似式から窒素除去量が最大となる好気槽アンモニウムイオン濃度値を算出し、この好気槽アンモニウムイオン濃度値を制御目標値に設定する。 Therefore, in the water treatment control system 120 according to the first embodiment, the control target value calculation unit 26 calculates the estimated value of the treated water total nitrogen concentration sequentially estimated by the estimation model and the corresponding inflow water ammonium ion concentration value. The amount of nitrogen removed is calculated from the difference and accumulated. Furthermore, the control target value calculation unit 26 simultaneously records the aerobic tank ammonium ion concentration used to calculate the estimated treated water total nitrogen concentration at the estimated time that is the time when the estimated treated water total nitrogen concentration is estimated. By accumulating these data, it is possible to obtain the relationship between the aerobic tank ammonium ion concentration and the amount of nitrogen removed as shown in FIG. Then, the relationship shown in FIG. 4 is approximated by an upwardly convex quadratic function. The aerobic tank ammonium ion concentration value that maximizes the nitrogen removal amount is calculated from this approximate expression, and this aerobic tank ammonium ion concentration value is set as the control target value.
 ここで、近似式を作成するためのデータの内古いデータは適宜削除するようにして、近似式を更新するのが望ましい。硝化または脱窒は水温に影響を受け、水温が大きく異なる時期の情報を混合して近似曲線を作成することは、好気槽アンモニウムイオン濃度の算出の不正確さの原因になる可能性もある。この点でも、古いデータを適宜更新することは有用である。従って、一例では、現時刻から直近3ヶ月前程度の範囲のデータを使用することが望ましい。以上のように、制御目標値算出部26は、処理水全窒素濃度推定値の推定時刻から定められた期間内のデータを用いて近似式を算出することが望ましい。 Here, it is desirable to update the approximate formula by appropriately deleting old data among the data used to create the approximate formula. Nitrification or denitrification is affected by water temperature, and creating an approximate curve by mixing information from periods when water temperatures are significantly different may cause inaccuracies in calculating aerobic tank ammonium ion concentration. . In this respect as well, it is useful to update old data as appropriate. Therefore, in one example, it is desirable to use data in the range from the current time to the most recent three months ago. As described above, it is desirable that the control target value calculation unit 26 calculates the approximate expression using data within a predetermined period from the estimated time of the estimated total nitrogen concentration of the treated water.
 図1に戻り、曝気量制御部27は、好気槽3の好気槽アンモニウムイオン濃度値が制御目標値となるように、曝気量を制御する。一例では、曝気量制御部27は、好気槽アンモニウムイオン濃度が制御目標値算出部26によって設定された制御目標値に近づくようブロア7を制御する。制御の一例は、P(Proportional)制御、PI(Proportional-Integral)制御、PD(Proportional-Differential)制御、PID(Proportional-Integral-Differential)制御等であり、好気槽3内のアンモニウムイオン濃度が制御目標値に近づくよう曝気量を調整することができるものであればよい。また、実施の形態1では、ブロア7の出力を直接操作するようにしたが、例えばブロア7の二次側配管に曝気量を調整するバルブを設けておき、このバルブの開度調整を行って曝気量を調整してもよい。 Returning to FIG. 1, the aeration amount control unit 27 controls the aeration amount so that the aerobic tank ammonium ion concentration value of the aerobic tank 3 becomes the control target value. In one example, the aeration amount control unit 27 controls the blower 7 so that the aerobic tank ammonium ion concentration approaches the control target value set by the control target value calculation unit 26. Examples of control include P (Proportional) control, PI (Proportional-Integral) control, PD (Proportional-Differential) control, PID (Proportional-Integral-Differential) control, etc., and the ammonium ion concentration in the aerobic tank 3 is Any device that can adjust the aeration amount so as to approach the control target value may be used. Further, in the first embodiment, the output of the blower 7 is directly operated, but for example, a valve for adjusting the amount of aeration is provided in the secondary side piping of the blower 7, and the opening degree of this valve is adjusted. The amount of aeration may be adjusted.
 つぎに、このような構成を有する水処理制御システム120における推定モデルの生成方法と、処理水全窒素濃度推定値の推定方法および制御目標値の算出方法を含む水処理装置110の制御方法と、について説明する。 Next, a method of generating an estimation model in the water treatment control system 120 having such a configuration, a method of controlling the water treatment device 110 including a method of estimating the estimated total nitrogen concentration of the treated water, and a method of calculating the control target value, I will explain about it.
<推定モデルの生成方法>
 水処理制御システム120で推定モデルを生成する処理を説明する。図5は、推定モデルの生成方法の手順の一例を示すフローチャートである。
<How to generate the estimation model>
The process of generating an estimation model in the water treatment control system 120 will be explained. FIG. 5 is a flowchart illustrating an example of the procedure of the estimation model generation method.
 状態観測部21は、流入水アンモニウムイオン濃度値、好気槽アンモニウムイオン濃度値、好気槽溶存酸素濃度値、好気槽3への曝気量および処理水全窒素濃度の真値を含む時系列データを取得する(ステップS11)。 The condition observation unit 21 generates a time series including true values of the inflow water ammonium ion concentration value, the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, the aeration amount to the aerobic tank 3, and the treated water total nitrogen concentration. Data is acquired (step S11).
 ついで、前処理部23は、取得した流入水アンモニウムイオン濃度値、好気槽アンモニウムイオン濃度値、好気槽溶存酸素濃度値および好気槽3への曝気量の時系列データについて、データ調整および遅れ時間補正を行い、遅れ時間補正後のデータセットを生成する(ステップS12)。 Next, the preprocessing unit 23 performs data adjustment and processing on the acquired time series data of the inflow water ammonium ion concentration value, the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, and the aeration amount to the aerobic tank 3. The delay time is corrected, and a data set after the delay time correction is generated (step S12).
 また、前処理部23は、処理水全窒素濃度の真値と、遅れ時間補正後のデータセットと、を対応付けて学習用データを生成する(ステップS13)。一例では、処理水全窒素濃度の真値に対して、この処理水全窒素濃度の真値を取得した時刻から、滞留時間を考慮して各計測器の地点まで遡った時刻の遅れ時間補正後のデータセットを対応付ける。なお、遅れ時間補正後のデータセットおよび処理水全窒素濃度の真値を同時に取得するものとしたが、遅れ時間補正後のデータセットおよび処理水全窒素濃度の真値を関連づけて入力できればよく、遅れ時間補正後のデータセットおよび処理水全窒素濃度の真値のデータをそれぞれ別のタイミングで取得してもよい。 Furthermore, the preprocessing unit 23 generates learning data by associating the true value of the total nitrogen concentration of the treated water with the data set after the delay time correction (step S13). In one example, the true value of the total nitrogen concentration in the treated water is corrected by the delay time from the time when the true value of the total nitrogen concentration in the treated water is acquired, taking into account the residence time to the point of each measuring instrument. map the datasets. Although the data set after delay time correction and the true value of the total nitrogen concentration in treated water were acquired at the same time, it is sufficient if the data set after delay time correction and the true value of total nitrogen concentration in treated water can be input in association with each other. The data set after the delay time correction and the data of the true value of the total nitrogen concentration of the treated water may be acquired at different timings.
 ついで、推定モデル生成部24は、遅れ時間補正後のデータセットおよび処理水全窒素濃度の真値の組合せに基づいて作成される学習用データに従って、いわゆる教師あり学習により、処理水全窒素濃度推定値を学習し、学習済モデルである推定モデルを生成する(ステップS14)。 Next, the estimation model generation unit 24 estimates the total nitrogen concentration of the treated water by so-called supervised learning, according to the learning data created based on the combination of the data set after delay time correction and the true value of the total nitrogen concentration of the treated water. The value is learned and an estimated model that is a learned model is generated (step S14).
 そして、推定モデル生成部24は、生成した推定モデルを水質推定部25に出力する(ステップS15)。これによって、水質推定部25は、推定モデルを取得する。以上で、推定モデル生成部24での推定モデルの学習処理が終了する。 Then, the estimated model generation unit 24 outputs the generated estimated model to the water quality estimation unit 25 (step S15). Thereby, the water quality estimating unit 25 obtains the estimated model. With this, the estimation model learning process in the estimation model generation unit 24 is completed.
<処理水全窒素濃度推定値の推定方法>
 次に、水処理制御システム120で処理水全窒素濃度推定値を推定する処理を説明する。図6は、処理水全窒素濃度推定値の推定方法の手順の一例を示すフローチャートである。
<Method for estimating total nitrogen concentration in treated water>
Next, a process for estimating the estimated total nitrogen concentration of treated water in the water treatment control system 120 will be described. FIG. 6 is a flowchart illustrating an example of a procedure for estimating the estimated total nitrogen concentration of treated water.
 まず、状態観測部21は、流入水アンモニウムイオン濃度値、好気槽アンモニウムイオン濃度値、好気槽溶存酸素濃度値および好気槽3への曝気量を含む時系列データを取得する(ステップS31)。 First, the condition observation unit 21 acquires time series data including the inflow water ammonium ion concentration value, the aerobic tank ammonium ion concentration value, the aerobic tank dissolved oxygen concentration value, and the aeration amount to the aerobic tank 3 (step S31 ).
 ついで、前処理部23は、取得した流入水アンモニウムイオン濃度値、好気槽アンモニウムイオン濃度値、好気槽溶存酸素濃度値および好気槽3への曝気量について、データ調整および遅れ時間補正を行い、遅れ時間補正後のデータセットを生成する(ステップS32)。 Next, the preprocessing unit 23 performs data adjustment and delay time correction on the acquired inflow water ammonium ion concentration value, aerobic tank ammonium ion concentration value, aerobic tank dissolved oxygen concentration value, and aeration amount to the aerobic tank 3. and generates a data set after delay time correction (step S32).
 その後、水質推定部25は、推定モデルに遅れ時間補正後のデータセットを入力し、処理水全窒素濃度推定値を得る(ステップS33)。 After that, the water quality estimation unit 25 inputs the data set after the delay time correction to the estimation model, and obtains the estimated total nitrogen concentration of the treated water (step S33).
 ついで、水質推定部25は、推定モデルにより得られた処理水全窒素濃度推定値を制御目標値算出部26に出力する(ステップS34)。 Next, the water quality estimation unit 25 outputs the estimated total nitrogen concentration of the treated water obtained by the estimation model to the control target value calculation unit 26 (step S34).
 その後、制御目標値算出部26は、蓄積された、好気槽アンモニウムイオン濃度値と、処理水全窒素濃度推定値から算出される水処理装置110での窒素除去量と、の関係から窒素除去量が最大となる好気槽アンモニウムイオン濃度値を制御目標値として算出する(ステップS35)。制御目標値算出部26は、算出した制御目標値を曝気量制御部27に渡し、曝気量制御部27は、好気槽アンモニウムイオン濃度が制御目標値となるように、曝気量を制御する。これによって、好気槽3内では、窒素除去量が最大となるように曝気量が制御されるので、硝化、脱窒を総合的にとらえた曝気量制御を行うことが可能となる。 Thereafter, the control target value calculation unit 26 calculates the nitrogen removal amount based on the relationship between the accumulated aerobic tank ammonium ion concentration value and the amount of nitrogen removed in the water treatment device 110 calculated from the estimated total nitrogen concentration value of the treated water. The aerobic tank ammonium ion concentration value with the maximum amount is calculated as the control target value (step S35). The control target value calculation section 26 passes the calculated control target value to the aeration amount control section 27, and the aeration amount control section 27 controls the aeration amount so that the aerobic tank ammonium ion concentration becomes the control target value. As a result, the amount of aeration is controlled in the aerobic tank 3 so that the amount of nitrogen removed is maximized, so that it is possible to control the amount of aeration that comprehensively considers nitrification and denitrification.
 なお、実施の形態1では、推定モデル生成部24が用いる学習アルゴリズムに教師あり学習を適用した場合について説明したが、これに限られるものではない。 Note that in the first embodiment, a case has been described in which supervised learning is applied to the learning algorithm used by the estimation model generation unit 24, but the present invention is not limited to this.
 また、推定モデル生成部24は、複数の水処理システム100に対して作成される学習用データに従って、処理水全窒素濃度推定値を学習するようにしてもよい。なお、推定モデル生成部24は、同一のエリアで使用される複数の水処理システム100から学習用データを取得してもよいし、異なるエリアで独立して動作する複数の水処理システム100から収集される学習用データを利用して処理水全窒素濃度推定値を学習してもよい。また、学習用データを収集する水処理システム100を途中で対象に追加したり、対象から除去したりすることも可能である。さらに、ある水処理システム100に関して処理水全窒素濃度推定値を学習した学習装置である推定モデル生成部24を、これとは別の水処理システム100に適用し、当該別の水処理システム100に関して処理水全窒素濃度推定値を再学習して更新するようにしてもよい。 Furthermore, the estimated model generation unit 24 may learn the estimated total nitrogen concentration of the treated water according to learning data created for the plurality of water treatment systems 100. Note that the estimated model generation unit 24 may acquire learning data from a plurality of water treatment systems 100 used in the same area, or may acquire learning data from a plurality of water treatment systems 100 that operate independently in different areas. The estimated total nitrogen concentration of the treated water may be learned using the learning data. Furthermore, it is also possible to add or remove the water treatment system 100 that collects learning data from the target during the process. Furthermore, the estimation model generation unit 24, which is a learning device that has learned the estimated total nitrogen concentration of treated water with respect to a certain water treatment system 100, is applied to another water treatment system 100, and The estimated total nitrogen concentration of the treated water may be re-learned and updated.
 さらに、推定モデル生成部24に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。 Furthermore, as a learning algorithm used in the estimation model generation unit 24, deep learning, which learns the extraction of the feature values themselves, can be used, and other known methods such as genetic programming, functional logic programming, etc. , support vector machines, etc. may be performed.
<制御目標値の算出方法>
 次に、水処理制御システム120で制御目標値を算出する処理を説明する。図7は、制御目標値の算出方法の手順の一例を示すフローチャートである。まず、制御目標値算出部26は、水質推定部25からの処理水全窒素濃度推定値と、処理水全窒素濃度推定値の推定対象の排水についての流入水アンモニウムイオン濃度値および好気槽アンモニウムイオン濃度値と、を取得する(ステップS51)。
<How to calculate control target value>
Next, a process of calculating a control target value in the water treatment control system 120 will be explained. FIG. 7 is a flowchart illustrating an example of a procedure for calculating a control target value. First, the control target value calculation section 26 calculates the estimated total nitrogen concentration of the treated water from the water quality estimating section 25, the ammonium ion concentration value of the inflow water and the aerobic tank ammonium The ion concentration value is acquired (step S51).
 ついで、制御目標値算出部26は、処理水全窒素濃度推定値と流入水アンモニウムイオン濃度値との差分から窒素除去量を算出する(ステップS52)。また、制御目標値算出部26は、算出した窒素除去量を好気槽アンモニウムイオン濃度値に対応付けて蓄積する(ステップS53)。すなわち、窒素除去量と好気槽アンモニウムイオン濃度値との組のデータを蓄積する。 Next, the control target value calculation unit 26 calculates the amount of nitrogen removed from the difference between the estimated total nitrogen concentration of the treated water and the ammonium ion concentration of the inflow water (step S52). Further, the control target value calculation unit 26 stores the calculated nitrogen removal amount in association with the aerobic tank ammonium ion concentration value (step S53). That is, data of a set of nitrogen removal amount and aerobic tank ammonium ion concentration value is accumulated.
 その後、制御目標値算出部26は、蓄積された窒素除去量と好気槽アンモニウムイオン濃度値との組の複数のデータを用いて、好気槽アンモニウムイオン濃度値に対する窒素除去量の近似式を算出する(ステップS54)。また、制御目標値算出部26は、算出した近似式から窒素除去量が最大となる好気槽アンモニウムイオン濃度値を取得し、制御目標値とする(ステップS55)。制御目標値算出部26は、制御目標値を曝気量制御部27に出力する。以上で、処理が終了する。その後は、曝気量制御部27は、好気槽アンモニウムイオン濃度計12から得られる好気槽アンモニウムイオン濃度値が制御目標値となるように、曝気量を制御する。 Thereafter, the control target value calculation unit 26 uses a plurality of sets of accumulated nitrogen removal amount and aerobic tank ammonium ion concentration value to calculate an approximate formula for the nitrogen removal amount with respect to the aerobic tank ammonium ion concentration value. Calculate (step S54). Further, the control target value calculation unit 26 acquires the aerobic tank ammonium ion concentration value that maximizes the nitrogen removal amount from the calculated approximate expression, and sets it as the control target value (step S55). The control target value calculation unit 26 outputs the control target value to the aeration amount control unit 27. With this, the process ends. After that, the aeration amount control unit 27 controls the aeration amount so that the aerobic tank ammonium ion concentration value obtained from the aerobic tank ammonium ion concentration meter 12 becomes the control target value.
 従来では、処理水全窒素濃度推定値を推定する推定時刻における、酸化還元電位、溶存酸素、水素イオン指数、紫外線、汚泥混合液の浮遊物質の内1つ以上の計測値から算出した全窒素濃度の値を用いており、処理水全窒素濃度推定値の推定対象となる排水について得られる計測値を用いるものではないので、処理水全窒素濃度推定値の推定精度が低下してしまっていた。しかし、実施の形態1の水処理システム100では、前処理部23が、各計測器からのデータが同じ時期に流入した排水について計測されたものとなるように、データを受け取った時刻から、計測器の地点までの滞留時間を遡った時刻の計測値を抽出し、データセットを生成する。水質推定部25は、生成したデータセットを推定モデルに入力して、推定時刻における処理水全窒素濃度推定値を推定する。これによって、生物反応槽である最終沈殿池4に全窒素濃度計を恒久的に設置することなく、処理水に含まれる全窒素濃度を従来に比して高い精度で推定することができるという効果を有する。また、処理水に含まれる全窒素濃度の把握において、高価な全窒素濃度計の恒久的な設置が不要となるため、水処理システム100のコストを大幅に低減することができる。 Conventionally, the total nitrogen concentration calculated from one or more of the measured values of oxidation-reduction potential, dissolved oxygen, hydrogen ion index, ultraviolet rays, and suspended solids of the sludge mixture at the estimated time of estimating the estimated total nitrogen concentration of treated water. The estimation accuracy of the estimated total nitrogen concentration in the treated water was reduced because the measured value obtained for the wastewater, which is the target of the estimation of the estimated total nitrogen concentration in the treated water, was not used. However, in the water treatment system 100 of the first embodiment, the pretreatment unit 23 starts the measurement from the time when the data is received so that the data from each measuring device is measured for wastewater flowing in at the same time. A data set is generated by extracting the measured value of the time of residence up to the point of the vessel. The water quality estimation unit 25 inputs the generated data set into the estimation model and estimates the estimated total nitrogen concentration of the treated water at the estimated time. This has the effect that the total nitrogen concentration contained in treated water can be estimated with higher accuracy than before without permanently installing a total nitrogen concentration meter in the final settling tank 4, which is a biological reaction tank. has. Further, in understanding the total nitrogen concentration contained in the treated water, it is not necessary to permanently install an expensive total nitrogen concentration meter, so the cost of the water treatment system 100 can be significantly reduced.
 また、制御目標値算出部26は、処理水全窒素濃度推定値と、処理水全窒素濃度推定値の推定対象である排水の流入水アンモニウムイオン濃度値と、の差から窒素除去量を算出する。また、制御目標値算出部26は、窒素除去量と好気槽アンモニウムイオン濃度値との組み合わせを蓄積したデータを用いて窒素除去量が最大となる好気槽アンモニウムイオン濃度の値を取得し、取得した好気槽アンモニウムイオン濃度の値を制御目標値とする。曝気量制御部27は、好気槽アンモニウムイオン濃度が制御目標値となるように曝気量を制御する。このように、実施の形態1では、処理水のアンモニウムイオン濃度だけではなく、処理水の硝酸イオン濃度まで含めて評価可能な全窒素濃度に着目して曝気量の制御を行うことで、水処理システム100における運転コストを抑制しながら、良好な処理水質を得ることができる。 In addition, the control target value calculation unit 26 calculates the amount of nitrogen removed from the difference between the estimated total nitrogen concentration of the treated water and the ammonium ion concentration value of the wastewater inflow, which is the target of estimation of the estimated total nitrogen concentration of the treated water. . In addition, the control target value calculation unit 26 acquires the value of the aerobic tank ammonium ion concentration that maximizes the nitrogen removal amount using data that has accumulated the combination of the nitrogen removal amount and the aerobic tank ammonium ion concentration value, The obtained value of the aerobic tank ammonium ion concentration is set as the control target value. The aeration amount control unit 27 controls the aeration amount so that the aerobic tank ammonium ion concentration becomes a control target value. In this way, in Embodiment 1, the aeration amount is controlled by focusing not only on the ammonium ion concentration of the treated water but also on the total nitrogen concentration, which can be evaluated including the nitrate ion concentration of the treated water. Good quality of treated water can be obtained while reducing operating costs in the system 100.
 なお、実施の形態1では、水処理装置110が無酸素槽2と好気槽3とを1槽ずつ具備する場合を示したが、水処理装置110の形態が限定されるものではない。水処理装置110は、一例では、図2に示されるような嫌気槽15、無酸素槽2および好気槽3が並ぶ嫌気無酸素好気法を適用した構成でもよいし、嫌気好気法(Anaerobic-Oxic法:AO法)を適用した構成でもよい。 In addition, in Embodiment 1, the case where the water treatment device 110 includes one anoxic tank 2 and one aerobic tank 3 is shown, but the form of the water treatment device 110 is not limited. For example, the water treatment device 110 may have a configuration to which an anaerobic anoxic aerobic method is applied, in which an anaerobic tank 15, an anoxic tank 2, and an aerobic tank 3 are lined up as shown in FIG. A structure to which the Anaerobic-Oxic method (AO method) is applied may also be used.
 また、各処理工程の水槽の数は1つに限らず、嫌気工程、無酸素工程および好気工程の各水槽を複数並べてもよい。いずれの場合にも、流入水アンモニウムイオン濃度および流入水量、必要な場合に硝化液循環量または返送汚泥流量を計測することができればよい。曝気量を説明変数にして取り入れる場合には、各好気槽3に供給された曝気量の合計量を把握し、説明変数に使用できるようにしてもよいし、あるいは各水槽に与えられた曝気量をそれぞれ計測器で把握し、説明変数に使用できるようにしてもよい。好気槽溶存酸素濃度値および好気槽アンモニウムイオン濃度値については、各好気槽3に好気槽アンモニウムイオン濃度計12および好気槽溶存酸素濃度計13を設置して、それぞれをすべて説明変数に使用できるようにしてもよい。あるいは、少なくとも最も下流に位置する好気槽3に好気槽アンモニウムイオン濃度計12および好気槽溶存酸素濃度計13を設置して説明変数に使用できるようにしてもよい。重要なのは、流入水アンモニウムイオン濃度値と、処理の過程で供給された曝気量と、末端の好気槽3での好気槽アンモニウムイオン濃度値および好気槽溶存酸素濃度値と、を把握でき、さらに各計測器から処理水全窒素濃度の推定点または計測点までの滞留時間を算出できるだけの情報を取得できることであり、これを実現できる構成であればよい。 Furthermore, the number of water tanks for each treatment process is not limited to one, and a plurality of water tanks for each of the anaerobic process, anoxic process, and aerobic process may be arranged. In either case, it is only necessary to be able to measure the ammonium ion concentration of inflow water, the amount of inflow water, and, if necessary, the amount of nitrified liquid circulated or the flow rate of returned sludge. When incorporating the amount of aeration as an explanatory variable, the total amount of aeration supplied to each aerobic tank 3 may be determined and used as an explanatory variable, or the amount of aeration given to each aquarium 3 may be determined and used as an explanatory variable. Each quantity may be measured using a measuring instrument and used as an explanatory variable. Regarding the aerobic tank dissolved oxygen concentration value and aerobic tank ammonium ion concentration value, an aerobic tank ammonium ion concentration meter 12 and an aerobic tank dissolved oxygen concentration meter 13 are installed in each aerobic tank 3, and each is fully explained. It may be possible to use it as a variable. Alternatively, an aerobic tank ammonium ion concentration meter 12 and an aerobic tank dissolved oxygen concentration meter 13 may be installed at least in the aerobic tank 3 located most downstream so that they can be used as explanatory variables. What is important is that the influent ammonium ion concentration value, the amount of aeration supplied during the treatment process, the aerobic tank ammonium ion concentration value and the aerobic tank dissolved oxygen concentration value in the aerobic tank 3 at the end can be grasped. Furthermore, it is possible to obtain enough information from each measuring device to calculate the residence time to the estimation point or measurement point of the total nitrogen concentration of the treated water, and any configuration that can realize this is sufficient.
 水処理装置110には、流入水配管1が分岐して排水が水処理装置110の最上流部だけでなく、中流部にも流入するステップ流入する構造のものも存在する。このようなステップ流入する構造の場合には、流入水アンモニウムイオン濃度の計測地点は流入水配管1上でよいが、各流入地点への流入量を計測し、これを基に処理水全窒素濃度の推定点または計測点までの滞留時間を算出し、それぞれの地点から流入する排水のアンモニウムイオン濃度を説明変数にしてモデル構築に使用するのがよい。 Some water treatment apparatuses 110 have a structure in which the inflow water pipe 1 branches and the wastewater flows into the water treatment apparatus 110 not only at the most upstream section but also at the midstream section. In the case of such a step-inflow structure, the measurement point for the inflow water ammonium ion concentration may be on the inflow water pipe 1, but the inflow amount to each inflow point is measured and the total nitrogen concentration of the treated water is determined based on this. It is best to calculate the residence time to the estimated or measured point, and use the ammonium ion concentration of the wastewater flowing in from each point as an explanatory variable in building the model.
 また、実施の形態1において、処理水全窒素濃度推定値の推定に使用した説明変数は一例にすぎず、他の計測値の説明変数への組み込みまたは省略を否定するものではない。一例では、いずれかの水槽の汚泥混合液の浮遊物質濃度、水温、無酸素槽2の酸化還元電位等を計測し、状態観測部21に送信し、前処理部23で上記した前処理を行って、水質推定部25での説明変数に使用してもよい。 Furthermore, in Embodiment 1, the explanatory variables used to estimate the estimated total nitrogen concentration of treated water are merely examples, and this does not negate the inclusion or omission of other measured values in the explanatory variables. In one example, the suspended solids concentration of the sludge mixture in one of the water tanks, the water temperature, the oxidation-reduction potential of the anoxic tank 2, etc. are measured and transmitted to the condition observation section 21, and the pretreatment section 23 performs the above-described pretreatment. It may also be used as an explanatory variable in the water quality estimating section 25.
 水処理制御システム120に示した状態観測部21、前処理部23、プラント情報記憶部22、推定モデル生成部24、水質推定部25、制御目標値算出部26および曝気量制御部27は、それぞれ独立した計算機としてデータ連携ができるように構成してもよいし、それぞれを一つの計算機の中でプログラムとして構成して、プログラム間でデータ連携を行うようにしてもよい。いずれにしても各計測器からのデータ受信が可能で、曝気量制御目標値をブロア7もしくはこれに付帯するインバータまたは曝気量調整バルブに出力できるインタフェースを持った装置として構成されればよい。 The state observation section 21, pretreatment section 23, plant information storage section 22, estimation model generation section 24, water quality estimation section 25, control target value calculation section 26, and aeration amount control section 27 shown in the water treatment control system 120 are each The computers may be configured to perform data linkage as independent computers, or each may be configured as a program in one computer, and data linkage may be performed between the programs. In any case, it may be configured as a device that can receive data from each measuring device and has an interface that can output an aeration amount control target value to the blower 7 or an attached inverter or an aeration amount adjustment valve.
実施の形態2.
 図8は、実施の形態2に係る水処理システムの構成の一例を模式的に示す図である。なお、実施の形態1と同一の構成要素には同一の符号を付して、その説明を省略し、実施の形態1と異なる部分について説明する。
Embodiment 2.
FIG. 8 is a diagram schematically showing an example of the configuration of a water treatment system according to the second embodiment. Note that the same components as in Embodiment 1 are given the same reference numerals, and the explanation thereof will be omitted, and only the different parts from Embodiment 1 will be explained.
 実施の形態2の水処理システム100では、水処理制御システム120が、運転情報記録部28をさらに備える。運転情報記録部28は、水処理装置110の運転条件または水処理装置110の運転時の運転環境を含む運転情報を取得する。運転条件の一例は、好気槽3における曝気量の制御方式である。運転環境の一例は、天候、水温、降雨量、日付、曜日、季節である。 In the water treatment system 100 of the second embodiment, the water treatment control system 120 further includes an operation information recording section 28. The operating information recording unit 28 acquires operating information including the operating conditions of the water treatment device 110 or the operating environment when the water treatment device 110 is operated. An example of the operating conditions is a control method for the amount of aeration in the aerobic tank 3. Examples of operating environments are weather, water temperature, rainfall, date, day of the week, and season.
 推定モデル生成部24は、処理水全窒素濃度推定値を推定するモデルの構築に、実施の形態1で説明したように各種の計測器のデータを使用する。しかし、推定モデル内での計測器のデータの取り扱い、つまり推定モデル内の各計測器のデータにかかる係数が、運転条件または水温、天候等の運転環境によって変化することがある。よって、状況に応じて適した推定モデルを構築し、使い分けることで、処理水全窒素濃度推定値の推定精度を高く維持することができる。 The estimated model generation unit 24 uses data from various measuring instruments as described in the first embodiment to construct a model for estimating the estimated total nitrogen concentration of the treated water. However, the handling of measuring instrument data within the estimation model, that is, the coefficients related to the data of each measuring instrument within the estimation model, may change depending on operating conditions or operating environments such as water temperature and weather. Therefore, by constructing and using appropriate estimation models depending on the situation, it is possible to maintain a high estimation accuracy of the estimated total nitrogen concentration in treated water.
 そこで、実施の形態2の水処理システム100では、運転情報記録部28が、運転当日の天候、水温、降雨量、日付、曜日、季節、曝気量の制御方式等の運転情報を記録し、前処理部23に提供する。 Therefore, in the water treatment system 100 of the second embodiment, the operation information recording unit 28 records operation information such as the weather, water temperature, rainfall amount, date, day of the week, season, and aeration amount control method on the day of operation, and The information is provided to the processing unit 23.
 曝気量制御方式は、好気槽3における曝気量の制御方式を示す情報である。曝気量制御方式は、一例では、好気槽溶存酸素濃度に目標値を定めて、好気槽溶存酸素濃度が目標値近傍で推移するよう曝気量を自動調整するモードである溶存酸素制御モード、実施の形態1で示したように好気槽アンモニウムイオン濃度に目標値を定めて曝気量を制御するモードであるアンモニウムイオン制御モード、流入水量と比例するように曝気量を制御するモードである流量比例制御モード等の複数のモードを含む。 The aeration amount control method is information indicating the aeration amount control method in the aerobic tank 3. An example of the aeration amount control method is a dissolved oxygen control mode, which is a mode in which a target value is set for the aerobic tank dissolved oxygen concentration and the aeration amount is automatically adjusted so that the aerobic tank dissolved oxygen concentration changes around the target value; As shown in Embodiment 1, the ammonium ion control mode is a mode in which the aeration amount is controlled by setting a target value for the aerobic tank ammonium ion concentration, and the flow rate is a mode in which the aeration amount is controlled in proportion to the inflow water amount. Includes multiple modes such as proportional control mode.
 実施の形態1に示したアンモニウムイオン制御モードでは、推定した処理水全窒素濃度推定値は、曝気量の制御に利用されていた。一方、溶存酸素制御モードおよび流量比例制御モードでは、処理水全窒素濃度推定値は、曝気量の制御には使用されないが、処理水の全窒素濃度を逐次把握するために用いられる。すなわち、処理状況の確認に処理水全窒素濃度推定値が用いられることもある。一例では、制御目標値算出部26からの制御目標値を使用したアンモニウムイオン制御モードをオフにして、溶存酸素制御モードに移行し、処理水全窒素濃度推定値は処理状態の逐次把握のみを目的に行う場合もある。このような場合に、運転情報記録部28は、曝気量制御方式が変更になったことを記録し、変更後のモードを現在の制御方式として記録する。 In the ammonium ion control mode shown in Embodiment 1, the estimated total nitrogen concentration of the treated water was used to control the aeration amount. On the other hand, in the dissolved oxygen control mode and the flow rate proportional control mode, the estimated total nitrogen concentration of the treated water is not used to control the aeration amount, but is used to successively grasp the total nitrogen concentration of the treated water. That is, the estimated total nitrogen concentration of treated water may be used to confirm the treatment status. In one example, the ammonium ion control mode that uses the control target value from the control target value calculation unit 26 is turned off and the mode shifts to the dissolved oxygen control mode, and the estimated total nitrogen concentration of the treated water is used only for the purpose of sequentially understanding the treatment status. Sometimes it is done. In such a case, the operation information recording unit 28 records that the aeration amount control method has been changed, and records the changed mode as the current control method.
 前処理部23は、運転情報を基に状態観測部21で収集された時系列データをカテゴリに分類し、データの振り分けを行う。曝気量制御方式で振り分けを行う場合には、前処理部23は、溶存酸素制御モード、アンモニウムイオン制御モードおよび流量比例制御モードでカテゴリ分類を行って、計測器からのデータをカテゴリごとに集約し、それぞれのカテゴリに対して定められた前処理を行ってデータセットを作成する。あるいは、天候で振り分けを行う場合には、晴天時または雨天時でカテゴリ分類を行って、同様に前処理を行ってデータセットを作成する。あるいは、曜日で振り分けを行う場合には、月曜日から日曜日までの各曜日でカテゴリ分類して、同様に前処理を行ってデータセットを作成する。あるいは、日付で振り分けを行う場合には、定められた日付の範囲でカテゴリ分類して、同様に前処理を行ってデータセットを作成する。 The preprocessing unit 23 classifies the time series data collected by the state observation unit 21 into categories based on the driving information, and distributes the data. When performing distribution using the aeration amount control method, the preprocessing unit 23 performs category classification in dissolved oxygen control mode, ammonium ion control mode, and flow rate proportional control mode, and aggregates data from measuring instruments for each category. , perform pre-processing determined for each category to create a dataset. Alternatively, in the case of sorting by weather, the categories are classified according to whether it is sunny or rainy, and preprocessing is performed in the same way to create a dataset. Alternatively, in the case of sorting by day of the week, the data is classified into categories by each day of the week from Monday to Sunday, and a data set is created by performing preprocessing in the same way. Alternatively, in the case of sorting by date, the data is classified into categories within a predetermined date range, and a data set is created by performing preprocessing in the same way.
 カテゴリ分類は、分類を行う基準となる閾値を運転管理者が任意に定めて、自動的に分類されるようにしておけばよい。あるいは統計解析を行って、多角的な視点からカテゴリを定義してクラスタリングを行ってもよい。また、分類に使用する運転情報も上記で挙げたものに限らず、必要と判断されたデータを運転情報として運転情報記録部28に記録できるようにしておき、閾値を設けてこのデータをカテゴリ分類に使用してもよい。 For category classification, the operation manager may arbitrarily set a threshold value that serves as a standard for classification, and the classification may be automatically performed. Alternatively, statistical analysis may be performed to define categories from multiple perspectives and clustering may be performed. In addition, the driving information used for classification is not limited to those listed above, but data determined to be necessary can be recorded as driving information in the driving information recording section 28, and a threshold value is set to classify this data into categories. May be used for
 推定モデル生成部24は、カテゴリごとの時系列データを用いて推定モデルを生成する。すなわち、推定モデル生成部24は、前処理部23で各カテゴリのデータセットを受け取り、それぞれに対して推定モデルを生成する。生成された推定モデルは、カテゴリに対応付けられる。また、水質推定部25は、処理水全窒素濃度推定値の推定時における運転情報に対応するカテゴリの推定モデルを用いて処理水全窒素濃度推定値を推定する。つまり、水質推定部25は、現在の水処理システム100の運転情報の状態に該当するカテゴリを選択し、選択したカテゴリの推定モデルを使用して処理水全窒素濃度推定値の推定を行う。 The estimated model generation unit 24 generates an estimated model using time series data for each category. That is, the estimated model generation unit 24 receives the data set of each category from the preprocessing unit 23, and generates an estimated model for each category. The generated estimation model is associated with a category. Furthermore, the water quality estimation unit 25 estimates the estimated total nitrogen concentration of the treated water using the estimation model of the category corresponding to the driving information at the time of estimating the estimated total nitrogen concentration of the treated water. That is, the water quality estimating unit 25 selects a category that corresponds to the current state of the operating information of the water treatment system 100, and uses the estimation model of the selected category to estimate the estimated total nitrogen concentration of the treated water.
 なお、運転情報記録部28への運転情報の入力は、一例では運転管理者によって適宜入力されるようにしてもよいし、あるいは各運転情報を取得し、管理している監視制御システム等の他のシステムから逐次転送されるようにしてもよい。 In addition, the driving information may be inputted into the driving information recording unit 28, for example, by the driving manager as appropriate, or by other systems such as a monitoring control system that acquires and manages each driving information. The data may be sequentially transferred from the system.
 実施の形態2では、水処理制御システム120が、水処理装置110の運転時における運転条件または運転環境を含む運転情報を取得し、前処理部23に出力する運転情報記録部28を備える。前処理部23は、取得した運転情報を用いて、各計測器から取得したデータをカテゴリに分類し、推定モデル生成部24は、カテゴリごとに分類されたデータを用いて推定モデルを構築する。これによって、推定モデル内の各計測データにかかる係数が、運転条件または運転環境によって変化する場合に、運転条件または運転環境に応じて分類した推定モデルを構築することができる。また、このようなカテゴリに応じて作成した推定モデルを用いて処理水全窒素濃度推定値を推定することで、推定精度を向上させることが可能となる。 In the second embodiment, the water treatment control system 120 includes an operation information recording unit 28 that acquires operation information including the operating conditions or environment during operation of the water treatment apparatus 110 and outputs it to the preprocessing unit 23. The preprocessing unit 23 uses the acquired driving information to classify the data acquired from each measuring device into categories, and the estimation model generation unit 24 constructs an estimation model using the data classified into each category. Thereby, when the coefficients related to each measurement data in the estimation model change depending on the driving conditions or the driving environment, it is possible to construct an estimation model classified according to the driving conditions or the driving environment. Further, by estimating the estimated total nitrogen concentration of treated water using an estimation model created according to such a category, it is possible to improve the estimation accuracy.
 水処理制御システム120は、制御装置に対応し、水処理装置110ごとに設けられてもよい。水処理制御システム120は、コンピュータシステムによって実現されてもよい。図9は、実施の形態1,2に係る水処理制御システムを実現するコンピュータシステムの構成の一例を示す図である。図9に示すように、このコンピュータシステム80は、制御部81と入力部82と記憶部83と表示部84と通信部85と出力部86とを備え、これらはシステムバス87を介して接続されている。 The water treatment control system 120 corresponds to a control device and may be provided for each water treatment device 110. Water treatment control system 120 may be implemented by a computer system. FIG. 9 is a diagram showing an example of the configuration of a computer system that implements the water treatment control system according to the first and second embodiments. As shown in FIG. 9, this computer system 80 includes a control section 81, an input section 82, a storage section 83, a display section 84, a communication section 85, and an output section 86, which are connected via a system bus 87. ing.
 図9において、制御部81は、例えば、CPU(Central Processing Unit)等である。制御部81は、水処理制御システム120が実施する各処理が記述されたプログラムを実行する。入力部82は、たとえばタッチセンサ、キーボード、マウス等で構成され、コンピュータシステム80のユーザが、各種情報の入力を行うために使用する。上記の実施の形態において、運転管理者の入力を受け付ける場合、運転管理者の入力は入力部82を用いて行うことができる。記憶部83は、RAM(Random Access Memory),ROM(Read Only Memory)等の各種メモリおよびハードディスク等のストレージデバイスを含み、上記制御部81が実行すべきプログラム、処理の過程で得られた必要なデータ等を記憶する。また、記憶部83は、プログラムの一時的な記憶領域としても使用される。表示部84は、液晶表示パネル(Liquid Crystal Display:LCD)等で構成され、コンピュータシステム80のユーザに対して各種画面を表示する。通信部85は、通信処理を実施する通信回路等である。通信部85は、複数の通信方式にそれぞれ対応する複数の通信回路で構成されていてもよい。出力部86は、プリンタ、外部記憶装置等の外部の装置へデータを出力する出力インタフェースである。 In FIG. 9, the control unit 81 is, for example, a CPU (Central Processing Unit). The control unit 81 executes a program in which each process performed by the water treatment control system 120 is described. The input unit 82 includes, for example, a touch sensor, a keyboard, a mouse, etc., and is used by the user of the computer system 80 to input various information. In the embodiment described above, when accepting input from the operation manager, the input by the operation manager can be performed using the input unit 82. The storage unit 83 includes various memories such as RAM (Random Access Memory) and ROM (Read Only Memory), and storage devices such as hard disks, and stores programs to be executed by the control unit 81 and necessary information obtained in the process. Store data etc. The storage unit 83 is also used as a temporary storage area for programs. The display unit 84 is composed of a liquid crystal display panel (LCD) or the like, and displays various screens to the user of the computer system 80. The communication unit 85 is a communication circuit or the like that performs communication processing. The communication unit 85 may be configured with a plurality of communication circuits each corresponding to a plurality of communication methods. The output unit 86 is an output interface that outputs data to an external device such as a printer or an external storage device.
 なお、図9は、一例であり、コンピュータシステム80の構成は図9の例に限定されない。例えば、コンピュータシステム80は出力部86を備えていなくてもよい。また、水処理制御システム120が複数のコンピュータシステム80により実現される場合、これらの全てのコンピュータシステム80が図9に示したコンピュータシステム80でなくてもよい。例えば、一部のコンピュータシステム80は図9に示した表示部84、出力部86および入力部82の内少なくとも1つを備えていなくてもよい。 Note that FIG. 9 is an example, and the configuration of the computer system 80 is not limited to the example of FIG. 9. For example, computer system 80 may not include output unit 86. Moreover, when the water treatment control system 120 is realized by a plurality of computer systems 80, all of these computer systems 80 do not need to be the computer systems 80 shown in FIG. For example, some computer systems 80 may not include at least one of the display section 84, output section 86, and input section 82 shown in FIG.
 ここで、水処理制御システム120が実行する推定モデルの生成方法、処理水全窒素濃度の推定方法または制御目標値の算出方法が記述されたプログラムが実行可能な状態になるまでのコンピュータシステム80の動作例について説明する。上述した構成をとるコンピュータシステム80には、たとえば、図示しないCD(Compact Disc)-ROMドライブまたはDVD(Digital Versatile Disc)-ROMドライブにセットされたCD-ROMまたはDVD-ROMから、水処理制御システム120の推定モデルの生成方法、処理水全窒素濃度の推定方法または制御目標値の算出方法の動作が記述されたプログラムが記憶部83にインストールされる。そして、プログラムの実行時に、記憶部83から読み出されたプログラムが記憶部83の主記憶装置となる領域に格納される。この状態で、制御部81は、記憶部83に格納されたプログラムに従って、水処理制御システム120の処理を実行する。 Here, the computer system 80 is operated until the program in which the method of generating an estimation model, the method of estimating the total nitrogen concentration of treated water, or the method of calculating a control target value, executed by the water treatment control system 120, becomes executable. An example of operation will be explained. The computer system 80 having the above-described configuration includes, for example, a water treatment control system from a CD-ROM or DVD-ROM set in a CD (Compact Disc)-ROM drive or a DVD (Digital Versatile Disc)-ROM drive (not shown). A program is installed in the storage unit 83 in which the operations of the method of generating the estimation model 120, the method of estimating the total nitrogen concentration of treated water, or the method of calculating the control target value are described. Then, when the program is executed, the program read from the storage section 83 is stored in an area of the storage section 83 that serves as a main storage device. In this state, the control unit 81 executes the processing of the water treatment control system 120 according to the program stored in the storage unit 83.
 なお、上記の説明においては、CD-ROMまたはDVD-ROMを記録媒体として、水処理制御システム120における処理を記述したプログラムを提供しているが、これに限らず、コンピュータシステム80の構成、提供するプログラムの容量等に応じて、たとえば、通信部85を経由してインターネット等の伝送媒体により提供されたプログラムを用いることにしてもよい。 In addition, in the above description, a CD-ROM or DVD-ROM is used as a recording medium to provide a program that describes the processing in the water treatment control system 120, but the configuration of the computer system 80 and the provision of the program are not limited to this. Depending on the capacity of the program to be used, for example, a program provided via a transmission medium such as the Internet via the communication unit 85 may be used.
 推定モデルの生成処理は、コンピュータに、図5に示される手順が記述されたプログラムを実行させることで行われる。処理水全窒素濃度の推定処理は、コンピュータに、図6に示される手順が記述されたプログラムを実行させることで行われる。制御目標値の算出処理は、コンピュータに、図7に示される手順が記述されたプログラムを実行させることで行われる。 The estimation model generation process is performed by causing a computer to execute a program in which the procedure shown in FIG. 5 is described. The process of estimating the total nitrogen concentration of the treated water is performed by causing a computer to execute a program in which the procedure shown in FIG. 6 is described. The control target value calculation process is performed by causing a computer to execute a program in which the procedure shown in FIG. 7 is described.
 図1および図8に示されるプラント情報記憶部22は、図9に示した記憶部83の一部である。図1および図8に示される状態観測部21、前処理部23、推定モデル生成部24、水質推定部25、制御目標値算出部26、曝気量制御部27および運転情報記録部28のそれぞれは、制御部81と、入力部82と、記憶部83と、表示部84とを用いて実現される。 The plant information storage section 22 shown in FIGS. 1 and 8 is part of the storage section 83 shown in FIG. 9. Each of the state observation unit 21, preprocessing unit 23, estimation model generation unit 24, water quality estimation unit 25, control target value calculation unit 26, aeration amount control unit 27, and operation information recording unit 28 shown in FIGS. 1 and 8 is , a control section 81, an input section 82, a storage section 83, and a display section 84.
 なお、図1および図8に示される水処理制御システム120における機能の切り分けは一例であり、水処理制御システム120が上述した動作を行うことができれば、各機能部の分け方は図1および図8に示される例に限定されない。また、図1および図8では水処理制御システム120が全ての動作を行うこととしたが、複数の装置を用いて、同様の機能を実現してもよい。一例では、個々の処理部が1つの装置で構成されるようにしてもよいし、一部の処理具が1つの装置で構成されるようにしてもよい。 Note that the division of functions in the water treatment control system 120 shown in FIGS. 1 and 8 is an example, and if the water treatment control system 120 can perform the operations described above, the division of each functional section is as shown in FIGS. 1 and 8. However, the present invention is not limited to the example shown in 8. Furthermore, in FIGS. 1 and 8, the water treatment control system 120 performs all operations, but the same functions may be realized using a plurality of devices. In one example, each processing section may be configured with one device, or some processing tools may be configured with one device.
 また、水処理制御システム120は、クラウド環境に構築されるものであってもよい。クラウド環境は、クラウドサービスプラットフォームにおいて提供されるコンピュータ資源を含む。クラウドサービスプラットフォームは、クラウドサービスプロバイダによって提供され、例えば、PaaS(Platform as a Service)などを含む。水処理制御システム120は、クラウド環境に構築されるため、クラウドサーバとも呼ばれることがある。なお、水処理制御システム120は、クラウド環境以外の環境に構築されてもよく、クラウドサーバに限定されない。 Additionally, the water treatment control system 120 may be constructed in a cloud environment. A cloud environment includes computer resources provided in a cloud service platform. A cloud service platform is provided by a cloud service provider, and includes, for example, PaaS (Platform as a Service). Since the water treatment control system 120 is constructed in a cloud environment, it may also be called a cloud server. Note that the water treatment control system 120 may be constructed in an environment other than a cloud environment, and is not limited to a cloud server.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known techniques, or can be combined with other embodiments, within the scope of the gist. It is also possible to omit or change part of the configuration.
 1 流入水配管、2 無酸素槽、3 好気槽、4 最終沈殿池、5 硝化液循環ポンプ、6 散気装置、7 ブロア、8 水中撹拌機、9 汚泥引抜ポンプ、10 流入水量計、11 流入水アンモニウムイオン濃度計、12 好気槽アンモニウムイオン濃度計、13 好気槽溶存酸素濃度計、14 曝気量計、15 嫌気槽、16,17 流量計、21 状態観測部、22 プラント情報記憶部、23 前処理部、24 推定モデル生成部、25 水質推定部、26 制御目標値算出部、27 曝気量制御部、28 運転情報記録部、80 コンピュータシステム、81 制御部、82 入力部、83 記憶部、84 表示部、85 通信部、86 出力部、87 システムバス、100 水処理システム、110 水処理装置、120 水処理制御システム。 1. Inflow water piping, 2. Anoxic tank, 3. Aerobic tank, 4. Final sedimentation tank, 5. Nitrification liquid circulation pump, 6. Aeration device, 7. Blower, 8. Submersible stirrer, 9. Sludge extraction pump, 10. Inflow water meter, 11 Inflow water ammonium ion concentration meter, 12 Aerobic tank ammonium ion concentration meter, 13 Aerobic tank dissolved oxygen concentration meter, 14 Aeration meter, 15 Anaerobic tank, 16, 17 Flow meter, 21 Condition observation unit, 22 Plant information storage unit , 23 Pre-processing unit, 24 Estimation model generation unit, 25 Water quality estimation unit, 26 Control target value calculation unit, 27 Aeration amount control unit, 28 Operation information recording unit, 80 Computer system, 81 Control unit, 82 Input unit, 83 Memory Section, 84 Display section, 85 Communication section, 86 Output section, 87 System bus, 100 Water treatment system, 110 Water treatment device, 120 Water treatment control system.

Claims (10)

  1.  排水を活性汚泥と混合し、浄化させた処理水を得る水処理装置を制御する水処理制御システムであって、
     前記水処理装置に流入する前記排水が前記処理水となるまでの処理経路内の地点における前記排水の状態または前記排水が受ける処理の状態を計測する計測器で計測された計測値を収集し、複数の時刻における前記計測値を時系列データとして蓄積する状態観測部と、
     前記時系列データに対して定められた処理を行い、処理データを作成する前処理部と、
     前記処理水中の全窒素濃度を推論するための推定モデルを用いて、前記前処理部で処理された前記処理データから前記処理水中の全窒素濃度の推定値である処理水全窒素濃度推定値を推定する水質推定部と、
     を備え、
     前記前処理部は、前記時系列データの内、前記水質推定部での前記全窒素濃度の推定対象となる処理水の前記処理経路における滞留時間を考慮して、前記推定対象となる処理水について計測された前記計測値を抽出して前記処理データを作成することを特徴とする水処理制御システム。
    A water treatment control system that controls a water treatment device that mixes wastewater with activated sludge and obtains purified treated water, the system comprising:
    Collecting measurement values measured by a measuring device that measures the state of the wastewater or the state of the treatment that the wastewater undergoes at a point in the treatment route until the wastewater flowing into the water treatment device becomes the treated water, a state observation unit that accumulates the measured values at a plurality of times as time series data;
    a preprocessing unit that performs predetermined processing on the time series data to create processed data;
    Using an estimation model for inferring the total nitrogen concentration in the treated water, an estimated value of the total nitrogen concentration in the treated water, which is an estimated value of the total nitrogen concentration in the treated water, is calculated from the treated data processed in the pre-treatment section. a water quality estimating unit that estimates;
    Equipped with
    The pre-treatment unit calculates, among the time-series data, the residence time of the treated water to be estimated by the water quality estimation unit in consideration of the residence time in the treatment route of the treated water to be estimated. A water treatment control system characterized by extracting the measured value and creating the processing data.
  2.  前記前処理部は、前記状態観測部から前記時系列データを受け取り、前記計測器の地点から処理水となる地点までの前記処理経路を前記排水が滞留する時間である滞留時間を算出し、前記計測器による前記計測値が同じ時期に流入した前記排水について測定されたものとなるように、前記時系列データを受け取った時刻から、前記計測器の地点までの前記滞留時間を遡った時刻の計測値である滞留時間を考慮した計測値を抽出して前記処理データを作成することを特徴とする請求項1に記載の水処理制御システム。 The pre-treatment unit receives the time-series data from the condition observation unit, calculates a residence time that is the time that the wastewater stays in the treatment route from the point of the measuring instrument to the point where the water becomes treated, and Measurement of the time when the residence time from the time series data is received to the point of the measuring device is traced back so that the measured value by the measuring device is measured for the wastewater flowing in at the same time. The water treatment control system according to claim 1, wherein the processing data is created by extracting a measured value that takes into account a residence time.
  3.  前記状態観測部は、第1アンモニウムイオン濃度計によって計測される前記水処理装置に流入する流入水中のアンモニウムイオン濃度値である第1アンモニウムイオン濃度値と、流入水量計によって計測される前記流入水の水量である流入水量と、第2アンモニウムイオン濃度計によって計測される前記水処理装置の好気槽内のアンモニウムイオン濃度値である第2アンモニウムイオン濃度値と、溶存酸素濃度計によって計測される前記好気槽内の溶存酸素濃度値と、曝気量計によって計測される前記好気槽への空気の供給量である曝気量と、を前記計測値として収集することを特徴とする請求項1または2に記載の水処理制御システム。 The state observation unit is configured to detect a first ammonium ion concentration value, which is an ammonium ion concentration value in inflow water flowing into the water treatment device, measured by a first ammonium ion concentration meter, and a first ammonium ion concentration value, which is an ammonium ion concentration value in inflow water flowing into the water treatment device, measured by a first ammonium ion concentration meter, and a first ammonium ion concentration value, which is an ammonium ion concentration value in inflow water flowing into the water treatment equipment, measured by a first ammonium ion concentration meter, and a first ammonium ion concentration value, which is an ammonium ion concentration value in inflow water flowing into the water treatment device, measured by a first ammonium ion concentration meter, and a first ammonium ion concentration value, which is an ammonium ion concentration value in the inflow water flowing into the water treatment device, which is measured by a first ammonium ion concentration meter, and a first ammonium ion concentration value, which is an ammonium ion concentration value in the inflow water flowing into the water treatment device, which is measured by a first ammonium ion concentration meter. a second ammonium ion concentration value that is the ammonium ion concentration value in the aerobic tank of the water treatment device measured by a second ammonium ion concentration meter, and a second ammonium ion concentration value that is the amount of water measured by a dissolved oxygen concentration meter. Claim 1, wherein a dissolved oxygen concentration value in the aerobic tank and an aeration amount that is an amount of air supplied to the aerobic tank measured by an aeration meter are collected as the measured values. Or the water treatment control system according to 2.
  4.  蓄積された、前記第2アンモニウムイオン濃度値と、前記処理水全窒素濃度推定値から算出される前記水処理装置での窒素除去量と、の関係から前記窒素除去量が最大となる前記第2アンモニウムイオン濃度値を制御目標値として取得する制御目標値算出部と、
     前記好気槽の前記第2アンモニウムイオン濃度値が前記制御目標値となるように、前記曝気量を制御する曝気量制御部と、
     をさらに備えることを特徴とする請求項3に記載の水処理制御システム。
    the second ammonium ion concentration value that is accumulated, and the nitrogen removal amount in the water treatment apparatus calculated from the estimated total nitrogen concentration value of the treated water; a control target value calculation unit that obtains an ammonium ion concentration value as a control target value;
    an aeration amount control unit that controls the aeration amount so that the second ammonium ion concentration value of the aerobic tank becomes the control target value;
    The water treatment control system according to claim 3, further comprising:
  5.  前記制御目標値算出部は、前記処理水全窒素濃度推定値と、前記処理水全窒素濃度推定値の推定時刻から前記第1アンモニウムイオン濃度計の地点までの滞留時間分遡った時刻における前記第1アンモニウムイオン濃度値と、の差から前記窒素除去量を算出し、前記窒素除去量と、前記処理水全窒素濃度推定値の推定時刻から前記第2アンモニウムイオン濃度計までの滞留時間分遡った時刻における前記第2アンモニウムイオン濃度値と、の組からなる複数のデータを用いて、前記第2アンモニウムイオン濃度値に対する前記窒素除去量の関係を示す近似式を算出し、前記近似式において前記窒素除去量が最大となる前記第2アンモニウムイオン濃度値を前記制御目標値として算出することを特徴とする請求項4に記載の水処理制御システム。 The control target value calculation unit calculates the estimated total nitrogen concentration of the treated water and the estimated total nitrogen concentration of the treated water at a time that is a residence time back from the estimated time of the estimated total nitrogen concentration of the treated water to the point of the first ammonium ion concentration meter. 1 ammonium ion concentration value, and calculated the amount of nitrogen removed from the difference between the amount of nitrogen removed and the estimated total nitrogen concentration of the treated water by the residence time from the estimated time to the second ammonium ion concentration meter. An approximate expression indicating the relationship between the nitrogen removal amount and the second ammonium ion concentration value is calculated using a plurality of data consisting of a set of the second ammonium ion concentration value and the second ammonium ion concentration value at time, and in the approximate expression, the nitrogen The water treatment control system according to claim 4, wherein the second ammonium ion concentration value at which the removal amount is maximum is calculated as the control target value.
  6.  前記制御目標値算出部は、前記処理水全窒素濃度推定値の推定時刻から定められた期間内の前記データを用いて前記近似式を算出することを特徴とする請求項5に記載の水処理制御システム。 The water treatment according to claim 5, wherein the control target value calculation unit calculates the approximate formula using the data within a predetermined period from the estimated time of the estimated total nitrogen concentration of the treated water. control system.
  7.  前記状態観測部は、前記処理水全窒素濃度推定値の推定時刻で、全窒素濃度計によって計測された前記処理水の全窒素濃度の値である処理水全窒素濃度計測値をさらに収集し、
     前記前処理部からの前記処理データと、前記処理水全窒素濃度計測値と、を含む学習用データを用いて、前記水処理制御システムの前記処理データから前記処理水全窒素濃度推定値を推論するための前記推定モデルを生成する推定モデル生成部をさらに備えることを特徴とする請求項1から6のいずれか1つに記載の水処理制御システム。
    The state observation unit further collects a measured value of the total nitrogen concentration of the treated water, which is a value of the total nitrogen concentration of the treated water measured by the total nitrogen concentration meter at the estimated time of the estimated total nitrogen concentration of the treated water,
    Inferring the estimated total nitrogen concentration of the treated water from the processed data of the water treatment control system using learning data including the treated data from the pre-treatment unit and the measured total nitrogen concentration of the treated water. The water treatment control system according to any one of claims 1 to 6, further comprising an estimated model generation unit that generates the estimated model for.
  8.  前記水処理装置の運転条件または前記水処理装置の運転環境を含む運転情報を取得する運転情報記録部をさらに備え、
     前記前処理部は、前記運転情報を基に前記状態観測部で収集された前記時系列データをカテゴリに分類し、
     前記推定モデル生成部は、前記カテゴリごとの前記時系列データを用いて前記推定モデルを生成することを特徴とする請求項7に記載の水処理制御システム。
    further comprising an operating information recording unit that acquires operating information including operating conditions of the water treatment device or operating environment of the water treatment device,
    The preprocessing unit classifies the time series data collected by the state observation unit into categories based on the driving information,
    The water treatment control system according to claim 7, wherein the estimated model generation unit generates the estimated model using the time series data for each category.
  9.  前記水質推定部は、前記処理水全窒素濃度推定値の推定時における前記運転情報に対応するカテゴリの前記推定モデルを用いて前記処理水全窒素濃度推定値を推定することを特徴とする請求項8に記載の水処理制御システム。 The water quality estimation unit estimates the estimated total nitrogen concentration of the treated water using the estimation model of the category corresponding to the operation information at the time of estimating the estimated total nitrogen concentration of the treated water. 8. The water treatment control system according to 8.
  10.  排水を活性汚泥と混合し、浄化させた処理水を得る水処理装置を制御装置が制御する水処理装置の制御方法であって、
     前記制御装置が、前記水処理装置に流入する前記排水が前記処理水となるまでの処理経路内の地点における前記排水の状態または前記排水が受ける処理の状態を計測する計測器で計測された計測値を収集し、複数の時刻における前記計測値を時系列データとして蓄積する状態観測工程と、
     前記制御装置が、前記時系列データに対して定められた処理を行い、処理データを作成する前処理工程と、
     前記制御装置が、前記処理水中の全窒素濃度を推論するための推定モデルを用いて、前記前処理工程で処理された前記処理データから前記処理水中の全窒素濃度の推定値である処理水全窒素濃度推定値を推定する水質推定工程と、
     を含み、
     前記前処理工程では、前記制御装置が、前記時系列データの内、前記水質推定工程での前記全窒素濃度の推定対象となる処理水の前記処理経路における滞留時間を考慮して、前記推定対象となる処理水について計測された前記計測値を抽出して前記処理データを作成することを特徴とする水処理装置の制御方法。
    A method for controlling a water treatment device, wherein a control device controls a water treatment device that mixes wastewater with activated sludge to obtain purified treated water, the method comprising:
    The control device measures the state of the wastewater or the state of the treatment that the wastewater undergoes at a point in the treatment route until the wastewater flowing into the water treatment device becomes the treated water. a state observation step of collecting values and accumulating the measured values at multiple times as time series data;
    a preprocessing step in which the control device performs predetermined processing on the time series data to create processed data;
    The control device calculates the total nitrogen concentration in the treated water, which is an estimated value of the total nitrogen concentration in the treated water, from the treated data processed in the pretreatment step using an estimation model for inferring the total nitrogen concentration in the treated water. a water quality estimation step for estimating an estimated nitrogen concentration;
    including;
    In the pretreatment step, the control device determines the estimation target by considering the residence time in the treatment route of the treated water, which is the target for estimating the total nitrogen concentration in the water quality estimation step, out of the time series data. A method for controlling a water treatment device, characterized in that the processing data is created by extracting the measurement value measured for the treated water.
PCT/JP2022/014043 2022-03-24 2022-03-24 Water treatment control system and control method for water treatment device WO2023181276A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022561621A JP7286035B1 (en) 2022-03-24 2022-03-24 Water treatment control system and method for controlling water treatment equipment
PCT/JP2022/014043 WO2023181276A1 (en) 2022-03-24 2022-03-24 Water treatment control system and control method for water treatment device
TW111133539A TWI813437B (en) 2022-03-24 2022-09-05 Water treatment control system and control method of water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014043 WO2023181276A1 (en) 2022-03-24 2022-03-24 Water treatment control system and control method for water treatment device

Publications (1)

Publication Number Publication Date
WO2023181276A1 true WO2023181276A1 (en) 2023-09-28

Family

ID=86547678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014043 WO2023181276A1 (en) 2022-03-24 2022-03-24 Water treatment control system and control method for water treatment device

Country Status (3)

Country Link
JP (1) JP7286035B1 (en)
TW (1) TWI813437B (en)
WO (1) WO2023181276A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246136A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Nitration method for ammonia nitrogen-containing water and treatment method therefor
JP2015054271A (en) * 2013-09-11 2015-03-23 メタウォーター株式会社 Effluent treatment apparatus and effluent treatment method
JP2017127813A (en) * 2016-01-20 2017-07-27 株式会社日立製作所 Water treatment system
JP2019013858A (en) * 2017-07-03 2019-01-31 横河電機株式会社 Control system and control method
WO2020021687A1 (en) * 2018-07-26 2020-01-30 三菱電機株式会社 Water treatment plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334317B2 (en) 2003-10-23 2009-09-30 株式会社東芝 Sewage treatment system
JP6877255B2 (en) * 2017-06-14 2021-05-26 三菱電機株式会社 Wastewater treatment system and wastewater treatment method
JP7059989B2 (en) 2019-08-07 2022-04-26 横河電機株式会社 Control system and control method
JP6818951B1 (en) * 2020-03-25 2021-01-27 三菱電機株式会社 Water treatment equipment and water treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246136A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Nitration method for ammonia nitrogen-containing water and treatment method therefor
JP2015054271A (en) * 2013-09-11 2015-03-23 メタウォーター株式会社 Effluent treatment apparatus and effluent treatment method
JP2017127813A (en) * 2016-01-20 2017-07-27 株式会社日立製作所 Water treatment system
JP2019013858A (en) * 2017-07-03 2019-01-31 横河電機株式会社 Control system and control method
WO2020021687A1 (en) * 2018-07-26 2020-01-30 三菱電機株式会社 Water treatment plant

Also Published As

Publication number Publication date
TWI813437B (en) 2023-08-21
JPWO2023181276A1 (en) 2023-09-28
TW202337844A (en) 2023-10-01
JP7286035B1 (en) 2023-06-02

Similar Documents

Publication Publication Date Title
KR940005029B1 (en) Supporting method and system for process control
Guerrero et al. Multi-criteria selection of optimum WWTP control setpoints based on microbiology-related failures, effluent quality and operating costs
US20180327292A1 (en) System and method for wastewater treatment process control
TW201321314A (en) Wastewater treatment plant online monitoring and control
Palatsi et al. Enhancement of biological nutrient removal process with advanced process control tools in full-scale wastewater treatment plant
Do et al. A design of higher-level control based genetic algorithms for wastewater treatment plants
JP4188200B2 (en) Plant-wide optimum process controller
Piotrowski et al. Mixed integer nonlinear optimization of biological processes in wastewater sequencing batch reactor
JP3823863B2 (en) Operation support system and control system for water treatment process
WO2023181276A1 (en) Water treatment control system and control method for water treatment device
JP2019175409A (en) Operation control device and operation control method of water treatment facility
KR20060092660A (en) Automatic control device and method for wastewater treatment using fuzzy control
Yoo et al. Industrial experience of process identification and set-point decision algorithm in a full-scale treatment plant
Bury et al. Dynamic simulation of chemical industry wastewater treatment plants
JP7331737B2 (en) Operation support equipment for water treatment facilities
WO1998003434A1 (en) Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process
Wang et al. Linear active disturbance rejection control of dissolved oxygen concentration based on benchmark simulation model number 1
WO2013136503A1 (en) System for operating water treatment plant and method for planning amount of water supply
JP4327013B2 (en) Plant-wide optimum process controller
Demey et al. Validation and implementation of model based control strategies at an industrial wastewater treatment plant
Holenda Development of modelling, control and optimization tools for the activated sludge process
JP2009226234A (en) Sludge volume calculation method, and monitoring method and control method for aeration tank using the same
Ataei et al. A review on environmental process engineering
Sheik et al. Evaluation of effluent quality and operating cost in biological wastewater treatment plants with non-ideal sensors in the feedback control
JP2020114570A (en) Operation value calculation device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022561621

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933417

Country of ref document: EP

Kind code of ref document: A1