WO2013136503A1 - System for operating water treatment plant and method for planning amount of water supply - Google Patents

System for operating water treatment plant and method for planning amount of water supply Download PDF

Info

Publication number
WO2013136503A1
WO2013136503A1 PCT/JP2012/056829 JP2012056829W WO2013136503A1 WO 2013136503 A1 WO2013136503 A1 WO 2013136503A1 JP 2012056829 W JP2012056829 W JP 2012056829W WO 2013136503 A1 WO2013136503 A1 WO 2013136503A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
quality
treated water
sewage
treated
Prior art date
Application number
PCT/JP2012/056829
Other languages
French (fr)
Japanese (ja)
Inventor
信補 高橋
進吾 足立
真 宮田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/056829 priority Critical patent/WO2013136503A1/en
Publication of WO2013136503A1 publication Critical patent/WO2013136503A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/026Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/18PO4-P
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment plant operation system and a water supply amount planning method, and more particularly to a water treatment plant operation system and a water supply amount planning method for managing a water treatment plant that purifies sewage and produces reclaimed water that can be reused. And suitable.
  • Reclaimed water is used in various applications such as industrial water, cooling water, toilet water, water for spraying, and water for landscapes.
  • Patent Document 1 discloses a water treatment plant that efficiently produces reclaimed water having a plurality of uses.
  • water demand and sewage inflow by use are predicted and distributed to a plurality of independent water treatment systems according to a distribution pattern based on the prediction result.
  • the water treatment plant disclosed by patent document 1 produces
  • the water treatment plant described in Patent Document 1 has a plurality of water treatment systems having different treatment performances in order to produce reclaimed water for various uses, and sewage purification treatment is performed in each water treatment system. Is called.
  • a water treatment system that performs ozone treatment for deodorizing, decolorizing, and decomposing organic matter after deodorizing, decolorizing, and decomposing organic matter by removing microorganisms, sewage, and other activated sludge treatment using microorganisms in sewage. Is illustrated.
  • any predetermined purification treatment is performed on all inflowing sewage.
  • the amount of supplied water exceeds the amount of demand water, water that is discharged into the river without being distributed to the demand is generated.
  • such extra water is used.
  • unnecessary purification treatment is performed, and there is a problem that the cost of water regeneration treatment increases.
  • the present invention has been made in consideration of the above points, and is a water treatment plant capable of supplying reclaimed water that satisfies the demand and reducing the treatment cost for water reclaim treatment for producing reclaimed water. It intends to propose an operation system and a water supply planning method.
  • a water treatment plant operation system for managing a water treatment plant that produces sewage by performing sewage treatment on the sewage, and performing water regeneration treatment on the treated water to produce the reclaimed water.
  • the treated water quality prediction unit for predicting the quality of the treated water generated by the sewage treatment
  • the reclaimed water demand prediction unit for predicting the demand amount of the reclaimed water
  • the treatment predicted by the treated water quality prediction unit A plan problem solving unit that calculates a plan value by a predetermined calculation based on a water quality prediction value of water, and controls the amount of treated water subjected to water regeneration treatment in the water treatment plant according to the plan value
  • the plan value calculated by the plan problem solving unit is calculated based on the amount of reclaimed water produced from the treated water according to the plan value by the water regeneration process. Water treatment plant operation system which satisfies the measurement has been forecast value is provided.
  • the water treatment plant for producing sewage by performing sewage treatment on sewage, and generating the sewage by subjecting the sewage to water regeneration In the water supply amount planning method for planning the amount of treated water to be applied, a demand amount predicting step for predicting the demand amount of the reclaimed water, and a treated water quality prediction for predicting the quality of the treated water generated by the sewage treatment
  • a water supply amount control step for controlling the amount of treated water, and the plan value calculated in the plan value calculation step is changed from treated water according to the plan value to the water regeneration treatment. The amount of recycled water to be produced What is water planning method that satisfies the predicted demand forecast value by the demand prediction step is provided.
  • reference numeral 20 denotes a water treatment plant operation system according to the first embodiment as a whole.
  • the water treatment plant operation system 20 manages the distribution of treated water in the water treatment plant 10.
  • the water treatment plant 10 is a plant for producing reclaimed water by performing sewage treatment and water regeneration treatment on the sewage 1, and includes a first sedimentation tank 11, an activated sludge treatment tank 12, a final sedimentation tank 13, and distribution of treated water.
  • a device 14, a water regeneration treatment device 15, a distribution reservoir 16, and a flocculant storage tank 17 are provided.
  • the water treatment plant 10 is provided with a plurality of pumps.
  • the purification process performed with respect to the sewage 1 between the first sedimentation basin 11 and the final sedimentation basin 13 is called a sewage treatment, and the water after a sewage treatment is called the treated water 2.
  • the purification process performed on the treated water 2 by the water regeneration treatment device 15 is referred to as a water regeneration process, and the water after the water regeneration process is referred to as a reclaimed water 3.
  • sewage 1 composed of domestic wastewater or industrial wastewater flows into the settling basin 11 first.
  • the sedimentation tank 11 removes the solid content of the inflowing sewage by precipitation.
  • the supernatant liquid of the sewage that first flows into the settling basin 11 flows into the activated sludge treatment tank 12.
  • a blower 21 which is a blower for supplying oxygen into the tank, a pump 22 for circulating the sewage 1 flowing into the tank, and a flocculant storage tank 17 flocculates in the activated sludge treatment tank 12.
  • a pump 25 for injecting the agent is provided.
  • oxygen is supplied from the blower 21 to the microorganisms in the activated sludge treatment tank 12 to induce explosive growth and proliferation of microorganisms, and organic pollution of the sewage 1 is reduced by metabolism of the microorganisms.
  • Activated sludge treatment is performed.
  • the flocculant injected from the flocculant reservoir 17 is used to collect particles dispersed in water and promote sedimentation, and has an effect of removing the turbidity of the sewage 1. Then, the water subjected to the activated sludge treatment in the activated sludge treatment tank 12 flows into the final sedimentation tank 13.
  • the final sedimentation basin 13 includes a pump 23 for returning a part of the precipitated sludge to the activated sludge treatment tank 12 and a pump 24 for discharging another part of the precipitated sludge as excess sludge to the outside of the water treatment plant 10. Is provided.
  • the solid content of the inflowed water is removed by precipitation, and the supernatant is discharged as treated water 2 to the treated water distribution device 14.
  • a part of the solid content precipitated in the final sedimentation tank 13 is returned to the activated sludge treatment tank 12 by the pump 23 and used for activated sludge treatment.
  • the treated water distribution device 14 has a mechanism for feeding the treated water 2 and is realized by, for example, a valve, a pump, a weir, or the like.
  • the treated water distribution device 14 discharges a part of the treated water 2 to the water regeneration treatment device 15 and discharges the others to the river according to the instruction of the water treatment plant operation system 20.
  • the water regeneration treatment is performed on the treated water 2 in order to further remove various components contained in the treated water 2.
  • the water regeneration treatment apparatus 15 for example, sand filtration, biofilm filtration, activated carbon adsorption, filtration through a microfiltration membrane (MF membrane: Microfiltration Membrane), filtration through a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), or ozone treatment
  • MF membrane Microfiltration Membrane
  • RO membrane Reverse Osmosis Membrane
  • ozone treatment At least one of the water regeneration processes is performed.
  • commonly used methods can be used.
  • the treated water that has been subjected to water regeneration treatment in the water regeneration treatment device 15 is stored in the reservoir 16 as reclaimed water. Thereafter, the reclaimed water stored in the distributing reservoir 16 is discharged by the pump 25 and distributed to consumers.
  • the water treatment plant operation system 20 includes a control device 210, a database 220 that provides storage data to the control device 210, and an input unit 230 that transmits an input signal to the control device 210.
  • control device 210 controls each part in the control device 210 by executing a program and gives a water supply instruction to the treated water distribution device 14 (Central Processing Unit) (not shown), and the CPU executes the program
  • the treated water distribution device 14 Central Processing Unit
  • the CPU executes the program
  • This is realized by a computer having a memory (not shown) in which a program is loaded and used, and a storage device (not shown) for storing various data and programs.
  • the control device 210 has a treated water quality prediction unit 211, a reclaimed water demand prediction unit 212, and a planning problem solving unit 213 as its functional configuration.
  • the treated water quality predicting unit 211 determines the water quality of the treated water 2 at each time of a predetermined time after the present (for example, from 0:00 to 24:00) based on past performance data on the water quality of the treated water 2. Predict what will happen.
  • the reclaimed water demand prediction unit 212 predicts how much reclaimed water is demanded at a certain time after the present (for example, from 0:00 to 24:00) based on past performance data.
  • the planning problem solving unit 213 controls the amount of water supplied to the water regeneration treatment device 15 by the treated water distribution device 14.
  • the planning problem solving unit 213 solves a predetermined planning problem (details will be described later) based on the predicted values calculated by the treated water quality prediction unit 211 and the reclaimed water demand prediction unit 212, and the treated water distribution device 14 according to the solution. Instruct the amount of water to be sent.
  • the database 220 is a storage device, and stores time-series data related to the concentration of water quality components of the treated water 2 and time-series data related to the demand for reclaimed water based on past performance data in the water treatment plant 10.
  • the various water quality components correspond to, for example, biochemical oxygen demand (BOD) indicating the amount of organic matter in water, phosphorus, nitrogen, suspended solids (SS), and the like. Details of the data stored in the database 220 will be described later with reference to FIG.
  • the input unit 230 is an input device in which an input operation and data input from a user are performed, and an input signal corresponding to the input content is transmitted to the control device 210.
  • a water quality component that is particularly desired to be removed is selected from among the water quality component items by a user input operation on the input unit 230.
  • Each item of the water quality component is, for example, BOD, total nitrogen (TN), total phosphorus (TP), or solid suspended matter (SS).
  • a predetermined screen may be displayed on a display unit (not shown) to allow the user to select a removal item.
  • step S102 the treated water quality prediction unit 211 reads time-series data relating to the concentration of the water quality component of the treated water 2 from the database 220.
  • FIG. 3 shows (a) the amount of sewage 1 inflow, (b) the quality of sewage 1 (BOD concentration), (c) the amount of effluent of treated water 2 and (d) the quality of effluent 2 (BOD concentration). It is an example of the change by the elapsed time of 24 hours.
  • FIG. 4 illustrates the concentration of a plurality of components for the water quality of the treated water 2 at each time of the day.
  • the table 91 includes a time column 91A in which each time is described, a BOD concentration column 91B, a TN concentration column 91C, a TP concentration column 91D, and an SS concentration column 91E in which the concentration of each water component is described. Yes.
  • FIG. 3D shows the BOD concentration of the treated water 2, but it can be seen from FIG. 4 that other water quality components (TN concentration, TP concentration, and SS concentration) also vary with time.
  • the quality of the treated water 2 varies due to the variation of the inflow amount of the sewage 1. .
  • the water quality of the treated water 2 decreases (component concentration increases).
  • the inflow amount and the water quality of the sewage 1 show different values depending on the season, day of the week, and time, etc., it can be considered as a time-variable value using these season, day of the week, and time as parameters.
  • the quality of the treated water 2 is linked to the inflow amount and the quality of the sewage 1, the quality of the treated water 2 is also a time-variable value with parameters such as season, day of the week, and time. Can be considered.
  • the treated water quality prediction unit 211 classifies the past performance data regarding the quality of the treated water 2 in advance according to the season, day of the week, and time.
  • the treated water quality prediction unit 211 obtains the concentration of the water quality component of the treated water 2 in units of season, day of the week, and time by taking the average value of the classification data in the same parameter, and thus the water quality component Time series data relating to the concentration of the water quality components collected for each time is stored in the database 220.
  • the table 91 in FIG. 4 is a table showing data for one day, a total of 28 such tables 91 are created for each season (4 patterns) and days of the week (7 patterns) in the database 220. And stored in the database 220.
  • the treated water quality prediction unit 211 selects the treated water 2 based on the time series data corresponding to the current season and day of the week among the time series data related to the concentration of the water quality components of the treated water 2 read from the database 220. Predicted values for 24 hours after the present of each water quality (BOD concentration, TN concentration, TP concentration, and SS concentration) are calculated as time series data for 24 hours.
  • step S103 the reclaimed water demand prediction unit 212 reads time-series data regarding the reclaimed water demand from the database 220.
  • the demand value of the reclaimed water is considered to be a time-variable value having parameters such as season, day of the week, or time as well as the inflow amount and quality of the sewage 1. Therefore, the reclaimed water demand prediction unit 212 classifies the past performance data regarding the reclaimed water demand in advance according to the season, day of the week, and time, and is similar to the time-series data regarding the concentration of the water quality component of the treated water 2 described in step S102. Processing is performed, and time series data relating to the demand for reclaimed water is stored in the database 220.
  • the reclaimed water demand forecasting unit 212 is based on the time series data corresponding to the current season and day of the week in the time series data related to the demand for reclaimed water read from the database 220.
  • the demand forecast value is calculated as 24-hour time series data.
  • step S104 the planning problem solving unit 213 solves the planning problem shown below, and instructs the treated water distribution device 14 of the amount of treated water to be distributed to the water regeneration treatment device 15 according to the solution.
  • the predicted values for each water quality of the treated water 2 calculated by the treated water quality predicting unit 211 in step S402 are XBODin (t), XTNin (for the BOD concentration, TN concentration, TP concentration, and SS concentration, respectively.
  • t indicates a time, which corresponds to any of 0, 1,..., 24, and when there is no special designation, also at the time t in other functions shown below. It is the same.
  • XBODin (5) indicates the predicted value of the BOD concentration of the treated water 2 at 5 o'clock.
  • V (t) be the amount of reclaimed water stored in the distribution reservoir 16, and XBOD (t), XTN for the BOD concentration, TN concentration, TP concentration, and SS concentration of the reclaimed water stored in the distribution reservoir 16, respectively.
  • Q (t) the flow rate of the treated water 2 sent from the treated water distribution device 14 to the water regeneration treatment device 15, that is, the planned value that is the solution to this planning problem.
  • Qd (t) the demand prediction value of the reclaimed water calculated by the reclaimed water demand prediction unit 212 in step S403 is defined as Qd (t).
  • each water quality component (BOD, TN, TP, and SS) by the water regeneration treatment in the water regeneration treatment device 15 is KBOD, KTN, KTP, and KSS, respectively.
  • KBOD, KTN, KTP, and KSS may not be constants, and may be a variable using, for example, Q (t) indicating the flow rate of the treated water 2 fed to the water regeneration treatment device 15.
  • step S404 the planning problem solving unit 213 selects the concentration of water quality component (XBOD (t), XTN (t), XTP (t) in the time series of 24 hours for the water quality component to be removed selected in step S401. ), Or XSS (t)), so that the maximum value is minimized using an optimization calculation such as a genetic algorithm (GA) or a genetic program (GP). ) Is calculated.
  • the planned value Q (t) is not less than 0 and not more than the inflow amount of the treated water 2 flowing from the collection sedimentation basin 3, and the reservoir storage amount V (t) is a predetermined upper limit.
  • a constraint condition is set such that the value is between the value VMAX and the lower limit value VMIN.
  • the plan value Q (t) is calculated so that the treated water 2 when the concentration of the selected water quality component becomes low is used preferentially.
  • the plan value Q (t) is calculated so that the treated water 2 when the concentration of the water quality component selected in the optimization calculation is low is used preferentially. Therefore, the processing cost concerning the water regeneration process performed in the water regeneration processing apparatus 15 in order to implement
  • Such a water treatment plant operation system 20 can preferentially feed the treated water 2 having a good water quality from the treated water distribution device 14 to the water regeneration treatment device 15 to achieve a desired water quality. In the production of reclaimed water, it is possible to reduce the processing cost for water regeneration treatment.
  • the water treatment plant operation system 30 includes a control device 310, a control device 310, and a control device 310.
  • Databases 320 and 330 that provide stored data to the control unit 310 and an input unit 340 that transmits an input signal to the control device 310.
  • control device 310 controls each part in the control device 310 by executing a program and gives a water supply instruction to the treated water distribution device 14 (Central Processing Unit) (not shown), and the CPU executes the program
  • the treated water distribution device 14 Central Processing Unit
  • the CPU executes the program
  • a computer having a memory (not shown) in which a program is loaded and used, and a storage device (not shown) for storing various data and programs.
  • the control device 310 has a treated water quality prediction unit 311, a reclaimed water demand prediction unit 312, and a planning problem solving unit 313 as its functional configuration.
  • the treated water quality prediction unit 311 performs a predetermined calculation process (to be described later with reference to FIG. 7) based on past performance data on the inflow amount and water quality of the sewage 1, and a predetermined time (for example, 0) after the present time. It is predicted what value the quality of the treated water 2 will take at each time (from time to 24:00).
  • the reclaimed water demand prediction unit 312 predicts how much reclaimed water 3 is in demand at a predetermined time (for example, from 0:00 to 24:00) after the present based on past performance data.
  • the planning problem solving unit 313 controls the amount of water supplied to the water regeneration treatment device 15 by the treated water distribution device 14.
  • the planning problem solving unit 313 solves the planning problem based on the predicted values calculated by the treated water quality prediction unit 311 and the reclaimed water demand prediction unit 312, and instructs the treated water distribution device 14 of the water supply amount according to the solution.
  • the database 320 is a storage device and stores time-series data regarding the demand for reclaimed water.
  • the time series data related to the demand for reclaimed water is created by the same process as the time series data of the same name used in the first embodiment and stored in advance.
  • the database 330 is a storage device and stores time-series data related to the inflow amount of the sewage 1 and time-series data related to the concentration of the water quality component of the sewage 1 based on past performance data in the water treatment plant 10.
  • the time series data relating to the inflow amount of the sewage 1 and the time series data relating to the concentration of the water component of the sewage 1 are the same as the time series data of the treated water 2 used in the first embodiment (step S102 in FIG. 2). Created and stored in advance.
  • the input unit 340 is an input device in which an input operation and data input from a user are performed in the same manner as the input unit 210, and an input signal corresponding to the input content is transmitted to the control device 310.
  • a water quality component that is particularly desired to be removed is selected from the water quality component items by a user input operation on the input unit 330.
  • Each item of the water quality component is, for example, BOD, total nitrogen (TN), total phosphorus (TP), or solid suspended matter (SS).
  • a predetermined screen may be displayed on a display unit (not shown) to allow the user to select a removal item.
  • step S ⁇ b> 202 the treated water quality prediction unit 311 reads time-series data regarding the inflow amount of the sewage 1 from the database 330. And the treated water quality prediction part 311 is 24 hours after the present of the sewage 1 based on the time series data corresponding to the present season and the day of the week in relation to the inflow amount of the sewage 1 read from the database 330.
  • the inflow prediction value for the minute is calculated as time-series data for 24 hours.
  • step S ⁇ b> 203 the treated water quality prediction unit 311 reads time-series data relating to the concentration of water quality components in the sewage 1 from the database 330. Then, the treated water quality prediction unit 311 selects each water quality of the sewage 1 based on the time series data corresponding to the current season and day of the week among the time series data related to the concentration of the water quality components of the sewage 1 read from the database 330. A water quality prediction value for 24 hours after the present (BOD concentration, TN concentration, TP concentration, and SS concentration) is calculated as time-series data for 24 hours. In addition, in the predicted water quality value of the sewage 1 calculated in step S203, the water temperature of the sewage 1 may be added to the item in addition to the above water quality.
  • step S204 the treated water quality prediction unit 311 calculates a predicted water quality value of the treated water 2 using the predicted inflow amount and the predicted water quality value for the sewage 1 calculated in steps S202 and S203.
  • FIG. 7 schematically illustrates a mathematical model for calculating the BOD concentration as an example of a method of calculating the water quality prediction value by the treated water quality prediction unit 311. Yes.
  • FIG. 7 shows a dynamic model in which the inflow amount and quality of the sewage 1 are input and the water quality of the treated water 2 is output.
  • the dynamic model includes the first mathematical model 81 and the second mathematical model. It consists of a mathematical model 82.
  • the treated water quality prediction unit 311 inputs an inflow prediction value (Qin) and a water quality prediction value (BODin) for the sewage 1 to the first mathematical model 81.
  • the first mathematical model 81 has a static relationship established between the inflow amount of the sewage 1, the water quality of the sewage 1, and the water quality of the treated water 2 in a steady state where the inflow amount of the sewage 1 is constant. It is a model to prescribe.
  • a two-dimensional table prepared in advance is used, and a water quality component concentration (for example, BOD concentration: BODout1) of the treated water 2 generated in a steady state is output.
  • the table data constituting the two-dimensional table used in the first model 81 should be created based on the measurement data of the steady-state sewage 1 inflow, the sewage 1 water quality, and the treated water 2 water quality. And stored in the database 330 in advance.
  • the treated water quality prediction unit 311 inputs the BOD concentration (BODout1) in the treated water 2 in the steady state output from the first mathematical model 81 to the second mathematical model 82.
  • the second mathematical model 82 is a mathematical expression that applies a delay process to an input value, and is specifically a transfer function of “dead time + m-th order delay” (S represents a Laplace operator).
  • the transfer function of the second mathematical model 82 outputs the BOD concentration (BODout2) in the treated water 2 at the time of transition.
  • the BOD concentration in the treated water 2 at the time of transition corresponds to the predicted value of the BOD concentration in the treated water 2.
  • the first mathematical model 81 and the second mathematical model 82 are collectively referred to as a water quality calculation model.
  • “dead time + m-th order delay” means the timing at which the inflow amount of the sewage 1 changes and the accompanying change, as described with reference to FIGS. 3A to 3D in the first embodiment. It is the relationship which shows the difference with the timing of the water quality change of the treated water 2.
  • FIG. This timing shift occurs because time is required due to chemical reaction or retention in the sewage treatment performed on the sewage 1 in the first settling basin 11, the activated sludge treatment tank 12 and the collection settling basin 13, and the sewage 1 After a while after the inflow amount increases, the water quality of the treated water 2 decreases.
  • the waveform indicating the water quality change of the treated water 2 does not appear as it is as the waveform indicating the change in the inflow amount of the sewage 1, but appears as a tanned waveform.
  • the second mathematical model 82 is a transfer function that approximately represents such a characteristic of “dead time + m-th order delay”.
  • the parameter T1, T2, and m take the value from which the parameter T1, T2, and m differ according to the target water quality component like the table 92 shown in FIG. Differences in parameter values due to water quality components are due to various factors represented by differences in the speed of chemical reactions.
  • the table 92 in FIG. 8 includes a water quality component column 92A in which the target water quality component is described, a dead time column 92B in which the value of the dead time T1 is written, a time constant column 92C in which the value of the time constant T2 is written, and It has an order column 92D in which the order is described, and a predetermined numerical value is described in each column.
  • the table 92 may be stored in a memory (not shown) in the control device 310 or may be stored in the database 330, for example.
  • each column of the table 92 is affected by the water temperature of the sewage 1, the dissolved oxygen amount, etc., a plurality of tables 92 for various water temperatures are stored, and the water quality prediction in step S204 is performed. You may make it utilize at the time of calculation.
  • the treated water quality prediction unit 311 performs a calculation process for each water quality component (BOD concentration, TN concentration, TP concentration, and SS concentration) to calculate a predicted water quality value of the treated water 2. To do.
  • step S205 the reclaimed water demand prediction unit 312 reads time-series data regarding the demand amount of the reclaimed water 3 from the database 320. Then, the reclaimed water demand prediction unit 312 is based on the time series data corresponding to the current season and day of week among the time series data relating to the demand amount of the reclaimed water 3 read from the database 320, and for 24 hours after the present of the reclaimed water 3. Is calculated as 24-hour time-series data.
  • step S ⁇ b> 206 the planning problem solving unit 313 is based on the water quality prediction value of the treated water 2 calculated by the treated water quality prediction unit 311 and the demand prediction value of the reclaimed water 3 calculated by the reclaimed water demand prediction unit 312.
  • the planning problem is solved by the same processing as the planning problem solving unit 213 in the first embodiment. Explanation of the solution of the planning problem is omitted.
  • the plan problem solving unit 313 instructs the treated water distribution device 14 of the amount of treated water 2 to be distributed to the water regeneration treatment device 15 according to the solution (plan value).
  • the water treatment plant operation system 40 is the water treatment plant shown in FIG.
  • the databases 420 and 430, and the input unit 440 similar to the configuration of the operation system 30, an inflow / water quality acquisition unit 450, a database 460, and a table data calculation unit 470 are provided.
  • the description of the same configuration as the configuration of the water treatment plant operation system 30 is omitted.
  • the water treatment plant 10 of FIG. 9 is provided with a sensor 27 for measuring the inflow amount and quality of the sewage 1 flowing into the first settling basin 11 in the flow path before the first settling basin 11.
  • a sensor 28 that measures the inflow amount and quality of the treated water 2 flowing into the treated water distribution device 14 is provided in a flow path between the treated water distribution device 14 and the treated water distribution device 14. The inflow amount or water quality measurement results by the sensors 27 and 28 are transmitted to the inflow amount / water quality data acquisition unit 450.
  • the inflow amount / water quality data acquisition unit 450 acquires the measurement result of the inflow amount and water quality of the sewage 1 by the sensor 27 provided in the water treatment plant 10, and based on the measurement result. Generate time-series data about the inflow and quality of sewage 1.
  • the inflow / water quality acquisition unit 450 generates, for example, hourly time series data over the past several months and stores it in the database 460.
  • the inflow / water quality data acquisition unit 450 acquires the measurement result of the water quality of the treated water 2 by the sensor 28 provided in the water treatment plant 10, and the time-series data about the inflow amount and the water quality of the sewage 1 Similarly, time-series data about the water quality of the treated water 2 is generated and stored in the database 460. Generation of these time-series data by the inflow / water quality acquisition unit 450 is performed based on the measurement results of the sensors 27 and 28 constantly or periodically, and the generated time-series data is accumulated in the database 460.
  • the table data calculation unit 470 calculates the table data of the water quality calculation model based on the time series data about the inflow amount and the water quality of the sewage 1 stored in the database 460.
  • the table data of the water quality calculation model is two-dimensional table data used in the first mathematical model 81 of FIG. 7, and parameters (dead time T1, time constant) of the table 92 used in the second mathematical model 82. T2 and the value of order m).
  • the table data of the water quality model is stored in the database 430.
  • the processing until the water quality component to be specifically removed is selected by the user and the inflow amount and the water quality predicted value in the sewage 1 are calculated by the treated water quality prediction unit 411 is the process shown in steps S201 to S203 in FIG. This is the same and will not be described.
  • the table data calculation unit 470 uses the table data calculation unit 470 for the water quality calculation model (the first mathematical model 81 and the mathematical model 82) used there. Calculate table data of water quality calculation model.
  • step S301 the table data calculation unit 470 determines the inflow amount and water quality of the sewage 1 stored in the database 460. Referring to the time-series data and the time-series data about the water quality of the treated water 2, it is determined whether or not the time-series data measured at various dates and times are data measured during steady operation of the water treatment plant 10. (Normal determination).
  • a sewage inflow measurement value 93 ⁇ / b> A indicating measurement data regarding the inflow amount of sewage 1
  • a sewage water quality measurement value 93 ⁇ / b> B indicating measurement data regarding the water quality of sewage 1
  • measurement data regarding the water quality of treated water 2 The treated water quality measurement value 93C is shown.
  • the table data calculation unit 470 acquires measurement data every 6 hours from the database 460, and compares the measurement data at t and the measurement data at (t + 6).
  • the table data calculation unit 470 has a fluctuation amount or a fluctuation rate exceeding a preset threshold for each of the sewage inflow measurement value 93A, the sewage water quality measurement value 93B, and the treated water quality measurement value 93C. Judge whether it is. When the fluctuation amount or the fluctuation rate is within the threshold value, the table data calculation unit 470 determines that the measurement data is data measured during steady operation of the water treatment plant 10.
  • the table data calculation unit 470 repeats such steady state determination, and extracts a plurality of 6-hour time series data when the water treatment plant 10 is in a steady operation state.
  • step S302 the table data calculation unit 470 averages each time-series data in the steady operation state extracted in step S301, and the average sewage inflow amount indicating the average of the inflow amount of the sewage 1, the water quality of the sewage 1 An average sewage quality indicating an average concentration and an average treated water quality indicating an average water concentration of the treated water 2 are calculated. Since a plurality of time-series data in the steady operation state are extracted in step S301, a plurality of combinations of average sewage inflow, average sewage quality, and average treated water quality are obtained.
  • the table data calculation unit 470 calculates new table data used in the first mathematical model 81 based on the combination of the average sewage inflow amount, the average sewage water quality, and the average treated water quality obtained as described above. . New table data is calculated for each water quality component.
  • step S302 the table calculation unit 470 calls the sewage inflow amount and sewage quality measurement time series at a certain time from the sewage inflow amount and sewage water quality time series stored in the database 460, and calls them the first time series.
  • the mathematical model 81 the first mathematical model 81 and the second mathematical model 82 are calculated for each water quality component, and the water quality of the treated water 2 is predicted.
  • the table data calculation unit 470 measures the water quality of the treated water 2 corresponding to the sewage inflow amount and the measurement time series of the sewage water quality from the time series data about the water quality of the treated water 2 stored in the database 460.
  • a series (measured values at the same time) is acquired, and the water quality prediction value of the treated water 2 calculated by the second mathematical model 82 matches the water quality measured value of the treated water 2 obtained from the database 460. Then, the values of the parameters (dead time T1, time constant T2, and order m) of the table 92 are calculated by nonlinear optimization calculation. Such parameter values, that is, the table data used in the second mathematical model are calculated for each water quality component.
  • step S303 the table data calculation unit 470 rewrites the previous table data stored in the database 430 with the new table data calculated in step S302.
  • the table data can maintain a value suitable for the characteristics or state of the water treatment plant 10.
  • the treated water quality prediction unit 411 uses the table data of the water quality calculation model calculated by the process of FIG. 10, and calculates the predicted water quality value of the treated water 2 in the same manner as the process in the second embodiment other than that. To do.
  • the reclaimed water demand prediction unit 412 calculates the demand prediction value of the reclaimed water 3
  • the planning problem solving unit 413 solves the planning problem based on the water quality prediction value of the treated water 2 and the demand prediction value of the reclaimed water 3, and the solution
  • the processing until the amount of treated water 2 to be distributed to the water regeneration treatment device 15 according to (planned value) is controlled is the same as the processing shown in steps S205 to S206 in FIG.
  • Such a water treatment plant operation system 40 is a measurement in which table data used in a water quality calculation model for predicting the water quality concentration of the treated water 2 is measured online. Since the value is calculated and corrected, the situation in the water treatment plant 10 can be flexibly dealt with. As a result, compared to the water treatment plant operation system 20 according to the first embodiment and the water treatment plant operation system 30 according to the second embodiment, a predicted water quality value of the treated water 2 that is closer to the actual value is calculated.
  • the water treatment plant 10 can be operated with high accuracy. For example, even when the characteristics of the water treatment plant 10 change over time or when the control method of the water treatment plant 10 is changed, the table data is changed to be changed along the measurement values.
  • the planned value can be calculated by a mathematical model using the table data.
  • the water treatment plant operation system 30 can calculate the plan value with higher accuracy because the parameters of the water quality calculation model are kept up-to-date according to the measured values.
  • the accuracy of the operation plan can be improved. As a result, an effect of further reducing the processing cost of the water regeneration process can be expected.
  • the input unit 230, 340, or 440 is provided outside the control device 210, 310, or 410, respectively.
  • the present invention is not limited to this, and may be provided inside the control device 210, 310, or 410, respectively.
  • the input unit 230, 340, or 440 is also used for the database 220 according to the first embodiment, the databases 320 and 330 according to the second embodiment, or the databases 420, 430, and 460 according to the third embodiment. Similarly, it may be provided inside the control device 210, 310 or 410, respectively.
  • the present invention is not limited to this, and various data are stored in one database.
  • the system cost may be reduced by reducing the number of storage devices so as to be integrated and stored.
  • various data may be distributed and stored in more databases to improve the processing speed when a large amount of data is stored.
  • the present invention can be applied to a water treatment plant operation system and a water supply amount planning method for managing a water treatment plant that purifies sewage and produces reclaimed water that can be reused.

Abstract

[Problem] A system for operating a water treatment plant that supplies recycled water to satisfy demand and reduces the treatment cost of the water recycling treatment for producing the recycled water. [Solution] The system (20) for operating a water treatment plant, which manages a water treatment plant (10) that performs sewage treatment on sewage (1) to generate treated water (2) and performs water recycling treatment on the treated water (2) to produce recycled water (3), is provided with: a treated water quality-predicting unit (211) that predicts the water quality of the treated water (2) generated by the sewage treatment; a recycled water demand-predicting unit (212) that predicts the demand for recycled water; and a plan problem-solving unit (213) that calculates a planned value using specified calculations on the basis of the predicted water quality value for the treated water (2) predicted by the treated water quality-predicting unit and controls the volume of treated water (2) on which water recycling treatment is performed at the water treatment plant (10) according to said planed value. The system is characterized in that the planned value calculated at this time is such that the volume of recycled water (3) produced from the treated water (2) by the water recycling treatment according to the planned value satisfies the predicted demand.

Description

水処理プラント運用システム及び送水量計画方法Water treatment plant operation system and water volume planning method
 本発明は、水処理プラント運用システム及び送水量計画方法に関し、特に、下水を浄化して再利用可能な再生水を製造する水処理プラントを管理する水処理プラント運用システム及び送水量計画方法に適用して好適なものである。 The present invention relates to a water treatment plant operation system and a water supply amount planning method, and more particularly to a water treatment plant operation system and a water supply amount planning method for managing a water treatment plant that purifies sewage and produces reclaimed water that can be reused. And suitable.
 水資源を有効利用するために、生活排水又は産業排水等といった一度使用した水に再生処理を行って再利用することが進められている。再生水は、工業用水、冷却用水、トイレ用水、散水用水、及び修景用水等の様々な用途に用いられる。 In order to effectively use water resources, it has been promoted to recycle and reuse water once used, such as domestic wastewater or industrial wastewater. Reclaimed water is used in various applications such as industrial water, cooling water, toilet water, water for spraying, and water for landscapes.
 特許文献1には、複数の用途をもつ再生水を効率的に製造する水処理プラントが開示されている。特許文献1に開示された水処理プラントでは、用途別の水需要及び下水流入量を予測し、予測結果に基づいた分配パターンに応じて、独立した複数の水処理系に分配する。そして、特許文献1に開示された水処理プラントは、各処理系で処理された処理水を混合することにより、需要先の水量及び水質に応じた処理水を生成し、供給する。 Patent Document 1 discloses a water treatment plant that efficiently produces reclaimed water having a plurality of uses. In the water treatment plant disclosed in Patent Document 1, water demand and sewage inflow by use are predicted and distributed to a plurality of independent water treatment systems according to a distribution pattern based on the prediction result. And the water treatment plant disclosed by patent document 1 produces | generates and supplies the treated water according to the water quantity and water quality of a demand destination by mixing the treated water processed by each processing system.
特開2006-281159号公報JP 2006-281159 A
 ところで、特許文献1に記載された水処理プラントは、様々な用途の再生水を製造するために、処理性能の異なる複数の水処理系を有し、それぞれの水処理系で下水の浄化処理が行われる。例えば、特許文献1では、下水に微生物を利用して有機物、りん及び窒素等を除去する活性汚泥処理を行った後に、オゾンによる脱臭、脱色、及び有機物の分解を行うオゾン処理を行う水処理系が例示されている。 By the way, the water treatment plant described in Patent Document 1 has a plurality of water treatment systems having different treatment performances in order to produce reclaimed water for various uses, and sewage purification treatment is performed in each water treatment system. Is called. For example, in Patent Document 1, a water treatment system that performs ozone treatment for deodorizing, decolorizing, and decomposing organic matter after deodorizing, decolorizing, and decomposing organic matter by removing microorganisms, sewage, and other activated sludge treatment using microorganisms in sewage. Is illustrated.
 しかし、特許文献1に記載された水処理プラントでは、流入する全ての下水に対して所定のいずれかの浄化処理が行われることになる。供給水量が需要水量を上回る場合には、需要先に配水されることなく河川に放水される水が発生するが、特許文献1に記載された水処理プラントでは、このような余分な水に対しても不要な浄化処理を行うことになり、水再生処理のコストが増加するという課題がある。 However, in the water treatment plant described in Patent Document 1, any predetermined purification treatment is performed on all inflowing sewage. When the amount of supplied water exceeds the amount of demand water, water that is discharged into the river without being distributed to the demand is generated. However, in the water treatment plant described in Patent Document 1, such extra water is used. However, unnecessary purification treatment is performed, and there is a problem that the cost of water regeneration treatment increases.
 また、水処理プラントへの下水の流入量は日時によって変化するものであるが、特許文献1に記載された水処理プラントでは、流入する下水の全てに浄化処理を行うため、効率の悪い浄化処理が行われる可能性がある。例えば、下水流入量が多い場合には、下水の除去対象が増加するので、活性汚泥処理による処理水の水質が低下する。このような場合にも所定の水質を実現するためには、水質の低い処理水を大量にオゾン処理しなければならなくなり、コスト及び処理時間の点から効率が悪い。 Moreover, although the inflow amount of the sewage to a water treatment plant changes with dates, in the water treatment plant described in patent document 1, since purification processing is performed to all the inflowing sewage, inefficient purification processing May be performed. For example, when the amount of inflow of sewage is large, the number of sewage removal targets increases, so the quality of treated water by activated sludge treatment decreases. Even in such a case, in order to realize a predetermined water quality, a large amount of treated water with low water quality must be ozone-treated, which is inefficient in terms of cost and processing time.
 本発明は以上の点を考慮してなされたもので、需要量を満足する再生水を供給し、かつ、再生水を製造するための水再生処理にかかる処理コストを低減することが可能な水処理プラント運用システム及び送水量計画方法を提案しようとするものである。 The present invention has been made in consideration of the above points, and is a water treatment plant capable of supplying reclaimed water that satisfies the demand and reducing the treatment cost for water reclaim treatment for producing reclaimed water. It intends to propose an operation system and a water supply planning method.
 かかる課題を解決するために本発明においては、下水に下水処理を施して処理水を生成し、前記処理水に水再生処理を施して再生水を製造する水処理プラントを管理する水処理プラント運用システムにおいて、前記下水処理によって生成される前記処理水の水質を予測する処理水水質予測部と、前記再生水の需要量を予測する再生水需要予測部と、前記処理水水質予測部によって予測された前記処理水の水質予測値に基づいて、所定の計算により計画値を算出し、前記水処理プラントで水再生処理を施す処理水の量を該計画値に従って制御する計画問題解法部と、を備え、前記計画問題解法部によって算出される前記計画値は、該計画値に従った処理水から前記水再生処理によって製造される再生水の量が、前記再生水需要予測部によって予測された需要予測値を満足する水処理プラント運用システムが提供される。 In order to solve such a problem, in the present invention, a water treatment plant operation system for managing a water treatment plant that produces sewage by performing sewage treatment on the sewage, and performing water regeneration treatment on the treated water to produce the reclaimed water. In, the treated water quality prediction unit for predicting the quality of the treated water generated by the sewage treatment, the reclaimed water demand prediction unit for predicting the demand amount of the reclaimed water, and the treatment predicted by the treated water quality prediction unit A plan problem solving unit that calculates a plan value by a predetermined calculation based on a water quality prediction value of water, and controls the amount of treated water subjected to water regeneration treatment in the water treatment plant according to the plan value, The plan value calculated by the plan problem solving unit is calculated based on the amount of reclaimed water produced from the treated water according to the plan value by the water regeneration process. Water treatment plant operation system which satisfies the measurement has been forecast value is provided.
 また、かかる課題を解決するために本発明においては、下水に下水処理を施して処理水を生成し、前記処理水に水再生処理を施して再生水を製造する水処理プラントで、前記水再生処理を施す前記処理水の送水量を計画する送水量計画方法において、前記再生水の需要量を予測する需要量予測ステップと、前記下水処理によって生成される前記処理水の水質を予測する処理水水質予測ステップと、前記予測された前記処理水の水質予測値に基づいて、所定の計算により計画値を算出する計画値算出ステップと、前記算出した前記計画値に従って前記水処理プラントで水再生処理を施す処理水の量を制御する送水量制御ステップと、を備え、前記計画値算出ステップで算出される前記計画値は、該計画値に従った処理水から前記水再生処理によって製造される再生水の量が、前記需要量予測ステップで予測された需要予測値を満足する送水量計画方法が提供される。 Moreover, in order to solve such a problem, in the present invention, in the water treatment plant for producing sewage by performing sewage treatment on sewage, and generating the sewage by subjecting the sewage to water regeneration, In the water supply amount planning method for planning the amount of treated water to be applied, a demand amount predicting step for predicting the demand amount of the reclaimed water, and a treated water quality prediction for predicting the quality of the treated water generated by the sewage treatment A plan value calculating step for calculating a planned value by a predetermined calculation based on the predicted predicted water quality value of the treated water, and performing a water regeneration process in the water treatment plant according to the calculated planned value A water supply amount control step for controlling the amount of treated water, and the plan value calculated in the plan value calculation step is changed from treated water according to the plan value to the water regeneration treatment. The amount of recycled water to be produced What is water planning method that satisfies the predicted demand forecast value by the demand prediction step is provided.
 本発明によれば、需要量を満足する再生水を供給し、かつ、再生水を製造するための水再生処理にかかる処理コストを低減することができる。 According to the present invention, it is possible to supply reclaimed water that satisfies the demand and to reduce the processing cost for water reclaim processing for producing reclaimed water.
第1の実施の形態による水処理プラント運用システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the water treatment plant operation system by 1st Embodiment. 図1に示す水処理プラント運用システムが送水量の運用計画を決定する処理手続を示すフローチャートである。It is a flowchart which shows the process procedure in which the water treatment plant operation system shown in FIG. 1 determines the operation plan of a water supply amount. 下水及び処理水について、それぞれの流入量及び水質を時系列で示したグラフ図である。It is the graph which showed each inflow amount and water quality about the sewage and the treated water in time series. 下水処理が施された処理水における様々な水質成分の濃度を時系列にまとめたテーブルである。It is the table which summarized the density | concentration of the various water quality components in the treated water in which the sewage treatment was performed in time series. 第2の実施の形態による水処理プラント運用システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the water treatment plant operation system by 2nd Embodiment. 図5に示す水処理プラント運用システムが送水量の運用計画を決定する処理手続を示すフローチャートである。It is a flowchart which shows the process procedure in which the water treatment plant operation system shown in FIG. 5 determines the operation plan of a water supply amount. 処理水の水質予測値を算出する動的モデルを説明する概略図である。It is the schematic explaining the dynamic model which calculates the water quality prediction value of a treated water. 図7に示す動的モデルのパラメータの一例を示すテーブルである。It is a table which shows an example of the parameter of the dynamic model shown in FIG. 第3の実施の形態による水処理プラント運用システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the water treatment plant operation system by 3rd Embodiment. 図9に示す水処理プラント運用システムが水質計算モデルのテーブルデータを算出する処理手続きを示すフローチャートである。It is a flowchart which shows the process procedure which the water treatment plant operation system shown in FIG. 9 calculates the table data of a water quality calculation model. 下水の流入量、下水の水質、及び処理水の水質のそれぞれの測定値の一例を示すグラフ図である。It is a graph which shows an example of each measured value of the inflow of sewage, the quality of sewage, and the quality of treated water.
(1)第1の実施の形態
(1-1)本実施の形態による構成
 図1において、20は全体として第1の実施の形態による水処理プラント運用システムを示す。水処理プラント運用システム20は、水処理プラント10における処理水の配分を管理する。
(1) First Embodiment (1-1) Configuration According to this Embodiment In FIG. 1, reference numeral 20 denotes a water treatment plant operation system according to the first embodiment as a whole. The water treatment plant operation system 20 manages the distribution of treated water in the water treatment plant 10.
 まず、水処理プラント10について説明する。水処理プラント10は、下水1に下水処理及び水再生処理を行って再利用可能な再生水を製造するプラントであって、最初沈殿池11、活性汚泥処理槽12、最終沈殿池13、処理水配分装置14、水再生処理装置15、配水池16、及び凝集剤貯留槽17を備える。また、水処理プラント10には、複数のポンプが設けられている。以下では、最初沈殿池11から最終沈殿池13の間に下水1に対して行われる浄化処理を下水処理と呼び、下水処理後の水を処理水2と呼ぶ。さらに、水再生処理装置15によって処理水2に対して行われる浄化処理を水再生処理と呼び、水再生処理後の水を再生水3と呼ぶ。 First, the water treatment plant 10 will be described. The water treatment plant 10 is a plant for producing reclaimed water by performing sewage treatment and water regeneration treatment on the sewage 1, and includes a first sedimentation tank 11, an activated sludge treatment tank 12, a final sedimentation tank 13, and distribution of treated water. A device 14, a water regeneration treatment device 15, a distribution reservoir 16, and a flocculant storage tank 17 are provided. The water treatment plant 10 is provided with a plurality of pumps. Below, the purification process performed with respect to the sewage 1 between the first sedimentation basin 11 and the final sedimentation basin 13 is called a sewage treatment, and the water after a sewage treatment is called the treated water 2. Furthermore, the purification process performed on the treated water 2 by the water regeneration treatment device 15 is referred to as a water regeneration process, and the water after the water regeneration process is referred to as a reclaimed water 3.
 ここで、水処理プラント10における一連の水処理を説明する。水処理プラント10では、まず、生活排水又は工業排水等からなる下水1が、最初沈殿池11に流入する。最初沈殿池11は、流入した下水の固形分を沈殿によって除去する。次いで、最初沈殿池11に流入した下水の上澄み液は、活性汚泥処理槽12に流入する。 Here, a series of water treatment in the water treatment plant 10 will be described. In the water treatment plant 10, first, sewage 1 composed of domestic wastewater or industrial wastewater flows into the settling basin 11 first. First, the sedimentation tank 11 removes the solid content of the inflowing sewage by precipitation. Next, the supernatant liquid of the sewage that first flows into the settling basin 11 flows into the activated sludge treatment tank 12.
 活性汚泥処理槽12には、槽内に酸素を供給する送風機であるブロア21、槽内に流入した下水1を循環させるポンプ22、及び、凝集剤貯留槽17から活性汚泥処理槽12内に凝集剤を注入するポンプ25が設けられている。活性汚泥処理槽12では、ブロア21から活性汚泥処理槽12内の微生物に酸素を供給することにより微生物の爆発的な繁殖及び増殖を誘発し、この微生物の代謝によって下水1の有機性汚濁を減少させる活性汚泥処理が行われる。また、凝集剤貯留槽17から注入される凝集剤は、水中に分散している粒子を集合させて沈降を促すために用いられ、下水1の濁りを除去する効果を有する。そして、活性汚泥処理槽12で活性汚泥処理された水は、最終沈殿池13に流入する。 In the activated sludge treatment tank 12, a blower 21 which is a blower for supplying oxygen into the tank, a pump 22 for circulating the sewage 1 flowing into the tank, and a flocculant storage tank 17 flocculates in the activated sludge treatment tank 12. A pump 25 for injecting the agent is provided. In the activated sludge treatment tank 12, oxygen is supplied from the blower 21 to the microorganisms in the activated sludge treatment tank 12 to induce explosive growth and proliferation of microorganisms, and organic pollution of the sewage 1 is reduced by metabolism of the microorganisms. Activated sludge treatment is performed. Further, the flocculant injected from the flocculant reservoir 17 is used to collect particles dispersed in water and promote sedimentation, and has an effect of removing the turbidity of the sewage 1. Then, the water subjected to the activated sludge treatment in the activated sludge treatment tank 12 flows into the final sedimentation tank 13.
 最終沈殿池13には、沈殿した汚泥の一部を活性汚泥処理槽12に戻すポンプ23と、沈殿した汚泥の別の一部を余剰汚泥として水処理プラント10の外に排出するポンプ24とが設けられている。最終沈殿池13では、流入した水の固形分が沈殿によって除去され、上澄みが処理水2として処理水配分装置14に排出される。なお、最終沈殿池13で沈殿した固形分の一部は、ポンプ23によって活性汚泥処理槽12に戻されて、活性汚泥処理に用いられる。 The final sedimentation basin 13 includes a pump 23 for returning a part of the precipitated sludge to the activated sludge treatment tank 12 and a pump 24 for discharging another part of the precipitated sludge as excess sludge to the outside of the water treatment plant 10. Is provided. In the final sedimentation basin 13, the solid content of the inflowed water is removed by precipitation, and the supernatant is discharged as treated water 2 to the treated water distribution device 14. A part of the solid content precipitated in the final sedimentation tank 13 is returned to the activated sludge treatment tank 12 by the pump 23 and used for activated sludge treatment.
 処理水配分装置14は、処理水2を送水する仕組みを有し、例えば、弁、ポンプ、又は堰等によって実現される。処理水配分装置14は、水処理プラント運用システム20の指示に従って、処理水2の一部を水再生処理装置15に排出し、その他を河川に放流する。 The treated water distribution device 14 has a mechanism for feeding the treated water 2 and is realized by, for example, a valve, a pump, a weir, or the like. The treated water distribution device 14 discharges a part of the treated water 2 to the water regeneration treatment device 15 and discharges the others to the river according to the instruction of the water treatment plant operation system 20.
 水再生処理装置15では、処理水2に含まれる様々な成分を更に除去するために、処理水2に対して水再生処理が行われる。水再生処理装置15では、例えば、砂ろ過、生物膜ろ過、活性炭吸着、精密ろ過膜(MF膜:Microfiltration Membrane)によるろ過、逆浸透膜(RO膜:Reverse Osmosis Membrane)によるろ過、又はオゾン処理のうちの少なくとも1つ以上の水再生処理が実施される。これらの水再生処理の方法には、一般に用いられている方法をそれぞれ利用することができる。 In the water regeneration treatment device 15, the water regeneration treatment is performed on the treated water 2 in order to further remove various components contained in the treated water 2. In the water regeneration treatment apparatus 15, for example, sand filtration, biofilm filtration, activated carbon adsorption, filtration through a microfiltration membrane (MF membrane: Microfiltration Membrane), filtration through a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), or ozone treatment At least one of the water regeneration processes is performed. For these water regeneration treatment methods, commonly used methods can be used.
 水再生処理装置15において水再生処理が行われた処理水は、再生水として配水池16に貯留される。その後、配水池16に貯留された再生水は、ポンプ25によって排出されて需要者に配水される。 The treated water that has been subjected to water regeneration treatment in the water regeneration treatment device 15 is stored in the reservoir 16 as reclaimed water. Thereafter, the reclaimed water stored in the distributing reservoir 16 is discharged by the pump 25 and distributed to consumers.
 次に、水処理プラント運用システム20の構成を説明する。水処理プラント運用システム20は、制御装置210と、制御装置210に格納データを提供するデータベース220と、制御装置210に入力信号を送信する入力部230とを備える。 Next, the configuration of the water treatment plant operation system 20 will be described. The water treatment plant operation system 20 includes a control device 210, a database 220 that provides storage data to the control device 210, and an input unit 230 that transmits an input signal to the control device 210.
 制御装置210は、例えば、プログラムの実行によって制御装置210内の各部を制御し、処理水配分装置14に送水の指示を与えるCPU(Central Processing Unit)(図示せず)と、CPUによるプログラムの実行の際にプログラムがロードされて使用されるメモリ(図示せず)と、各種のデータやプログラムを格納する記憶デバイス(図示せず)とを有するコンピュータによって実現される。 For example, the control device 210 controls each part in the control device 210 by executing a program and gives a water supply instruction to the treated water distribution device 14 (Central Processing Unit) (not shown), and the CPU executes the program This is realized by a computer having a memory (not shown) in which a program is loaded and used, and a storage device (not shown) for storing various data and programs.
 制御装置210は、その機能的な構成として処理水水質予測部211、再生水需要予測部212、及び計画問題解法部213を有する。 The control device 210 has a treated water quality prediction unit 211, a reclaimed water demand prediction unit 212, and a planning problem solving unit 213 as its functional configuration.
 処理水水質予測部211は、処理水2の水質についての過去の実績データに基づいて、現在以降の所定の時間(例えば0時から24時まで)の各時刻に、処理水2の水質がどのようになるかを予測する。 The treated water quality predicting unit 211 determines the water quality of the treated water 2 at each time of a predetermined time after the present (for example, from 0:00 to 24:00) based on past performance data on the water quality of the treated water 2. Predict what will happen.
 再生水需要予測部212は、過去の実績データに基づいて、現在以降の所定の時間(例えば0時から24時まで)のどの時刻に、どれくらいの再生水の需要があるかを予測する。 The reclaimed water demand prediction unit 212 predicts how much reclaimed water is demanded at a certain time after the present (for example, from 0:00 to 24:00) based on past performance data.
 計画問題解法部213は、処理水配分装置14による水再生処理装置15への送水量を制御する。計画問題解法部213は、処理水水質予測部211及び再生水需要予測部212によって算出された予測値に基づいて所定の計画問題(詳細は後述する)を解き、当該解に従って、処理水配分装置14に送水量を指示する。 The planning problem solving unit 213 controls the amount of water supplied to the water regeneration treatment device 15 by the treated water distribution device 14. The planning problem solving unit 213 solves a predetermined planning problem (details will be described later) based on the predicted values calculated by the treated water quality prediction unit 211 and the reclaimed water demand prediction unit 212, and the treated water distribution device 14 according to the solution. Instruct the amount of water to be sent.
 データベース220は、記憶装置であって、水処理プラント10における過去の実績データに基づいて、処理水2の水質成分の濃度に関する時系列データ及び再生水の需要量に関する時系列データが格納されている。各種の水質成分とは、例えば、水中の有機物の量を示す生物化学的酸素要求量(BOD:Biochemical oxygen demand)、りん、窒素、又は浮遊物質(SS:Suspended Solids)等に相当する。データベース220に格納されているデータの詳細については、図4を参照して後述する。 The database 220 is a storage device, and stores time-series data related to the concentration of water quality components of the treated water 2 and time-series data related to the demand for reclaimed water based on past performance data in the water treatment plant 10. The various water quality components correspond to, for example, biochemical oxygen demand (BOD) indicating the amount of organic matter in water, phosphorus, nitrogen, suspended solids (SS), and the like. Details of the data stored in the database 220 will be described later with reference to FIG.
 入力部230は、ユーザからの入力操作やデータ入力が行われる入力装置であって、入力内容に応じた入力信号が制御装置210に送信される。 The input unit 230 is an input device in which an input operation and data input from a user are performed, and an input signal corresponding to the input content is transmitted to the control device 210.
(1-2)本実施の形態による処理
 以下に、図2を参照しながら、水処理プラント運用システム20が水処理プラント10における送水量を計画する処理手順を説明する。
(1-2) Processing according to the present embodiment Hereinafter, a processing procedure in which the water treatment plant operation system 20 plans a water supply amount in the water treatment plant 10 will be described with reference to FIG.
 まず、ステップS101では、入力部230に対するユーザの入力操作によって、水質成分の各項目のうち特に除去したい水質成分が選択される。水質成分の各項目は、例えば、BOD、トータル窒素(TN)、トータルりん(TP)、又は固形浮遊物(SS)とする。このとき、表示部(図示せず)に所定の画面を表示して、ユーザに除去項目を選択させるようにしてもよい。 First, in step S101, a water quality component that is particularly desired to be removed is selected from among the water quality component items by a user input operation on the input unit 230. Each item of the water quality component is, for example, BOD, total nitrogen (TN), total phosphorus (TP), or solid suspended matter (SS). At this time, a predetermined screen may be displayed on a display unit (not shown) to allow the user to select a removal item.
 次に、ステップS102では、処理水水質予測部211が、データベース220から処理水2の水質成分の濃度に関する時系列データを読込む。 Next, in step S102, the treated water quality prediction unit 211 reads time-series data relating to the concentration of the water quality component of the treated water 2 from the database 220.
(1-2-1)下水の水質成分の濃度に関する時系列データ
 ここで、データベース220に格納されている処理水2の水質成分の濃度に関する時系列データについて詳しく説明する。
(1-2-1) Time Series Data on the Concentration of Water Quality Components of Sewage Here, the time series data on the concentration of the quality components of the treated water 2 stored in the database 220 will be described in detail.
 図3は、(a)下水1の流入量、(b)下水1の水質(BOD濃度)、(c)処理水2の流出量、及び(d)処理水2の水質(BOD濃度)について、24時間の経過時間による変化の一例である。また、図4は、1日の各時刻における処理水2の水質について、複数成分の濃度を例示したものである。テーブル91には、各時刻が記載される時刻欄91Aと、各水質成分の濃度が記載されるBOD濃度欄91B、TN濃度欄91C、TP濃度欄91D、及びSS濃度欄91Eとが設けられている。図3(d)では、処理水2のBOD濃度について示したが、図4からは、他の水質成分(TN濃度、TP濃度、及びSS濃度)も、時刻によって変動していることが分かる。 FIG. 3 shows (a) the amount of sewage 1 inflow, (b) the quality of sewage 1 (BOD concentration), (c) the amount of effluent of treated water 2 and (d) the quality of effluent 2 (BOD concentration). It is an example of the change by the elapsed time of 24 hours. Moreover, FIG. 4 illustrates the concentration of a plurality of components for the water quality of the treated water 2 at each time of the day. The table 91 includes a time column 91A in which each time is described, a BOD concentration column 91B, a TN concentration column 91C, a TP concentration column 91D, and an SS concentration column 91E in which the concentration of each water component is described. Yes. FIG. 3D shows the BOD concentration of the treated water 2, but it can be seen from FIG. 4 that other water quality components (TN concentration, TP concentration, and SS concentration) also vary with time.
 ここで、下水1における各水質成分は、図3(b)及び(d)に示すように、活性汚泥処理槽12及び最終沈殿池13における処理によって大部分が除去されるが、全てが除去されるわけではなく、処理水2の段階でも数%から数十%が残留する。 Here, most of the water quality components in the sewage 1 are removed by the treatment in the activated sludge treatment tank 12 and the final sedimentation basin 13 as shown in FIGS. 3B and 3D, but all are removed. However, several percent to several tens of percent remain even at the stage of the treated water 2.
 また、図3(a)及び(d)に示すように、下水1の水質が安定している場合でも、下水1の流入量が変動することにより、処理水2の水質が変動することが分かる。一般に、下水1の流入量が増加してしばらくすると、処理水2の水質が低下(成分濃度が上昇)する。このとき、処理水2の水質が低下するタイミングは、下水1の流入量が増加するタイミングに対する「むだ時間+m次遅れ系(m=1,2,・・・)」の関係によって近似することができる。すなわち、処理水2の水質は、下水1の流入量及び水質に連動した値となる。 In addition, as shown in FIGS. 3A and 3D, even when the quality of the sewage 1 is stable, it is understood that the quality of the treated water 2 varies due to the variation of the inflow amount of the sewage 1. . Generally, after a while after the inflow of the sewage 1 increases, the water quality of the treated water 2 decreases (component concentration increases). At this time, the timing at which the water quality of the treated water 2 decreases can be approximated by the relationship of “dead time + m-order delay system (m = 1, 2,...)” With respect to the timing at which the inflow amount of the sewage 1 increases. it can. That is, the water quality of the treated water 2 is a value that is linked to the inflow amount of the sewage 1 and the water quality.
 さらに、下水1の流入量及び水質は、季節、曜日、及び時刻等によって異なった値を示すことから、これら季節、曜日、及び時刻等をパラメータとする時間変動型の値と考えられる。そして、前述したように、処理水2の水質は下水1の流入量及び水質に連動しているので、処理水2の水質も、季節、曜日、及び時刻等をパラメータとする時間変動型の値と考えることができる。 Furthermore, since the inflow amount and the water quality of the sewage 1 show different values depending on the season, day of the week, and time, etc., it can be considered as a time-variable value using these season, day of the week, and time as parameters. As described above, since the quality of the treated water 2 is linked to the inflow amount and the quality of the sewage 1, the quality of the treated water 2 is also a time-variable value with parameters such as season, day of the week, and time. Can be considered.
 そこで、処理水水質予測部211は、処理水2の水質について過去の実績データを季節、曜日、及び時刻によって事前に分類する。そして、処理水水質予測部211は、同一のパラメータにおける分類データの平均値をとることによって季節、曜日、及び時刻を単位とした処理水2の水質成分の濃度を求め、このようにして水質成分ごとにまとめられた水質成分の濃度に関する時系列データをデータベース220に格納しておく。例えば、図4のテーブル91は、1日分のデータを示すテーブルであるから、データベース220には、このようなテーブル91が、季節(4パターン)及び曜日(7パターン)ごとに合計28個作成されてデータベース220に格納される。 Therefore, the treated water quality prediction unit 211 classifies the past performance data regarding the quality of the treated water 2 in advance according to the season, day of the week, and time. The treated water quality prediction unit 211 obtains the concentration of the water quality component of the treated water 2 in units of season, day of the week, and time by taking the average value of the classification data in the same parameter, and thus the water quality component Time series data relating to the concentration of the water quality components collected for each time is stored in the database 220. For example, since the table 91 in FIG. 4 is a table showing data for one day, a total of 28 such tables 91 are created for each season (4 patterns) and days of the week (7 patterns) in the database 220. And stored in the database 220.
 そして、処理水水質予測部211は、データベース220から読込んだ処理水2の水質成分の濃度に関する時系列データのうち、現在の季節及び曜日に対応する時系列データに基づいて、処理水2の各水質(BOD濃度、TN濃度、TP濃度、及びSS濃度)の現在以降24時間分についての予測値を、24時間の時系列データとして算出する。 The treated water quality prediction unit 211 then selects the treated water 2 based on the time series data corresponding to the current season and day of the week among the time series data related to the concentration of the water quality components of the treated water 2 read from the database 220. Predicted values for 24 hours after the present of each water quality (BOD concentration, TN concentration, TP concentration, and SS concentration) are calculated as time series data for 24 hours.
 次いで、ステップS103では、再生水需要予測部212が、データベース220から再生水の需要量に関する時系列データを読込む。 Next, in step S103, the reclaimed water demand prediction unit 212 reads time-series data regarding the reclaimed water demand from the database 220.
(1-2-2)再生水の需要量に関する時系列データ
 ここで、再生水の需要量に関する時系列データについて簡単に説明する。再生水の需要値は、下水1の流入量及び水質と同様に、季節、曜日、又は時刻等をパラメータとする時間変動型の値と考えられる。そこで、再生水需要予測部212は、再生水の需要について過去の実績データを季節、曜日、及び時刻によって事前に分類し、ステップS102で説明した処理水2の水質成分の濃度に関する時系列データと同様の処理を行って、再生水の需要量に関する時系列データをデータベース220に格納しておく。
(1-2-2) Time-series data related to the demand for reclaimed water Here, the time-series data related to the demand for reclaimed water will be briefly described. The demand value of the reclaimed water is considered to be a time-variable value having parameters such as season, day of the week, or time as well as the inflow amount and quality of the sewage 1. Therefore, the reclaimed water demand prediction unit 212 classifies the past performance data regarding the reclaimed water demand in advance according to the season, day of the week, and time, and is similar to the time-series data regarding the concentration of the water quality component of the treated water 2 described in step S102. Processing is performed, and time series data relating to the demand for reclaimed water is stored in the database 220.
 そして、再生水需要予測部212は、データベース220から読込んだ再生水の需要量に関する時系列データのうち、現在の季節及び曜日に対応する時系列データに基づいて、再生水の現在以降24時間分についての需要予測値を、24時間の時系列データとして算出する。 Then, the reclaimed water demand forecasting unit 212 is based on the time series data corresponding to the current season and day of the week in the time series data related to the demand for reclaimed water read from the database 220. The demand forecast value is calculated as 24-hour time series data.
 次いで、ステップS104では、計画問題解法部213が、以下に示す計画問題を解いて、その解に従って水再生処理装置15に配分する処理水の量を処理水配分装置14に指示する。 Next, in step S104, the planning problem solving unit 213 solves the planning problem shown below, and instructs the treated water distribution device 14 of the amount of treated water to be distributed to the water regeneration treatment device 15 according to the solution.
(1-2-3)計画問題
 ここでは、計画問題解法部213による計画問題の解法について説明する。
(1-2-3) Planning Problem Here, a method for solving the planning problem by the planning problem solving unit 213 will be described.
 まず、ステップS402で処理水水質予測部211によって算出された処理水2の各水質についての予測値を、BOD濃度、TN濃度、TP濃度、及びSS濃度のそれぞれについて、XBODin(t)、XTNin(t)、XTPin(t)、及びXSSin(t)という関数で表わすとする。なお、各関数において、tは時刻を示し、0,1,・・・,24のいずれかの値に相当し、特別の指定がない場合には、以下に示す他の関数における時刻tにおいても同様である。例えば、XBODin(5)は、5時における処理水2のBOD濃度の予測値を示す。 First, the predicted values for each water quality of the treated water 2 calculated by the treated water quality predicting unit 211 in step S402 are XBODin (t), XTNin (for the BOD concentration, TN concentration, TP concentration, and SS concentration, respectively. t), XTPin (t), and XSSin (t). In each function, t indicates a time, which corresponds to any of 0, 1,..., 24, and when there is no special designation, also at the time t in other functions shown below. It is the same. For example, XBODin (5) indicates the predicted value of the BOD concentration of the treated water 2 at 5 o'clock.
 次に、配水池16における再生水の貯留量をV(t)とし、配水池16に貯留されている再生水のBOD濃度、TN濃度、TP濃度、及びSS濃度のそれぞれについて、XBOD(t)、XTN(t)、XTP(t)、及びXSS(t)とする。また、処理水配分装置14から水再生処理装置15に送水される処理水2の流量、すなわち、本計画問題における解となる計画値をQ(t)とする。また、ステップS403で再生水需要予測部212によって算出された再生水の需要予測値をQd(t)とする。また、関数V(t)、XBOD(t)、XTN(t)、XTP(t)、及びXSS(t)の初期値(t=0のときの値)は、それぞれV0、XBOD0、XTN0、XTP0、及びXSS0とする。 Next, let V (t) be the amount of reclaimed water stored in the distribution reservoir 16, and XBOD (t), XTN for the BOD concentration, TN concentration, TP concentration, and SS concentration of the reclaimed water stored in the distribution reservoir 16, respectively. Let (t), XTP (t), and XSS (t). Further, the flow rate of the treated water 2 sent from the treated water distribution device 14 to the water regeneration treatment device 15, that is, the planned value that is the solution to this planning problem is defined as Q (t). In addition, the demand prediction value of the reclaimed water calculated by the reclaimed water demand prediction unit 212 in step S403 is defined as Qd (t). The initial values (values when t = 0) of the functions V (t), XBOD (t), XTN (t), XTP (t), and XSS (t) are V0, XBOD0, XTN0, and XTP0, respectively. And XSS0.
 さらに、水再生処理装置15における水再生処理による各水質成分(BOD、TN、TP、及びSS)の除去率を、それぞれKBOD、KTN、KTP、及びKSSとする。なお、KBOD、KTN、KTP、及びKSSは定数でなくてもよく、例えば、水再生処理装置15に送水される処理水2の流量を示すQ(t)を用いた変数としてもよい。 Furthermore, the removal rate of each water quality component (BOD, TN, TP, and SS) by the water regeneration treatment in the water regeneration treatment device 15 is KBOD, KTN, KTP, and KSS, respectively. In addition, KBOD, KTN, KTP, and KSS may not be constants, and may be a variable using, for example, Q (t) indicating the flow rate of the treated water 2 fed to the water regeneration treatment device 15.
 このように各関数及び各値を定義する場合に、配水池16の貯留量V(t)について、(1)式に示す関係が成立する。
Figure JPOXMLDOC01-appb-M000001
Thus, when each function and each value are defined, the relationship shown in the equation (1) is established for the storage amount V (t) of the reservoir 16.
Figure JPOXMLDOC01-appb-M000001
 また、配水池16に貯留されている再生水のBOD濃度XBOD(t)、TN濃度XTN(t)、TP濃度XTP(t)、及びSS濃度XSS(t)について、(2)~(5)式に示す関係が成立する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
In addition, regarding the BOD concentration XBOD (t), TN concentration XTN (t), TP concentration XTP (t), and SS concentration XSS (t) of the reclaimed water stored in the distribution reservoir 16, equations (2) to (5) The following relationship is established.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 上記の(1)~(5)式では、計画値Q(t)が与えられることにより、配水池16の貯留量V(t)、配水池16の各水質成分の濃度XBOD(t)、XTN(t)、XTP(t)、及びXSS(t)が算出される。そして、計画値Q(t)を適切に設定することにより、配水池16に貯留される再生水の各水質成分の濃度(XBOD(t)、XTN(t)、XTP(t)、及びXSS(t))について、現在以降の24時間のうちに予測される最大値を低く抑えることができる。 In the above formulas (1) to (5), given the planned value Q (t), the storage amount V (t) of the reservoir 16 and the concentration XBOD (t), XTN of each water quality component of the reservoir 16 (T), XTP (t), and XSS (t) are calculated. Then, by appropriately setting the planned value Q (t), the concentration (XBOD (t), XTN (t), XTP (t), and XSS (t) of the water quality components of the reclaimed water stored in the distribution reservoir 16 )), It is possible to keep the maximum value predicted within the next 24 hours.
 ステップS404では、計画問題解法部213は、ステップS401で選択された除去したい水質成分について、24時間の時系列のうちで当該水質成分の濃度(XBOD(t)、XTN(t)、XTP(t)、又はXSS(t))の最大値が最小となるように、遺伝的アルゴリズム(GA:Genetic Algorithm)や遺伝的プログラム(GP:Genetic Programming)等の最適化計算を用いて計画値Q(t)を算出する。なお、この最適化計算の実行時には、計画値Q(t)が0以上かつ採集沈殿池3から流入する処理水2の流入量以下の値となり、配水池貯留量V(t)が所定の上限値VMAX及び下限値VMINの間の値となるような制約条件が設けられる。また、この最適化計算では、選択された水質成分の濃度が低くなったときの処理水2を優先して使用するように計画値Q(t)を算出する。 In step S404, the planning problem solving unit 213 selects the concentration of water quality component (XBOD (t), XTN (t), XTP (t) in the time series of 24 hours for the water quality component to be removed selected in step S401. ), Or XSS (t)), so that the maximum value is minimized using an optimization calculation such as a genetic algorithm (GA) or a genetic program (GP). ) Is calculated. When this optimization calculation is performed, the planned value Q (t) is not less than 0 and not more than the inflow amount of the treated water 2 flowing from the collection sedimentation basin 3, and the reservoir storage amount V (t) is a predetermined upper limit. A constraint condition is set such that the value is between the value VMAX and the lower limit value VMIN. Further, in this optimization calculation, the plan value Q (t) is calculated so that the treated water 2 when the concentration of the selected water quality component becomes low is used preferentially.
 そして、計画問題解法部213は、以上の最適化計算によって算出した計画値Q(t)(t=1,2,・・・,24)に従って水再生処理装置15に処理水2を送水するよう、処理水配分装置14に指示する。 Then, the planning problem solving unit 213 sends the treated water 2 to the water regeneration treatment device 15 according to the planned value Q (t) (t = 1, 2,..., 24) calculated by the above optimization calculation. Then, the treated water distribution device 14 is instructed.
(1-3)本実施の形態による効果
 このような水処理プラント運用システム20では、下水処理によって生成される処理水2は、最初沈殿池11に流入する下水1の流入量によってその水質が変化してしまうが、計画問題解法部213によって、選択された水質成分の最大値が最小となり、かつ再生水の需要量を満足するように、処理水配分装置14から水再生処理装置15への処理水2の送水量を制御することができる。
(1-3) Effects of this Embodiment In such a water treatment plant operation system 20, the quality of the treated water 2 generated by the sewage treatment varies depending on the amount of sewage 1 flowing into the settling basin 11 first. However, the treated water from the treated water distribution device 14 to the water regeneration treatment device 15 so that the maximum value of the water quality component selected by the planning problem solving unit 213 is minimized and the demand for the reclaimed water is satisfied. The amount of water supply 2 can be controlled.
 また、このような水処理プラント運用システム20では、最適化計算において選択された水質成分の濃度が低くなったときの処理水2を優先して使用するように計画値Q(t)を算出するので、目標とする再生水の水質を実現するために水再生処理装置15で行われる水再生処理にかかる処理コストを低減することができる。 Moreover, in such a water treatment plant operation system 20, the plan value Q (t) is calculated so that the treated water 2 when the concentration of the water quality component selected in the optimization calculation is low is used preferentially. Therefore, the processing cost concerning the water regeneration process performed in the water regeneration processing apparatus 15 in order to implement | achieve the target water quality of the reclaimed water can be reduced.
 そして、このような水処理プラント運用システム20は、処理水2のうち水質が良好なものを優先して処理水配分装置14から水再生処理装置15に送水させることができ、所望の水質を実現する再生水の製造において、水再生処理にかかる処理コストを抑制することができる。 Such a water treatment plant operation system 20 can preferentially feed the treated water 2 having a good water quality from the treated water distribution device 14 to the water regeneration treatment device 15 to achieve a desired water quality. In the production of reclaimed water, it is possible to reduce the processing cost for water regeneration treatment.
(2)第2の実施の形態
(2-1)本実施の形態による構成
 図5に示すように、第2の実施の形態による水処理プラント運用システム30は、制御装置310と、制御装置310に格納データを提供するデータベース320及び330と、制御装置310に入力信号を送信する入力部340とを備える。
(2) Second Embodiment (2-1) Configuration According to this Embodiment As shown in FIG. 5, the water treatment plant operation system 30 according to the second embodiment includes a control device 310, a control device 310, and a control device 310. Databases 320 and 330 that provide stored data to the control unit 310 and an input unit 340 that transmits an input signal to the control device 310.
 制御装置310は、例えば、プログラムの実行によって制御装置310内の各部を制御し、処理水配分装置14に送水の指示を与えるCPU(Central Processing Unit)(図示せず)と、CPUによるプログラムの実行の際にプログラムがロードされて使用されるメモリ(図示せず)と、各種のデータやプログラムを格納する記憶デバイス(図示せず)とを有するコンピュータによって実現される。 For example, the control device 310 controls each part in the control device 310 by executing a program and gives a water supply instruction to the treated water distribution device 14 (Central Processing Unit) (not shown), and the CPU executes the program This is realized by a computer having a memory (not shown) in which a program is loaded and used, and a storage device (not shown) for storing various data and programs.
 制御装置310は、その機能的な構成として処理水水質予測部311、再生水需要予測部312、及び計画問題解法部313を有する。 The control device 310 has a treated water quality prediction unit 311, a reclaimed water demand prediction unit 312, and a planning problem solving unit 313 as its functional configuration.
 処理水水質予測部311は、下水1の流入量及び水質についての過去の実績データに基づいて所定の算出処理(図7を参照して後述する)を行い、現在以降の所定の時刻(例えば0時から24時まで)の各時刻に、処理水2の水質がどのような値をとるかを予測する。 The treated water quality prediction unit 311 performs a predetermined calculation process (to be described later with reference to FIG. 7) based on past performance data on the inflow amount and water quality of the sewage 1, and a predetermined time (for example, 0) after the present time. It is predicted what value the quality of the treated water 2 will take at each time (from time to 24:00).
 再生水需要予測部312は、過去の実績データに基づいて、現在以降の所定の時間(例えば0時から24時まで)のどの時刻に、どれくらいの再生水3の需要があるかを予測する。 The reclaimed water demand prediction unit 312 predicts how much reclaimed water 3 is in demand at a predetermined time (for example, from 0:00 to 24:00) after the present based on past performance data.
 計画問題解法部313は、処理水配分装置14による水再生処理装置15への送水量を制御する。計画問題解法部313は、処理水水質予測部311及び再生水需要予測部312によって算出された予測値に基づいて計画問題を解き、当該解に従って、処理水配分装置14に送水量を指示する。 The planning problem solving unit 313 controls the amount of water supplied to the water regeneration treatment device 15 by the treated water distribution device 14. The planning problem solving unit 313 solves the planning problem based on the predicted values calculated by the treated water quality prediction unit 311 and the reclaimed water demand prediction unit 312, and instructs the treated water distribution device 14 of the water supply amount according to the solution.
 データベース320は、記憶装置であって、再生水の需要量に関する時系列データが格納されている。再生水の需要量に関する時系列データは、第1の実施の形態で用いた同名の時系列データと同様の処理によって作成され、事前に格納されている。 The database 320 is a storage device and stores time-series data regarding the demand for reclaimed water. The time series data related to the demand for reclaimed water is created by the same process as the time series data of the same name used in the first embodiment and stored in advance.
 データベース330は、記憶装置であって、水処理プラント10における過去の実績データに基づいて、下水1の流入量に関する時系列データ及び下水1の水質成分の濃度に関する時系列データが格納されている。下水1の流入量に関する時系列データ及び下水1の水質成分の濃度に関する時系列データは、第1の実施の形態で用いた処理水2の時系列データと同様の処理(図2のステップS102)によって作成され、事前に格納されている。 The database 330 is a storage device and stores time-series data related to the inflow amount of the sewage 1 and time-series data related to the concentration of the water quality component of the sewage 1 based on past performance data in the water treatment plant 10. The time series data relating to the inflow amount of the sewage 1 and the time series data relating to the concentration of the water component of the sewage 1 are the same as the time series data of the treated water 2 used in the first embodiment (step S102 in FIG. 2). Created and stored in advance.
 入力部340は、入力部210と同様にユーザからの入力操作やデータ入力が行われる入力装置であって、入力内容に応じた入力信号が制御装置310に送信される。 The input unit 340 is an input device in which an input operation and data input from a user are performed in the same manner as the input unit 210, and an input signal corresponding to the input content is transmitted to the control device 310.
(2-2)本実施の形態による処理
 以下に、図5を参照しながら、水処理プラント運用システム30が水処理プラント10における送水量を計画する処理手順を説明する。
(2-2) Processing according to the present embodiment Hereinafter, a processing procedure in which the water treatment plant operation system 30 plans a water supply amount in the water treatment plant 10 will be described with reference to FIG.
 まず、ステップS201では、入力部330に対するユーザの入力操作によって、水質成分の各項目のうち特に除去したい水質成分が選択される。水質成分の各項目は、例えば、BOD、トータル窒素(TN)、トータルりん(TP)、又は固形浮遊物(SS)とする。このとき、表示部(図示せず)に所定の画面を表示して、ユーザに除去項目を選択させるようにしてもよい。 First, in step S201, a water quality component that is particularly desired to be removed is selected from the water quality component items by a user input operation on the input unit 330. Each item of the water quality component is, for example, BOD, total nitrogen (TN), total phosphorus (TP), or solid suspended matter (SS). At this time, a predetermined screen may be displayed on a display unit (not shown) to allow the user to select a removal item.
 次に、ステップS202では、処理水水質予測部311が、データベース330から下水1の流入量に関する時系列データを読込む。そして、処理水水質予測部311は、データベース330から読込んだ下水1の流入量に関する時系列データのうち、現在の季節及び曜日に対応する時系列データに基づいて、下水1の現在以降24時間分についての流入量予測値を、24時間の時系列データとして算出する。 Next, in step S <b> 202, the treated water quality prediction unit 311 reads time-series data regarding the inflow amount of the sewage 1 from the database 330. And the treated water quality prediction part 311 is 24 hours after the present of the sewage 1 based on the time series data corresponding to the present season and the day of the week in relation to the inflow amount of the sewage 1 read from the database 330. The inflow prediction value for the minute is calculated as time-series data for 24 hours.
 次に、ステップS203では、処理水水質予測部311が、データベース330から下水1の水質成分の濃度に関する時系列データを読込む。そして、処理水水質予測部311は、データベース330から読込んだ下水1の水質成分の濃度に関する時系列データのうち、現在の季節及び曜日に対応する時系列データに基づいて、下水1の各水質(BOD濃度、TN濃度、TP濃度、及びSS濃度)の現在以降24時間分についての水質予測値を、24時間の時系列データとして算出する。なお、ステップS203で算出される下水1の水質予測値では、上記の各水質の他に、下水1の水温を項目に追加してもよい。 Next, in step S <b> 203, the treated water quality prediction unit 311 reads time-series data relating to the concentration of water quality components in the sewage 1 from the database 330. Then, the treated water quality prediction unit 311 selects each water quality of the sewage 1 based on the time series data corresponding to the current season and day of the week among the time series data related to the concentration of the water quality components of the sewage 1 read from the database 330. A water quality prediction value for 24 hours after the present (BOD concentration, TN concentration, TP concentration, and SS concentration) is calculated as time-series data for 24 hours. In addition, in the predicted water quality value of the sewage 1 calculated in step S203, the water temperature of the sewage 1 may be added to the item in addition to the above water quality.
 次に、ステップS204では、処理水水質予測部311が、ステップS202及びS203で算出された下水1についての流入量予測値及び水質予測値を用いて、処理水2の水質予測値を算出する。 Next, in step S204, the treated water quality prediction unit 311 calculates a predicted water quality value of the treated water 2 using the predicted inflow amount and the predicted water quality value for the sewage 1 calculated in steps S202 and S203.
(2-2-1)処理水の水質予測値の算出
 図7は、処理水水質予測部311による水質予測値の算出方法の一例として、BOD濃度を算出する数学モデルを模式的に説明している。図7には、下水1の流入量及び水質を入力とし、処理水2の水質を出力とする動的モデルが示されており、この動的モデルは、第1の数学モデル81及び第2の数学モデル82から構成されている。
(2-2-1) Calculation of water quality prediction value of treated water FIG. 7 schematically illustrates a mathematical model for calculating the BOD concentration as an example of a method of calculating the water quality prediction value by the treated water quality prediction unit 311. Yes. FIG. 7 shows a dynamic model in which the inflow amount and quality of the sewage 1 are input and the water quality of the treated water 2 is output. The dynamic model includes the first mathematical model 81 and the second mathematical model. It consists of a mathematical model 82.
 まず、処理水水質予測部311は、下水1についての流入量予測値(Qin)及び水質予測値(BODin)を第1の数学モデル81に入力する。第1の数学モデル81は、下水1の流入量が一定である定常状態において、下水1の流入量と、下水1の水質と、処理水2の水質との間に成立する静的な関係を規定するモデルである。第1の数学モデル81には、予め用意された2次元テーブルが用いられ、定常時に生成される処理水2の水質成分濃度(例えばBOD濃度:BODout1)が出力される。なお、第1のモデル81で使用される2次元テーブルを構成するテーブルデータは、定常状態の下水1の流入量、下水1の水質、及び処理水2の水質の計測データに基づいて作成することができ、事前にデータベース330に格納されているとする。 First, the treated water quality prediction unit 311 inputs an inflow prediction value (Qin) and a water quality prediction value (BODin) for the sewage 1 to the first mathematical model 81. The first mathematical model 81 has a static relationship established between the inflow amount of the sewage 1, the water quality of the sewage 1, and the water quality of the treated water 2 in a steady state where the inflow amount of the sewage 1 is constant. It is a model to prescribe. As the first mathematical model 81, a two-dimensional table prepared in advance is used, and a water quality component concentration (for example, BOD concentration: BODout1) of the treated water 2 generated in a steady state is output. The table data constituting the two-dimensional table used in the first model 81 should be created based on the measurement data of the steady-state sewage 1 inflow, the sewage 1 water quality, and the treated water 2 water quality. And stored in the database 330 in advance.
 次に、処理水水質予測部311は、図7に示すように、第1の数学モデル81から出力された定常時の処理水2におけるBOD濃度(BODout1)を第2の数学モデル82に入力する。第2の数学モデル82は、入力値に遅れ処理を施す数式であり、具体的には、「むだ時間+m次遅れ」の伝達関数である(Sはラプラス演算子を示す。)。第2の数学モデル82の伝達関数は、過渡時の処理水2におけるBOD濃度(BODout2)を出力する。過渡時の処理水2におけるBOD濃度は、処理水2におけるBOD濃度の予測値に相当する。以下では、第1の数学モデル81及び第2の数学モデル82を総称する場合に、水質計算モデルと呼ぶ。 Next, as shown in FIG. 7, the treated water quality prediction unit 311 inputs the BOD concentration (BODout1) in the treated water 2 in the steady state output from the first mathematical model 81 to the second mathematical model 82. . The second mathematical model 82 is a mathematical expression that applies a delay process to an input value, and is specifically a transfer function of “dead time + m-th order delay” (S represents a Laplace operator). The transfer function of the second mathematical model 82 outputs the BOD concentration (BODout2) in the treated water 2 at the time of transition. The BOD concentration in the treated water 2 at the time of transition corresponds to the predicted value of the BOD concentration in the treated water 2. Hereinafter, the first mathematical model 81 and the second mathematical model 82 are collectively referred to as a water quality calculation model.
 ここで、「むだ時間+m次遅れ」とは、第1の実施の形態において図3(a)~(d)を用いて説明したように、下水1の流入量が変化するタイミングと、それに伴う処理水2の水質変化のタイミングとの差を示す関係である。このタイミングのずれは、最初沈殿池11、活性汚泥処理槽12及び採集沈殿池13で下水1に対して行われる下水処理において、化学反応や滞留による時間経過が必要なために発生し、下水1の流入量が増加してしばらくしてから、処理水2の水質が低下する。また、図3に示したように、処理水2の水質変化を示す波形は、下水1の流入量の変化を示す波形がそのまま現れるのではなく、なめされた波形となって現れる。第2の数学モデル82は、このような「むだ時間+m次遅れ」の特性を近似的に表現する伝達関数である。 Here, “dead time + m-th order delay” means the timing at which the inflow amount of the sewage 1 changes and the accompanying change, as described with reference to FIGS. 3A to 3D in the first embodiment. It is the relationship which shows the difference with the timing of the water quality change of the treated water 2. FIG. This timing shift occurs because time is required due to chemical reaction or retention in the sewage treatment performed on the sewage 1 in the first settling basin 11, the activated sludge treatment tank 12 and the collection settling basin 13, and the sewage 1 After a while after the inflow amount increases, the water quality of the treated water 2 decreases. In addition, as shown in FIG. 3, the waveform indicating the water quality change of the treated water 2 does not appear as it is as the waveform indicating the change in the inflow amount of the sewage 1, but appears as a tanned waveform. The second mathematical model 82 is a transfer function that approximately represents such a characteristic of “dead time + m-th order delay”.
 なお、第2の数学モデル82の伝達関数は、図8に示すテーブル92のように、対象とする水質成分によってそのパラメータT1、T2、及びmが異なる値をとる。水質成分によるパラメータ値の差は、化学反応のスピードの差異に代表される諸要因に起因する。図8のテーブル92は、対象とする水質成分が記載された水質成分欄92A、むだ時間T1の値が記載されたむだ時間欄92B、時定数T2の値が記載された時定数欄92C、及び次数が記載された次数欄92Dを有し、各欄に所定の数値が記載されている。テーブル92は、例えば、制御装置310内のメモリ(図示せず)に格納されていてもよく、データベース330に格納されていてもよい。 In addition, as for the transfer function of the 2nd mathematical model 82, the parameter T1, T2, and m take the value from which the parameter T1, T2, and m differ according to the target water quality component like the table 92 shown in FIG. Differences in parameter values due to water quality components are due to various factors represented by differences in the speed of chemical reactions. The table 92 in FIG. 8 includes a water quality component column 92A in which the target water quality component is described, a dead time column 92B in which the value of the dead time T1 is written, a time constant column 92C in which the value of the time constant T2 is written, and It has an order column 92D in which the order is described, and a predetermined numerical value is described in each column. The table 92 may be stored in a memory (not shown) in the control device 310 or may be stored in the database 330, for example.
 また、テーブル92の各欄に記載される値は、下水1の水温や溶存酸素量等に影響を受けるので、様々な水温に対する複数のテーブル92を格納しておいて、ステップS204の水質予測の算出時に活用するようにしてもよい。 Moreover, since the value described in each column of the table 92 is affected by the water temperature of the sewage 1, the dissolved oxygen amount, etc., a plurality of tables 92 for various water temperatures are stored, and the water quality prediction in step S204 is performed. You may make it utilize at the time of calculation.
 上記に示したようにステップS204では、処理水水質予測部311が、各水質成分(BOD濃度、TN濃度、TP濃度、及びSS濃度)について算出処理を行い、処理水2の水質予測値を算出する。 As shown above, in step S204, the treated water quality prediction unit 311 performs a calculation process for each water quality component (BOD concentration, TN concentration, TP concentration, and SS concentration) to calculate a predicted water quality value of the treated water 2. To do.
 次いで、ステップS205では、再生水需要予測部312が、データベース320から再生水3の需要量に関する時系列データを読込む。そして、再生水需要予測部312は、データベース320から読込んだ再生水3の需要量に関する時系列データのうち、現在の季節及び曜日に対応する時系列データに基づいて、再生水3の現在以降24時間分についての需要予測値を、24時間の時系列データとして算出する。 Next, in step S205, the reclaimed water demand prediction unit 312 reads time-series data regarding the demand amount of the reclaimed water 3 from the database 320. Then, the reclaimed water demand prediction unit 312 is based on the time series data corresponding to the current season and day of week among the time series data relating to the demand amount of the reclaimed water 3 read from the database 320, and for 24 hours after the present of the reclaimed water 3. Is calculated as 24-hour time-series data.
 次いで、ステップS206では、計画問題解法部313が、処理水水質予測部311によって算出された処理水2の水質予測値と、再生水需要予測部312によって算出された再生水3の需要予測値とに基づいて、第1の実施の形態における計画問題解法部213と同様の処理によって計画問題を解く。計画問題の解法については、説明を省略する。そして、計画問題解法部313は、その解(計画値)に従って水再生処理装置15に配分する処理水2の量を処理水配分装置14に指示する。 Next, in step S <b> 206, the planning problem solving unit 313 is based on the water quality prediction value of the treated water 2 calculated by the treated water quality prediction unit 311 and the demand prediction value of the reclaimed water 3 calculated by the reclaimed water demand prediction unit 312. Thus, the planning problem is solved by the same processing as the planning problem solving unit 213 in the first embodiment. Explanation of the solution of the planning problem is omitted. Then, the plan problem solving unit 313 instructs the treated water distribution device 14 of the amount of treated water 2 to be distributed to the water regeneration treatment device 15 according to the solution (plan value).
(2-3)本実施の形態による効果
 このような水処理プラント運用システム30では、「むだ時間+m次遅れ」の現象をより近似できる伝達関数を利用した水質計算モデルが予め構築され、この水質計算モデルによって処理水2の水質予測値を計算するので、過去の実績データに基づいて処理水2の水質予測値を算出する場合に比べて、想定外の状況が発生しても、より精度の高い処理水の水質予測値を算出することができる。その結果、水処理プラント10における再生水の運用計画の精度を高めることができ、水再生処理にかかる処理コストを更に低減する効果が期待できる。
(2-3) Effects of this Embodiment In such a water treatment plant operation system 30, a water quality calculation model using a transfer function that can more closely approximate the phenomenon of “dead time + m-order delay” is constructed in advance. Since the water quality prediction value of the treated water 2 is calculated by the calculation model, even if an unexpected situation occurs, the accuracy is more accurate than when the water quality prediction value of the treated water 2 is calculated based on past performance data. It is possible to calculate a water quality prediction value of high treated water. As a result, the accuracy of the operation plan of the reclaimed water in the water treatment plant 10 can be increased, and an effect of further reducing the treatment cost for the water reclaim process can be expected.
(3)第3の実施の形態
(3-1)本実施の形態による構成
 図9に示すように、第3の実施の形態による水処理プラント運用システム40は、図5に示した水処理プラント運用システム30の構成と同様の制御装置410、データベース420,430、及び入力部440に加えて、流入量/水質取得部450、データベース460及びテーブルデータ算出部470を備える。水処理プラント運用システム30の構成と同様の構成については、説明を省略する。
(3) Third Embodiment (3-1) Configuration according to this Embodiment As shown in FIG. 9, the water treatment plant operation system 40 according to the third embodiment is the water treatment plant shown in FIG. In addition to the control device 410, the databases 420 and 430, and the input unit 440 similar to the configuration of the operation system 30, an inflow / water quality acquisition unit 450, a database 460, and a table data calculation unit 470 are provided. The description of the same configuration as the configuration of the water treatment plant operation system 30 is omitted.
 また、図9の水処理プラント10には、最初沈殿池11前の流路に、最初沈殿池11に流入する下水1の流入量及び水質を測定するセンサ27が設けられ、最終沈殿池13と処理水配分装置14との間の流路に、処理水配分装置14に流入する処理水2の流入量及び水質を測定するセンサ28が設けられている。センサ27及び28による流入量又は水質の測定結果は、流入量/水質データ取得部450に送信される。 The water treatment plant 10 of FIG. 9 is provided with a sensor 27 for measuring the inflow amount and quality of the sewage 1 flowing into the first settling basin 11 in the flow path before the first settling basin 11. A sensor 28 that measures the inflow amount and quality of the treated water 2 flowing into the treated water distribution device 14 is provided in a flow path between the treated water distribution device 14 and the treated water distribution device 14. The inflow amount or water quality measurement results by the sensors 27 and 28 are transmitted to the inflow amount / water quality data acquisition unit 450.
 水処理プラント運用システム40において、流入量/水質データ取得部450は、水処理プラント10に設けられたセンサ27による下水1の流入量及び水質についての測定結果を取得し、当該測定結果に基づいて下水1の流入量及び水質についての時系列データを生成する。流入量/水質取得部450は、例えば、過去数カ月間分にわたる1時間ごとの時系列データを生成し、データベース460に格納する。また、流入量/水質データ取得部450は、水処理プラント10に設けられたセンサ28による処理水2の水質についての測定結果を取得して、下水1の流入量及び水質についての時系列データと同様に、処理水2の水質についての時系列データを生成し、データベース460に格納する。流入量/水質取得部450によるこれらの時系列データの生成は、常時又は定期的に、センサ27及び28の測定結果に基づいて行われ、生成された時系列データはデータベース460に蓄積される。 In the water treatment plant operation system 40, the inflow amount / water quality data acquisition unit 450 acquires the measurement result of the inflow amount and water quality of the sewage 1 by the sensor 27 provided in the water treatment plant 10, and based on the measurement result. Generate time-series data about the inflow and quality of sewage 1. The inflow / water quality acquisition unit 450 generates, for example, hourly time series data over the past several months and stores it in the database 460. The inflow / water quality data acquisition unit 450 acquires the measurement result of the water quality of the treated water 2 by the sensor 28 provided in the water treatment plant 10, and the time-series data about the inflow amount and the water quality of the sewage 1 Similarly, time-series data about the water quality of the treated water 2 is generated and stored in the database 460. Generation of these time-series data by the inflow / water quality acquisition unit 450 is performed based on the measurement results of the sensors 27 and 28 constantly or periodically, and the generated time-series data is accumulated in the database 460.
 テーブルデータ算出部470は、データベース460に格納されている下水1の流入量及び水質についての時系列データに基づいて、水質計算モデルのテーブルデータを算出する。水質計算モデルのテーブルデータとは、図7の第1の数学モデル81で使用される2次元のテーブルデータであり、第2の数学モデル82で使われるテーブル92のパラメータ(むだ時間T1、時定数T2、及び次数m)の値である。水質モデルのテーブルデータは、データベース430に格納されている。 The table data calculation unit 470 calculates the table data of the water quality calculation model based on the time series data about the inflow amount and the water quality of the sewage 1 stored in the database 460. The table data of the water quality calculation model is two-dimensional table data used in the first mathematical model 81 of FIG. 7, and parameters (dead time T1, time constant) of the table 92 used in the second mathematical model 82. T2 and the value of order m). The table data of the water quality model is stored in the database 430.
(3-2)本実施の形態による処理
 水処理プラント運用システム40が水処理プラント10における送水量を計画する処理手順は、第2の実施の形態による水処理プラント運用システム30の処理(図6)とほぼ同様であり、処理水の水質予測値の算出(図6のステップS204)において、水質計算モデルのテーブルデータを算出する処理だけが異なる。
(3-2) Treatment according to the present embodiment The treatment procedure for the water treatment plant operation system 40 to plan the amount of water to be fed in the water treatment plant 10 is the same as the treatment of the water treatment plant operation system 30 according to the second embodiment (FIG. 6). ), And only the process for calculating the table data of the water quality calculation model is different in the calculation of the predicted water quality of the treated water (step S204 in FIG. 6).
 まず、特に除去したい水質成分がユーザによって選択され、処理水水質予測部411によって下水1における流入量及び水質の予測値が算出されるまでの処理は、図6のステップS201~203に示す処理と同様であり、説明を省略する。 First, the processing until the water quality component to be specifically removed is selected by the user and the inflow amount and the water quality predicted value in the sewage 1 are calculated by the treated water quality prediction unit 411 is the process shown in steps S201 to S203 in FIG. This is the same and will not be described.
 次に、処理水水質予測部411によって処理水の水質予測値の算出が行われるが、そこで用いられる水質計算モデル(第1の数学モデル81及び数学モデル82)について、テーブルデータ算出部470が当該水質計算モデルのテーブルデータを算出する。 Next, the water quality prediction value of the treated water is calculated by the treated water quality prediction unit 411. The table data calculation unit 470 uses the table data calculation unit 470 for the water quality calculation model (the first mathematical model 81 and the mathematical model 82) used there. Calculate table data of water quality calculation model.
(3-2-1)水質計算モデルのテーブルデータ算出
 図10に示すように、まず、ステップS301で、テーブルデータ算出部470が、データベース460に格納されている下水1の流入量及び水質についての時系列データと処理水2の水質についての時系列データとを参照し、様々な日時に計測された当該時系列データが水処理プラント10の定常運転時に計測されたデータであるか否かを判定する(定常判定)。
(3-2-1) Table Data Calculation of Water Quality Calculation Model As shown in FIG. 10, first, in step S301, the table data calculation unit 470 determines the inflow amount and water quality of the sewage 1 stored in the database 460. Referring to the time-series data and the time-series data about the water quality of the treated water 2, it is determined whether or not the time-series data measured at various dates and times are data measured during steady operation of the water treatment plant 10. (Normal determination).
 ここで、テーブルデータ算出部470による定常判定の一例について、図11を参照して説明する。図11には、下水1の流入量についての計測データを示す下水流入量計測値93Aと、下水1の水質についての計測データを示す下水水質計測値93Bと、処理水2の水質についての計測データを示す処理水水質計測値93Cとが表されている。例えば、テーブルデータ算出部470は、データベース460から6時間ごとの計測データを取得し、t時の計測データと(t+6)時の計測データとを比較する。計測データの比較において、テーブルデータ算出部470は、下水流入量計測値93A、下水水質計測値93B及び処理水水質計測値93Cのそれぞれについて、その変動量又は変動率が予め設定された閾値を超えていないか判定する。変動量又は変動率が閾値以内である場合には、テーブルデータ算出部470は、当該計測データが水処理プラント10の定常運転時に計測されたデータであると判定する。 Here, an example of steady determination by the table data calculation unit 470 will be described with reference to FIG. In FIG. 11, a sewage inflow measurement value 93 </ b> A indicating measurement data regarding the inflow amount of sewage 1, a sewage water quality measurement value 93 </ b> B indicating measurement data regarding the water quality of sewage 1, and measurement data regarding the water quality of treated water 2. The treated water quality measurement value 93C is shown. For example, the table data calculation unit 470 acquires measurement data every 6 hours from the database 460, and compares the measurement data at t and the measurement data at (t + 6). In the comparison of the measurement data, the table data calculation unit 470 has a fluctuation amount or a fluctuation rate exceeding a preset threshold for each of the sewage inflow measurement value 93A, the sewage water quality measurement value 93B, and the treated water quality measurement value 93C. Judge whether it is. When the fluctuation amount or the fluctuation rate is within the threshold value, the table data calculation unit 470 determines that the measurement data is data measured during steady operation of the water treatment plant 10.
 テーブルデータ算出部470は、このような定常判定を繰り返し、水処理プラント10が定常運転状態にあるときの6時間時系列データを複数抽出する。 The table data calculation unit 470 repeats such steady state determination, and extracts a plurality of 6-hour time series data when the water treatment plant 10 is in a steady operation state.
 次に、ステップS302では、テーブルデータ算出部470が、ステップS301で抽出した定常運転状態の各時系列データについて平均をとり、下水1の流入量の平均を示す平均下水流入量、下水1の水質濃度の平均を示す平均下水水質、及び処理水2の水質濃度の平均を示す平均処理水水質を算出する。定常運転状態の時系列データはステップS301で複数抽出されているので、平均下水流入量、平均下水水質及び平均処理水水質の組み合わせが複数組得られる。テーブルデータ算出部470は、このようにして得られた平均下水流入量、平均下水水質及び平均処理水水質の組み合わせに基づいて、第1の数学モデル81で使用される新たなテーブルデータを算出する。新たなテーブルデータは、水質成分ごとに算出される。 Next, in step S302, the table data calculation unit 470 averages each time-series data in the steady operation state extracted in step S301, and the average sewage inflow amount indicating the average of the inflow amount of the sewage 1, the water quality of the sewage 1 An average sewage quality indicating an average concentration and an average treated water quality indicating an average water concentration of the treated water 2 are calculated. Since a plurality of time-series data in the steady operation state are extracted in step S301, a plurality of combinations of average sewage inflow, average sewage quality, and average treated water quality are obtained. The table data calculation unit 470 calculates new table data used in the first mathematical model 81 based on the combination of the average sewage inflow amount, the average sewage water quality, and the average treated water quality obtained as described above. . New table data is calculated for each water quality component.
 一方、ステップS302では、テーブル算出部470は、データベース460に格納された下水流入量と下水水質の時系列から、ある時刻の下水流入量と下水水質の計測時系列を呼び出し、それを第1の数学モデル81への入力値として、水質成分ごとに第1の数学モデル81及び第2の数学モデル82の計算を行い、処理水2の水質を予測する。このとき、テーブルデータ算出部470は、データベース460に格納されている、処理水2の水質についての時系列データから上記下水流入量と下水水質の計測時系列に対応する処理水2の水質計測時系列(同時刻の計測値)を取得しておき、第2の数学モデル82によって算出される処理水2の水質予測値が、データベース460から取得した処理水2の水質計測値に一致するように、非線形最適化計算によってテーブル92の各パラメータ(むだ時間T1、時定数T2、及び次数m)の値を算出する。このようなパラメータ値、すなわち、第2の数学モデルで使用されるテーブルデータは、水質成分ごとに算出される。 On the other hand, in step S302, the table calculation unit 470 calls the sewage inflow amount and sewage quality measurement time series at a certain time from the sewage inflow amount and sewage water quality time series stored in the database 460, and calls them the first time series. As an input value to the mathematical model 81, the first mathematical model 81 and the second mathematical model 82 are calculated for each water quality component, and the water quality of the treated water 2 is predicted. At this time, the table data calculation unit 470 measures the water quality of the treated water 2 corresponding to the sewage inflow amount and the measurement time series of the sewage water quality from the time series data about the water quality of the treated water 2 stored in the database 460. A series (measured values at the same time) is acquired, and the water quality prediction value of the treated water 2 calculated by the second mathematical model 82 matches the water quality measured value of the treated water 2 obtained from the database 460. Then, the values of the parameters (dead time T1, time constant T2, and order m) of the table 92 are calculated by nonlinear optimization calculation. Such parameter values, that is, the table data used in the second mathematical model are calculated for each water quality component.
 そして、ステップS303では、テーブルデータ算出部470が、ステップS302で算出した新たなテーブルデータによって、データベース430に格納されているこれまでのテーブルデータを書換える。上記のようにテーブルデータが書換えられることにより、テーブルデータは水処理プラント10の特性又は状態に適合した値を保つことができる。 In step S303, the table data calculation unit 470 rewrites the previous table data stored in the database 430 with the new table data calculated in step S302. By rewriting the table data as described above, the table data can maintain a value suitable for the characteristics or state of the water treatment plant 10.
 処理水水質予測部411は、図10の処理によって算出された水質計算モデルのテーブルデータを用い、それ以外は第2の実施の形態における処理と同様にして、処理水2の水質予測値を算出する。 The treated water quality prediction unit 411 uses the table data of the water quality calculation model calculated by the process of FIG. 10, and calculates the predicted water quality value of the treated water 2 in the same manner as the process in the second embodiment other than that. To do.
 そして、再生水需要予測部412が再生水3の需要予測値を算出し、計画問題解法部413が、処理水2の水質予測値と再生水3の需要予測値とに基づいて計画問題を解き、その解(計画値)に従って水再生処理装置15に配分する処理水2の量を制御するまでの処理は、図6のステップS205~206に示す処理と同様であり、説明を省略する。 Then, the reclaimed water demand prediction unit 412 calculates the demand prediction value of the reclaimed water 3, and the planning problem solving unit 413 solves the planning problem based on the water quality prediction value of the treated water 2 and the demand prediction value of the reclaimed water 3, and the solution The processing until the amount of treated water 2 to be distributed to the water regeneration treatment device 15 according to (planned value) is controlled is the same as the processing shown in steps S205 to S206 in FIG.
(3-3)本実施の形態による効果
 このような水処理プラント運用システム40は、処理水2の水質濃度を予測するための水質計算モデルで使用されるテーブルデータを、オンラインで計測された計測値を反映して算出し、修正していくので、水処理プラント10における状況の変化に柔軟に対応することができる。その結果、第1の実施の形態による水処理プラント運用システム20及び第2の実施の形態による水処理プラント運用システム30と比べて、更に実際の値に近い処理水2の水質予測値を算出することができ、精度の高い水処理プラント10の運用を実現できる。例えば、時間経過に伴って水処理プラント10の特性が変化する場合や、水処理プラント10の制御方法が変更される場合であっても、計測値に沿うようにテーブルデータを変更し、変更されたテーブルデータを用いた数学モデルによって計画値を算出することができる。
(3-3) Effects of the Present Embodiment Such a water treatment plant operation system 40 is a measurement in which table data used in a water quality calculation model for predicting the water quality concentration of the treated water 2 is measured online. Since the value is calculated and corrected, the situation in the water treatment plant 10 can be flexibly dealt with. As a result, compared to the water treatment plant operation system 20 according to the first embodiment and the water treatment plant operation system 30 according to the second embodiment, a predicted water quality value of the treated water 2 that is closer to the actual value is calculated. The water treatment plant 10 can be operated with high accuracy. For example, even when the characteristics of the water treatment plant 10 change over time or when the control method of the water treatment plant 10 is changed, the table data is changed to be changed along the measurement values. The planned value can be calculated by a mathematical model using the table data.
 また、このような水処理プラント運用システム30は、水質計算モデルのパラメータが計測値に応じて最新の状態に保たれるので、より精度の高い計画値を算出することができ、水処理プラント10の運用計画の精度を向上させることができる。その結果、水再生処理の処理コストを更に低減する効果が期待できる。 In addition, the water treatment plant operation system 30 can calculate the plan value with higher accuracy because the parameters of the water quality calculation model are kept up-to-date according to the measured values. The accuracy of the operation plan can be improved. As a result, an effect of further reducing the processing cost of the water regeneration process can be expected.
(4)その他の実施の形態
 第1~第3の実施の形態による水処理プラント運用システム20、30又は40では、入力部230、340、又は440が、それぞれ制御装置210、310又は410の外部に設けられるような場合について述べたが、本発明はこれに限らず、それぞれ制御装置210、310又は410の内部に設けられて構成されてもよい。また、第1の実施の形態によるデータベース220、第2の実施の形態によるデータベース320及び330、又は第3の実施の形態によるデータベース420、430、及び460についても、入力部230、340、又は440と同様に、それぞれ制御装置210、310又は410の内部に設けられてもよい。
(4) Other Embodiments In the water treatment plant operation system 20, 30, or 40 according to the first to third embodiments, the input unit 230, 340, or 440 is provided outside the control device 210, 310, or 410, respectively. However, the present invention is not limited to this, and may be provided inside the control device 210, 310, or 410, respectively. Further, the input unit 230, 340, or 440 is also used for the database 220 according to the first embodiment, the databases 320 and 330 according to the second embodiment, or the databases 420, 430, and 460 according to the third embodiment. Similarly, it may be provided inside the control device 210, 310 or 410, respectively.
 また、第2又は第3の実施の形態による水処理プラント運用システム30又は40では、複数のデータベースが設けられるような場合について述べたが、本発明はこれに限らず、諸データを1つのデータベースに統合して格納するようにして、記憶装置の数を減らすことによりシステム全体の装置コストを抑制するようにしてもよい。また、逆に、諸データをさらに多くのデータベースに分散して格納するようにして、大量のデータを格納する場合の処理速度を向上させるようにしてもよい。 In the water treatment plant operation system 30 or 40 according to the second or third embodiment, a case where a plurality of databases are provided has been described. However, the present invention is not limited to this, and various data are stored in one database. The system cost may be reduced by reducing the number of storage devices so as to be integrated and stored. Conversely, various data may be distributed and stored in more databases to improve the processing speed when a large amount of data is stored.
 本発明は、下水を浄化して再利用可能な再生水を製造する水処理プラントを管理する水処理プラント運用システム及び送水量計画方法に適用することができる。 The present invention can be applied to a water treatment plant operation system and a water supply amount planning method for managing a water treatment plant that purifies sewage and produces reclaimed water that can be reused.
 1  下水
 2  処理水
 3  再生水
 10 水処理プラント
 11 最初沈殿池
 12 活性汚泥処理槽
 13 最終沈殿池
 14 処理水分配装置
 15 水再生処理装置
 16 配水池
 17 凝集剤貯留槽
 21 ブロア
 22~26 ポンプ
 27,28 センサ
 20,30,40 水処理プラント運用システム
 210,310,410 制御装置
 211,311,411 処理水水質予測部
 212,312,412 再生水需要予測部
 213,313,413 計画問題解法部
 220,320,330,420,430,460 データベース
 230,340,440 入力部
 450 流入量/水質取得部
 470 テーブルデータ算出部
 81 第1の数学モデル
 82 第2の数学モデル
DESCRIPTION OF SYMBOLS 1 Sewage 2 Treated water 3 Reclaimed water 10 Water treatment plant 11 Initial sedimentation tank 12 Activated sludge treatment tank 13 Final sedimentation tank 14 Treated water distribution apparatus 15 Water regeneration treatment apparatus 16 Distribution tank 17 Coagulant storage tank 21 Blower 22-26 Pump 27, 28 Sensors 20, 30, 40 Water treatment plant operation system 210, 310, 410 Controller 211, 311, 411 Treated water quality prediction unit 212, 312, 412 Reclaimed water demand prediction unit 213, 313, 413 Planning problem solving unit 220, 320 , 330, 420, 430, 460 Database 230, 340, 440 Input unit 450 Inflow / water quality acquisition unit 470 Table data calculation unit 81 First mathematical model 82 Second mathematical model

Claims (14)

  1.  下水に下水処理を施して処理水を生成し、前記処理水に水再生処理を施して再生水を製造する水処理プラントを管理する水処理プラント運用システムにおいて、
     前記下水処理によって生成される前記処理水の水質を予測する処理水水質予測部と、
     前記再生水の需要量を予測する再生水需要予測部と、
     前記処理水水質予測部によって予測された前記処理水の水質予測値に基づいて、所定の計算により計画値を算出し、前記水処理プラントで水再生処理を施す処理水の量を該計画値に従って制御する計画問題解法部と、
     を備え、
     前記計画問題解法部によって算出される前記計画値は、該計画値に従った処理水から前記水再生処理によって製造される再生水の量が、前記再生水需要予測部によって予測された需要予測値を満足する
     ことを特徴とする水処理プラント運用システム。
    In a water treatment plant operation system for managing a water treatment plant that produces sewage by performing sewage treatment on sewage, and performing water regeneration treatment on the treated water to produce reclaimed water,
    A treated water quality prediction unit for predicting the quality of the treated water generated by the sewage treatment;
    A reclaimed water demand prediction unit for predicting the reclaimed water demand;
    Based on the treated water quality prediction value predicted by the treated water quality prediction unit, a planned value is calculated by a predetermined calculation, and the amount of treated water subjected to water regeneration treatment in the water treatment plant is determined according to the planned value. A planning problem solving section to control;
    With
    The plan value calculated by the plan problem solving unit is such that the amount of reclaimed water produced by the water regeneration process from the treated water according to the plan value satisfies the demand forecast value predicted by the reclaimed water demand forecast unit. A water treatment plant operation system characterized by
  2.  前記処理水水質予測部は、過去に生成された前記処理水の水質についての実績データに基づいて、現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項1に記載の水処理プラント運用システム。
    The said treated water quality prediction part predicts the quality of the treated water produced | generated after the present based on the performance data about the quality of the said treated water produced | generated in the past. Water treatment plant operation system.
  3.  前記処理水水質予測部は、
     現在以降に流入する下水の流入量及び水質を予測し、
     前記予測した下水の流入量予測値及び水質予測値に基づいて、現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項1に記載の水処理プラント運用システム。
    The treated water quality prediction unit
    Predict the inflow and quality of sewage that will flow in
    The water treatment plant operation system according to claim 1, wherein the water quality of treated water generated after the present time is predicted based on the predicted predicted inflow amount of sewage and the predicted water quality value.
  4.  前記処理水水質予測部は、
     過去に下水処理された処理水について、所定の1以上の水質成分の濃度を計測した結果を、時間系のパラメータによって分類した時系列データにして格納し、
     前記格納した時系列データに基づいて現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項1に記載の水処理プラント運用システム。
    The treated water quality prediction unit
    The result of measuring the concentration of one or more predetermined water quality components for treated sewage treated in the past is stored as time series data classified by time system parameters,
    The water treatment plant operation system according to claim 1, wherein water quality of treated water generated after the present time is predicted based on the stored time series data.
  5.  前記処理水水質予測部は、
     下水の流入量及び水質を入力とし、処理水の水質を出力とする動的モデルによって、現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項3に記載の水処理プラント運用システム。
    The treated water quality prediction unit
    The water treatment plant according to claim 3, wherein the water quality of the treated water generated after the present time is predicted by a dynamic model having the sewage inflow and water quality as inputs and the treated water quality as outputs. Operational system.
  6.  前記動的モデルは、定常状態の前記水処理プラントにおける下水の流入量及び水質と、前記定常状態における処理水の水質との間の静的な関係を規定する第1の数学モデルと、前記定常状態における処理水の水質と、過渡状態の前記水処理プラントにおける処理水の水質との動的な関係を規定する第2の数学モデルとを有し、
     前記第1の数学モデルは、前記下水の流入量及び水質を入力として、前記定常状態における処理水の水質を出力し、
     前記第2の数学モデルは、前記第1の数学モデルから出力された前記定常状態における処理水の水質を入力として、前記過渡状態の前記水処理プラントにおける処理水の水質を出力する
     ことを特徴とする請求項5に記載の水処理プラント運用システム。
    The dynamic model includes a first mathematical model that defines a static relationship between an inflow amount and quality of sewage in the water treatment plant in a steady state and a quality of treated water in the steady state, and the steady state A second mathematical model defining a dynamic relationship between the quality of the treated water in the state and the quality of the treated water in the transient water treatment plant;
    The first mathematical model outputs the water quality of the treated water in the steady state with the inflow amount and the water quality of the sewage as inputs.
    The second mathematical model receives the quality of treated water in the steady state output from the first mathematical model and outputs the quality of treated water in the transient water treatment plant. The water treatment plant operation system according to claim 5.
  7.  前記水処理プラントから前記下水の流入量、前記下水の水質、及び前記処理水の水質のそれぞれの測定値を取得する流入量/水質取得部をさらに備え、
     前記処理水水質予測部は、前記流入量/水質取得部によって取得された前記測定値に基づいて、前記第1の数学モデル及び前記第2の数学モデルで使用されるテーブルデータを算出し、該算出したテーブルデータを使用する前記第1の数学モデル及び前記第2の数学モデルからなる前記動的モデルによって、現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項6に記載の水処理プラント運用システム。
    An inflow amount / water quality acquisition unit for acquiring measured values of the inflow amount of the sewage from the water treatment plant, the quality of the sewage, and the quality of the treated water;
    The treated water quality prediction unit calculates table data used in the first mathematical model and the second mathematical model based on the measurement value acquired by the inflow / water quality acquisition unit, The water quality of the treated water generated after the present is predicted by the dynamic model including the first mathematical model and the second mathematical model using the calculated table data. The water treatment plant operation system described.
  8.  下水に下水処理を施して処理水を生成し、前記処理水に水再生処理を施して再生水を製造する水処理プラントで、前記水再生処理を施す前記処理水の送水量を計画する送水量計画方法において、
     前記再生水の需要量を予測する需要量予測ステップと、
     前記下水処理によって生成される前記処理水の水質を予測する処理水水質予測ステップと、
     前記予測された前記処理水の水質予測値に基づいて、所定の計算により計画値を算出する計画値算出ステップと、
     前記算出した前記計画値に従って前記水処理プラントで水再生処理を施す処理水の量を制御する送水量制御ステップと、
     を備え、
     前記計画値算出ステップで算出される前記計画値は、該計画値に従った処理水から前記水再生処理によって製造される再生水の量が、前記需要量予測ステップで予測された需要予測値を満足する
     ことを特徴とする送水量計画方法。
    Sewage treatment is performed on sewage to produce treated water, and the water treatment plan is to produce the reclaimed water by subjecting the treated water to water regeneration treatment. In the method
    A demand amount prediction step for predicting the demand amount of the reclaimed water;
    A treated water quality prediction step for predicting the quality of the treated water generated by the sewage treatment;
    A plan value calculating step of calculating a plan value by a predetermined calculation based on the predicted water quality predicted value of the treated water;
    A water supply amount control step for controlling the amount of treated water subjected to water regeneration treatment in the water treatment plant according to the calculated plan value;
    With
    The plan value calculated in the plan value calculation step is such that the amount of reclaimed water produced from the treated water according to the plan value by the water regeneration process satisfies the demand prediction value predicted in the demand amount prediction step. A water supply planning method characterized by:
  9.  前記処理水水質予測ステップでは、過去に生成された前記処理水の水質についての実績データに基づいて、現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項8に記載の送水量計画方法。
    The water quality of the treated water produced | generated after the present is estimated based on the results data about the water quality of the treated water produced | generated in the past in the said treated water quality prediction step. Water supply planning method.
  10.  前記処理水水質予測ステップでは、
     現在以降に流入する下水の流入量及び水質を予測し、
     前記予測した下水の流入量予測値及び水質予測値に基づいて、現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項8に記載の送水量計画方法。
    In the treated water quality prediction step,
    Predict the inflow and quality of sewage that will flow in
    The water supply amount planning method according to claim 8, wherein the water quality of the treated water generated after the present time is predicted based on the predicted inflow amount predicted value and the predicted water quality value of the sewage.
  11.  前記処理水水質予測ステップでは、
     過去に下水処理された処理水について、所定の1以上の水質成分の濃度を計測した結果を、時間系のパラメータによって分類した時系列データにして格納し、
     前記格納した時系列データに基づいて現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項8に記載の送水量計画方法。
    In the treated water quality prediction step,
    The result of measuring the concentration of one or more predetermined water quality components for treated sewage treated in the past is stored as time series data classified by time system parameters,
    The water supply amount planning method according to claim 8, wherein the quality of treated water generated after the present time is predicted based on the stored time-series data.
  12.  前記処理水水質予測ステップでは、
     下水の流入量及び水質を入力とし、処理水の水質を出力とする動的モデルによって、現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項10に記載の送水量計画方法。
    In the treated water quality prediction step,
    The water supply amount plan according to claim 10, wherein the water quality of the treated water generated after the present time is predicted by a dynamic model having the sewage inflow and water quality as inputs and the treated water quality as outputs. Method.
  13.  前記動的モデルは、定常状態の前記水処理プラントにおける下水の流入量及び水質と、前記定常状態における処理水の水質との間の静的な関係を規定する第1の数学モデルと、前記定常状態における処理水の水質と、過渡状態の前記水処理プラントにおける処理水の水質との動的な関係を規定する第2の数学モデルとを有し、
     前記第1の数学モデルでは、前記下水の流入量及び水質を入力として、前記定常状態における処理水の水質を出力し、
     前記第2の数学モデルでは、前記第1の数学モデルから出力された前記定常状態における処理水の水質を入力として、前記過渡状態の前記水処理プラントにおける処理水の水質を出力する
     ことを特徴とする請求項12に記載の送水量計画方法。
    The dynamic model includes a first mathematical model that defines a static relationship between an inflow amount and quality of sewage in the water treatment plant in a steady state and a quality of treated water in the steady state, and the steady state A second mathematical model defining a dynamic relationship between the quality of the treated water in the state and the quality of the treated water in the transient water treatment plant;
    In the first mathematical model, the inflow amount and quality of the sewage are input, and the quality of treated water in the steady state is output.
    In the second mathematical model, the quality of the treated water in the water treatment plant in the transient state is output using the quality of the treated water in the steady state outputted from the first mathematical model as an input. The water supply amount planning method according to claim 12.
  14.  前記水処理プラントから前記下水の流入量、前記下水の水質、及び前記処理水の水質のそれぞれの測定値を取得する流入量/水質取得ステップをさらに備え、
     前記処理水水質予測ステップでは、
     前記流入量/水質取得ステップで取得された前記測定値に基づいて、前記第1の数学モデル及び前記第2の数学モデルで使用されるテーブルデータを算出し、
     該算出したテーブルデータを使用する前記第1の数学モデル及び前記第2の数学モデルからなる前記動的モデルによって、現在以降に生成される処理水の水質を予測する
     ことを特徴とする請求項13に記載の送水量計画方法。
    An inflow / water quality acquisition step of acquiring respective measured values of the inflow of the sewage from the water treatment plant, the quality of the sewage, and the quality of the treated water;
    In the treated water quality prediction step,
    Calculate table data used in the first mathematical model and the second mathematical model based on the measured value obtained in the inflow / water quality obtaining step,
    The water quality of the treated water generated after the present is predicted by the dynamic model including the first mathematical model and the second mathematical model using the calculated table data. Water quantity planning method described in 1.
PCT/JP2012/056829 2012-03-16 2012-03-16 System for operating water treatment plant and method for planning amount of water supply WO2013136503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056829 WO2013136503A1 (en) 2012-03-16 2012-03-16 System for operating water treatment plant and method for planning amount of water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056829 WO2013136503A1 (en) 2012-03-16 2012-03-16 System for operating water treatment plant and method for planning amount of water supply

Publications (1)

Publication Number Publication Date
WO2013136503A1 true WO2013136503A1 (en) 2013-09-19

Family

ID=49160469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056829 WO2013136503A1 (en) 2012-03-16 2012-03-16 System for operating water treatment plant and method for planning amount of water supply

Country Status (1)

Country Link
WO (1) WO2013136503A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215086A (en) * 2015-05-14 2016-12-22 株式会社東芝 Water supply apparatus and water supply control method
JP2019010615A (en) * 2017-06-30 2019-01-24 横河電機株式会社 Operation support device in water treatment facility
US10458969B2 (en) 2016-03-22 2019-10-29 International Business Machines Corporation Dynamic water quality prediction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119184A (en) * 1993-10-21 1995-05-09 Hitachi Ltd Operating apparatus for water supply and sewerage system
JP2001214470A (en) * 2000-01-31 2001-08-07 Toshiba Corp Controlling equipment for most adequate water transportation
JP2006021085A (en) * 2004-07-06 2006-01-26 Hitachi Ltd Sewage treatment operation support apparatus, sewage treatment operation support system, sewage treatment operation support method, and sewage treatment operation support program
JP2010194445A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Plant operation controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119184A (en) * 1993-10-21 1995-05-09 Hitachi Ltd Operating apparatus for water supply and sewerage system
JP2001214470A (en) * 2000-01-31 2001-08-07 Toshiba Corp Controlling equipment for most adequate water transportation
JP2006021085A (en) * 2004-07-06 2006-01-26 Hitachi Ltd Sewage treatment operation support apparatus, sewage treatment operation support system, sewage treatment operation support method, and sewage treatment operation support program
JP2010194445A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Plant operation controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215086A (en) * 2015-05-14 2016-12-22 株式会社東芝 Water supply apparatus and water supply control method
US10458969B2 (en) 2016-03-22 2019-10-29 International Business Machines Corporation Dynamic water quality prediction
JP2019010615A (en) * 2017-06-30 2019-01-24 横河電機株式会社 Operation support device in water treatment facility
JP7287752B2 (en) 2017-06-30 2023-06-06 横河電機株式会社 Operation support equipment for water treatment facilities

Similar Documents

Publication Publication Date Title
Ostace et al. Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus
Ferrero et al. Automatic control system for energy optimization in membrane bioreactors
JP6659404B2 (en) Wastewater treatment control device and wastewater treatment system
US10988394B2 (en) Cost control of wastewater treatment based on regulatory period
Robles et al. Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs)
Piotrowski et al. Mixed integer nonlinear optimization of biological processes in wastewater sequencing batch reactor
Piotrowski et al. Novel hierarchical nonlinear control algorithm to improve dissolved oxygen control in biological WWTP
WO2013136503A1 (en) System for operating water treatment plant and method for planning amount of water supply
Mannina et al. Minimizing membrane bioreactor environmental footprint by multiple objective optimization
JP5859866B2 (en) Monitoring target amount prediction method and monitoring target amount prediction apparatus
JP4188200B2 (en) Plant-wide optimum process controller
Hirsch et al. Supervisory control system for adaptive phase and work cycle management of sequencing wastewater treatment plant
JP5193884B2 (en) Monitoring and control system for water supply facilities
JP2017109170A (en) Aeration control apparatus, and aeration control method
JP2003300093A (en) Operation support system and control system for water treatment process
Rajaei et al. Improving wastewater treatment plant performance based on effluent quality, operational costs, and reliability using control strategies for water and sludge lines
Sheik et al. Design of intelligent control strategies for full-scale wastewater treatment plants with struvite unit
Zondervan et al. Modeling and optimization of a sequence of chemical cleaning cycles in dead-end ultrafiltration
WO2017006988A1 (en) Wastewater treatment control unit and wastewater treatment system
Balku et al. Control vector parameterization approach in optimization of alternating aerobic–anoxic systems
Rahmberg et al. LCA analysis of different WWTP processes
Swarnalatha Simulation and Analysis of Ammonium-Based Aeration Control Strategies to Enhance Efficiency in Wastewater Treatment Plant
Dairi et al. Dynamic simulation for the requirements of oxygen about the Municipal Wastewater Treatment Plant-Case of Souk-Ahras/Algeria
Piotrowski et al. Adaptive stochastic and hybrid nonlinear optimization algorithms for improving the effectiveness of the biological processes at WWTP
WO2023181276A1 (en) Water treatment control system and control method for water treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP