WO2017006988A1 - Wastewater treatment control unit and wastewater treatment system - Google Patents

Wastewater treatment control unit and wastewater treatment system Download PDF

Info

Publication number
WO2017006988A1
WO2017006988A1 PCT/JP2016/070115 JP2016070115W WO2017006988A1 WO 2017006988 A1 WO2017006988 A1 WO 2017006988A1 JP 2016070115 W JP2016070115 W JP 2016070115W WO 2017006988 A1 WO2017006988 A1 WO 2017006988A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
air volume
air
value
differential pressure
Prior art date
Application number
PCT/JP2016/070115
Other languages
French (fr)
Japanese (ja)
Inventor
理 山中
卓巳 小原
直樹 川本
英明 小峰
正彦 堤
浩嗣 山本
昌大 木下
永江 信也
佑子 都築
Original Assignee
株式会社東芝
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016041615A external-priority patent/JP6659404B2/en
Application filed by 株式会社東芝, 株式会社クボタ filed Critical 株式会社東芝
Publication of WO2017006988A1 publication Critical patent/WO2017006988A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • Embodiments of the present invention relate to a wastewater treatment control device and a wastewater treatment system.
  • Dirty water flowing through the sewer pipe is supplied to the aeration tank through the screen, the sand basin, and the first sedimentation basin.
  • Organic substances in sewage are decomposed into carbon dioxide and water by heterotrophic bacteria that are a kind of microorganisms contained in activated sludge in the aeration tank.
  • the ammonia component in the sewage is decomposed into nitric acid and water by nitrifying bacteria (nitrite bacteria and nitrate bacteria) which are a kind of microorganisms contained in the activated sludge in the aeration tank. Through these degradation reactions, heterotrophic bacteria and nitrifying bacteria each grow.
  • the treated water after organic substances and ammonia in the sewage are decomposed and removed is separated from the activated sludge by a separation membrane placed in the aeration tank. Solid components in the activated sludge cannot pass through the separation membrane, and only treated water passes through the separation membrane. The treated water that has passed through the separation membrane is discharged from the aeration tank.
  • TMP Trans Membrane Pressure
  • the membrane differential pressure required to obtain the same treated water discharge flow rate gradually increases.
  • an aeration unit for air-cleaning the separation membrane is provided in the aeration tank below the separation membrane.
  • the amount of air supplied from the air diffuser is adjusted by PID (Proportional-Integral-Derivative) control based on the difference value between the target value of the membrane differential pressure and the actual measurement value. Note that the target value of the membrane differential pressure is set to a value that increases linearly with the passage of time.
  • the membrane differential pressure has a small change at the initial stage of use of the separation membrane, and tends to increase rapidly when the membrane differential pressure exceeds a predetermined value (for example, 10 [kPa]). For this reason, if the target value of the membrane differential pressure is set to a value that increases linearly with the passage of time, the actual membrane differential pressure may deviate greatly from the target value. If the difference between the actual membrane pressure difference and the target value is large, there is a possibility that the amount of air supplied to the separation membrane cannot be calculated appropriately.
  • a predetermined value for example, 10 [kPa]
  • the problem to be solved by the present invention is to provide a wastewater treatment control device and a wastewater treatment system capable of reducing the difference between the actual membrane differential pressure of the separation membrane and the target value of the membrane differential pressure.
  • the wastewater treatment control apparatus of the embodiment has a target value acquisition unit, a predicted value acquisition unit, and an air volume control unit.
  • the target value acquisition unit is based on at least one of the initial value of the membrane differential pressure and membrane filtration resistance of the separation membrane that filters activated sludge, and the target value of the membrane differential pressure and membrane filtration resistance after the measurement of the initial value Get at least one of
  • the predicted value acquisition unit acquires at least one of the predicted value of the membrane differential pressure and the membrane filtration resistance after the measurement value is measured based on the measured value related to the clogging of the separation membrane.
  • the air volume control unit is configured to control the amount of air supplied from the aeration unit toward the separation membrane based on the target value acquired by the target value acquisition unit and the predicted value acquired by the predicted value acquisition unit. Control airflow.
  • the figure which shows the process implemented in the aeration tank 400 of 1st Embodiment. 1 is a block diagram of a sewage treatment system 10 according to a first embodiment.
  • FIG. 1 is a diagram showing a sewage treatment system 10 as a wastewater treatment system according to the first embodiment.
  • the sewage treatment system 10 includes a screen 100, a sand basin 200, an initial sedimentation basin 300, an aeration tank 400, and a treatment water tank 500.
  • the screen 100 removes large garbage (hair, toilet paper, etc.), pebbles, etc. from the sewage flowing into the sewage treatment system 10. Sewage discharged through the screen 100 flows into the sand basin 200.
  • the earth and sand that could not be removed by the screen 100 and the floating matter having a specific gravity larger than that of water are submerged in the bottom of the sand basin 200. Sediment or the like that sinks to the bottom of the sand basin 200 is removed by a dust remover.
  • the sewage discharged from the sand basin 200 without being removed by the dust remover first flows into the sedimentation basin 300.
  • Sediment that could not be removed by the sedimentation basin 200 such as sludge, having a specific gravity greater than that of water, is first submerged in the bottom of the sedimentation basin 300.
  • the sludge or the like that first sinks to the bottom of the sedimentation basin 300 is collected and removed by a scraper.
  • the sewage discharged from the sedimentation basin 300 without being removed by the scraper first flows into the aeration tank 400.
  • Air is blown into the activated sludge in the aeration tank 400.
  • organic matter and ammonia in the sewage are decomposed and removed.
  • the treated water in the activated sludge is discharged using a separation membrane. Details of the biochemical treatment performed in the aeration tank 400 will be described later with reference to FIG.
  • the sewage discharged through the separation membrane flows into the treated water tank 500.
  • a disinfectant such as sodium hypochlorite is introduced as necessary.
  • pathogenic bacteria such as Escherichia coli are sterilized.
  • the treated water sterilized in the treated water tank 500 is discharged into a river or the sea. The above is the overall processing flow of the sewage treatment system 10.
  • FIG. 2 is a diagram illustrating a process performed in the aeration tank 400 according to the first embodiment.
  • the sewage discharged from the sedimentation basin 300 first flows into the aeration tank 400 through the flow path 401.
  • activated sludge in which aerobic microorganisms (heterotrophic bacteria, nitrifying bacteria, etc.) are activated is stored.
  • the blower 402 supplies air into the pipe 403.
  • the aeration unit 404 is an aeration apparatus that supplies the air that has passed through the pipe 403 to the activated sludge in the aeration tank 400. Thereby, the bubbles 405 are released into the activated sludge in the aeration tank 400.
  • the flow meter 406 measures the air volume of air supplied from the blower 402.
  • Organic substances in the sewage are decomposed by heterotrophic bacteria in the aeration tank 400.
  • the organic substance is glucose, as shown in the following chemical formula (1), the organic substance (C 6 H 12 O 6 ) is oxygen (O) contained in the air supplied from the aeration unit 404. 2 ) and is decomposed into carbon dioxide (CO 2 ) and water (H 2 O).
  • the ammonia component in the sewage is decomposed by nitrifying bacteria (nitrite bacteria and nitrate bacteria) in the aeration tank 400.
  • nitrifying bacteria nitrite bacteria and nitrate bacteria
  • ammonium ions NH 4 +
  • oxygen O 2
  • H + Hydrogen ions
  • water H 2 O
  • the separation membrane 407 is soaked in the sewage in the aeration tank 400.
  • the separation membrane 407 is a porous flat membrane provided with a plurality of permeation channels having an average pore diameter of 0.4 [ ⁇ m], for example.
  • the size of the microorganisms contained in the activated sludge is about 1 [ ⁇ m] (bacteria) to several tens [ ⁇ m] (protozoa, etc.). For this reason, microorganisms contained in the activated sludge cannot pass through the separation membrane 407, and only clear treated water passes through the separation membrane 407.
  • the treated water that has passed through the separation membrane 407 flows through the pipe 409 when the suction pump 408 is driven.
  • the pipe 409 is provided with a pressure gauge 410 and a flow meter 411. Based on the measured value of the pressure gauge 410, the membrane differential pressure of the separation membrane 407 can be calculated.
  • the flow meter 411 measures the flow rate of treated water flowing through the pipe 409.
  • the blower 412 supplies air into the pipe 413.
  • the air diffuser 414 is an air diffuser that supplies air from the pipe 413 toward the separation membrane 407. Thereby, the bubbles 415 are released into the activated sludge in the aeration tank 400.
  • the air diffuser 414 discharges the bubbles 415 toward the separation membrane 407, whereby the surface of the separation membrane 407 is cleaned. Thereby, clogging of the separation membrane 407 is suppressed.
  • the flow meter 416 measures the air volume of air supplied from the blower 412.
  • the separation membrane 407 is cleaned with a chemical solution. Specifically, the inflow sewage into the aeration tank 400 is temporarily stopped. Thereafter, the separation membrane 407 is cleaned by injecting a chemical solution such as sodium hypochlorite or oxalic acid from the downstream side (secondary side) of the separation membrane 407. When the cleaning of the separation membrane 407 is completed, the membrane differential pressure of the separation membrane 407 is restored to near the initial value. The separation membrane 407 cleaned with the chemical solution is used again in the aeration tank 400.
  • a chemical solution such as sodium hypochlorite or oxalic acid
  • FIG. 3 is a block diagram of the sewage treatment system 10 of the first embodiment.
  • the sewage treatment system 10 includes a control device 450.
  • the control device 450 includes a processor such as a CPU (Central Processing ⁇ Unit) and a memory that stores a program executed by the processor.
  • a processor such as a CPU (Central Processing ⁇ Unit) and a memory that stores a program executed by the processor.
  • the control device 450 implements the functions of the target value acquisition unit 451, the air volume control unit 452, and the predicted value acquisition unit 453 by executing a program stored in the memory.
  • the target value acquisition unit 451, the air volume control unit 452, and the predicted value acquisition unit 453 may be hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Specific Integrated Circuit).
  • the target value acquisition unit 451 calculates the target value TMPref (t) of the membrane differential pressure TMP (t) of the separation membrane 407 as a function of t by solving the differential equation of the following formula (3). Note that t represents time.
  • the blockage index k is a parameter representing the degree of blockage of the separation membrane 407.
  • the occlusion index k is a positive value.
  • the solution of Equation (3) is a function that increases the film differential pressure TMP (t) exponentially.
  • the value of the film differential pressure TMP (t) becomes a function that diverges infinitely in a certain finite time.
  • TMP 0 is an initial value of the membrane differential pressure TMP (t)
  • L is a maintenance cycle
  • TMPlim is an upper limit value of the membrane differential pressure TMP (t).
  • the initial value TMP 0 is measured by the pressure gauge 410.
  • the operator uses the input unit 460 such as a mouse or a keyboard to input the closing index k, the maintenance cycle L, and the upper limit value TMPlim.
  • the target value acquisition unit 451 calculates the parameter A in Expression (3) based on Expression (5) below.
  • FIG. 4 is a diagram showing the relationship between the film differential pressure and time in the first embodiment.
  • the initial value TMP 0 is the membrane differential pressure at the timing (T 0 ) immediately after the separation membrane 407 is washed with the chemical solution.
  • the maintenance cycle L is a cycle in which the separation membrane 407 is maintained (chemical solution cleaning). Specifically, the maintenance cycle L is the time from the timing (T 0 ) immediately after the chemical cleaning of the separation membrane 407 to the next chemical cleaning timing (Tlim).
  • the maintenance cycle L is set to 30 days, for example.
  • the upper limit value TMPlim is set to 20 [kPa], for example.
  • the pressure gauge 410 measures the initial value TMP 0 of the membrane differential pressure at the timing (T 0 ) when the filtration operation after the separation membrane 407 is washed with the chemical solution is resumed.
  • the pressure gauge 410 transmits the measured initial value TMP 0 to the target value acquisition unit 451 of the control device 450.
  • the operator inputs the closing index k, the maintenance cycle L, and the upper limit value TMPlim using the input unit 460 such as a mouse or a keyboard.
  • the input unit 460 transmits the input blocking index k, the maintenance cycle L, and the upper limit value TMPlim to the target value acquisition unit 451 of the control device 450.
  • the target value acquisition unit 451 calculates the parameter A using Equation (4) or Equation (5) based on the received initial value TMP 0 , blockage index k, maintenance cycle L, and upper limit value TMPlim.
  • the target value acquisition unit 451 calculates the target value TMPref (t) of the membrane differential pressure TMP (t) of the separation membrane 407 by solving the differential equation of Formula (3) using the calculated parameter A and the blockage index k. calculate.
  • the target value acquisition unit 451 uses the parameter A and the blocking index k based on Lp smaller than the maintenance cycle L and membrane pressure TMPmax smaller than the upper limit value TMPlim instead of the maintenance cycle L and the upper limit value TMPlim. May be calculated simultaneously.
  • the target value acquisition unit 451 may calculate TMPmax (10 [kPa]) instead of the upper limit value TMPlim (20 [kPa]). Further, the target value acquisition unit 451 may set a time Lp (20 days) until the membrane differential pressure TMP (t) reaches 10 [kPa] instead of the maintenance cycle L (30 days). As a result, the optimum parameter A and the blockage index k can be calculated simultaneously using the equations (3) to (5). On the other hand, in this method, it is difficult to obtain analytical solutions such as Equations (4) and (5), and therefore parameter A and blockage index k are calculated by numerical search.
  • the value of k can be searched for by the following procedure.
  • the target value acquisition unit 451 solves the simultaneous equations of Equation (5) for the combination of (L and TMPlim) and the combination of (Lp and TMPmax).
  • a search method an appropriate search algorithm such as a Newton method can be used.
  • a method such as finding k that satisfies ⁇ A2
  • k setting method when a prediction model of formulas (9) and (10) to be described later is constructed, k that most closely matches the past actual data is obtained by searching, and the value is calculated by formula. It can also be adopted as k of the target curve of the target value acquisition unit 451 of (3) to (5).
  • the predicted value acquisition unit 453 calculates the predicted value TMPhat (t) of the membrane differential pressure TMP (t) of the separation membrane 407 as a function of t by solving the following mathematical formula (6).
  • the flux J (t) is the amount of treated water that passes through the separation membrane 407 per unit area per unit time at time t.
  • the predicted value acquisition unit 453 calculates the flux J (t) by dividing the flow rate Q 1 (t) measured by the flow meter 411 by the membrane area Ma of the separation membrane 407.
  • Equation (6) is obtained by eliminating R (t) from the following equations (7) and (8) and defining the coefficient of TMP (t) k as Am (t).
  • is the viscosity coefficient
  • J (t) is the flux
  • R (t) is the membrane filtration resistance
  • f (X) is the membrane filtration resistance. It is a factor to make.
  • f (X) is proportional to the flux J (t) or proportional to the water quality concentration c ⁇ flux J (t).
  • Expression (9) is an expression in which the parameter A in Expression (3) is replaced with the parameter Am (t).
  • the parameters Am (t) included in the prediction models of Equation (6) and Equation (9) are, as shown in Equation (10), coefficient a 1 , coefficient a 2 , flux X 1 (t), and air volume X. 2 Calculated based on (t).
  • the predicted value acquisition unit 453 uses the aforementioned flux J (t) as the flux X 1 (t). Further, the predicted value acquisition unit 453 uses the air volume Q 2 (t) received from the flow meter 416 as the air volume X 2 (t).
  • X 2 (t) is the air volume supplied from the blower 412, but X 2 (t) may be the air magnification of the air supplied from the blower 412.
  • the air magnification means the ratio of the amount of air sent to the aeration tank 400 to the amount of sewage flowing into the aeration tank 400.
  • the predicted value acquisition unit 453 solves the differential equation of Equation (6) using the calculated parameter Am (t), the flux J (t), and the blockage index k, whereby the membrane pressure difference TMP ( The predicted value TMPhat (t) of t) is calculated.
  • the air volume control unit 452 controls the air volume of the blower 412 based on the target value TMPref (t) calculated by the target value acquisition unit 451 and the predicted value TMPhat (t) calculated by the predicted value acquisition unit 453. . This point will be described in detail below.
  • the air volume control unit 452 calculates a difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t) based on Expression (11).
  • the air volume control unit 452 performs PI (Proportional-Integral) control on the blower 412 using the calculated difference E (t). Specifically, the air volume control unit 452 calculates the operation amount u (t) of the blower 412 based on Expression (12). Kp is a proportional gain in PI control. Ki is an integral gain in PI control. Tnow is the current time. Tp is the elapsed time from the current time Tnow. For example, Tp is set to 1 day (24 hours).
  • PI Proportional-Integral
  • the target value TMPref (t) of the membrane differential pressure is indicated by a thick solid line.
  • the actually measured value TPMact (t) of the membrane differential pressure is indicated by a thin solid line.
  • the predicted value TMPhat (t) of the film differential pressure after the current time Tnow is indicated by a broken line.
  • the target value of the membrane differential pressure and the actual measured value of the membrane differential pressure are both equal to TMPnow.
  • a difference E (t) is generated between the target value TMP 1 and the predicted value TMP 2 at time Tnext after Tp has elapsed from the current time Tnow. Therefore, the air volume control unit 452 calculates the operation amount u (t) of the blower 412 based on the difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t). Since the air volume control unit 452 controls the blower 412 using two parameters (proportional gain Kp and integral gain Ki), parameter adjustment can be performed easily and simply.
  • the air volume control unit 452 performs PI control, PID (Proportional-Integral-Derivative) control may be performed. In this case, since the air volume control unit 452 calculates the operation amount u (t) of the blower 412 in consideration of the differential value of the difference E (t), more stable control can be performed.
  • PID Proportional-Integral-Derivative
  • FIG. 5 is a flowchart showing the processing of the target value acquisition unit 451 in the first embodiment. This flowchart is executed by the target value acquisition unit 451 when the filtration operation is resumed after the separation membrane 407 is cleaned with the chemical solution.
  • the target value acquisition unit 451 receives the initial value TMP 0 of the membrane differential pressure from the pressure gauge 410 (step S10). Next, the target value acquisition unit 451 determines whether or not the closing index k, the upper limit value TMPlim, and the maintenance cycle L are input by the operator (step S11). The operator inputs these values using the input unit 460.
  • the target value acquisition unit 451 determines the parameter A based on the above-described equation (4) or equation (5). Is calculated (step S12). Thereafter, the target value acquisition unit 451 calculates the target value TMPref (t) of the film differential pressure by solving the differential equation of the above-described mathematical expression (3) (step S13). The target value acquisition unit 451 stores the calculated target value TMPref (t) in the memory in the control device 450, and ends the processing according to this flowchart.
  • FIG. 6 is a flowchart showing the processing of the predicted value acquisition unit 453 in the first embodiment.
  • the predicted value acquisition unit 453 receives the treated water flow rate Q 1 (t) from the flow meter 411 (step S20).
  • the predicted value acquisition unit 453 receives the air volume Q 2 (t) of the blower 412 from the flow meter 416 (step S21).
  • the predicted value acquisition unit 453 calculates the flux J (t) by dividing the flow rate Q 1 (t) by the membrane area Ma of the separation membrane 407 (step S22). Thereafter, the predicted value acquisition unit 453 calculates the parameter Am (t) based on the above mathematical formula (10) (step S23).
  • the flux X 1 (t) in Equation (10) is the flux J (t)
  • the air volume X 2 (t) is the air volume Q 2 (t) received in step S21.
  • the predicted value acquisition unit 453 calculates the predicted value TMPhat (t) of the membrane differential pressure by solving the differential equation of the above formula (6) (step S24).
  • the predicted value acquisition unit 453 stores the calculated predicted value TMPhat (t) in the memory in the control device 450, and ends the processing according to this flowchart.
  • FIG. 7 is a flowchart showing processing of the air volume control unit 452 in the first embodiment.
  • the air volume control unit 452 reads the target value TMPref (t) calculated by the target value acquisition unit 451 in step S13 of FIG. 5 from the memory in the control device 450 (step S30).
  • the air volume control unit 452 reads the predicted value TMPhat (t) calculated by the predicted value acquisition unit 453 in step S24 of FIG. 6 from the memory in the control device 450 (step S31).
  • the air volume control unit 452 calculates a difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t) based on the above equation (11) (step S32).
  • the air volume control unit 452 calculates the operation amount u (t) of the blower 412 based on the above equation (12) using the calculated difference E (t) (step S33).
  • the air volume control unit 452 controls the air volume of the blower 412 based on the calculated operation amount u (t) (step S34).
  • the air volume control unit 452 ends the process according to this flowchart.
  • the air volume control unit 452 supplies the air supplied from the air diffuser 414 toward the separation membrane 407 based on the difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t). To control the airflow. Thereby, the difference between the actual membrane differential pressure of the separation membrane 407 and the target value TMPref (t) can be reduced, and the amount of air supplied to the separation membrane 407 can be calculated appropriately.
  • the aeration tank 400 may be a biological treatment tank structure for carrying out A2O (Anaerobic Anoxic Oxic) in which a separation membrane 407 is installed.
  • the biological treatment tank has an anaerobic region in which neither oxygen (O 2 ) nor bound oxygen (NO 3 etc.) exists, an anoxic region in which oxygen does not exist but bound oxygen exists, and oxygen exists. You may divide
  • a separation membrane 407 may be installed in a biological treatment tank structure for carrying out an AO (Anaerobic Oxic) method, a circulating nitrification denitrification method, and a flocculant addition method.
  • AO Anaerobic Oxic
  • the air volume control unit 452 performs PI control or PID control.
  • the air volume control unit 452 performs rule-based control. Specifically, the air volume control unit 452 controls the air volume of air supplied by the blower 412 in a stepwise manner with reference to the table TB. A change value ⁇ u (t) of the operation amount of the blower 412 is set in the table TB.
  • the air volume control unit 452 needs to reduce the air volume of the blower 412. For this reason, when the predicted value TMPhat (t) is smaller than the target value TMPref (t) of the membrane pressure difference TMP (t), the change value ⁇ u (t) set in the table TB is a negative value.
  • the air volume control unit 452 needs to increase the air volume of the blower 412. For this reason, when the predicted value TMPhat (t) is larger than the target value TMPref (t) of the membrane pressure difference TMP (t), the change value ⁇ u (t) set in the table TB is a positive value.
  • the table TB is set so that the change value ⁇ u (t) of the operation amount of the blower 412 becomes larger as the difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t) is larger.
  • the air volume control unit 452 performs PI control, PID control, or rule-based control.
  • the air volume control unit 452 performs extreme value control.
  • the extreme value control is a control for expressing efficiency, profit, loss, etc. imposed on the system as one evaluation function and maintaining the value of the evaluation function at the maximum or minimum.
  • the air volume control unit 452 performs extreme value control using the evaluation function EV shown in Expression (13).
  • Tnow is the current time
  • Tp is the elapsed time from the current time Tnow.
  • Tp is set to 1 day (24 hours).
  • the evaluation function EV is the sum of squares of prediction errors from the current time Tnow to the time point when Tp has elapsed.
  • the air volume control unit 452 performs extreme value control so as to minimize the evaluation function EV.
  • the extreme value control is control for searching for the optimum operation amount so that the evaluation function is minimized while increasing or decreasing the operation amount (the air volume of the blower 412) in a predetermined cycle. Therefore, the air volume control unit 452 automatically searches for the optimum air volume of the blower 412 while increasing or decreasing the air volume of the blower 412 at a predetermined cycle.
  • the air volume control unit 452 can calculate the evaluation function EV using one integrator. For this reason, the air volume control unit 452 can be realized using a simple controller such as a PLC controller. Even in the case of adopting the present embodiment, the air volume determined by the extreme value control is not maintained at a constant value during a predetermined control period, but the average value during the control period becomes the determined air volume. Thus, the blower 412 can be controlled in a vibration manner with a shorter period.
  • the predicted value acquisition unit 453 calculates the parameter Am (t) based on the flux X1 (t) and the air volume X2 (t), as shown in Equation (10).
  • the predicted value acquisition unit 453 uses not only the flux X 1 (t) and the air volume X 2 (t) but also the measured values other than these to further improve the parameter Am (t). Calculate well.
  • FIG. 8 is a block diagram of the sewage treatment system 10 of the fourth embodiment. As shown in FIG. 8, the thermometer 417 is connected to the air volume control unit 452. The thermometer 417 is a sensor for measuring the water temperature Te (t) in the aeration tank 400. The thermometer 417 transmits the measured water temperature Te (t) to the air volume control unit 452.
  • the parameters Am (t) included in the prediction models of the equations (6) and (9) include coefficients a 1 to a 3 , a flux X 1 (t), and an air volume X 2 ( t) and the water temperature X 3 (t).
  • the water temperature X 3 (t) is the water temperature Te (t) in the aeration tank 400 measured by the thermometer 417.
  • the parameter Am (t) can be calculated with high accuracy. For this reason, the difference between the target value TMPref (t) of the membrane differential pressure and the predicted value TMPhat (t) of the membrane differential pressure can be further reduced.
  • the predicted value acquisition unit 453 may calculate the parameter Am (t) based on Expression (15) in order to calculate the parameter Am (t) more accurately.
  • n is an integer of 4 or more.
  • a 1 ⁇ a n is a coefficient
  • X 1 (t) ⁇ X n (t) is a plurality of measurement values relating to the clogging of the separation membrane 407.
  • the predicted value acquisition unit 453 generates time series data for a predetermined period from the past operation data of the variable TMP predicted as the variables X 1 (t) to X n (t) that cause clogging of the separation membrane. And apply one of the coefficients a 1 to a by applying one of the least square method, partial least square method, total least square method, generalized least square method, regularized least square method, support vector regression, and fit vector regression n is determined.
  • the plurality of measured values X 1 (t) to X n (t) include various measured values in addition to the flux X 1 (t), the air volume X 2 (t), and the water temperature X 3 (t).
  • the plurality of measured values X 1 (t) to X n (t) are at least one of MLSS (Mixed Liquor Suspended Solid) concentration, auxiliary air diffusion amount, coagulant injection amount, circulation pump flow rate, and return pump flow rate. May be included.
  • a plurality of measured values X 1 (t) to X n (t) are the dissolved oxygen concentration of wastewater or treated water, ORP (Oxidation-Reduction Potential), pH, EEM (Excitation Emission Matrix), absorbance, BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), TOC (Total Organic Carbon), at least one of ammonia concentration, nitric acid concentration, phosphoric acid concentration, total nitrogen concentration, total phosphorus concentration, soluble COD concentration, and soluble BOD concentration May be included.
  • the plurality of measurement values X 1 (t) to X n (t) may include a composite variable obtained by performing four arithmetic operations on variables representing these measurement values.
  • the predicted value acquisition unit 453 provides various measured values as well as the flux X 1 (t) of the treated water flowing through the pipe 409 and the air volume X 2 (t) of the air supplied by the blower 412.
  • the predicted value TMPhat (t) of the membrane differential pressure is calculated using this.
  • the actual membrane differential pressure of the separation membrane 407 can be made closer to the target value TMPref (t), and the amount of air supplied to the separation membrane can be calculated appropriately.
  • FIG. 9 is a diagram showing processing performed in the aeration tank 400 of the fifth embodiment. As shown in FIG. 9, the aeration tank 400 of the present embodiment does not include the blower 412, the pipe 413, the air diffuser 414, and the flow meter 416.
  • the separation membrane 407 is washed with air supplied from the aeration unit 404. Therefore, the predicted value acquisition unit 453 calculates the predicted value TMPhat (t) based on the flow meter 406 instead of the flow meter 416.
  • the air volume control unit 452 controls the air volume of the blower 402 instead of the blower 412.
  • the blower 412, the pipe 413, the aeration unit 414, and the flow meter 416 are not arranged in the aeration tank 400, and air for the aeration unit 404 to clean the separation membrane 407 is used. It was decided to supply. Thereby, cost reduction of the sewage treatment system 10 can be achieved.
  • the air volume control unit 452 performs PI control or PID control.
  • the sewage treatment system 10 newly includes a blower control unit 417 that calculates the operation amount V (t) based on the operation amount u (t) calculated by the air volume control unit 452.
  • the blower control unit 417 (aeration control unit) controls the blower 412.
  • the operation amount of a predetermined air volume is calculated by PI or PID calculation, and the valve and the rotation speed of the blower 412 are operated by another PI control so as to supply the air volume by the calculated air volume operation amount.
  • Cascade control is performed (see, for example, FIG. 10).
  • the operation amount u (t) of the air volume calculated by the air volume control calculation by the PI (D) control of the upper (air volume control unit 452 in FIG. 10) is lower (in FIG. 10).
  • the control target value for the PI (D) control of the blower control unit 417) is maintained at a constant value during the control cycle (Tc_up) of the upper control.
  • increasing the air flow change (dispersion) increases the shearing force applied to the membrane surface, which may be preferable for suppressing fouling. Therefore, in the sixth embodiment, the operation amount u (t) of the air volume is changed in a vibration manner in a cycle shorter than the upper control cycle (Tc_up), and the operation amount V ( Control is performed so that t) coincides with the operation amount u (t) of the air volume calculated by the higher-level PI (D) control.
  • the operation amount V (t) of the air volume is vibrated at a period equal to or higher than the lower control period (Tc_cn), and the amplitude of the vibration is determined according to the load on the blower 412. By performing such control, fouling can be more efficiently suppressed. Details will be described below.
  • FIG. 10 is a block diagram of the sewage treatment system 10 of the sixth embodiment. As shown in FIG. 6, the configuration differs from that shown in FIG. 3 in that the sewage treatment system 10 is provided with a blower control unit 417. Since other configurations are the same as those in FIG. 3, the blower control unit 417 will be described. Note that the blower control unit 417 may be provided in the control device 450. The blower control unit 417 controls the blower 412 based on the operation amount u (t) calculated by the air volume control unit 452. A specific operation of the blower control unit 417 will be described with reference to FIG.
  • FIG. 11 is a diagram for explaining the operation of the blower control unit 417 in the sixth embodiment.
  • T1 represents the control period of the air volume control unit 452
  • a1 represents the manipulated variable u (t).
  • a1 is the operation amount u (t) calculated by the air volume control unit 452 using the above equation (12). That is, the operation amount u (t) is calculated at the control cycle T1. Therefore, the blower control unit 417 calculates an operation amount V (t) in which the operation amount of the average air volume matches the operation amount u (t) during the control period T1 based on the operation amount u (t).
  • the blower control unit 417 manipulates the operation amount V (t) so as to vibrate at a cycle shorter than the control cycle T1 of the air volume control unit 452 and the control cycle T2 of the operation end (valve, rotation speed) of the blower 412. Is calculated.
  • the manipulated variable V (t) is a2 in FIG.
  • FIG. 11 shows a configuration in which control is performed at a constant control cycle T2, the blower control unit 417 may perform control at irregular control cycles.
  • the blower control unit 417 calculates that the manipulated variable V (t) is different in the period equal to or greater than the control period T2 if the manipulated variable of the average air volume matches the manipulated variable u (t) during the control period T1. Alternatively, it may be calculated so that a part thereof is different.
  • the operation amount is not constant within the control period of the air volume control unit 452, is less than the control period of the air volume control unit 452, and the operation end (valve, rotation speed) of the blower 412 that performs air volume control. Control is performed by oscillating at a cycle equal to or greater than the control cycle Tc_cn. Therefore, fouling can be suppressed more efficiently.
  • the air volume control unit 452 performs PI control on the blower 412 using the difference E (t) calculated based on the above equation (11).
  • the air volume control unit 452 controls the blower 412 by operating in a control mode determined according to the absolute value error and the current control mode of the air volume control unit 452.
  • the air volume control unit 452 has a normal control mode and a constant air volume control mode.
  • the normal control mode is a mode in which the blower 412 is controlled with the operation amount u (t) calculated by the above equation (12) as in the first embodiment.
  • the constant air volume control mode is a mode in which the blower 412 is controlled with the operation volume of the air volume fixed. The operation amount used in the constant air volume control mode may be set in advance.
  • the air volume control unit 452 in the seventh embodiment determines a control mode based on the control mode determination table shown in FIG. 12, and operates in the determined control mode.
  • FIG. 12 is a diagram illustrating a specific example of the control mode determination table. As shown in FIG. 12, information on the control mode for each combination of the magnitude of the absolute value error and the current control mode is registered in the control mode determination table. For example, in the control mode determination table shown in FIG. 12, when the absolute value error is greater than or equal to the threshold value TH1 (absolute value error ⁇ TH1) and the current control mode is the normal control mode, switching to the constant air volume control mode is performed. Is represented.
  • the air volume control unit 452 determines its own control mode as the constant air volume control mode, and performs control by switching the control mode. Further, it is shown that the constant air volume control mode is maintained when the absolute value error is equal to or greater than the threshold value TH1 (absolute value error ⁇ TH1) and the current control mode is the constant air volume control mode. That is, in this case, the air volume control unit 452 determines its own control mode as the constant air volume control mode, and performs control while maintaining the control mode.
  • the absolute stationary error is an absolute value error between the target value TMPref (t) obtained from the target value obtaining unit 451 and the predicted value TMPhat (t) obtained from the predicted value obtaining unit 453.
  • the normal variation range of the error around the target value is represented by, for example, standard deviation ⁇
  • X ⁇ (k ′ ⁇ k) is preferable.
  • the operation amount u (t) of the fixed air amount in the constant air amount control mode is set to a value that is somewhat higher, assuming a safe side when the input changes suddenly and a large amount of cleaning air is required. It is preferable.
  • the air volume control unit 452 determines the control mode according to the absolute value error and the current control mode, and performs control in the determined control mode. Therefore, it can respond according to the situation.
  • the constant air volume control is divided into an air volume constant control having a value higher than the set value and an air volume constant control having a value lower than the set value.
  • the air volume control unit 452 may be configured to determine the control mode according to the above conditions. An example will be described. In the control mode determination table shown in FIG. 12, the absolute value error is greater than or equal to the threshold value TH1 (absolute value error ⁇ TH1), the current control mode is the normal control mode, and the absolute value error is the target value TMPref (t).
  • the air flow control unit 452 switches to the air flow constant control mode having a value lower than the set value after separately diagnosing and confirming that the individual sensor of the input variable is not an abnormal value.
  • the absolute value error is greater than or equal to the threshold value TH1 (absolute value error ⁇ TH1)
  • the current control mode is the normal control mode
  • the absolute value error is the target value TMPref (t )
  • the air volume control unit 452 switches to the air volume constant control mode having a value higher than the set value.
  • the blower 412 is controlled, but in many MBR processes, the air volume control (auxiliary aeration control) by the blower 402 for performing biological treatment and the air volume control for cleaning the MBR process film (
  • the operation of the air volume control unit 452 in each of the above embodiments corresponds to the operation of the cleaning aeration control.
  • the main purpose of the cleaning aeration is to clean the membrane, but the cleaning aeration also serves as an oxygen supply for performing the biological treatment, and the supply of oxygen necessary for the biological treatment is often insufficient only with the amount of the cleaning air. Therefore, supplemental aeration compensates for oxygen supply shortage.
  • the purpose is to supply the cleaning air volume that is the minimum necessary from the viewpoint of membrane cleaning.
  • the air volume required for the film cleaning is extremely small, it is sufficient to perform biological treatment with only auxiliary aeration. Oxygen supply may not be possible.
  • the eighth embodiment addresses the above problem.
  • the air volume control unit 452 calculates a difference value of the operation amount of the air volume based on a plurality of control methods, and controls the air volume using any of the calculated difference values.
  • a plurality of control methods there are a normal control method and a density maintenance control method.
  • the normal control method is a method of calculating the operation amount u (t) by the above equation (12) as in the first embodiment.
  • the concentration maintenance control method is a method of calculating the operation amount by the same calculation method as that of auxiliary aeration in order to maintain the DO concentration target value.
  • the amount of oxygen required for biological treatment is usually managed by the dissolved oxygen concentration (DO concentration).
  • DO concentration dissolved oxygen concentration
  • the quality of treated water for example, ammonia concentration may be used for management.
  • the DO concentration is often controlled in terms of the DO concentration necessary to maintain the predetermined ammonia concentration, but in this embodiment, the required oxygen amount is the DO concentration or ammonia concentration. It is assumed that it is managed by some kind of index.
  • the DO concentration is measured by a sensor (not shown).
  • a case where the required acid amount is managed by DO concentration will be described as an example as a method adopted by many processing facilities.
  • the DO concentration target value is given by the operator, and the blower 402 corresponding to the auxiliary aeration is controlled by the PI (D) control or the like.
  • the air volume control unit 452 is in a control mode (DO mode) that maintains the DO concentration, which is a mode different from the normal operation mode (normal control mode). Control mode).
  • DO mode a control mode that maintains the DO concentration
  • normal control mode a mode different from the normal operation mode
  • Control mode This control can be easily realized by normal PI (D) control.
  • the timing for returning from the DO control mode to the normal control mode is also important. This is because, if the cleaning aeration control is controlled for the purpose of supplying the oxygen amount necessary for biological treatment, a rapid increase in the membrane differential pressure is allowed depending on conditions.
  • the air volume control unit 452 calculates the cleaning aeration control in the normal control mode in parallel when operating in the DO control mode, and the operation amount of the air volume calculated thereby is the DO control mode. When the operation amount of the air volume calculated when operating is reduced, the air volume necessary for the original film cleaning can be supplied by returning to the normal control mode.
  • FIG. 13 is a flowchart showing the processing of the air volume control unit 452 in the eighth embodiment. It is assumed that the DO target value and the DO measurement value are input to the control device 450 at the start of the processing in FIG.
  • the air volume control unit 452 calculates the operation amount QB1 of the cleaning air volume by the normal control method, and calculates a difference value ⁇ QB1 from the previously determined operation amount of the air volume (step S60).
  • the operation amount QB1 of the cleaning air amount corresponds to the operation amount u calculated by the above equation (12).
  • the air volume control unit 452 calculates the operation amount QB2 of the cleaning air volume by the same method as the auxiliary aeration, and calculates a difference value ⁇ QB2 from the previously determined operation amount of the air volume (step S61).
  • the air volume control unit 452 determines whether or not the blower 412 has the maximum output and the difference value between the DO target value and the DO measurement value is equal to or greater than a threshold value (step S62).
  • a threshold value a threshold value
  • the air volume control unit 452 then adds the calculated ⁇ QB to the previously determined air volume operation amount to determine the current cleaning air volume operation amount (step S64).
  • the air volume control unit 452 controls the blower 412 based on the determined operation amount of the cleaning air volume.
  • step S62 NO
  • the air volume control unit 452 sets ⁇ QB to ⁇ QB1 (step S65). . Thereafter, the air volume control unit 452 executes the process of step S64.
  • step S63 the configuration in which the process of step S63 is executed when the blower 412 has the maximum output and the difference value between the DO target value and the DO measurement value is greater than or equal to the threshold value is shown.
  • step S63 is performed. You may be comprised so that a process may be performed.
  • the air volume control unit 452 that controls the air volume of air, the difference between the actual membrane differential pressure of the separation membrane 407 and the target value TMPref (t) can be reduced.
  • TMP membrane differential pressure may be replaced with membrane filtration resistance.
  • membrane filtration resistance cannot generally be measured directly, it is known that it is represented by the formula (16) as a general formula.
  • Equation (16) TMP is a membrane differential pressure [kPa]
  • is a viscosity coefficient [kPa / d]
  • J is a flux [m / d]
  • R is a membrane filtration resistance [1 / m]
  • P is a power constant.
  • the power constant P is usually an adjustment parameter set between 1 and 2.
  • the control device 450 functioning as a flux calculating unit calculates the flux J by dividing the value of the flow meter 411 (the amount of membrane filtered water) by the membrane area. Since continuous measurement is possible, assuming that the viscosity coefficient ⁇ is constant, a value obtained by dividing the membrane differential pressure TMP by the power of the flux J corresponds to the membrane filtration resistance R.
  • the control device 450 functioning as a membrane filtration resistance calculation unit calculates the membrane filtration resistance R based on the measured values of the membrane differential pressure TMP and the flux J.
  • B is a constant.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A wastewater treatment control unit of an embodiment has a target value acquisition unit, a predicted value acquisition unit, and an air volume control unit. On the basis of an initial value for at least one of trans membrane pressure and membrane filter resistance for a separation membrane for filtering activated sludge, the target value acquisition unit acquires a target value for at least one of the trans membrane pressure and membrane filter resistance after measurement of the initial values. The predicted value acquisition unit acquires a predicted value for at least one of the trans membrane pressure and membrane filter resistance after measurement of the initial values on the basis of measured values related to clogging of the separation membrane. The air volume control unit controls the air volume for air supplied toward the separation membrane from an air diffuser on the basis of the target value acquired by the target value acquisition unit and the predicted value acquired by the predicted value acquisition unit.

Description

排水処理制御装置及び排水処理システムWaste water treatment control device and waste water treatment system
 本発明の実施形態は、排水処理制御装置及び排水処理システムに関する。 Embodiments of the present invention relate to a wastewater treatment control device and a wastewater treatment system.
 下水管を流れた汚水は、スクリーン、沈砂池、及び最初沈澱池等を経て、曝気槽へと供給される。汚水中の有機物質は、曝気槽内の活性汚泥に含まれる微生物の一種である従属栄養細菌により、二酸化炭素と水に分解される。また、汚水中のアンモニア成分は、曝気槽内の活性汚泥に含まれる微生物の一種である硝化菌(亜硝酸菌と硝酸菌)により、硝酸と水に分解される。これらの分解反応によって、従属栄養細菌や硝化菌は各々増殖する。 Dirty water flowing through the sewer pipe is supplied to the aeration tank through the screen, the sand basin, and the first sedimentation basin. Organic substances in sewage are decomposed into carbon dioxide and water by heterotrophic bacteria that are a kind of microorganisms contained in activated sludge in the aeration tank. In addition, the ammonia component in the sewage is decomposed into nitric acid and water by nitrifying bacteria (nitrite bacteria and nitrate bacteria) which are a kind of microorganisms contained in the activated sludge in the aeration tank. Through these degradation reactions, heterotrophic bacteria and nitrifying bacteria each grow.
 汚水中の有機物質やアンモニアが分解除去された後の処理水は、曝気槽内に配置された分離膜により活性汚泥から分離される。活性汚泥中の固形成分は分離膜を通過することができず、処理水のみが分離膜を通過する。分離膜を通過した処理水は、曝気槽から排出される。 The treated water after organic substances and ammonia in the sewage are decomposed and removed is separated from the activated sludge by a separation membrane placed in the aeration tank. Solid components in the activated sludge cannot pass through the separation membrane, and only treated water passes through the separation membrane. The treated water that has passed through the separation membrane is discharged from the aeration tank.
 分離膜によって処理水が排出されるにつれ、活性汚泥に含まれる微生物や、微生物の代謝物質であるEPS(Extracellular Polymeric Substance)等の高分子化合物や、無機物等が分離膜の処理水通過流路に入り込む。これによって、分離膜の目詰まりが徐々に発生する。この目詰まり状態を検出するために、処理水排出時において分離膜の上流側(一次側)の水圧と下流側(二次側)の水圧の差である膜差圧(TMP:Trans Membrane Pressure)が測定される。 As the treated water is discharged by the separation membrane, microorganisms contained in the activated sludge, macromolecular compounds such as EPS (Extracellular-Polymeric Substance) that are metabolites of microorganisms, inorganic substances, etc., enter the treated-water passage of the separation membrane. Get in. Thereby, clogging of the separation membrane occurs gradually. In order to detect this clogging state, the membrane pressure difference (TMP: Trans Membrane Pressure) is the difference between the upstream (primary) water pressure and the downstream (secondary) water pressure of the separation membrane when the treated water is discharged. Is measured.
 分離膜の目詰まりが生じると、同じ処理水の排出流量を得るのに必要な膜差圧が徐々に上昇する。分離膜の目詰まりを抑制するため、曝気槽内には、分離膜を空気洗浄するための散気部が分離膜の下方に設けられている。特許文献1の技術においては、散気部から供給される空気の量は、膜差圧の目標値と実測値との差分値に基づくPID(Proportional-Integral-Derivative)制御により調整される。なお、膜差圧の目標値は、時間の経過とともに直線的に増加する値に設定されている。 ¡When clogging of the separation membrane occurs, the membrane differential pressure required to obtain the same treated water discharge flow rate gradually increases. In order to suppress clogging of the separation membrane, an aeration unit for air-cleaning the separation membrane is provided in the aeration tank below the separation membrane. In the technique of Patent Document 1, the amount of air supplied from the air diffuser is adjusted by PID (Proportional-Integral-Derivative) control based on the difference value between the target value of the membrane differential pressure and the actual measurement value. Note that the target value of the membrane differential pressure is set to a value that increases linearly with the passage of time.
 しかしながら、膜差圧は、分離膜の使用初期の段階では変化が小さく、膜差圧が所定値(例えば、10[kPa])を超えると急激に増加する傾向がある。このため、膜差圧の目標値が、時間の経過とともに直線的に増加する値に設定されると、実際の膜差圧が目標値から大きくずれる可能性があった。実際の膜差圧と目標値との差が大きいと、分離膜へ供給する空気の量を適切に算出できない可能性があった。 However, the membrane differential pressure has a small change at the initial stage of use of the separation membrane, and tends to increase rapidly when the membrane differential pressure exceeds a predetermined value (for example, 10 [kPa]). For this reason, if the target value of the membrane differential pressure is set to a value that increases linearly with the passage of time, the actual membrane differential pressure may deviate greatly from the target value. If the difference between the actual membrane pressure difference and the target value is large, there is a possibility that the amount of air supplied to the separation membrane cannot be calculated appropriately.
特開2013-202471号公報JP 2013-202471 A
 本発明が解決しようとする課題は、分離膜の実際の膜差圧と、膜差圧の目標値との差を小さくすることができる排水処理制御装置及び排水処理システムを提供することである。 The problem to be solved by the present invention is to provide a wastewater treatment control device and a wastewater treatment system capable of reducing the difference between the actual membrane differential pressure of the separation membrane and the target value of the membrane differential pressure.
 実施形態の排水処理制御装置は、目標値取得部と、予測値取得部と、風量制御部とを持つ。目標値取得部は、活性汚泥をろ過する分離膜の膜差圧及び膜ろ過抵抗の初期値の少なくとも1つに基づき、前記初期値の測定時以降の前記膜差圧及び膜ろ過抵抗の目標値の少なくとも1つを取得する。予測値取得部は、前記分離膜の目詰まりに関する測定値に基づき、前記測定値の測定時以降の前記膜差圧及び膜ろ過抵抗の予測値の少なくとも1つを取得する。風量制御部は、前記目標値取得部によって取得された前記目標値と、前記予測値取得部によって取得された前記予測値とに基づき、散気部から前記分離膜に向けて供給される空気の風量を制御する。 The wastewater treatment control apparatus of the embodiment has a target value acquisition unit, a predicted value acquisition unit, and an air volume control unit. The target value acquisition unit is based on at least one of the initial value of the membrane differential pressure and membrane filtration resistance of the separation membrane that filters activated sludge, and the target value of the membrane differential pressure and membrane filtration resistance after the measurement of the initial value Get at least one of The predicted value acquisition unit acquires at least one of the predicted value of the membrane differential pressure and the membrane filtration resistance after the measurement value is measured based on the measured value related to the clogging of the separation membrane. The air volume control unit is configured to control the amount of air supplied from the aeration unit toward the separation membrane based on the target value acquired by the target value acquisition unit and the predicted value acquired by the predicted value acquisition unit. Control airflow.
第1の実施形態の下水処理システム10を示す図。The figure which shows the sewage treatment system 10 of 1st Embodiment. 第1の実施形態の曝気槽400で実施される処理を示す図。The figure which shows the process implemented in the aeration tank 400 of 1st Embodiment. 第1の実施形態の下水処理システム10のブロック図。1 is a block diagram of a sewage treatment system 10 according to a first embodiment. 第1の実施形態における膜差圧と時間との関係を示す図。The figure which shows the relationship between the film differential pressure | voltage and time in 1st Embodiment. 第1の実施形態における目標値取得部451の処理を示すフローチャート。The flowchart which shows the process of the target value acquisition part 451 in 1st Embodiment. 第1の実施形態における予測値取得部453の処理を示すフローチャート。The flowchart which shows the process of the predicted value acquisition part 453 in 1st Embodiment. 第1の実施形態における風量制御部452の処理を示すフローチャート。The flowchart which shows the process of the air volume control part 452 in 1st Embodiment. 第4の実施形態の下水処理システム10のブロック図。The block diagram of the sewage treatment system 10 of 4th Embodiment. 第5の実施形態の曝気槽400で実施される処理を示す図。The figure which shows the process implemented in the aeration tank 400 of 5th Embodiment. 第6の実施形態の下水処理システム10のブロック図。The block diagram of the sewage treatment system 10 of 6th Embodiment. 第6の実施形態におけるブロワ制御部417の動作を説明するための図。The figure for demonstrating operation | movement of the blower control part 417 in 6th Embodiment. 制御モード決定テーブルの具体例を示す図。The figure which shows the specific example of a control mode determination table. 第8の実施形態における風量制御部452の処理を示すフローチャート。The flowchart which shows the process of the air volume control part 452 in 8th Embodiment.
 以下、実施形態の排水処理制御装置及び排水処理システムを、図面を参照して説明する。 Hereinafter, the wastewater treatment control device and the wastewater treatment system of the embodiment will be described with reference to the drawings.
 (第1の実施形態)
 図1は、第1の実施形態の排水処理システムとしての下水処理システム10を示す図である。下水処理システム10は、スクリーン100、沈砂池200、最初沈澱池300、曝気槽400、及び処理水槽500を備える。
(First embodiment)
FIG. 1 is a diagram showing a sewage treatment system 10 as a wastewater treatment system according to the first embodiment. The sewage treatment system 10 includes a screen 100, a sand basin 200, an initial sedimentation basin 300, an aeration tank 400, and a treatment water tank 500.
 スクリーン100は、下水処理システム10に流れてきた汚水から、大きなゴミ(髪の毛、トイレットペーパー等)や小石等を除去する。スクリーン100を通過して排出された汚水は、沈砂池200へ流れ込む。 The screen 100 removes large garbage (hair, toilet paper, etc.), pebbles, etc. from the sewage flowing into the sewage treatment system 10. Sewage discharged through the screen 100 flows into the sand basin 200.
 スクリーン100で除去できなかった土砂や、水よりも比重が大きく、粗い浮遊物は、沈砂池200の底に沈められる。沈砂池200の底に沈んだ土砂等は、除塵機で除去される。除塵機で除去されずに沈砂池200から排出された汚水は、最初沈澱池300へ流れ込む。 The earth and sand that could not be removed by the screen 100 and the floating matter having a specific gravity larger than that of water are submerged in the bottom of the sand basin 200. Sediment or the like that sinks to the bottom of the sand basin 200 is removed by a dust remover. The sewage discharged from the sand basin 200 without being removed by the dust remover first flows into the sedimentation basin 300.
 沈砂池200で除去できなかった汚泥等の、水よりも比重が大きく、小さな浮遊物は、最初沈澱池300の底に沈められる。最初沈澱池300の底に沈んだ汚泥等は、掻き寄せ機によって集められて除去される。掻き寄せ機によって除去されずに最初沈澱池300から排出された汚水は、曝気槽400へ流れ込む。 Sediment that could not be removed by the sedimentation basin 200, such as sludge, having a specific gravity greater than that of water, is first submerged in the bottom of the sedimentation basin 300. The sludge or the like that first sinks to the bottom of the sedimentation basin 300 is collected and removed by a scraper. The sewage discharged from the sedimentation basin 300 without being removed by the scraper first flows into the aeration tank 400.
 曝気槽400内の活性汚泥の中には、空気が吹き込まれる。これによって、汚水中の有機物やアンモニアは分解されて除去される。活性汚泥中の処理水は、分離膜を使って排出される。曝気槽400内で実施される生物化学的処理の詳細は、図2を用いて後述する。 Air is blown into the activated sludge in the aeration tank 400. As a result, organic matter and ammonia in the sewage are decomposed and removed. The treated water in the activated sludge is discharged using a separation membrane. Details of the biochemical treatment performed in the aeration tank 400 will be described later with reference to FIG.
 分離膜を通過して排出された汚水は、処理水槽500へ流れ込む。 The sewage discharged through the separation membrane flows into the treated water tank 500.
 処理水槽500内には、必要に応じて次亜塩素酸ソーダ等の消毒剤が投入される。これによって、大腸菌等の病原菌が殺菌される。処理水槽500内で消毒された処理水は、川や海へと放流される。以上が、下水処理システム10の全体的な処理の流れである。 In the treated water tank 500, a disinfectant such as sodium hypochlorite is introduced as necessary. Thereby, pathogenic bacteria such as Escherichia coli are sterilized. The treated water sterilized in the treated water tank 500 is discharged into a river or the sea. The above is the overall processing flow of the sewage treatment system 10.
 図2は、第1の実施形態の曝気槽400で実施される処理を示す図である。最初沈澱池300から排出された汚水は、流路401を通って曝気槽400へと流れ込む。また、曝気槽400内には、好気性の微生物(従属栄養細菌や硝化菌等)が活性化された活性汚泥が貯留されている。 FIG. 2 is a diagram illustrating a process performed in the aeration tank 400 according to the first embodiment. The sewage discharged from the sedimentation basin 300 first flows into the aeration tank 400 through the flow path 401. In the aeration tank 400, activated sludge in which aerobic microorganisms (heterotrophic bacteria, nitrifying bacteria, etc.) are activated is stored.
 ブロワ402は、配管403内に空気を供給する。曝気部404は、配管403を通過した空気を曝気槽400内の活性汚泥に供給する曝気装置である。これにより、曝気槽400内の活性汚泥中に気泡405が放出される。また、流量計406は、ブロワ402から供給される空気の風量を測定する。 The blower 402 supplies air into the pipe 403. The aeration unit 404 is an aeration apparatus that supplies the air that has passed through the pipe 403 to the activated sludge in the aeration tank 400. Thereby, the bubbles 405 are released into the activated sludge in the aeration tank 400. The flow meter 406 measures the air volume of air supplied from the blower 402.
 汚水中の有機物質は、曝気槽400内の従属栄養細菌により分解される。具体的には、有機物質がブドウ糖であれば、下記の化学式(1)に示されるように、有機物質(C12)が曝気部404から供給される空気に含まれる酸素(O)と反応し、二酸化炭素(CO)と水(HO)に分解される。 Organic substances in the sewage are decomposed by heterotrophic bacteria in the aeration tank 400. Specifically, when the organic substance is glucose, as shown in the following chemical formula (1), the organic substance (C 6 H 12 O 6 ) is oxygen (O) contained in the air supplied from the aeration unit 404. 2 ) and is decomposed into carbon dioxide (CO 2 ) and water (H 2 O).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、汚水中のアンモニア成分は、曝気槽400内の硝化菌(亜硝酸菌と硝酸菌)により分解される。具体的には、下記の化学式(2)に示されるように、アンモニウムイオン(NH )が曝気部404から供給される空気に含まれる酸素(O)と反応し、硝酸イオン(NO )と、水素イオン(H)と、水(HO)に分解される。 The ammonia component in the sewage is decomposed by nitrifying bacteria (nitrite bacteria and nitrate bacteria) in the aeration tank 400. Specifically, as shown in the following chemical formula (2), ammonium ions (NH 4 + ) react with oxygen (O 2 ) contained in the air supplied from the aeration unit 404 to form nitrate ions (NO 3 - ), Hydrogen ions (H + ), and water (H 2 O).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 分離膜407は、曝気槽400内の汚水中に浸漬して配置されている。分離膜407は、例えば平均孔径0.4[μm]の複数の透過流路を備えた多孔性の平膜である。活性汚泥に含まれる微生物のサイズは、約1[μm](細菌)~数10[μm](原生動物等)である。このため、活性汚泥に含まれる微生物は、分離膜407を通過することができず、清澄な処理水のみが分離膜407を通過する。分離膜407を通過した処理水は、吸引ポンプ408が駆動されることにより配管409内を流れる。 The separation membrane 407 is soaked in the sewage in the aeration tank 400. The separation membrane 407 is a porous flat membrane provided with a plurality of permeation channels having an average pore diameter of 0.4 [μm], for example. The size of the microorganisms contained in the activated sludge is about 1 [μm] (bacteria) to several tens [μm] (protozoa, etc.). For this reason, microorganisms contained in the activated sludge cannot pass through the separation membrane 407, and only clear treated water passes through the separation membrane 407. The treated water that has passed through the separation membrane 407 flows through the pipe 409 when the suction pump 408 is driven.
 配管409には、圧力計410及び流量計411が設けられている。圧力計410の測定値に基づき、分離膜407の膜差圧を演算することができる。流量計411は、配管409内を流れる処理水の流量を測定する。 The pipe 409 is provided with a pressure gauge 410 and a flow meter 411. Based on the measured value of the pressure gauge 410, the membrane differential pressure of the separation membrane 407 can be calculated. The flow meter 411 measures the flow rate of treated water flowing through the pipe 409.
 ブロワ412は、配管413内に空気を供給する。散気部414は、配管413からの空気を分離膜407に向けて供給する散気装置である。これにより、曝気槽内400内の活性汚泥中に気泡415が放出される。散気部414が分離膜407に向けて気泡415を放出することで、分離膜407の表面が洗浄される。これによって、分離膜407の目詰まりが抑制される。また、流量計416は、ブロワ412から供給される空気の風量を測定する。 The blower 412 supplies air into the pipe 413. The air diffuser 414 is an air diffuser that supplies air from the pipe 413 toward the separation membrane 407. Thereby, the bubbles 415 are released into the activated sludge in the aeration tank 400. The air diffuser 414 discharges the bubbles 415 toward the separation membrane 407, whereby the surface of the separation membrane 407 is cleaned. Thereby, clogging of the separation membrane 407 is suppressed. The flow meter 416 measures the air volume of air supplied from the blower 412.
 なお、分離膜407の膜差圧が予め設定された上限値に達した場合、分離膜407は薬液洗浄される。具体的には、曝気槽400への流入汚水を一時的に停止する。その後、分離膜407は、分離膜407の下流側(二次側)より次亜塩素酸ナトリウムやシュウ酸等の薬液が注入されて洗浄される。分離膜407の洗浄が完了すると、分離膜407の膜差圧は初期値近くまで回復する。薬液洗浄された分離膜407は、曝気槽400内で再び使用される。 In addition, when the membrane differential pressure of the separation membrane 407 reaches a preset upper limit value, the separation membrane 407 is cleaned with a chemical solution. Specifically, the inflow sewage into the aeration tank 400 is temporarily stopped. Thereafter, the separation membrane 407 is cleaned by injecting a chemical solution such as sodium hypochlorite or oxalic acid from the downstream side (secondary side) of the separation membrane 407. When the cleaning of the separation membrane 407 is completed, the membrane differential pressure of the separation membrane 407 is restored to near the initial value. The separation membrane 407 cleaned with the chemical solution is used again in the aeration tank 400.
 図3は、第1の実施形態の下水処理システム10のブロック図である。下水処理システム10は、制御装置450を備える。制御装置450は、CPU(Central Processing Unit)等のプロセッサと、プロセッサが実行するプログラムを格納するメモリとを備える。 FIG. 3 is a block diagram of the sewage treatment system 10 of the first embodiment. The sewage treatment system 10 includes a control device 450. The control device 450 includes a processor such as a CPU (Central Processing 等 Unit) and a memory that stores a program executed by the processor.
 制御装置450は、メモリに格納されたプログラムを実行することで、目標値取得部451、風量制御部452、及び予測値取得部453の各機能を実現する。なお、目標値取得部451、風量制御部452、及び予測値取得部453は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアであってもよい。 The control device 450 implements the functions of the target value acquisition unit 451, the air volume control unit 452, and the predicted value acquisition unit 453 by executing a program stored in the memory. Note that the target value acquisition unit 451, the air volume control unit 452, and the predicted value acquisition unit 453 may be hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Specific Integrated Circuit).
 まず、目標値取得部451の処理について説明する。目標値取得部451は、以下の数式(3)の微分方程式を解くことにより、分離膜407の膜差圧TMP(t)の目標値TMPref(t)をtの関数として算出する。なお、tは時刻を表す。 First, the processing of the target value acquisition unit 451 will be described. The target value acquisition unit 451 calculates the target value TMPref (t) of the membrane differential pressure TMP (t) of the separation membrane 407 as a function of t by solving the differential equation of the following formula (3). Note that t represents time.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、閉塞指数kは、分離膜407の閉塞の進行度合いを表すパラメータである。閉塞指数kは正の値である。k=1の場合には、数式(3)の解は、膜差圧TMP(t)が指数関数的に増加する関数となる。一方、k>1の場合には、ある有限の時間において膜差圧TMP(t)の値が無限大に発散する関数となる。 Here, the blockage index k is a parameter representing the degree of blockage of the separation membrane 407. The occlusion index k is a positive value. When k = 1, the solution of Equation (3) is a function that increases the film differential pressure TMP (t) exponentially. On the other hand, when k> 1, the value of the film differential pressure TMP (t) becomes a function that diverges infinitely in a certain finite time.
 閉塞指数kは、分離膜407の閉塞の進行度合いを判断して、k=1、1.5、及び2のいずれかの値に設定される。例えば、中間閉塞の場合はk=1、標準閉塞の場合はk=1.5、完全閉塞の場合はk=2に設定される。 The occlusion index k is set to any value of k = 1, 1.5, and 2 by judging the degree of progression of occlusion of the separation membrane 407. For example, k = 1 is set for intermediate blockage, k = 1.5 for standard blockage, and k = 2 for complete blockage.
 k=1で設定された場合、目標値取得部451は、以下の数式(4)に基づき、数式(3)におけるパラメータAを算出する。ここで、TMPは膜差圧TMP(t)の初期値、Lはメンテナンス周期、TMPlimは膜差圧TMP(t)の上限値である。初期値TMPは、圧力計410によって測定される。また、操作者は、マウスやキーボード等の入力部460を用い、閉塞指数k、メンテナンス周期L、及び上限値TMPlimを入力する。 When k = 1 is set, the target value acquisition unit 451 calculates the parameter A in Expression (3) based on Expression (4) below. Here, TMP 0 is an initial value of the membrane differential pressure TMP (t), L is a maintenance cycle, and TMPlim is an upper limit value of the membrane differential pressure TMP (t). The initial value TMP 0 is measured by the pressure gauge 410. Further, the operator uses the input unit 460 such as a mouse or a keyboard to input the closing index k, the maintenance cycle L, and the upper limit value TMPlim.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 k>1で設定された場合、目標値取得部451は、以下の数式(5)に基づき、数式(3)におけるパラメータAを算出する。 When set with k> 1, the target value acquisition unit 451 calculates the parameter A in Expression (3) based on Expression (5) below.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 図4は、第1の実施形態における膜差圧と時間との関係を示す図である。図4に示されるように、初期値TMPは、分離膜407の薬液洗浄直後のタイミング(T)における膜差圧である。メンテナンス周期Lは、分離膜407をメンテナンス(薬液洗浄)する周期である。具体的には、メンテナンス周期Lは、分離膜407の薬液洗浄直後のタイミング(T)から、次の薬液洗浄タイミング(Tlim)までの時間である。メンテナンス周期Lは、例えば30日に設定される。上限値TMPlimは、例えば20[kPa]に設定される。 FIG. 4 is a diagram showing the relationship between the film differential pressure and time in the first embodiment. As shown in FIG. 4, the initial value TMP 0 is the membrane differential pressure at the timing (T 0 ) immediately after the separation membrane 407 is washed with the chemical solution. The maintenance cycle L is a cycle in which the separation membrane 407 is maintained (chemical solution cleaning). Specifically, the maintenance cycle L is the time from the timing (T 0 ) immediately after the chemical cleaning of the separation membrane 407 to the next chemical cleaning timing (Tlim). The maintenance cycle L is set to 30 days, for example. The upper limit value TMPlim is set to 20 [kPa], for example.
 圧力計410は、分離膜407が薬液洗浄された後のろ過運転が再開されたタイミング(T)において、膜差圧の初期値TMPを測定する。圧力計410は、測定された初期値TMPを制御装置450の目標値取得部451へと送信する。一方、操作者は、マウスやキーボード等の入力部460を用い、閉塞指数k、メンテナンス周期L、及び上限値TMPlimを入力する。入力部460は、入力された閉塞指数k、メンテナンス周期L、及び上限値TMPlimを、制御装置450の目標値取得部451へと送信する。 The pressure gauge 410 measures the initial value TMP 0 of the membrane differential pressure at the timing (T 0 ) when the filtration operation after the separation membrane 407 is washed with the chemical solution is resumed. The pressure gauge 410 transmits the measured initial value TMP 0 to the target value acquisition unit 451 of the control device 450. On the other hand, the operator inputs the closing index k, the maintenance cycle L, and the upper limit value TMPlim using the input unit 460 such as a mouse or a keyboard. The input unit 460 transmits the input blocking index k, the maintenance cycle L, and the upper limit value TMPlim to the target value acquisition unit 451 of the control device 450.
 目標値取得部451は、受信した初期値TMP、閉塞指数k、メンテナンス周期L、及び上限値TMPlimに基づき、数式(4)又は数式(5)を用いてパラメータAを算出する。目標値取得部451は、算出されたパラメータA及び閉塞指数kを用いて数式(3)の微分方程式を解くことにより、分離膜407の膜差圧TMP(t)の目標値TMPref(t)を算出する。 The target value acquisition unit 451 calculates the parameter A using Equation (4) or Equation (5) based on the received initial value TMP 0 , blockage index k, maintenance cycle L, and upper limit value TMPlim. The target value acquisition unit 451 calculates the target value TMPref (t) of the membrane differential pressure TMP (t) of the separation membrane 407 by solving the differential equation of Formula (3) using the calculated parameter A and the blockage index k. calculate.
 なお、目標値取得部451は、メンテナンス周期Lと上限値TMPlimの代わりに、メンテナンス周期Lよりも小さいLpと、上限値TMPlimよりも小さい膜差圧TMPmaxとに基づいて、パラメータAと閉塞指数kを同時に算出してもよい。 The target value acquisition unit 451 uses the parameter A and the blocking index k based on Lp smaller than the maintenance cycle L and membrane pressure TMPmax smaller than the upper limit value TMPlim instead of the maintenance cycle L and the upper limit value TMPlim. May be calculated simultaneously.
 例えば、膜差圧TMP(t)が10[kPa]に達すると、ブロワ412の風量を増加させても膜差圧TMP(t)の上昇を抑制することが困難な場合がある。この場合、目標値取得部451は、上限値TMPlim(20[kPa])の代わりにTMPmax(10[kPa])を算出してもよい。また、目標値取得部451は、メンテナンス周期L(30日)の代わりに、膜差圧TMP(t)が10[kPa]に達するまでの時間Lp(20日)を設定してもよい。これにより、最適なパラメータAと閉塞指数kを、数式(3)~(5)により同時に算出することができる。一方、この方法では、数式(4)及び(5)のような解析解を求めることが難しいため、数値探索によりパラメータAと閉塞指数kを算出することになる。 For example, when the membrane differential pressure TMP (t) reaches 10 [kPa], it may be difficult to suppress an increase in the membrane differential pressure TMP (t) even if the air volume of the blower 412 is increased. In this case, the target value acquisition unit 451 may calculate TMPmax (10 [kPa]) instead of the upper limit value TMPlim (20 [kPa]). Further, the target value acquisition unit 451 may set a time Lp (20 days) until the membrane differential pressure TMP (t) reaches 10 [kPa] instead of the maintenance cycle L (30 days). As a result, the optimum parameter A and the blockage index k can be calculated simultaneously using the equations (3) to (5). On the other hand, in this method, it is difficult to obtain analytical solutions such as Equations (4) and (5), and therefore parameter A and blockage index k are calculated by numerical search.
 具体的には、例えば、以下の様な手順でkの値を探索することができる。
(STEP1)
 k=1として、目標値取得部451は、(LとTMPlim)の組み合わせに対する数式(4)のA(=A1とする)と、(LpとTMPmax)の組み合わせに対する数式(4)のA(=A2とする)を計算し、A1=A2か否かをチェックする。A1=A2の場合はk=1とする。A1≠A2の場合はSTEP2に進む。
Specifically, for example, the value of k can be searched for by the following procedure.
(STEP1)
Assuming that k = 1, the target value acquisition unit 451 sets A (= A1) in Equation (4) for the combination of (L and TMPlim) and A (=) in Equation (4) for the combination of (Lp and TMPmax). A2) is calculated, and it is checked whether A1 = A2. When A1 = A2, k = 1. If A1 ≠ A2, proceed to STEP2.
(STEP2)
 目標値取得部451は、(LとTMPlim)の組み合わせと(LpとTMPmax)の組み合わせに対する数式(5)の連立方程式を解く。探索法として、ニュートン法などの適当な探索アルゴリズムを用いることができる。他の方法としては、例えば、目標値取得部451は、k=1+α(α>0の微小量)からkを徐々に増加させて数式(5)に対するA1とA2を各々計算して、|A1-A2|<ε(ε:許容誤差)となるkを見つけるなどの方法を採用する。
(STEP2)
The target value acquisition unit 451 solves the simultaneous equations of Equation (5) for the combination of (L and TMPlim) and the combination of (Lp and TMPmax). As a search method, an appropriate search algorithm such as a Newton method can be used. As another method, for example, the target value acquisition unit 451 gradually increases k from k = 1 + α (a small amount of α> 0) to calculate A1 and A2 for Equation (5), respectively, and | A1 A method such as finding k that satisfies −A2 | <ε (ε: allowable error) is adopted.
 また、別のkの設定法としては、後述する数式(9)と数式(10)の予測モデルを構築する際に、過去の実際のデータに最も適合するkを探索により求め、その値を数式(3)~数式(5)の目標値取得部451の目標曲線のkとして採用することもできる。 As another k setting method, when a prediction model of formulas (9) and (10) to be described later is constructed, k that most closely matches the past actual data is obtained by searching, and the value is calculated by formula. It can also be adopted as k of the target curve of the target value acquisition unit 451 of (3) to (5).
 次に、予測値取得部453の処理について説明する。予測値取得部453は、以下の数式(6)を解くことにより、分離膜407の膜差圧TMP(t)の予測値TMPhat(t)をtの関数として算出する。 Next, processing of the predicted value acquisition unit 453 will be described. The predicted value acquisition unit 453 calculates the predicted value TMPhat (t) of the membrane differential pressure TMP (t) of the separation membrane 407 as a function of t by solving the following mathematical formula (6).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、フラックスJ(t)は、時刻tにおいて単位時間に単位面積あたりに分離膜407を通過する処理水の量である。具体的には、予測値取得部453は、流量計411によって測定された流量Q(t)を分離膜407の膜面積Maで除算することにより、フラックスJ(t)を算出する。 Here, the flux J (t) is the amount of treated water that passes through the separation membrane 407 per unit area per unit time at time t. Specifically, the predicted value acquisition unit 453 calculates the flux J (t) by dividing the flow rate Q 1 (t) measured by the flow meter 411 by the membrane area Ma of the separation membrane 407.
 上記数式(6)は、以下の数式(7)及び(8)からR(t)を消去し、TMP(t)の係数をAm(t)と定義することによって得られる。ここで、μは粘性係数、J(t)はフラックス、R(t)は膜ろ過抵抗、kは閉塞指数(k=1、1.5、2)、f(X)は膜ろ過抵抗を上昇させる要因である。通常、f(X)はフラックスJ(t)に比例するか、水質濃度c×フラックスJ(t)に比例する。 The above equation (6) is obtained by eliminating R (t) from the following equations (7) and (8) and defining the coefficient of TMP (t) k as Am (t). Where μ is the viscosity coefficient, J (t) is the flux, R (t) is the membrane filtration resistance, k is the blockage index (k = 1, 1.5, 2), and f (X) is the membrane filtration resistance. It is a factor to make. Usually, f (X) is proportional to the flux J (t) or proportional to the water quality concentration c × flux J (t).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 一方、フラックスJ(t)の値が一定に制御されている場合は、上記数式(6)は、以下の数式(9)で表される。数式(9)は、数式(3)におけるパラメータAがパラメータAm(t)に置き換えられた式となっている。 On the other hand, when the value of the flux J (t) is controlled to be constant, the above formula (6) is expressed by the following formula (9). Expression (9) is an expression in which the parameter A in Expression (3) is replaced with the parameter Am (t).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 数式(6)や数式(9)の予測モデルに含まれるパラメータAm(t)は、数式(10)に示されるように、係数a、係数a、フラックスX(t)、及び風量X(t)に基づいて算出される。ここで、予測値取得部453は、前述のフラックスJ(t)をフラックスX(t)として用いる。また、予測値取得部453は、流量計416から受信した風量Q(t)を風量X(t)として用いる。 The parameters Am (t) included in the prediction models of Equation (6) and Equation (9) are, as shown in Equation (10), coefficient a 1 , coefficient a 2 , flux X 1 (t), and air volume X. 2 Calculated based on (t). Here, the predicted value acquisition unit 453 uses the aforementioned flux J (t) as the flux X 1 (t). Further, the predicted value acquisition unit 453 uses the air volume Q 2 (t) received from the flow meter 416 as the air volume X 2 (t).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 なお、数式(10)において、X(t)はブロワ412から供給される空気の風量としたが、X(t)はブロワ412から供給される空気の空気倍率としてもよい。空気倍率は、曝気槽400へ流入する汚水量に対する、曝気槽400へ送る空気量の比を意味する。 In Formula (10), X 2 (t) is the air volume supplied from the blower 412, but X 2 (t) may be the air magnification of the air supplied from the blower 412. The air magnification means the ratio of the amount of air sent to the aeration tank 400 to the amount of sewage flowing into the aeration tank 400.
 予測値取得部453は、フラックスX(t)(=J(t))及び風量X(t)(=Q(t))に基づき、数式(10)を用いてパラメータAm(t)を算出する。予測値取得部453は、算出されたパラメータAm(t)、フラックスJ(t)、及び閉塞指数kを用いて数式(6)の微分方程式を解くことにより、分離膜407の膜差圧TMP(t)の予測値TMPhat(t)を算出する。 The predicted value acquisition unit 453 calculates the parameter Am (t) using Equation (10) based on the flux X 1 (t) (= J (t)) and the air volume X 2 (t) (= Q 2 (t)). Is calculated. The predicted value acquisition unit 453 solves the differential equation of Equation (6) using the calculated parameter Am (t), the flux J (t), and the blockage index k, whereby the membrane pressure difference TMP ( The predicted value TMPhat (t) of t) is calculated.
 次に、風量制御部452の処理について説明する。風量制御部452は、目標値取得部451によって算出された目標値TMPref(t)と、予測値取得部453によって算出された予測値TMPhat(t)とに基づいて、ブロワ412の風量を制御する。この点について、以下詳細に述べる。 Next, processing of the air volume control unit 452 will be described. The air volume control unit 452 controls the air volume of the blower 412 based on the target value TMPref (t) calculated by the target value acquisition unit 451 and the predicted value TMPhat (t) calculated by the predicted value acquisition unit 453. . This point will be described in detail below.
 風量制御部452は、数式(11)に基づいて、目標値TMPref(t)と予測値TMPhat(t)との差分E(t)を算出する。 The air volume control unit 452 calculates a difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t) based on Expression (11).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 次に、風量制御部452は、算出された差分E(t)を用いて、ブロワ412に対してPI(Proportional-Integral)制御を行う。具体的に、風量制御部452は、数式(12)に基づいて、ブロワ412の操作量u(t)を算出する。Kpは、PI制御における比例ゲインである。Kiは、PI制御における積分ゲインである。Tnowは、現在時刻である。Tpは、現在時刻Tnowからの経過時間である。例えば、Tpは1日(24時間)に設定される。 Next, the air volume control unit 452 performs PI (Proportional-Integral) control on the blower 412 using the calculated difference E (t). Specifically, the air volume control unit 452 calculates the operation amount u (t) of the blower 412 based on Expression (12). Kp is a proportional gain in PI control. Ki is an integral gain in PI control. Tnow is the current time. Tp is the elapsed time from the current time Tnow. For example, Tp is set to 1 day (24 hours).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 図4に示されるように、膜差圧の目標値TMPref(t)は太い実線で示される。膜差圧の実測値TMPact(t)は細い実線で示される。現在時刻Tnow以降の膜差圧の予測値TMPhat(t)は、破線で示される。 As shown in FIG. 4, the target value TMPref (t) of the membrane differential pressure is indicated by a thick solid line. The actually measured value TPMact (t) of the membrane differential pressure is indicated by a thin solid line. The predicted value TMPhat (t) of the film differential pressure after the current time Tnow is indicated by a broken line.
 現在時刻Tnowにおいて、膜差圧の目標値と膜差圧の実測値は、ともにTMPnowで等しい。しかし、現在時刻TnowからTp経過後の時刻Tnextにおいて、目標値TMPと予測値TMPとの間には差分E(t)が生じている。したがって、風量制御部452は、目標値TMPref(t)と予測値TMPhat(t)との差分E(t)に基づき、ブロワ412の操作量u(t)を算出する。風量制御部452は、2つのパラメータ(比例ゲインKp及び積分ゲインKi)を用いてブロワ412を制御するので、パラメータ調整を容易かつシンプルに行うことができる。 At the current time Tnow, the target value of the membrane differential pressure and the actual measured value of the membrane differential pressure are both equal to TMPnow. However, a difference E (t) is generated between the target value TMP 1 and the predicted value TMP 2 at time Tnext after Tp has elapsed from the current time Tnow. Therefore, the air volume control unit 452 calculates the operation amount u (t) of the blower 412 based on the difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t). Since the air volume control unit 452 controls the blower 412 using two parameters (proportional gain Kp and integral gain Ki), parameter adjustment can be performed easily and simply.
 なお、風量制御部452はPI制御を行うこととしたが、PID(Proportional-Integral-Derivative)制御を行ってもよい。この場合、風量制御部452は差分E(t)の微分値を考慮してブロワ412の操作量u(t)を算出するため、より安定した制御を行うことができる。 Although the air volume control unit 452 performs PI control, PID (Proportional-Integral-Derivative) control may be performed. In this case, since the air volume control unit 452 calculates the operation amount u (t) of the blower 412 in consideration of the differential value of the difference E (t), more stable control can be performed.
 図5は、第1の実施形態における目標値取得部451の処理を示すフローチャートである。本フローチャートは、分離膜407が薬液洗浄された後にろ過運転が再開された際に目標値取得部451によって実行される。 FIG. 5 is a flowchart showing the processing of the target value acquisition unit 451 in the first embodiment. This flowchart is executed by the target value acquisition unit 451 when the filtration operation is resumed after the separation membrane 407 is cleaned with the chemical solution.
 まず、目標値取得部451は、膜差圧の初期値TMPを圧力計410から受信する(ステップS10)。次に、目標値取得部451は、操作者によって閉塞指数k、上限値TMPlim、及びメンテナンス周期Lが入力されたかどうかを判断する(ステップS11)。操作者は、入力部460を用いてこれらの値を入力する。 First, the target value acquisition unit 451 receives the initial value TMP 0 of the membrane differential pressure from the pressure gauge 410 (step S10). Next, the target value acquisition unit 451 determines whether or not the closing index k, the upper limit value TMPlim, and the maintenance cycle L are input by the operator (step S11). The operator inputs these values using the input unit 460.
 操作者によって閉塞指数k、上限値TMPlim、及びメンテナンス周期Lが入力された場合(ステップS11:YES)、目標値取得部451は、前述の数式(4)又は数式(5)に基づいてパラメータAを算出する(ステップS12)。その後、目標値取得部451は、前述の数式(3)の微分方程式を解くことにより、膜差圧の目標値TMPref(t)を算出する(ステップS13)。目標値取得部451は、算出された目標値TMPref(t)を制御装置450内のメモリに格納し、本フローチャートによる処理を終了する。 When the closing index k, the upper limit value TMPlim, and the maintenance cycle L are input by the operator (step S11: YES), the target value acquisition unit 451 determines the parameter A based on the above-described equation (4) or equation (5). Is calculated (step S12). Thereafter, the target value acquisition unit 451 calculates the target value TMPref (t) of the film differential pressure by solving the differential equation of the above-described mathematical expression (3) (step S13). The target value acquisition unit 451 stores the calculated target value TMPref (t) in the memory in the control device 450, and ends the processing according to this flowchart.
 図6は、第1の実施形態における予測値取得部453の処理を示すフローチャートである。まず、予測値取得部453は、流量計411から処理水の流量Q(t)を受信する(ステップS20)。次に、予測値取得部453は、流量計416からブロワ412の風量Q(t)を受信する(ステップS21)。 FIG. 6 is a flowchart showing the processing of the predicted value acquisition unit 453 in the first embodiment. First, the predicted value acquisition unit 453 receives the treated water flow rate Q 1 (t) from the flow meter 411 (step S20). Next, the predicted value acquisition unit 453 receives the air volume Q 2 (t) of the blower 412 from the flow meter 416 (step S21).
 予測値取得部453は、流量Q(t)を分離膜407の膜面積Maで除算することにより、フラックスJ(t)を算出する(ステップS22)。その後、予測値取得部453は、前述の数式(10)に基づいてパラメータAm(t)を算出する(ステップS23)。ここで、数式(10)におけるフラックスX(t)はフラックスJ(t)であり、風量X(t)はステップS21で受信された風量Q(t)である。 The predicted value acquisition unit 453 calculates the flux J (t) by dividing the flow rate Q 1 (t) by the membrane area Ma of the separation membrane 407 (step S22). Thereafter, the predicted value acquisition unit 453 calculates the parameter Am (t) based on the above mathematical formula (10) (step S23). Here, the flux X 1 (t) in Equation (10) is the flux J (t), and the air volume X 2 (t) is the air volume Q 2 (t) received in step S21.
 次に、予測値取得部453は、前述の数式(6)の微分方程式を解くことにより、膜差圧の予測値TMPhat(t)を算出する(ステップS24)。予測値取得部453は、算出された予測値TMPhat(t)を制御装置450内のメモリに格納し、本フローチャートによる処理を終了する。 Next, the predicted value acquisition unit 453 calculates the predicted value TMPhat (t) of the membrane differential pressure by solving the differential equation of the above formula (6) (step S24). The predicted value acquisition unit 453 stores the calculated predicted value TMPhat (t) in the memory in the control device 450, and ends the processing according to this flowchart.
 図7は、第1の実施形態における風量制御部452の処理を示すフローチャートである。まず、風量制御部452は、制御装置450内のメモリから、図5のステップS13で目標値取得部451によって算出された目標値TMPref(t)を読み出す(ステップS30)。次に、風量制御部452は、制御装置450内のメモリから、図6のステップS24で予測値取得部453によって算出された予測値TMPhat(t)を読み出す(ステップS31)。 FIG. 7 is a flowchart showing processing of the air volume control unit 452 in the first embodiment. First, the air volume control unit 452 reads the target value TMPref (t) calculated by the target value acquisition unit 451 in step S13 of FIG. 5 from the memory in the control device 450 (step S30). Next, the air volume control unit 452 reads the predicted value TMPhat (t) calculated by the predicted value acquisition unit 453 in step S24 of FIG. 6 from the memory in the control device 450 (step S31).
 次に、風量制御部452は、前述の数式(11)に基づいて、目標値TMPref(t)と予測値TMPhat(t)との差分E(t)を算出する(ステップS32)。風量制御部452は、算出された差分E(t)を用いて、前述の数式(12)に基づいてブロワ412の操作量u(t)を算出する(ステップS33)。風量制御部452は、算出された操作量u(t)に基づいて、ブロワ412の風量を制御する(ステップS34)。風量の調整が完了すると、風量制御部452は、本フローチャートによる処理を終了する。 Next, the air volume control unit 452 calculates a difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t) based on the above equation (11) (step S32). The air volume control unit 452 calculates the operation amount u (t) of the blower 412 based on the above equation (12) using the calculated difference E (t) (step S33). The air volume control unit 452 controls the air volume of the blower 412 based on the calculated operation amount u (t) (step S34). When the adjustment of the air volume is completed, the air volume control unit 452 ends the process according to this flowchart.
 以上説明したように、風量制御部452は、目標値TMPref(t)と予測値TMPhat(t)との差分E(t)に基づき、散気部414から分離膜407に向けて供給される空気の風量を制御する。これによって、分離膜407の実際の膜差圧と目標値TMPref(t)との差を小さくすることができ、分離膜407へ供給される空気の量を適切に算出することができる。 As described above, the air volume control unit 452 supplies the air supplied from the air diffuser 414 toward the separation membrane 407 based on the difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t). To control the airflow. Thereby, the difference between the actual membrane differential pressure of the separation membrane 407 and the target value TMPref (t) can be reduced, and the amount of air supplied to the separation membrane 407 can be calculated appropriately.
 なお、曝気槽400は、A2O(Anaerobic Anoxic Oxic)を実施するための生物処理槽構造に分離膜407を設置したものであってもよい。具体的に、生物処理槽は、酸素(O)も結合酸素(NO等)も全く存在しない嫌気領域と、酸素は存在しないが結合酸素が存在する無酸素領域と、酸素が存在する好気領域とに分割されてもよい。これによって、生物学的窒素及びリン除去が可能となる。 In addition, the aeration tank 400 may be a biological treatment tank structure for carrying out A2O (Anaerobic Anoxic Oxic) in which a separation membrane 407 is installed. Specifically, the biological treatment tank has an anaerobic region in which neither oxygen (O 2 ) nor bound oxygen (NO 3 etc.) exists, an anoxic region in which oxygen does not exist but bound oxygen exists, and oxygen exists. You may divide | segment into Qi region. This allows biological nitrogen and phosphorus removal.
 その他、本実施形態は、AO(Anaerobic Oxic)法、循環式硝化脱窒法、凝集剤添加法を実施するための生物処理槽構造に分離膜407を設置したものであってもよい。 In addition, in the present embodiment, a separation membrane 407 may be installed in a biological treatment tank structure for carrying out an AO (Anaerobic Oxic) method, a circulating nitrification denitrification method, and a flocculant addition method.
 (第2の実施形態)
 第1の実施形態では、風量制御部452は、PI制御又はPID制御を行うこととした。一方、第2の実施形態においては、風量制御部452はルールベース制御を行う。具体的に、風量制御部452は、テーブルTBを参照してブロワ412によって供給される空気の風量を段階的に制御する。テーブルTBには、ブロワ412の操作量の変化値Δu(t)が設定される。
(Second Embodiment)
In the first embodiment, the air volume control unit 452 performs PI control or PID control. On the other hand, in the second embodiment, the air volume control unit 452 performs rule-based control. Specifically, the air volume control unit 452 controls the air volume of air supplied by the blower 412 in a stepwise manner with reference to the table TB. A change value Δu (t) of the operation amount of the blower 412 is set in the table TB.
 例えば、膜差圧TMP(t)の目標値TMPref(t)より予測値TMPhat(t)の方が小さい場合、風量制御部452はブロワ412の風量を低下させる必要がある。
このため、膜差圧TMP(t)の目標値TMPref(t)より予測値TMPhat(t)の方が小さい場合、テーブルTBに設定される変化値Δu(t)はマイナスの値となる。
For example, when the predicted value TMPhat (t) is smaller than the target value TMPref (t) of the film differential pressure TMP (t), the air volume control unit 452 needs to reduce the air volume of the blower 412.
For this reason, when the predicted value TMPhat (t) is smaller than the target value TMPref (t) of the membrane pressure difference TMP (t), the change value Δu (t) set in the table TB is a negative value.
 一方、膜差圧TMP(t)の目標値TMPref(t)より予測値TMPhat(t)の方が大きい場合、風量制御部452はブロワ412の風量を増加させる必要がある。このため、膜差圧TMP(t)の目標値TMPref(t)より予測値TMPhat(t)の方が大きい場合、テーブルTBに設定される変化値Δu(t)はプラスの値となる。 On the other hand, when the predicted value TMPhat (t) is larger than the target value TMPref (t) of the film differential pressure TMP (t), the air volume control unit 452 needs to increase the air volume of the blower 412. For this reason, when the predicted value TMPhat (t) is larger than the target value TMPref (t) of the membrane pressure difference TMP (t), the change value Δu (t) set in the table TB is a positive value.
 また、テーブルTBは、目標値TMPref(t)と予測値TMPhat(t)との差分E(t)が大きいほど、ブロワ412の操作量の変化値Δu(t)が大きな値となるよう設定される。このようなルールベース制御によれば、制御についての経験や知識が少ない操作者であっても、制御パラメータを容易に調整することができる。
 また、本実施形態を採用する場合においても、ルールベース制御によって決定された風量を、所定の制御周期の間一定値に保つのではなく、制御周期の間の平均値が決定された風量になるように、より短い周期で振動的にブロワ412を制御することができる。
The table TB is set so that the change value Δu (t) of the operation amount of the blower 412 becomes larger as the difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t) is larger. The According to such rule-based control, even an operator with little experience and knowledge about control can easily adjust control parameters.
Even when the present embodiment is adopted, the air volume determined by the rule-based control is not maintained at a constant value for a predetermined control period, but the average value during the control period becomes the determined air volume. Thus, the blower 412 can be controlled in a vibration manner with a shorter period.
 (第3の実施形態)
 第1及び第2の実施形態では、風量制御部452は、PI制御、PID制御、又はルールベース制御を行うこととした。一方、第3の実施形態においては、風量制御部452は極値制御を行う。極値制御は、システムに課せられた効率・収益・損失等を一つの評価関数として表現し、その評価関数の値を最大もしくは最小に維持する制御である。
(Third embodiment)
In the first and second embodiments, the air volume control unit 452 performs PI control, PID control, or rule-based control. On the other hand, in the third embodiment, the air volume control unit 452 performs extreme value control. The extreme value control is a control for expressing efficiency, profit, loss, etc. imposed on the system as one evaluation function and maintaining the value of the evaluation function at the maximum or minimum.
 本実施形態では、風量制御部452は、数式(13)に示される評価関数EVを用いて極値制御を行う。Tnowは、現在時刻である、Tpは、現在時刻Tnowからの経過時間である。例えば、Tpは1日(24時間)に設定される。 In this embodiment, the air volume control unit 452 performs extreme value control using the evaluation function EV shown in Expression (13). Tnow is the current time, and Tp is the elapsed time from the current time Tnow. For example, Tp is set to 1 day (24 hours).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 数式(13)に示されるように、評価関数EVは、現在時刻TnowからTp経過時点までの予測誤差の2乗和である。風量制御部452は、この評価関数EVを最小化するように極値制御を実行する。極値制御は、所定の周期で操作量(ブロワ412の風量)を増減させながら、評価関数が最小になるように最適な操作量を探索する制御である。したがって、風量制御部452は、ブロワ412の風量を所定の周期で増減しながら、最適なブロワ412の風量を自動的に探索する。 As shown in Equation (13), the evaluation function EV is the sum of squares of prediction errors from the current time Tnow to the time point when Tp has elapsed. The air volume control unit 452 performs extreme value control so as to minimize the evaluation function EV. The extreme value control is control for searching for the optimum operation amount so that the evaluation function is minimized while increasing or decreasing the operation amount (the air volume of the blower 412) in a predetermined cycle. Therefore, the air volume control unit 452 automatically searches for the optimum air volume of the blower 412 while increasing or decreasing the air volume of the blower 412 at a predetermined cycle.
 本実施形態によれば、風量制御部452は、一つの積分器を用いて評価関数EVを算出することができる。このため、PLCコントローラ等の簡易的なコントローラを用いて、風量制御部452を実現することができる。
 また、本実施形態を採用する場合においても、極値制御によって決定された風量を、所定の制御周期の間一定値に保つのではなく、制御周期の間の平均値が決定された風量になるように、より短い周期で振動的にブロワ412を制御することができる。
According to this embodiment, the air volume control unit 452 can calculate the evaluation function EV using one integrator. For this reason, the air volume control unit 452 can be realized using a simple controller such as a PLC controller.
Even in the case of adopting the present embodiment, the air volume determined by the extreme value control is not maintained at a constant value during a predetermined control period, but the average value during the control period becomes the determined air volume. Thus, the blower 412 can be controlled in a vibration manner with a shorter period.
 (第4の実施形態)
 第1の実施形態では、予測値取得部453は、数式(10)に示されるように、フラックスX1(t)及び風量X2(t)に基づいてパラメータAm(t)を算出することとした。一方、第4の実施形態においては、予測値取得部453はフラックスX(t)及び風量X(t)だけでなく、これら以外の測定値を更に用いてパラメータAm(t)をより精度良く算出する。
(Fourth embodiment)
In the first embodiment, the predicted value acquisition unit 453 calculates the parameter Am (t) based on the flux X1 (t) and the air volume X2 (t), as shown in Equation (10). On the other hand, in the fourth embodiment, the predicted value acquisition unit 453 uses not only the flux X 1 (t) and the air volume X 2 (t) but also the measured values other than these to further improve the parameter Am (t). Calculate well.
 図8は、第4の実施形態の下水処理システム10のブロック図である。図8に示されるように、温度計417は風量制御部452に接続されている。温度計417は、曝気槽400内の水温Te(t)を測定するためのセンサである。温度計417は、測定された水温Te(t)を風量制御部452へと送信する。 FIG. 8 is a block diagram of the sewage treatment system 10 of the fourth embodiment. As shown in FIG. 8, the thermometer 417 is connected to the air volume control unit 452. The thermometer 417 is a sensor for measuring the water temperature Te (t) in the aeration tank 400. The thermometer 417 transmits the measured water temperature Te (t) to the air volume control unit 452.
 数式(6)や数式(9)の予測モデルに含まれるパラメータAm(t)は、数式(14)に示されるように、係数a~a、フラックスX(t)、風量X(t)、及び水温X(t)に基づいて算出される。水温X(t)は、温度計417によって測定された曝気槽400内の水温Te(t)である。 As shown in the equation (14), the parameters Am (t) included in the prediction models of the equations (6) and (9) include coefficients a 1 to a 3 , a flux X 1 (t), and an air volume X 2 ( t) and the water temperature X 3 (t). The water temperature X 3 (t) is the water temperature Te (t) in the aeration tank 400 measured by the thermometer 417.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 例えば、水温が高い夏場は、分離膜407に微生物が付着し易い。また、水温が低い冬場は、分離膜407に微生物が付着し難い。したがって、水温により分離膜407の目詰まり状態が変化した場合でも、パラメータAm(t)を精度よく算出することができる。
このため、膜差圧の目標値TMPref(t)と膜差圧の予測値TMPhat(t)との差分をより小さくすることができる。
For example, in summer when the water temperature is high, microorganisms are likely to adhere to the separation membrane 407. Further, in winter when the water temperature is low, microorganisms hardly adhere to the separation membrane 407. Therefore, even when the clogging state of the separation membrane 407 changes due to the water temperature, the parameter Am (t) can be calculated with high accuracy.
For this reason, the difference between the target value TMPref (t) of the membrane differential pressure and the predicted value TMPhat (t) of the membrane differential pressure can be further reduced.
 また、予測値取得部453は、より正確にパラメータAm(t)を算出するために、数式(15)に基づいてパラメータAm(t)を算出してもよい。ここで、nは4以上の整数である。また、a~aは係数であり、X(t)~X(t)は分離膜407の目詰まりに関する複数の測定値である。 Further, the predicted value acquisition unit 453 may calculate the parameter Am (t) based on Expression (15) in order to calculate the parameter Am (t) more accurately. Here, n is an integer of 4 or more. Further, a 1 ~ a n is a coefficient, X 1 (t) ~ X n (t) is a plurality of measurement values relating to the clogging of the separation membrane 407.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 予測値取得部453は、分離膜の目詰まりの要因となる変数X(t)~X(t)と予測される変数TMPの過去の運用データの中から、所定の期間の時系列データを抽出し、最小二乗法、部分最小二乗法、総最小二乗法、一般化最小二乗法、正則化最小二乗法、サポートベクトル回帰、及び適合ベクトル回帰のいずれかを適用して係数a~aを決定する。 The predicted value acquisition unit 453 generates time series data for a predetermined period from the past operation data of the variable TMP predicted as the variables X 1 (t) to X n (t) that cause clogging of the separation membrane. And apply one of the coefficients a 1 to a by applying one of the least square method, partial least square method, total least square method, generalized least square method, regularized least square method, support vector regression, and fit vector regression n is determined.
 複数の測定値X(t)~X(t)は、フラックスX(t)、風量X(t)、及び水温X(t)の他、種々の測定値を含む。例えば、複数の測定値X(t)~X(t)は、MLSS(Mixed Liquor Suspended Solid)濃度、補助散気量、凝集剤注入量、循環ポンプ流量、及び返送ポンプ流量の少なくとも1つを含んでもよい。また、複数の測定値X(t)~X(t)は、汚水又は処理水の溶存酸素濃度、ORP(Oxidation-Reduction Potential)、pH、EEM(Excitation Emission Matrix)、吸光度、BOD(Biochemical Oxygen Demand)、COD(Chemical Oxygen Demand)、TOC(Total Organic Carbon)、アンモニア濃度、硝酸濃度、リン酸濃度、全窒素濃度、全リン濃度、溶解性COD濃度、及び溶解性BOD濃度の少なくとも1つを含んでもよい。更に、複数の測定値X(t)~X(t)は、これらの測定値を表す変数が四則演算されることによって得られる合成変数を含んでもよい。 The plurality of measured values X 1 (t) to X n (t) include various measured values in addition to the flux X 1 (t), the air volume X 2 (t), and the water temperature X 3 (t). For example, the plurality of measured values X 1 (t) to X n (t) are at least one of MLSS (Mixed Liquor Suspended Solid) concentration, auxiliary air diffusion amount, coagulant injection amount, circulation pump flow rate, and return pump flow rate. May be included. In addition, a plurality of measured values X 1 (t) to X n (t) are the dissolved oxygen concentration of wastewater or treated water, ORP (Oxidation-Reduction Potential), pH, EEM (Excitation Emission Matrix), absorbance, BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), TOC (Total Organic Carbon), at least one of ammonia concentration, nitric acid concentration, phosphoric acid concentration, total nitrogen concentration, total phosphorus concentration, soluble COD concentration, and soluble BOD concentration May be included. Further, the plurality of measurement values X 1 (t) to X n (t) may include a composite variable obtained by performing four arithmetic operations on variables representing these measurement values.
 以上説明したように、予測値取得部453は、配管409を流れる処理水のフラックスX(t)及びブロワ412によって供給される空気の風量X(t)のみならず、様々な測定値を用いて膜差圧の予測値TMPhat(t)を算出する。これによって、分離膜407の実際の膜差圧を目標値TMPref(t)により近づけることができ、分離膜へ供給される空気の量を適切に算出することができる。 As described above, the predicted value acquisition unit 453 provides various measured values as well as the flux X 1 (t) of the treated water flowing through the pipe 409 and the air volume X 2 (t) of the air supplied by the blower 412. The predicted value TMPhat (t) of the membrane differential pressure is calculated using this. As a result, the actual membrane differential pressure of the separation membrane 407 can be made closer to the target value TMPref (t), and the amount of air supplied to the separation membrane can be calculated appropriately.
 (第5の実施形態)
 第1の実施形態では、図2に示されるように、分離膜407と散気部414が一体化された分離膜ユニットが用いられていた。一方、第5の実施形態では、分離膜407が単体で使用される例について説明する。
(Fifth embodiment)
In the first embodiment, as shown in FIG. 2, a separation membrane unit in which the separation membrane 407 and the diffuser 414 are integrated is used. On the other hand, in the fifth embodiment, an example in which the separation membrane 407 is used alone will be described.
 図9は、第5の実施形態の曝気槽400で実施される処理を示す図である。図9に示されるように、本実施形態の曝気槽400には、ブロワ412、配管413、散気部414、及び流量計416が存在しない。 FIG. 9 is a diagram showing processing performed in the aeration tank 400 of the fifth embodiment. As shown in FIG. 9, the aeration tank 400 of the present embodiment does not include the blower 412, the pipe 413, the air diffuser 414, and the flow meter 416.
 分離膜407は、曝気部404から供給される空気によって洗浄される。このため、予測値取得部453は、流量計416の代わりに流量計406に基づいて予測値TMPhat(t)を算出する。また、風量制御部452は、ブロワ412の代わりにブロワ402の風量を制御する。 The separation membrane 407 is washed with air supplied from the aeration unit 404. Therefore, the predicted value acquisition unit 453 calculates the predicted value TMPhat (t) based on the flow meter 406 instead of the flow meter 416. The air volume control unit 452 controls the air volume of the blower 402 instead of the blower 412.
 以上説明したように、本実施形態では、ブロワ412、配管413、散気部414、及び流量計416を曝気槽400内に配置せず、曝気部404が分離膜407を洗浄するための空気を供給することとした。これによって、下水処理システム10の低コスト化を図ることができる。 As described above, in the present embodiment, the blower 412, the pipe 413, the aeration unit 414, and the flow meter 416 are not arranged in the aeration tank 400, and air for the aeration unit 404 to clean the separation membrane 407 is used. It was decided to supply. Thereby, cost reduction of the sewage treatment system 10 can be achieved.
 (第6の実施形態)
 第1の実施形態では、風量制御部452は、PI制御又はPID制御を行うこととした。一方、第6の実施形態においては、下水処理システム10が、風量制御部452が算出した操作量u(t)に基づいて操作量V(t)を算出するブロワ制御部417を新たに備えて、ブロワ制御部417(散気制御部)がブロワ412を制御する。
(Sixth embodiment)
In the first embodiment, the air volume control unit 452 performs PI control or PID control. On the other hand, in the sixth embodiment, the sewage treatment system 10 newly includes a blower control unit 417 that calculates the operation amount V (t) based on the operation amount u (t) calculated by the air volume control unit 452. The blower control unit 417 (aeration control unit) controls the blower 412.
 ここで、第6の実施形態の概要について説明する。通常、風量制御は、所定の風量の操作量をPIもしくはPID演算により算出し、算出された風量の操作量による風量を供給するように別のPI制御でブロワ412の弁や回転数を操作するカスケード制御がなされている(例えば、図10参照)。この際、通常のPIもしくはPID制御では、上位(図10における風量制御部452)のPI(D)制御による風量制御演算で算出された風量の操作量u(t)は、下位(図10におけるブロワ制御部417)のPI(D)制御に対する制御目標値として、上位の制御の制御周期(Tc_up)の間は一定値に維持される。しかし、ファウリング抑制のための洗浄曝気制御では、風量の変化(分散)を大きくした方が膜面に与えるせん断力が大きくなるため、ファウリング抑制のために好ましい場合がある。そこで、第6の実施形態では、上位の制御周期(Tc_up)よりも短い周期で風量の操作量u(t)を振動的に変化させ、制御周期(Tc_up)間の平均風量の操作量V(t)が上位のPI(D)制御で算出された風量の操作量u(t)に一致するように制御を行う。風量の操作量V(t)は、下位の制御周期(Tc_cn)以上の周期で振動させ、振動の振幅は、ブロワ412への負担に応じて決定される。このような制御を行うことにより、より効率的にファウリングを抑制することができる。以下、詳細に説明する。 Here, the outline of the sixth embodiment will be described. Normally, in the air volume control, the operation amount of a predetermined air volume is calculated by PI or PID calculation, and the valve and the rotation speed of the blower 412 are operated by another PI control so as to supply the air volume by the calculated air volume operation amount. Cascade control is performed (see, for example, FIG. 10). At this time, in the normal PI or PID control, the operation amount u (t) of the air volume calculated by the air volume control calculation by the PI (D) control of the upper (air volume control unit 452 in FIG. 10) is lower (in FIG. 10). The control target value for the PI (D) control of the blower control unit 417) is maintained at a constant value during the control cycle (Tc_up) of the upper control. However, in cleaning and aeration control for suppressing fouling, increasing the air flow change (dispersion) increases the shearing force applied to the membrane surface, which may be preferable for suppressing fouling. Therefore, in the sixth embodiment, the operation amount u (t) of the air volume is changed in a vibration manner in a cycle shorter than the upper control cycle (Tc_up), and the operation amount V ( Control is performed so that t) coincides with the operation amount u (t) of the air volume calculated by the higher-level PI (D) control. The operation amount V (t) of the air volume is vibrated at a period equal to or higher than the lower control period (Tc_cn), and the amplitude of the vibration is determined according to the load on the blower 412. By performing such control, fouling can be more efficiently suppressed. Details will be described below.
 図10は、第6の実施形態の下水処理システム10のブロック図である。図6に示すように、下水処理システム10にブロワ制御部417が備えられている点で図3に示す構成と異なる。その他の構成については、図3と同様であるためブロワ制御部417について説明する。なお、ブロワ制御部417は、制御装置450内に備えられてもよい。
 ブロワ制御部417は、風量制御部452が算出した操作量u(t)に基づいてブロワ412を制御する。図11を用いて、ブロワ制御部417の具体的な動作について説明する。
FIG. 10 is a block diagram of the sewage treatment system 10 of the sixth embodiment. As shown in FIG. 6, the configuration differs from that shown in FIG. 3 in that the sewage treatment system 10 is provided with a blower control unit 417. Since other configurations are the same as those in FIG. 3, the blower control unit 417 will be described. Note that the blower control unit 417 may be provided in the control device 450.
The blower control unit 417 controls the blower 412 based on the operation amount u (t) calculated by the air volume control unit 452. A specific operation of the blower control unit 417 will be described with reference to FIG.
 図11は、第6の実施形態におけるブロワ制御部417の動作を説明するための図である。
 図11において、T1は風量制御部452の制御周期を表し、a1は操作量u(t)を表す。ここで、a1は、風量制御部452によって上記の式(12)を用いて算出された操作量u(t)である。つまり、操作量u(t)は、制御周期T1で算出される。そこで、ブロワ制御部417は、操作量u(t)に基づいて、制御周期T1間において平均風量の操作量が操作量u(t)に一致する操作量V(t)を算出する。この際、ブロワ制御部417は、風量制御部452の制御周期T1未満、かつ、ブロワ412の操作端(弁、回転数)の制御周期T2以上の周期で振動させるように操作量V(t)を算出する。操作量V(t)は、図11におけるa2である。なお、図11では、一定の制御周期T2で制御する構成を示しているが、ブロワ制御部417は不定期な制御周期で制御してもよい。また、ブロワ制御部417は、制御周期T1間において平均風量の操作量が操作量u(t)に一致すれば、制御周期T2以上の周期で操作量V(t)がすべて異なるように算出してもよいし、一部が異なるように算出してもよい。
FIG. 11 is a diagram for explaining the operation of the blower control unit 417 in the sixth embodiment.
In FIG. 11, T1 represents the control period of the air volume control unit 452, and a1 represents the manipulated variable u (t). Here, a1 is the operation amount u (t) calculated by the air volume control unit 452 using the above equation (12). That is, the operation amount u (t) is calculated at the control cycle T1. Therefore, the blower control unit 417 calculates an operation amount V (t) in which the operation amount of the average air volume matches the operation amount u (t) during the control period T1 based on the operation amount u (t). At this time, the blower control unit 417 manipulates the operation amount V (t) so as to vibrate at a cycle shorter than the control cycle T1 of the air volume control unit 452 and the control cycle T2 of the operation end (valve, rotation speed) of the blower 412. Is calculated. The manipulated variable V (t) is a2 in FIG. Although FIG. 11 shows a configuration in which control is performed at a constant control cycle T2, the blower control unit 417 may perform control at irregular control cycles. Further, the blower control unit 417 calculates that the manipulated variable V (t) is different in the period equal to or greater than the control period T2 if the manipulated variable of the average air volume matches the manipulated variable u (t) during the control period T1. Alternatively, it may be calculated so that a part thereof is different.
 本実施形態によれば、風量制御部452の制御周期内において操作量が一定ではなく、風量制御部452の制御周期未満、かつ、風量制御を行うブロワ412の操作端(弁、回転数)の制御周期Tc_cn以上の周期で振動させて制御が行われる。そのため、より効率的にファウリングを抑制することができる。 According to the present embodiment, the operation amount is not constant within the control period of the air volume control unit 452, is less than the control period of the air volume control unit 452, and the operation end (valve, rotation speed) of the blower 412 that performs air volume control. Control is performed by oscillating at a cycle equal to or greater than the control cycle Tc_cn. Therefore, fouling can be suppressed more efficiently.
 (第7の実施形態)
 第1の実施形態では、風量制御部452は、上記式(11)に基づいて算出した差分E(t)を用いて、ブロワ412に対してPI制御を行うこととした。一方、第7の実施形態においては、風量制御部452は、絶対値誤差と、風量制御部452の現在の制御モードとに応じて決定される制御モードで動作してブロワ412の制御を行う。第7の実施形態において風量制御部452は、通常制御モードと、風量一定制御モードとを有する。通常制御モードは、第1の実施形態と同様に上記式(12)で算出された操作量u(t)でブロワ412に対して制御を行うモードである。風量一定制御モードは、風量の操作量を固定してブロワ412に対して制御を行うモードである。風量一定制御モードで使用される操作量は、予め設定されていてもよい。
(Seventh embodiment)
In the first embodiment, the air volume control unit 452 performs PI control on the blower 412 using the difference E (t) calculated based on the above equation (11). On the other hand, in the seventh embodiment, the air volume control unit 452 controls the blower 412 by operating in a control mode determined according to the absolute value error and the current control mode of the air volume control unit 452. In the seventh embodiment, the air volume control unit 452 has a normal control mode and a constant air volume control mode. The normal control mode is a mode in which the blower 412 is controlled with the operation amount u (t) calculated by the above equation (12) as in the first embodiment. The constant air volume control mode is a mode in which the blower 412 is controlled with the operation volume of the air volume fixed. The operation amount used in the constant air volume control mode may be set in advance.
 第7の実施形態における風量制御部452は、図12に示す制御モード決定テーブルに基づいて制御モードを決定し、決定した制御モードで動作する。図12は、制御モード決定テーブルの具体例を示す図である。図12に示すように、制御モード決定テーブルには、絶対値誤差の大きさと、現在の制御モードとの組合せ毎の制御モードに関する情報が登録されている。例えば、図12に示す制御モード決定テーブルでは、絶対値誤差が閾値TH1以上(絶対値誤差≧TH1)であり、かつ、現在の制御モードが通常制御モードである場合に風量一定制御モードに切り替えることが表されている。つまり、この場合、風量制御部452は、自身の制御モードを風量一定制御モードに決定し、制御モードを切り替えて制御を行う。また、絶対値誤差が閾値TH1以上(絶対値誤差≧TH1)であり、かつ、現在の制御モードが風量一定制御モードである場合に風量一定制御モードを維持することが表されている。つまり、この場合、風量制御部452は、自身の制御モードを風量一定制御モードに決定し、制御モードを維持して制御を行う。 The air volume control unit 452 in the seventh embodiment determines a control mode based on the control mode determination table shown in FIG. 12, and operates in the determined control mode. FIG. 12 is a diagram illustrating a specific example of the control mode determination table. As shown in FIG. 12, information on the control mode for each combination of the magnitude of the absolute value error and the current control mode is registered in the control mode determination table. For example, in the control mode determination table shown in FIG. 12, when the absolute value error is greater than or equal to the threshold value TH1 (absolute value error ≧ TH1) and the current control mode is the normal control mode, switching to the constant air volume control mode is performed. Is represented. That is, in this case, the air volume control unit 452 determines its own control mode as the constant air volume control mode, and performs control by switching the control mode. Further, it is shown that the constant air volume control mode is maintained when the absolute value error is equal to or greater than the threshold value TH1 (absolute value error ≧ TH1) and the current control mode is the constant air volume control mode. That is, in this case, the air volume control unit 452 determines its own control mode as the constant air volume control mode, and performs control while maintaining the control mode.
 ここで、絶定置誤差は、目標値取得部451から得られる目標値TMPref(t)と、予測値取得部453から得られる予測値TMPhat(t)との絶対値誤差である。本実施形態では、目標値周りの誤差の通常変動範囲を、例えば標準偏差σで表し、閾値TH1をTH1=k×σ(k=2~4程度の設定値)、閾値TH2をTH2=k’×σ(k’<k)とすることが好ましい。また、風量一定制御モード時の固定風量の操作量u(t)は、入力が急変して洗浄風量が多量に必要になった場合の安全側を想定し、ある程度高めの値に設定しておくことが好ましい。 Here, the absolute stationary error is an absolute value error between the target value TMPref (t) obtained from the target value obtaining unit 451 and the predicted value TMPhat (t) obtained from the predicted value obtaining unit 453. In the present embodiment, the normal variation range of the error around the target value is represented by, for example, standard deviation σ, the threshold value TH1 is TH1 = k × σ (a set value of about k = 2 to 4), and the threshold value TH2 is TH2 = k ′. Xσ (k ′ <k) is preferable. In addition, the operation amount u (t) of the fixed air amount in the constant air amount control mode is set to a value that is somewhat higher, assuming a safe side when the input changes suddenly and a large amount of cleaning air is required. It is preferable.
 本実施形態によれば、風量制御部452は、絶対値誤差と、現在の制御モードに応じて制御モードを決定し、決定した制御モードで制御を行う。そのため、状況に応じて対応することができる。 According to the present embodiment, the air volume control unit 452 determines the control mode according to the absolute value error and the current control mode, and performs control in the determined control mode. Therefore, it can respond according to the situation.
 本実施形態において、上記よりも細かく制御を行いたい場合には、風量一定制御を、設定値より高い値を持つ風量一定制御と、設定値より低い値を持つ風量一定制御とに分割して所定の条件にしたがって風量制御部452が制御モードを決定するように構成されもよい。一例について説明する。図12に示す制御モード決定テーブルにおいて絶対値誤差が閾値TH1以上(絶対値誤差≧TH1)であり、かつ、現在の制御モードが通常制御モードであり、絶対値誤差が目標値TMPref(t)を下回る方向に過大にずれる場合には、風量制御部452は入力変数の個別センサが異常値でないことを別途診断して確認した上で、設定値より低い値を持つ風量一定制御モードに切り替える。また、図12に示す制御モード決定テーブルにおいて絶対値誤差が閾値TH1以上(絶対値誤差≧TH1)であり、かつ、現在の制御モードが通常制御モードであり、絶対値誤差が目標値TMPref(t)を超える場合や入力変数の個別センサが異常値である場合には、風量制御部452は設定値より高い値を持つ風量一定制御モードに切り替える。 In this embodiment, when it is desired to perform control more finely than the above, the constant air volume control is divided into an air volume constant control having a value higher than the set value and an air volume constant control having a value lower than the set value. The air volume control unit 452 may be configured to determine the control mode according to the above conditions. An example will be described. In the control mode determination table shown in FIG. 12, the absolute value error is greater than or equal to the threshold value TH1 (absolute value error ≧ TH1), the current control mode is the normal control mode, and the absolute value error is the target value TMPref (t). If the air flow control unit 452 shifts excessively in the downward direction, the air flow control unit 452 switches to the air flow constant control mode having a value lower than the set value after separately diagnosing and confirming that the individual sensor of the input variable is not an abnormal value. In the control mode determination table shown in FIG. 12, the absolute value error is greater than or equal to the threshold value TH1 (absolute value error ≧ TH1), the current control mode is the normal control mode, and the absolute value error is the target value TMPref (t ) Or the individual sensor of the input variable has an abnormal value, the air volume control unit 452 switches to the air volume constant control mode having a value higher than the set value.
 (第8の実施形態)
 第1の実施形態ではブロワ412を制御対象としているが、MBRプロセスの多くは、生物処理を行うためのブロワ402による風量制御(補助曝気制御)とMBRプロセスの膜を洗浄するための風量制御(洗浄曝気制御)とがあり、上記各実施形態における風量制御部452の動作は洗浄曝気制御の動作に対応する。洗浄曝気の主目的は膜の洗浄であるが、洗浄曝気は生物処理を行うための酸素供給も兼用しており、洗浄風量だけでは生物処理に必要な酸素の供給が不足する場合が多い。そのため、補助曝気で酸素供給不足を補償している。上記の各実施形態では、洗浄風量を膜洗浄の観点から必要最小量供給することを目的としているが、膜洗浄に必要な風量が極めて少ない場合、補助曝気のみで生物処理を行うための十分な酸素供給を行なえないこともある。
(Eighth embodiment)
In the first embodiment, the blower 412 is controlled, but in many MBR processes, the air volume control (auxiliary aeration control) by the blower 402 for performing biological treatment and the air volume control for cleaning the MBR process film ( The operation of the air volume control unit 452 in each of the above embodiments corresponds to the operation of the cleaning aeration control. The main purpose of the cleaning aeration is to clean the membrane, but the cleaning aeration also serves as an oxygen supply for performing the biological treatment, and the supply of oxygen necessary for the biological treatment is often insufficient only with the amount of the cleaning air. Therefore, supplemental aeration compensates for oxygen supply shortage. In each of the above embodiments, the purpose is to supply the cleaning air volume that is the minimum necessary from the viewpoint of membrane cleaning. However, when the air volume required for the film cleaning is extremely small, it is sufficient to perform biological treatment with only auxiliary aeration. Oxygen supply may not be possible.
 それに対して、第8の実施形態では、上記のような問題に対応する。第8の実施形態では、風量制御部452は、複数の制御方式に基づいて風量の操作量の差分値を算出し、算出した差分値のいずれかを用いて風量を制御する。ここで、複数の制御方式として、通常制御方式と、濃度維持制御方式とがある。通常制御方式は、第1の実施形態と同様に上記式(12)で操作量u(t)を算出する方式である。濃度維持制御方式は、DO濃度目標値を維持するために補助曝気と同じ算出方法で操作量を算出する方式である。 On the other hand, the eighth embodiment addresses the above problem. In the eighth embodiment, the air volume control unit 452 calculates a difference value of the operation amount of the air volume based on a plurality of control methods, and controls the air volume using any of the calculated difference values. Here, as a plurality of control methods, there are a normal control method and a density maintenance control method. The normal control method is a method of calculating the operation amount u (t) by the above equation (12) as in the first embodiment. The concentration maintenance control method is a method of calculating the operation amount by the same calculation method as that of auxiliary aeration in order to maintain the DO concentration target value.
 生物処理に必要な酸素量は、溶存酸素濃度(DO濃度)で通常管理される。場合によっては、処理水の水質、例えばアンモニア濃度で管理する場合もある。ただし、その場合であっても、所定のアンモニア濃度を維持するために必要なDO濃度に換算してDO濃度を制御する場合が多いが、本実施形態においては必要酸素量がDO濃度やアンモニア濃度など何らかの指標で管理されているとする。なお、DO濃度は、不図示のセンサによって測定される。ここでは、説明の簡単化のため、多くの処理施設が採用している方式として、DO濃度で必要酸量を管理している場合を例に説明する。この時、DO濃度の目標値が操作者によって与えられ、補助曝気に対応するブロワ402がPI(D)制御などで制御されているものとする。 The amount of oxygen required for biological treatment is usually managed by the dissolved oxygen concentration (DO concentration). In some cases, the quality of treated water, for example, ammonia concentration may be used for management. However, even in that case, the DO concentration is often controlled in terms of the DO concentration necessary to maintain the predetermined ammonia concentration, but in this embodiment, the required oxygen amount is the DO concentration or ammonia concentration. It is assumed that it is managed by some kind of index. The DO concentration is measured by a sensor (not shown). Here, for simplification of explanation, a case where the required acid amount is managed by DO concentration will be described as an example as a method adopted by many processing facilities. At this time, the DO concentration target value is given by the operator, and the blower 402 corresponding to the auxiliary aeration is controlled by the PI (D) control or the like.
 洗浄風量が極めて小さくなった場合には、ブロワ402の最大出力の風量を供給しても、補助曝気を行うブロワ402の所与のDO濃度の目標値を維持できなくなる場合があり、その場合、実際のDO濃度がDO濃度目標値を下回ることになる。そこで、DO濃度目標値-DO濃度が所定の閾値を超過した場合は、風量制御部452は通常動作しているモード(通常制御モード)と別のモードであるDO濃度を維持する制御モード(DO制御モード)で動作する。この制御は、通常のPI(D)制御で容易に実現できる。このような洗浄曝気制御のモード切替を持つことにより、生物処理に必要となる酸素供給量を常に確保することが可能になる。 If the cleaning air volume becomes extremely small, even if the maximum air volume of the blower 402 is supplied, the target value of a given DO concentration of the blower 402 that performs auxiliary aeration may not be maintained. The actual DO concentration falls below the DO concentration target value. Therefore, when the DO concentration target value-DO concentration exceeds a predetermined threshold value, the air volume control unit 452 is in a control mode (DO mode) that maintains the DO concentration, which is a mode different from the normal operation mode (normal control mode). Control mode). This control can be easily realized by normal PI (D) control. By having such a mode switching for cleaning and aeration control, it is possible to always ensure an oxygen supply amount necessary for biological treatment.
 一方、洗浄曝気制御が、通常制御モードからDO制御モードに切り替わった場合、DO制御モードから通常制御モードに戻すタイミングも重要になる。それは、洗浄曝気制御を生物処理に必要な酸素量供給を目的に制御すると、条件によっては膜差圧の急上昇を許容してしまうことになるためである。そのためには、風量制御部452は、DO制御モードで動作している場合に、通常制御モードによる洗浄曝気制御を並列して計算しておき、これによって計算される風量の操作量がDO制御モードで動作している際に計算される風量の操作量を下回った場合に、通常制御モードに戻すことによって、本来の膜洗浄に必要な風量を供給することができる。 On the other hand, when the cleaning aeration control is switched from the normal control mode to the DO control mode, the timing for returning from the DO control mode to the normal control mode is also important. This is because, if the cleaning aeration control is controlled for the purpose of supplying the oxygen amount necessary for biological treatment, a rapid increase in the membrane differential pressure is allowed depending on conditions. For that purpose, the air volume control unit 452 calculates the cleaning aeration control in the normal control mode in parallel when operating in the DO control mode, and the operation amount of the air volume calculated thereby is the DO control mode. When the operation amount of the air volume calculated when operating is reduced, the air volume necessary for the original film cleaning can be supplied by returning to the normal control mode.
 上記の一連の機能を簡潔なロジックで実現するためには、洗浄曝気制御における風量の操作量を通常制御方式と、補助曝気と同じ制御方式(例えば、DO制御方式など)の2種類の制御方式で算出しておき、図13のフローチャートに従えばよい。フローチャートを用いて具体的な処理について説明する。図13は、第8の実施形態における風量制御部452の処理を示すフローチャートである。なお、図13の処理開始時には、DO目標値及びDO測定値が制御装置450に入力されているものとする。 In order to realize the above series of functions with simple logic, two types of control methods are used: the normal control method and the same control method as the auxiliary aeration (for example, the DO control method) for the amount of air flow in the cleaning aeration control. And then follow the flowchart of FIG. Specific processing will be described using a flowchart. FIG. 13 is a flowchart showing the processing of the air volume control unit 452 in the eighth embodiment. It is assumed that the DO target value and the DO measurement value are input to the control device 450 at the start of the processing in FIG.
 風量制御部452は、通常制御方式により洗浄風量の操作量QB1を計算し、前回決定された風量の操作量との差分値ΔQB1を算出する(ステップS60)。ここで、洗浄風量の操作量QB1は、上記式(12)で算出される操作量uに相当する。次に、風量制御部452は、補助曝気と同じ方式で洗浄風量の操作量QB2を計算し、前回決定された風量の操作量との差分値ΔQB2を算出する(ステップS61)。その後、風量制御部452は、ブロワ412が最大出力、かつ、DO目標値とDO測定値との差分値が閾値以上であるか否か判定する(ステップS62)。ブロワ412が最大出力、かつ、DO目標値とDO測定値との差分値が閾値以上である場合(ステップS62:YES)、風量制御部452はΔQB=MAX(ΔQB1、ΔQB2)を計算する(ステップS63)。そして、風量制御部452は、算出したΔQBを前回決定された風量の操作量に加算して今回の洗浄風量の操作量を決定する(ステップS64)。風量制御部452は、この決定された洗浄風量の操作量に基づいて、ブロワ412を制御する。
 一方、ブロワ412が最大出力ではない場合や、DO目標値とDO測定値との差分値が閾値未満である場合(ステップS62:NO)、風量制御部452はΔQBをΔQB1とする(ステップS65)。その後、風量制御部452は、ステップS64の処理を実行する。
The air volume control unit 452 calculates the operation amount QB1 of the cleaning air volume by the normal control method, and calculates a difference value ΔQB1 from the previously determined operation amount of the air volume (step S60). Here, the operation amount QB1 of the cleaning air amount corresponds to the operation amount u calculated by the above equation (12). Next, the air volume control unit 452 calculates the operation amount QB2 of the cleaning air volume by the same method as the auxiliary aeration, and calculates a difference value ΔQB2 from the previously determined operation amount of the air volume (step S61). Thereafter, the air volume control unit 452 determines whether or not the blower 412 has the maximum output and the difference value between the DO target value and the DO measurement value is equal to or greater than a threshold value (step S62). When the blower 412 has the maximum output and the difference value between the DO target value and the DO measurement value is greater than or equal to the threshold (step S62: YES), the air volume control unit 452 calculates ΔQB = MAX (ΔQB1, ΔQB2) (step S62). S63). The air volume control unit 452 then adds the calculated ΔQB to the previously determined air volume operation amount to determine the current cleaning air volume operation amount (step S64). The air volume control unit 452 controls the blower 412 based on the determined operation amount of the cleaning air volume.
On the other hand, if the blower 412 is not at the maximum output, or if the difference value between the DO target value and the DO measurement value is less than the threshold (step S62: NO), the air volume control unit 452 sets ΔQB to ΔQB1 (step S65). . Thereafter, the air volume control unit 452 executes the process of step S64.
 本実施形態によれば、膜洗浄に必要な風量が極めて少ない場合においても生物処理に必要な酸素量供給を確保することができる。 According to this embodiment, even when the amount of air necessary for membrane cleaning is extremely small, it is possible to ensure the supply of oxygen necessary for biological treatment.
 なお、2種類の制御方式が頻繁に切り替わることを抑制するために、制御モードの切り替わる周期に制約を設けることや、洗浄曝気風量を直接計算する方式では無く前回の洗浄曝気量からの差分を計算する方式(速度型制御)を採用することが好ましいことは言うまでもない。
 また、本実施形態では、ブロワ412が最大出力、かつ、DO目標値とDO測定値との差分値が閾値以上である場合にステップS63の処理を実行する構成を示したが、風量制御部452はブロワ412が最大出力、かつ、DO目標値とDO測定値との差分値が閾値以上であり、かつ、所定時間(例えば、10分から数10分程度)以上継続している場合にステップS63の処理を実行するように構成されてもよい。
In addition, in order to suppress frequent switching between the two types of control methods, there is a restriction on the cycle for switching the control mode, and the difference from the previous cleaning aeration amount is calculated instead of a method for directly calculating the cleaning aeration air volume. Needless to say, it is preferable to adopt the method (speed type control).
In the present embodiment, the configuration in which the process of step S63 is executed when the blower 412 has the maximum output and the difference value between the DO target value and the DO measurement value is greater than or equal to the threshold value is shown. If the blower 412 has the maximum output, the difference value between the DO target value and the DO measurement value is greater than or equal to the threshold value, and continues for a predetermined time (for example, about 10 minutes to several tens of minutes), step S63 is performed. You may be comprised so that a process may be performed.
 以上説明した少なくともひとつの実施形態によれば、目標値TMPref(t)と予測値TMPhat(t)との差分E(t)に基づき、散気部414から分離膜407に向けて供給される空気の風量を制御する風量制御部452を持つことにより、分離膜407の実際の膜差圧と目標値TMPref(t)との差を小さくすることができる。 According to at least one embodiment described above, air supplied from the air diffuser 414 toward the separation membrane 407 based on the difference E (t) between the target value TMPref (t) and the predicted value TMPhat (t). By having the air volume control unit 452 that controls the air volume of air, the difference between the actual membrane differential pressure of the separation membrane 407 and the target value TMPref (t) can be reduced.
 なお、本明細書に記載されたTMPの膜差圧は、すべて膜ろ過抵抗に置き換えてもよい。膜ろ過抵抗は一般的には直接計測できないが、一般式として、数式(16)で示されることが知られている。 It should be noted that all of the TMP membrane differential pressure described in this specification may be replaced with membrane filtration resistance. Although membrane filtration resistance cannot generally be measured directly, it is known that it is represented by the formula (16) as a general formula.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 数式(16)において、TMPは膜差圧[kPa]、μは粘性係数[kPa/d]、Jはフラックス[m/d]、Rは膜ろ過抵抗[1/m]、Pはべき乗定数である。数式(16)を変形することにより、数式(17)が得られる。制御装置450は、数式(17)に基づき膜ろ過抵抗Rを算出する。 In Equation (16), TMP is a membrane differential pressure [kPa], μ is a viscosity coefficient [kPa / d], J is a flux [m / d], R is a membrane filtration resistance [1 / m], and P is a power constant. is there. By transforming Equation (16), Equation (17) is obtained. The controller 450 calculates the membrane filtration resistance R based on the mathematical formula (17).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 べき乗定数Pは通常、1~2の間で設定される調整パラメータである。フラックス算出部として機能する制御装置450は、流量計411の値(膜ろ過水量)を膜面積で除することによってフラックスJを算出する。連続測定可能のため、粘性係数μが一定と仮定すると、膜差圧TMPをフラックスJのP乗で除した値が膜ろ過抵抗Rに相当するものとなる。 The power constant P is usually an adjustment parameter set between 1 and 2. The control device 450 functioning as a flux calculating unit calculates the flux J by dividing the value of the flow meter 411 (the amount of membrane filtered water) by the membrane area. Since continuous measurement is possible, assuming that the viscosity coefficient μ is constant, a value obtained by dividing the membrane differential pressure TMP by the power of the flux J corresponds to the membrane filtration resistance R.
 すなわち、数式(18)に示されるように、膜ろ過抵抗算出部として機能する制御装置450は、膜ろ過抵抗Rを膜差圧TMP及びフラックスJの測定値に基づいて算出する。
なお、数式(18)において、Bは定数である。
That is, as shown in Equation (18), the control device 450 functioning as a membrane filtration resistance calculation unit calculates the membrane filtration resistance R based on the measured values of the membrane differential pressure TMP and the flux J.
In Equation (18), B is a constant.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (16)

  1.  活性汚泥をろ過する分離膜の膜差圧及び膜ろ過抵抗の初期値の少なくとも1つに基づき、前記初期値の測定時以降の前記膜差圧及び膜ろ過抵抗の目標値の少なくとも1つを取得する目標値取得部と、
     前記分離膜の目詰まりに関する測定値に基づき、前記測定値の測定時以降の前記膜差圧及び膜ろ過抵抗の予測値の少なくとも1つを取得する予測値取得部と、
     前記目標値取得部によって取得された前記目標値と、前記予測値取得部によって取得された前記予測値とに基づき、散気部から前記分離膜に向けて供給される空気の風量を制御する風量制御部と、
     を備える、排水処理制御装置。
    Acquire at least one of the target value of the membrane differential pressure and membrane filtration resistance after the measurement of the initial value based on at least one of the membrane differential pressure and membrane filtration resistance of the separation membrane that filters activated sludge A target value acquisition unit to
    Based on a measurement value related to clogging of the separation membrane, a predicted value acquisition unit that acquires at least one of the predicted values of the membrane differential pressure and membrane filtration resistance after the measurement value is measured;
    An air volume that controls an air volume of air supplied from the air diffuser toward the separation membrane based on the target value acquired by the target value acquiring unit and the predicted value acquired by the predicted value acquiring unit. A control unit;
    A wastewater treatment control device.
  2.  前記目標値取得部は、前記膜差圧及び膜ろ過抵抗の初期値TMPの何れか一方、前記膜差圧及び又は膜ろ過抵抗の上限値TMPlimの何れか一方、メンテナンス周期L、及び閉塞指数kに基づいてパラメータAを算出し、数式(1)に基づいて、前記膜差圧及び膜ろ過抵抗のTMP(t)の前記目標値の少なくとも1つを算出する、
    Figure JPOXMLDOC01-appb-M000001
     請求項1記載の排水処理制御装置。
    The target value acquisition unit includes one of the initial value TMP 0 of the membrane differential pressure and the membrane filtration resistance, one of the membrane differential pressure and / or the upper limit value TMPlim of the membrane filtration resistance, a maintenance cycle L, and a clogging index. calculating a parameter A based on k, and calculating at least one of the target values of the TMP (t) of the membrane differential pressure and membrane filtration resistance based on Equation (1),
    Figure JPOXMLDOC01-appb-M000001
    The wastewater treatment control apparatus according to claim 1.
  3.  k=1の場合、前記目標値取得部は前記パラメータAを数式(2)に基づいて算出し、
    Figure JPOXMLDOC01-appb-M000002
     k>1の場合、前記目標値取得部は前記パラメータAを数式(3)に基づいて算出する、
    Figure JPOXMLDOC01-appb-M000003
     請求項2記載の排水処理制御装置。
    When k = 1, the target value acquisition unit calculates the parameter A based on Equation (2),
    Figure JPOXMLDOC01-appb-M000002
    When k> 1, the target value acquisition unit calculates the parameter A based on Equation (3).
    Figure JPOXMLDOC01-appb-M000003
    The wastewater treatment control apparatus according to claim 2.
  4.  前記予測値取得部は、前記分離膜の目詰まりに関する測定値に基づいてパラメータAm(t)を算出するとともに、算出されたパラメータAm(t)、前記分離膜によってろ過された処理水のフラックスJ(t)、及び閉塞指数kを用い、数式(4)に基づいて前記膜差圧及び膜ろ過抵抗TMP(t)の前記予測値の少なくとも1つを算出する、
    Figure JPOXMLDOC01-appb-M000004
     請求項1記載の排水処理制御装置。
    The predicted value acquisition unit calculates a parameter Am (t) based on a measurement value related to the clogging of the separation membrane, and calculates the calculated parameter Am (t) and the flux J of the treated water filtered by the separation membrane. (T) and the blockage index k are used to calculate at least one of the predicted values of the membrane differential pressure and the membrane filtration resistance TMP (t) based on Equation (4).
    Figure JPOXMLDOC01-appb-M000004
    The wastewater treatment control apparatus according to claim 1.
  5.  前記予測値取得部は、前記分離膜の目詰まりに関する測定値の数n、前記分離膜の目詰まりに関する複数の測定値X1(t)~Xn(t)、及び係数a1~anを用い、数式(5)に基づいて前記パラメータAm(t)を算出する、
    Figure JPOXMLDOC01-appb-M000005
     請求項4記載の排水処理制御装置。
    The predicted value acquisition unit uses a number n of measured values related to clogging of the separation membrane, a plurality of measured values X1 (t) to Xn (t) related to clogging of the separation membrane, and coefficients a1 to an Calculating the parameter Am (t) based on (5),
    Figure JPOXMLDOC01-appb-M000005
    The wastewater treatment control apparatus according to claim 4.
  6.  前記分離膜の目詰まりに関する複数の測定値は、前記処理水のフラックスと、前記散気部から前記分離膜に向けて供給される空気の風量又は空気倍率とを含む、
     請求項5記載の排水処理制御装置。
    The plurality of measured values related to the clogging of the separation membrane include a flux of the treated water and an air volume or an air magnification of air supplied from the diffuser toward the separation membrane.
    The wastewater treatment control apparatus according to claim 5.
  7.  前記分離膜の目詰まりに関する複数の測定値は、更に、水温、MLSS濃度、補助散気量、凝集剤注入量、循環ポンプ流量、返送ポンプ流量、前記汚水の溶存酸素濃度又は前記処理水の溶存酸素濃度、ORP、pH、EEM、吸光度、BOD、COD、TOC、アンモニア濃度、硝酸濃度、リン酸濃度、全窒素濃度、全リン濃度、溶解性COD濃度、及び溶解性BOD濃度をそれぞれ表す変数、及びこれらの変数のうち少なくとも複数の変数が四則演算されることによって得られる少なくとも1つの合成変数の少なくとも1つを含む、
     請求項6記載の排水処理制御装置。
    The plurality of measured values related to the clogging of the separation membrane are further the water temperature, MLSS concentration, auxiliary air diffusion amount, coagulant injection amount, circulation pump flow rate, return pump flow rate, dissolved oxygen concentration of the sewage or dissolved water of the treated water. Variables representing oxygen concentration, ORP, pH, EEM, absorbance, BOD, COD, TOC, ammonia concentration, nitric acid concentration, phosphoric acid concentration, total nitrogen concentration, total phosphorus concentration, soluble COD concentration, and soluble BOD concentration, And at least one of at least one synthetic variable obtained by arithmetically calculating at least a plurality of these variables.
    The wastewater treatment control apparatus according to claim 6.
  8.  前記予測値取得部は、前記分離膜の目詰まりに関する複数の測定値に基づき、最小二乗法、部分最小二乗法、総最小二乗法、一般化最小二乗法、正則化最小二乗法、サポートベクトル回帰、適合ベクトル回帰のいずれかを用いて前記係数a1~anを算出する、
     請求項5記載の排水処理制御装置。
    The predicted value acquisition unit is based on a plurality of measured values related to the clogging of the separation membrane, based on least square method, partial least square method, total least square method, generalized least square method, regularized least square method, support vector regression The coefficients a1 to an are calculated using any one of fit vector regression.
    The wastewater treatment control apparatus according to claim 5.
  9.  前記風量制御部は、前記目標値と前記予測値との差分に基づき、PI制御、PID制御、ルールベース制御、又は極値制御のいずれかを実行することで、前記散気部から前記分離膜に向けて供給される空気の風量を制御する、
     請求項1記載の排水処理制御装置。
    The air volume control unit performs any one of PI control, PID control, rule-based control, or extreme value control based on the difference between the target value and the predicted value, thereby removing the separation membrane from the diffusion unit. To control the air volume of air supplied toward
    The wastewater treatment control apparatus according to claim 1.
  10.  前記風量制御部によって算出された前記散気部から前記分離膜に向けて供給される空気の風量の操作量に基づいて前記散気部から前記分離膜に向けて供給される空気の風量の操作量を新たに算出する散気制御部をさらに備え、
     前記散気制御部は、前記風量制御部から得られる空気の風量の操作量が算出される制御周期間において、前記制御周期より短い周期で操作量を変動させるように操作量を算出する、
     請求項1記載の排水処理制御装置。
    Manipulation of the air volume supplied from the air diffuser to the separation membrane based on the air volume manipulated air supplied from the air diffuser to the separation membrane calculated by the air volume controller It further includes an aeration control unit that newly calculates the amount,
    The air diffusion control unit calculates an operation amount so as to vary the operation amount in a cycle shorter than the control cycle during a control cycle in which the operation amount of the air flow rate obtained from the air volume control unit is calculated.
    The wastewater treatment control apparatus according to claim 1.
  11.  前記散気制御部は、前記制御周期間における平均風量の操作量が前記風量制御部から得られる空気の風量の操作量に一致するように操作量を算出する、請求項10記載の排水処理制御装置。 The wastewater treatment control according to claim 10, wherein the air diffusion control unit calculates an operation amount so that an operation amount of an average air volume during the control period coincides with an operation amount of an air volume obtained from the air volume control unit. apparatus.
  12.  前記風量制御部は、前記目標値と、前記予測値とに基づいて得られる前記空気の風量の操作量で前記散気部に対して制御を行う第1のモードと、風量の操作量を固定して前記散気部に対して制御を行う第2のモードとを有し、所定の条件に従って前記第1のモード又は第2のモードのいずれかで制御を行う、
     請求項1記載の排水処理制御装置。
    The air volume control unit is configured to fix the air volume operation amount in a first mode in which the air diffuser is controlled with the air volume operation amount obtained based on the target value and the predicted value. And a second mode for controlling the air diffuser, and performing control in either the first mode or the second mode according to a predetermined condition.
    The wastewater treatment control apparatus according to claim 1.
  13.  前記風量制御部は、前記目標値と、前記予測値とに基づいて得られる前記空気の風量の操作量及び前回の風量の操作量の差分値と、生物処理に必要な酸素供給のための方式に基づいて得られる前記空気の風量の操作量及び前回の風量の操作量の差分値とに基づいて、前記散気部が最大出力時に前記差分値のうち大きい方の差分値を前回の風量の操作量に加算して前記風量の制御を行う、
     請求項1記載の排水処理制御装置。
    The air volume control unit is a method for supplying oxygen necessary for biological treatment, and a difference value between an operation amount of the air volume and an operation volume of the previous air volume obtained based on the target value and the predicted value. On the basis of the operation amount of the air flow rate obtained based on the difference between the operation amount of the air flow and the operation amount of the previous air flow, the larger difference value of the difference values at the time of the maximum output of the air diffuser is the value of the previous air flow rate. Add to the operation amount to control the air volume.
    The wastewater treatment control apparatus according to claim 1.
  14.  汚水をろ過する分離膜と、
     前記分離膜に向けて空気を供給する散気部と、
     前記分離膜の膜差圧を測定する膜差圧測定部と、
     前記膜差圧測定部によって測定された前記膜差圧の初期値に基づき、前記初期値の測定時以降の前記膜差圧の目標値を取得する目標値取得部と、
     前記分離膜の目詰まりに関する測定値に基づき、前記測定値の測定時以降の前記膜差圧の予測値を取得する予測値取得部と、
     前記目標値取得部によって取得された前記目標値と、前記予測値取得部によって取得された前記予測値に基づき、前記散気部によって供給される空気の風量を制御する風量制御部と、
     を備える、排水処理システム。
    A separation membrane for filtering sewage,
    An air diffuser for supplying air toward the separation membrane;
    A membrane differential pressure measuring unit for measuring a membrane differential pressure of the separation membrane;
    Based on the initial value of the membrane differential pressure measured by the membrane differential pressure measurement unit, a target value acquisition unit that acquires a target value of the membrane differential pressure after the measurement of the initial value;
    Based on a measurement value related to clogging of the separation membrane, a predicted value acquisition unit that acquires a predicted value of the membrane differential pressure after the measurement of the measurement value;
    Based on the target value acquired by the target value acquisition unit and the predicted value acquired by the predicted value acquisition unit, an air volume control unit that controls the air volume of air supplied by the air diffuser,
    Equipped with a wastewater treatment system.
  15.  汚水をろ過する分離膜と、
     前記分離膜に向けて空気を供給する散気部と、
     前記分離膜の膜差圧を測定する膜差圧測定部と、
     膜ろ過水量を測定する流量計と、
     前記膜ろ過水量を膜面積で除することによりフラックスを算出するフラックス算出部と、
     前記膜差圧測定部によって測定された前記膜差圧と、フラックス算出部によって算出されたフラックスとに基づき、膜ろ過抵抗を算出する膜ろ過抵抗算出部と、
     前記膜ろ過抵抗算出部によって算出された前記膜ろ過抵抗の初期値に基づき、前記初期値の測定時以降の前記膜ろ過抵抗の目標値を取得する目標値取得部と、
     前記分離膜の目詰まりに関する測定値に基づき、前記測定値の測定時以降の前記膜ろ過抵抗の予測値を取得する予測値取得部と、
     前記目標値取得部によって取得された前記目標値と、前記予測値取得部によって取得された前記予測値に基づき、前記散気部によって供給される空気の風量を制御する風量制御部と、
     を備える、排水処理システム。
    A separation membrane for filtering sewage,
    An air diffuser for supplying air toward the separation membrane;
    A membrane differential pressure measuring unit for measuring a membrane differential pressure of the separation membrane;
    A flow meter for measuring the amount of membrane filtration water;
    A flux calculation unit for calculating the flux by dividing the amount of membrane filtrate by the membrane area;
    Based on the membrane differential pressure measured by the membrane differential pressure measurement unit and the flux calculated by the flux calculation unit, a membrane filtration resistance calculation unit that calculates membrane filtration resistance;
    Based on the initial value of the membrane filtration resistance calculated by the membrane filtration resistance calculation unit, a target value acquisition unit that acquires a target value of the membrane filtration resistance after the measurement of the initial value;
    Based on a measurement value related to clogging of the separation membrane, a predicted value acquisition unit that acquires a predicted value of the membrane filtration resistance after the measurement value is measured, and
    Based on the target value acquired by the target value acquisition unit and the predicted value acquired by the predicted value acquisition unit, an air volume control unit that controls the air volume of air supplied by the air diffuser,
    Equipped with a wastewater treatment system.
  16.  前記膜ろ過抵抗算出部は、前記膜差圧測定部によって測定された前記膜差圧を前記フラックス算出部で算出された前記フラックスのべき乗で除した値に定数を乗じることにより、前記膜ろ過抵抗を算出する、請求項15の排水処理システム。 The membrane filtration resistance calculation unit is configured to multiply the membrane differential pressure measured by the membrane differential pressure measurement unit by a constant to a value obtained by dividing the membrane differential pressure by the power of the flux calculated by the flux calculation unit. The waste water treatment system according to claim 15, wherein
PCT/JP2016/070115 2015-07-07 2016-07-07 Wastewater treatment control unit and wastewater treatment system WO2017006988A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015136407 2015-07-07
JP2015-136407 2015-07-07
JP2016-041615 2016-03-03
JP2016041615A JP6659404B2 (en) 2015-07-07 2016-03-03 Wastewater treatment control device and wastewater treatment system

Publications (1)

Publication Number Publication Date
WO2017006988A1 true WO2017006988A1 (en) 2017-01-12

Family

ID=57685293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070115 WO2017006988A1 (en) 2015-07-07 2016-07-07 Wastewater treatment control unit and wastewater treatment system

Country Status (1)

Country Link
WO (1) WO2017006988A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199472A (en) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 Membrane treatment control system and membrane treatment control method
CN113651402A (en) * 2021-08-31 2021-11-16 哈尔滨天达控制股份有限公司 Water treatment chlorination control method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300968A (en) * 1999-04-21 2000-10-31 Hitachi Plant Eng & Constr Co Ltd Method for operation of membrane filter
JP2006255534A (en) * 2005-03-15 2006-09-28 Kobelco Eco-Solutions Co Ltd Method of washing filtration membrane
JP2007014948A (en) * 2005-06-09 2007-01-25 Toray Ind Inc Membrane filteration estimation method, estimation device, membrane filteration estimation ptogram
JP2013202472A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300968A (en) * 1999-04-21 2000-10-31 Hitachi Plant Eng & Constr Co Ltd Method for operation of membrane filter
JP2006255534A (en) * 2005-03-15 2006-09-28 Kobelco Eco-Solutions Co Ltd Method of washing filtration membrane
JP2007014948A (en) * 2005-06-09 2007-01-25 Toray Ind Inc Membrane filteration estimation method, estimation device, membrane filteration estimation ptogram
JP2013202472A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199472A (en) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 Membrane treatment control system and membrane treatment control method
JP7378972B2 (en) 2019-06-12 2023-11-14 東芝インフラシステムズ株式会社 Membrane treatment control system and membrane treatment control method
CN113651402A (en) * 2021-08-31 2021-11-16 哈尔滨天达控制股份有限公司 Water treatment chlorination control method and device
CN113651402B (en) * 2021-08-31 2022-03-08 哈尔滨天达控制股份有限公司 Water treatment chlorination control method and device

Similar Documents

Publication Publication Date Title
JP6659404B2 (en) Wastewater treatment control device and wastewater treatment system
Ferrero et al. Automatic control system for energy optimization in membrane bioreactors
KR101050374B1 (en) Automatic operation device of small sewage treatment facility
JP4770726B2 (en) Method for determining operating conditions of membrane filtration device, membrane filtration device using the same
Díaz et al. Fouling analysis and mitigation in a tertiary MBR operated under restricted aeration
WO2017006988A1 (en) Wastewater treatment control unit and wastewater treatment system
JP6522966B2 (en) Method and apparatus for treating organic wastewater
JP5782931B2 (en) Water treatment method and water treatment apparatus
KR20220024245A (en) Integrated control system for sewage treatment plant
JP2015127027A (en) Operation mode calculating device and water treatment system comprising it
Park et al. Reduction of membrane fouling by simultaneous upward and downward air sparging in a pilot-scale submerged membrane bioreactor treating municipal wastewater
Skouteris et al. Modeling energy consumption in membrane bioreactors for wastewater treatment in North Africa
Hong et al. Pilot-testing an alternative on-site wastewater treatment system for small communities and its automatic control
JP6818951B1 (en) Water treatment equipment and water treatment method
WO2013136503A1 (en) System for operating water treatment plant and method for planning amount of water supply
Ho et al. Performance evaluation of a novel reciprocation membrane bioreactor (rMBR) for enhanced nutrient removal in wastewater treatment: A comparative study
JP7214576B2 (en) Cleaning air volume control system and cleaning air volume control device
JP6643086B2 (en) Monitoring and control system using activated sludge method
JP6841365B1 (en) Aerobic wastewater treatment system and wastewater treatment method
JP2015208723A (en) Water treatment process control system
JP7378972B2 (en) Membrane treatment control system and membrane treatment control method
González et al. Enhancement of peak flux capacity in membrane bioreactors for wastewater reuse by controlling the backwashing strategy
Smith Treating wastewater in a conventional activated sludge (CAS) system or a Membrane Bioreactor (MBR). A comparison of capital and operating costs
JP2020163299A (en) Method and device of treating effluent from electronic component production line
Gao et al. An experimental study on the use of a sequencing-batch membrane bioreactor (SBMBR) for the treatment of mixed municipal wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821456

Country of ref document: EP

Kind code of ref document: A1