JP6841365B1 - Aerobic wastewater treatment system and wastewater treatment method - Google Patents

Aerobic wastewater treatment system and wastewater treatment method Download PDF

Info

Publication number
JP6841365B1
JP6841365B1 JP2020095047A JP2020095047A JP6841365B1 JP 6841365 B1 JP6841365 B1 JP 6841365B1 JP 2020095047 A JP2020095047 A JP 2020095047A JP 2020095047 A JP2020095047 A JP 2020095047A JP 6841365 B1 JP6841365 B1 JP 6841365B1
Authority
JP
Japan
Prior art keywords
water
aerobic
treated
characteristic value
quality characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020095047A
Other languages
Japanese (ja)
Other versions
JP2021186754A (en
Inventor
元 高橋
高橋  元
明恵 手嶋
明恵 手嶋
美優 田嶋
美優 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2020095047A priority Critical patent/JP6841365B1/en
Application granted granted Critical
Publication of JP6841365B1 publication Critical patent/JP6841365B1/en
Publication of JP2021186754A publication Critical patent/JP2021186754A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

【課題】好気性排水処理において、より簡便に最適な目標好気処理時間を設定できる好気性排水処理システム。【解決手段】被処理水を好気処理する曝気装置を有する曝気槽、及び該曝気装置を制御する制御装置を少なくとも備える好気性排水処理システムであって、該制御装置は、該被処理水の水質特性値に基づき、予め準備した該被処理水の水質特性値と好気処理時間との関係式により、該水質特性値が予め設定した適正値以下となる目標好気処理時間を演算する演算部を有し、該演算部により演算されて得られた該目標好気処理時間以上の時間、該曝気装置により好気処理を行うことを特徴とする好気性排水処理システム。【選択図】図1PROBLEM TO BE SOLVED: To provide an aerobic wastewater treatment system capable of more easily setting an optimum target aerobic treatment time in aerobic wastewater treatment. An aerobic wastewater treatment system including at least an aeration tank having an aeration device for aerobically treating water to be treated and a control device for controlling the aeration device, wherein the control device is the water to be treated. Calculation to calculate the target aerobic treatment time when the water quality characteristic value is equal to or less than the preset appropriate value by the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time prepared in advance based on the water quality characteristic value. An aerobic wastewater treatment system having a unit and performing aerobic treatment by the aeration device for a time equal to or longer than the target aerobic treatment time obtained by calculation by the calculation unit. [Selection diagram] Fig. 1

Description

本開示は、好気性排水処理システム及び排水処理方法に関する。具体的には、好気性排水処理における最適な好気処理時間を設定し、処理水質を適正とする排水処理システム及び排水処理方法に関する。 The present disclosure relates to aerobic wastewater treatment systems and wastewater treatment methods. Specifically, the present invention relates to a wastewater treatment system and a wastewater treatment method for setting an optimum aerobic treatment time in aerobic wastewater treatment and optimizing the treated water quality.

食品工場や農水産物加工工場、紙パルプ工場等から排出される排水や公共下水の処理には、好気性排水処理が広く適用されている。好気性排水処理とは、好気性微生物により被処理水中の有機汚濁物を処理し、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)及び有機体炭素(TOC)の濃度を低減する処理である。例えば、標準活性汚泥法、回分式活性汚泥法、接触酸化法及びオキシデーションディッチ法等が存在する。接触酸化法は、微生物を固定する担体を用いる方法で、固定床式と流動床式に大別され、ポリエチレン製やポリプロピレン製の担体が使用される。
好気性排水処理には溶存酸素が不可欠であるため、好気性微生物を含む汚泥又は担体を被処理水に混ぜた混合液に酸素を供給する曝気槽が用いられる。曝気槽には、ブロワーが供給する空気を気泡にして混合液に酸素を溶解させる散気管式の散気装置や、混合液の表面及び液中に設置した攪拌翼で混合液を攪拌して酸素を溶解させる表面攪拌式やドラフトチューブ式の曝気装置が設置され、曝気装置で消費する電力が好気性排水処理のエネルギー負荷の大部分を占める。
近年では、処理水の質の向上のため、好適な曝気条件を設定する様々な取り組みがなされている。
例えば、特許文献1では、一次処理水を好気処理する排水処理システムにおいて、一次処理水の処理指標値に基づき目標曝気量を決める排水処理システムが開示されている。
また、特許文献2では、間欠曝気式活性汚泥法の制御方法において、流入水の流量と水温を入力層、曝気時間を出力層としてニューラルネットワークを構築し、処理良好時の入力に対する出力を学習させ、曝気時間を調整する方法が開示されている。
Aerobic wastewater treatment is widely applied to the treatment of wastewater and public sewage discharged from food factories, agricultural and marine product processing factories, pulp and paper factories, and the like. Aerobic wastewater treatment is the treatment of organic pollutants in the water to be treated by aerobic microorganisms to reduce the concentrations of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and organic carbon (TOC). This is a process to reduce. For example, there are a standard activated sludge method, a batch activated sludge method, a catalytic oxidation method, an oxidation ditch method and the like. The catalytic oxidation method is a method using a carrier for fixing microorganisms, and is roughly classified into a fixed bed type and a fluidized bed type, and a carrier made of polyethylene or polypropylene is used.
Since dissolved oxygen is indispensable for aerobic wastewater treatment, an aeration tank that supplies oxygen to a mixture of sludge containing aerobic microorganisms or a carrier mixed with water to be treated is used. In the aeration tank, the air supplied by the blower is made into bubbles to dissolve oxygen in the mixture, and the mixture is agitated by a stirring blade installed on the surface of the mixture and in the solution to obtain oxygen. A surface stirring type or draft tube type air agitator is installed to dissolve the air, and the power consumed by the air agitator accounts for most of the energy load of aerobic wastewater treatment.
In recent years, various efforts have been made to set suitable aeration conditions in order to improve the quality of treated water.
For example, Patent Document 1 discloses a wastewater treatment system for aerobically treating primary treated water, in which a target aeration amount is determined based on a treatment index value of the primary treated water.
Further, in Patent Document 2, in the control method of the intermittent aeration type activated sludge method, a neural network is constructed with the flow rate and water temperature of the inflow water as the input layer and the aeration time as the output layer, and the output for the input when the processing is good is learned. , A method of adjusting the aeration time is disclosed.

特開2018−103113号公報JP-A-2018-103113 特開平10−015577号公報Japanese Unexamined Patent Publication No. 10-015577

しかしながら、特許文献1のシステムは、フィードバック制御であるため、処理能力を超える流入負荷がある場合、処理不能となる可能性がある。
また、特許文献2の方法では、水温は年間を通じて変動するため、最低1年間のデータが必要になってしまう。
本開示は、好気性排水処理において、より簡便に最適な目標好気処理時間を設定できる排水処理システム及び排水処理方法を提供する。
However, since the system of Patent Document 1 is feedback control, it may become unprocessable when there is an inflow load exceeding the processing capacity.
Further, in the method of Patent Document 2, since the water temperature fluctuates throughout the year, data for at least one year is required.
The present disclosure provides a wastewater treatment system and a wastewater treatment method that can more easily set an optimum target aerobic treatment time in aerobic wastewater treatment.

[1] 被処理水を好気処理する曝気装置を有する曝気槽、及び該曝気装置を制御する制御装置を少なくとも備える好気性排水処理システムであって、
該制御装置は、該被処理水の水質特性値に基づき、予め準備した該被処理水の水質特性値と好気処理時間との関係式により、該水質特性値が予め設定した適正値以下となる目標好気処理時間を演算する演算部を有し、
該演算部により演算されて得られた該目標好気処理時間以上の時間、該曝気装置により好気処理を行うことを特徴とする好気性排水処理システム。
[2] 前記水質特性値が、有機物濃度である[1]に記載の好気性排水処理システム。[3] 前記好気性排水処理システムが、前記被処理水の前記水質特性値を検出し前記制御装置に出力する検出装置を備え、
前記演算部は、該検出装置で検出された前記水質特性値に基づき、前記目標好気処理時間を演算する[1]又は[2]に記載の好気性排水処理システム。
[4] 前記好気性排水処理システムが、原水槽及び該原水槽から前記曝気槽へ被処理水を送水する送水手段を備え、
該原水槽が、前記検出装置を有する[3]に記載の好気性排水処理システム。
[5] 前記検出装置が、紫外線吸光度計又は有機体炭素(TOC)自動計測器である[3]又は[4]に記載の好気性排水処理システム。
[6] 前記紫外線吸光度計又は前記有機体炭素(TOC)自動計測器が、懸濁質除去装置を備える[5]に記載の好気性排水処理システム。
[7] 前記水質特性値が、BOD、COD及びTOCからなる群から選択される少なくとも一である[1]〜[6]のいずれか一項に記載の好気性排水処理システム。
[8] 前記関係式が、下記式(1)であり、
前記制御装置において、前記目標好気処理時間を、下記式(1)で演算した好気処理後の処理水の水質特性値が予め設定した適正値以下となる時間T(分)の最小値として設定する[1]〜[7]のいずれか一項に記載の好気性排水処理システム。
(好気処理後の処理水の水質特性値)=
{(被処理水の水質特性値)−α}e−kT+αe−mT (1)
(式(1)中、該水質特性値がCOD(mg/L)であり、αは予め通常時の水質特性値を有する被処理水を6時間以上好気処理して得られたCODの0.5倍〜2倍の値であり、k(分−1)が1以下であり、m(分−1)が0.0100以下である。)
[9] 前記関係式が、下記式(2)であり、
前記制御装置において、前記目標好気処理時間を、下記式(2)で演算した好気処理後の処理水の水質特性値が予め設定した適正値以下となる時間T(分)の最小値として設定する[1]〜[7]のいずれか一項に記載の好気性排水処理システム。
(好気処理後の処理水の水質特性値)=
{(被処理水の水質特性値)−α}e−kT+αe−mT (2)
(式(2)中、該水質特性値がBOD(mg/L)であり、αが該被処理水の該BODの1.00倍未満の値であり、k(分−1)が1以下であり、m(分−1)が0.010以下である。)
[10] 前記曝気槽が、連続式活性汚泥処理槽又は生物膜処理槽であり、
前記目標好気処理時間を、曝気時間及び前記被処理水の流入量の制御により達成する[1]〜[9]のいずれか一項に記載の好気性排水処理システム。
[11] 前記曝気槽が、回分式活性汚泥処理槽であり、
前記目標好気処理時間を、曝気時間の制御により達成する[1]〜[9]のいずれか一項に記載の好気性排水処理システム。
[12] 被処理水を好気処理する曝気装置を有する曝気槽を少なくとも備える好気性排水処理システムによる排水処理方法であって、
該被処理水の水質特性値に基づき、予め準備した該被処理水の水質特性値と好気処理時間との関係式により、該水質特性値が予め設定した適正値以下となる目標好気処理時間を演算する演算工程、及び
該目標好気処理時間以上の時間、該曝気装置により好気処理を行う処理工程、を含む排水処理方法。
[13] 前記演算工程において用いる前記水質特性値が、有機物濃度である[12]に記載の排水処理方法。
[14] 前記好気性排水処理システムが、前記被処理水の前記水質特性値を検出する検
出装置を備え、
前記演算工程において、該検出装置で検出された前記水質特性値に基づき、前記目標好気処理時間を演算する[12]又は[13]に記載の排水処理方法。
[15] 前記好気性排水処理システムが、原水槽及び該原水槽から前記曝気槽へ被処理水を送水する送水手段を備え、
該原水槽が、前記検出装置を有する[14]に記載の排水処理方法。
[16] 前記演算工程において用いる水質特性値が、BOD、COD及びTOCからなる群から選択される少なくとも一である[12]〜[15]のいずれか一項に記載の排水処理方法。
[1] An aerobic wastewater treatment system including at least an aeration tank having an aeration device for aerobically treating water to be treated and a control device for controlling the aeration device.
Based on the water quality characteristic value of the water to be treated, the control device sets the water quality characteristic value to be less than or equal to a preset appropriate value by the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time prepared in advance. It has a calculation unit that calculates the target aerobic processing time.
An aerobic wastewater treatment system characterized in that aerobic treatment is performed by the aeration device for a time equal to or longer than the target aerobic treatment time obtained by calculation by the calculation unit.
[2] The aerobic wastewater treatment system according to [1], wherein the water quality characteristic value is an organic matter concentration. [3] The aerobic wastewater treatment system includes a detection device that detects the water quality characteristic value of the water to be treated and outputs it to the control device.
The aerobic wastewater treatment system according to [1] or [2], wherein the calculation unit calculates the target aerobic treatment time based on the water quality characteristic value detected by the detection device.
[4] The aerobic wastewater treatment system includes a raw water tank and a water supply means for sending water to be treated from the raw water tank to the aeration tank.
The aerobic wastewater treatment system according to [3], wherein the raw water tank has the detection device.
[5] The aerobic wastewater treatment system according to [3] or [4], wherein the detection device is an ultraviolet absorbance meter or an automatic organic carbon (TOC) measuring instrument.
[6] The aerobic wastewater treatment system according to [5], wherein the ultraviolet absorptiometer or the organic carbon (TOC) automatic measuring instrument includes a suspension removing device.
[7] The aerobic wastewater treatment system according to any one of [1] to [6], wherein the water quality characteristic value is at least one selected from the group consisting of BOD, COD and TOC.
[8] The relational expression is the following expression (1).
In the control device, the target aerobic treatment time is set as the minimum value of the time T (minutes) at which the water quality characteristic value of the treated water after the aerobic treatment calculated by the following formula (1) becomes equal to or less than a preset appropriate value. The aerobic wastewater treatment system according to any one of [1] to [7] to be set.
(Water quality characteristic value of treated water after aerobic treatment) =
{(Water quality characteristic value of water to be treated) −α} e −kT + αe −mT (1)
(In the formula (1), the water quality characteristic value is COD (mg / L), and α is 0 of COD obtained by aerobically treating the water to be treated having the normal water quality characteristic value for 6 hours or more in advance. .5 to 2 times the value, k (minute- 1 ) is 1 or less, and m (minute- 1 ) is 0.0100 or less.)
[9] The relational expression is the following expression (2).
In the control device, the target aerobic treatment time is set as the minimum value of the time T (minutes) at which the water quality characteristic value of the treated water after the aerobic treatment calculated by the following formula (2) becomes equal to or less than a preset appropriate value. The aerobic wastewater treatment system according to any one of [1] to [7] to be set.
(Water quality characteristic value of treated water after aerobic treatment) =
{(Water quality characteristic value of water to be treated) −α} e −kT + αe −mT (2)
(In the formula (2), the water quality characteristic value is BOD (mg / L), α is a value less than 1.00 times the BOD of the water to be treated, and k (minute- 1 ) is 1 or less. And m (minute- 1 ) is 0.010 or less.)
[10] The aeration tank is a continuous activated sludge treatment tank or a biofilm treatment tank.
The aerobic wastewater treatment system according to any one of [1] to [9], wherein the target aerobic treatment time is achieved by controlling the aeration time and the inflow amount of the water to be treated.
[11] The aeration tank is a batch type activated sludge treatment tank.
The aerobic wastewater treatment system according to any one of [1] to [9], wherein the target aerobic treatment time is achieved by controlling the aeration time.
[12] A wastewater treatment method using an aerobic wastewater treatment system including at least an aeration tank having an aeration device for aerobically treating the water to be treated.
Target aerobic treatment in which the water quality characteristic value is equal to or less than a preset appropriate value by the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time prepared in advance based on the water quality characteristic value of the water to be treated. A wastewater treatment method including a calculation step of calculating time, a treatment step of performing aerobic treatment by the aeration device for a time equal to or longer than the target aerobic treatment time.
[13] The wastewater treatment method according to [12], wherein the water quality characteristic value used in the calculation step is an organic substance concentration.
[14] The aerobic wastewater treatment system includes a detection device for detecting the water quality characteristic value of the water to be treated.
The wastewater treatment method according to [12] or [13], wherein the target aerobic treatment time is calculated based on the water quality characteristic value detected by the detection device in the calculation step.
[15] The aerobic wastewater treatment system includes a raw water tank and a water supply means for sending water to be treated from the raw water tank to the aeration tank.
The wastewater treatment method according to [14], wherein the raw water tank has the detection device.
[16] The wastewater treatment method according to any one of [12] to [15], wherein the water quality characteristic value used in the calculation step is at least one selected from the group consisting of BOD, COD and TOC.

本開示によれば、好気性排水処理において、より簡便に最適な目標好気処理時間を設定できる好気性排水処理システム及び排水処理方法を提供できる。 According to the present disclosure, it is possible to provide an aerobic wastewater treatment system and a wastewater treatment method that can more easily set an optimum target aerobic treatment time in aerobic wastewater treatment.

排水処理システムの構成図Configuration diagram of wastewater treatment system 排水処理システムの構成図Configuration diagram of wastewater treatment system 排水処理システムの構成図Configuration diagram of wastewater treatment system

数値範囲を表す「XX以上YY以下」や「XX〜YY」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。
Unless otherwise specified, the description of "XX or more and YY or less" or "XX to YY" indicating a numerical range means a numerical range including a lower limit and an upper limit which are end points.
When the numerical ranges are described step by step, the upper and lower limits of each numerical range can be arbitrarily combined.

以下、実施形態の好気性排水処理システム及び排水処理方法を、図面を参照して説明する。
図1は、第一の実施形態における好気性排水処理システムの構成図である。
図1に示す好気性排水処理システム100は、曝気装置2を有する曝気槽5、及び被処理水を曝気槽5に送水する送水手段(不図示)を備える。曝気装置2は、制御装置4により制御されている。制御装置4は、被処理水の水質特性値に基づき、予め準備した被処理水の水質特性値と好気処理時間との関係式により、被処理水の水質特性値が予め設定した適正値以下となる目標好気処理時間を演算する演算部を有する。
Hereinafter, the aerobic wastewater treatment system and the wastewater treatment method of the embodiment will be described with reference to the drawings.
FIG. 1 is a block diagram of an aerobic wastewater treatment system according to the first embodiment.
The aerobic wastewater treatment system 100 shown in FIG. 1 includes an aeration tank 5 having an aeration device 2 and a water supply means (not shown) for supplying water to be treated to the aeration tank 5. The aeration device 2 is controlled by the control device 4. In the control device 4, the water quality characteristic value of the water to be treated is equal to or less than a preset appropriate value based on the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time prepared in advance based on the water quality characteristic value of the water to be treated. It has a calculation unit that calculates the target aerobic processing time.

図中の矢印は、水(被処理水、処理水)の流れを示している。被処理水が、送水手段により曝気槽5に送水される。一方で、制御装置4に曝気槽5中の被処理水の水質特性値が入力される。そうすると、制御装置4における演算部は、該水質特性値から、予め準備した被処理水の水質特性値と好気処理時間との関係式により、被処理水の水質特性値が予め設定した適正値以下となる目標好気処理時間を演算する。
そして、制御装置4は曝気装置2を制御し、演算部により演算されて得られた目標好気処理時間以上の時間、曝気装置2により被処理水を好気処理する。好気処理後の処理水は、曝気槽5から排水される。
The arrows in the figure indicate the flow of water (water to be treated, treated water). The water to be treated is sent to the aeration tank 5 by the water feeding means. On the other hand, the water quality characteristic value of the water to be treated in the aeration tank 5 is input to the control device 4. Then, the calculation unit in the control device 4 sets the water quality characteristic value of the water to be treated to an appropriate value preset by the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time prepared in advance from the water quality characteristic value. Calculate the following target aerobic processing time.
Then, the control device 4 controls the aeration device 2, and the aeration device 2 aerates the water to be treated for a time equal to or longer than the target aerobic treatment time calculated by the calculation unit. The treated water after the aerobic treatment is drained from the aeration tank 5.

制御装置4への水質特性値の入力手段は特に制限されない。被処理水が曝気槽5に送水されるまでに測定した水質特性値を、制御装置4へ入力すればよい。例えば、被処理水を曝気槽5に送水する送水手段中、又は曝気槽5内に、被処理水の水質特性値を検出し制御装置4に出力する検出装置を備えていてもよい。水質特性値の測定及び測定値の制御装置4への入力は、自動で行ってもよいし、手動で行ってもよい。
上記排水処理システムを用いた排水処理方法においては、被処理水の水質特性値に基づき、予め準備した被処理水の水質特性値と好気処理時間との関係式により、目標好気処理
時間を演算する演算工程、及び該目標好気処理時間以上の時間、曝気装置2により好気処理を行う処理工程を含む。
The means for inputting the water quality characteristic value to the control device 4 is not particularly limited. The water quality characteristic value measured before the water to be treated is sent to the aeration tank 5 may be input to the control device 4. For example, a detection device that detects the water quality characteristic value of the water to be treated and outputs it to the control device 4 may be provided in the water sending means for sending the water to be treated to the aeration tank 5 or in the aeration tank 5. The measurement of the water quality characteristic value and the input of the measured value to the control device 4 may be performed automatically or manually.
In the wastewater treatment method using the above wastewater treatment system, the target aerobic treatment time is determined by the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time prepared in advance based on the water quality characteristic value of the water to be treated. It includes a calculation step for calculating and a processing step for performing aerobic treatment by the aeration device 2 for a time equal to or longer than the target aerobic treatment time.

図2は、第二の実施形態における好気性排水処理システムの構成図である。この排水処理システムでは、被処理水の水質特性値を検出し制御装置4に出力する検出装置3を備える。
具体的には、図2に示す好気性排水処理システム100は、原水槽1、曝気槽5、及び原水槽1から曝気槽5へ被処理水を送水する送水手段(不図示)を備える。原水槽1は、被処理水の水質特性値を検出する検出装置3を有する。なお、図2では、検出装置3は、原水槽1に備えられているが、原水槽1から曝気槽5への送水ライン(送水手段)中にあってもよいし、曝気槽5中にあってもよい。
原水槽は、必要に応じて原水槽1内の被処理水を循環させる循環装置を有していてもよい。さらに、排水処理システムは、検出装置3により検出された水質特性値を入力として、予め準備した被処理水の水質特性値と好気処理時間との関係式により、目標好気処理時間を演算する演算部を有する制御装置4を備える。制御装置4は、曝気槽5に設置した曝気装置2を制御する。
FIG. 2 is a block diagram of the aerobic wastewater treatment system according to the second embodiment. This wastewater treatment system includes a detection device 3 that detects the water quality characteristic value of the water to be treated and outputs it to the control device 4.
Specifically, the aerobic wastewater treatment system 100 shown in FIG. 2 includes a raw water tank 1, an aeration tank 5, and a water supply means (not shown) for sending water to be treated from the raw water tank 1 to the aeration tank 5. The raw water tank 1 has a detection device 3 for detecting the water quality characteristic value of the water to be treated. Although the detection device 3 is provided in the raw water tank 1 in FIG. 2, it may be in the water supply line (water supply means) from the raw water tank 1 to the aeration tank 5, or in the aeration tank 5. You may.
The raw water tank may have a circulation device for circulating the water to be treated in the raw water tank 1, if necessary. Further, the wastewater treatment system uses the water quality characteristic value detected by the detection device 3 as an input and calculates the target aerobic treatment time by the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time prepared in advance. A control device 4 having a calculation unit is provided. The control device 4 controls the aeration device 2 installed in the aeration tank 5.

原水槽1に被処理水が供給され、検出装置3が、原水槽1中の被処理水の水質特性値を検出する。検出された水質特性値が制御装置4の演算部に入力されると、演算部は、検出装置で検出された水質特性値に基づき、予め準備した被処理水の水質特性値と好気処理時間との関係式により、被処理水の水質特性値が予め設定した適正値以下となる目標好気処理時間を演算する。
排水処理方法の場合は、演算工程において、検出装置3で検出された水質特性値に基づき、上記関係式により目標好気処理時間を演算する。
The water to be treated is supplied to the raw water tank 1, and the detection device 3 detects the water quality characteristic value of the water to be treated in the raw water tank 1. When the detected water quality characteristic value is input to the calculation unit of the control device 4, the calculation unit determines the water quality characteristic value and the aerobic treatment time of the water to be treated prepared in advance based on the water quality characteristic value detected by the detection device. The target aerobic treatment time at which the water quality characteristic value of the water to be treated is equal to or less than a preset appropriate value is calculated by the relational expression with.
In the case of the wastewater treatment method, the target aerobic treatment time is calculated by the above relational expression based on the water quality characteristic value detected by the detection device 3 in the calculation step.

一方、原水槽1内の被処理水は、曝気槽5に送水される。曝気槽5において、被処理水は、制御装置4の演算部により算出された目標好気処理時間以上の時間、曝気装置2により好気処理される。好気処理後の処理水は、曝気槽5から排水手段(不図示)により排水される。
このように、検出装置を有することで排水処理をフィードフォワードで制御しやすくなる。
被処理水が汚濁しているような場合、原水槽1は、検出装置3の前段に前処理装置6を有していてもよい。前処理装置6としては、懸濁物除去を目的としたバースクリーンや濃度調整を目的とした希釈装置を単独で又はこれらを組み合わせて使用しうる。バースクリーンは汚染されやすいため、洗浄機能を有することが好ましい。
On the other hand, the water to be treated in the raw water tank 1 is sent to the aeration tank 5. In the aeration tank 5, the water to be treated is aerated by the aeration device 2 for a time equal to or longer than the target aerobic treatment time calculated by the calculation unit of the control device 4. The treated water after the aerobic treatment is drained from the aeration tank 5 by a drainage means (not shown).
In this way, having the detection device makes it easy to control the wastewater treatment by feedforward.
When the water to be treated is polluted, the raw water tank 1 may have a pretreatment device 6 in front of the detection device 3. As the pretreatment device 6, a bar screen for removing suspensions and a diluting device for adjusting the concentration can be used alone or in combination thereof. Since the bar screen is easily contaminated, it is preferable to have a cleaning function.

検出装置3としては、例えば、紫外線吸光度計や有機体炭素(TOC)自動計測器などの全有機体炭素計(TOC計)が挙げられる。検出装置は、紫外線吸光度計又はTOC自動計測器であることが好ましく、紫外線吸光度計であることがより好ましい。このような検出装置であれば、所望の水質特性値を連続的にかつ自動的に測定することができる。
紫外線吸光度計又は有機体炭素(TOC)自動計測器が懸濁質除去装置を備えることが好ましい。懸濁質除去装置により安定した水質特性値の測定が可能となる。懸濁質除去装置は、懸濁質を除去できるものであれば特に制限されない。例えば、バースクリーン、ろ過装置などが挙げられる。
Examples of the detection device 3 include a total organic carbon meter (TOC meter) such as an ultraviolet absorbance meter and an automatic organic carbon (TOC) measuring instrument. The detection device is preferably an ultraviolet absorbance meter or a TOC automatic measuring instrument, and more preferably an ultraviolet absorbance meter. With such a detection device, a desired water quality characteristic value can be continuously and automatically measured.
It is preferable that an ultraviolet absorptiometer or an automatic organic carbon (TOC) measuring instrument is provided with a suspension removing device. The suspension remover enables stable measurement of water quality characteristics. The suspension removing device is not particularly limited as long as it can remove the suspension. For example, a bar screen, a filtration device and the like can be mentioned.

好気処理時間とは、曝気槽5中の被処理水が好気状態となっている時間である。好気状態とは、被処理水に溶存酸素が存在する条件であり、曝気槽5中の被処理水の溶存酸素濃度(DO濃度)又は酸化還元電位(ORP)が指標となる。
溶存酸素量については、0.1mg/L以上であることが必要であり、好ましくは1.0mg/L以上、より好ましくは2.0mg/L以上である。酸化還元電位については、
プラスの値である(0mVより大きい)ことが必要であり、好ましくは50mV以上、より好ましくは100mV以上である。
被処理水が好気状態となっている合計の時間が目標好気処理時間以上であればよい。すなわち、好気処理を間欠で行ってもよい。好気処理の途中で、曝気装置2を停止させるなどして、被処理水が嫌気状態となることがあってもよい。
The aerobic treatment time is the time during which the water to be treated in the aeration tank 5 is in an aerobic state. The aerobic state is a condition in which dissolved oxygen is present in the water to be treated, and the dissolved oxygen concentration (DO concentration) or oxidation-reduction potential (ORP) of the water to be treated in the aeration tank 5 is an index.
The amount of dissolved oxygen needs to be 0.1 mg / L or more, preferably 1.0 mg / L or more, and more preferably 2.0 mg / L or more. For redox potential,
It needs to be a positive value (greater than 0 mV), preferably 50 mV or more, more preferably 100 mV or more.
The total time during which the water to be treated is in an aerobic state may be longer than the target aerobic treatment time. That is, the aerobic treatment may be performed intermittently. The water to be treated may become anaerobic by stopping the aeration device 2 during the aerobic treatment.

目標好気処理時間は、被処理水の流入量、処理水の排出量、曝気槽容積、曝気槽中の被処理水の滞留時間、曝気時間及び間欠曝気割合(1時間のうち曝気槽を好気状態としている時間の割合)などを考慮して達成すればよい。
例えば、被処理水の流入量及び曝気槽容積などから、曝気槽中の被処理水の平均滞留時間を算出し、平均滞留時間のうちの好気処理時間が、目標好気処理時間以上になるように好気処理すればよい。回分式の曝気槽であれば曝気時間により目標好気処理時間を達成すればよいし、連続式の曝気槽であれば平均滞留時間のうちの好気処理時間により目標好気処理時間を達成すればよい。
The target aeration treatment time is the inflow amount of the treated water, the discharge amount of the treated water, the volume of the aeration tank, the residence time of the treated water in the aeration tank, the aeration time and the intermittent aeration ratio (the aeration tank is preferable in one hour). It may be achieved in consideration of the ratio of time in aeration).
For example, the average residence time of the water to be treated in the aeration tank is calculated from the inflow amount of the water to be treated and the volume of the aeration tank, and the aerobic treatment time of the average residence time becomes equal to or longer than the target aerobic treatment time. The aerobic treatment should be performed as follows. In the case of a batch type aeration tank, the target aeration treatment time may be achieved by the aeration time, and in the case of a continuous type aeration tank, the target aerobic treatment time should be achieved by the aerobic treatment time of the average residence time. Just do it.

好気状態は、曝気装置2で制御する。曝気装置は、特に制限されず、ブロワーを用いるものや表面撹拌式のものなど公知のものを採用すればよい。
例えば、電源周波数制御で風量調整が可能なブロワーを用いることができる。また、例えば、間欠曝気割合を曝気槽内の溶存酸素濃度を1.0mg/L以上とできる主ブロワーと曝気槽内の溶存酸素濃度は1.0mg/L未満となるが、曝気槽底部への汚泥沈降及びブロワー目詰まりを防止できる補助ブロワーとの切り替え運転で制御することもできる。
The aerobic state is controlled by the aeration device 2. The aeration device is not particularly limited, and a known one such as one using a blower or a surface stirring type may be adopted.
For example, a blower whose air volume can be adjusted by controlling the power frequency can be used. Further, for example, the main blower capable of setting the intermittent aeration ratio to 1.0 mg / L or more in the dissolved oxygen concentration in the aeration tank and the dissolved oxygen concentration in the aeration tank are less than 1.0 mg / L, but to the bottom of the aeration tank. It can also be controlled by switching operation with an auxiliary blower that can prevent sludge settling and blower clogging.

水質特性値は、例えば、有機物濃度などの有機物量が挙げられる。水質特性値は、好ましくはBOD、COD、TOC、及びTOD(全酸素要求量)からなる群から選択される少なくとも一であり、より好ましくはBOD、COD及びTOCからなる群から選択される少なくとも一であり、さらに好ましくはBOD及びCODからなる群から選択される少なくとも一である。
BOD(生物化学的酸素消費量)とは、水中の好気性微生物によって消費される溶存酸素の量をいう。
COD(化学的酸素要求量)とは、水中の被酸化性物質によって消費された酸化剤の酸素換算量をいう。
TOC(有機体炭素)とは、水中に存在する有機物中の炭素を言い、燃焼酸化−赤外線式TOC分析法又は燃焼酸化−赤外線式TOC自動計測法により求める。
本発明者らの検討によると、BOD、COD及びTOCなどの有機物濃度の低下は、好気処理時間との関係性が強く、BOD、COD及びTOCなどの有機物濃度に着目することで、少ないデータから、水温の影響をあまり受けず年間を通じて適用可能な目標好気処理時間の算出が行いやすい。
Examples of the water quality characteristic value include the amount of organic matter such as the concentration of organic matter. The water quality characteristic value is preferably at least one selected from the group consisting of BOD, COD, TOC, and TOD (total oxygen demand), and more preferably at least one selected from the group consisting of BOD, COD, and TOC. , And more preferably at least one selected from the group consisting of BOD and COD.
BOD (Biochemical Oxygen Demand) refers to the amount of dissolved oxygen consumed by aerobic microorganisms in water.
COD (Chemical Oxygen Demand) refers to the oxygen equivalent of an oxidant consumed by an oxidizing substance in water.
TOC (organic carbon) refers to carbon in an organic substance existing in water, and is obtained by a combustion oxidation-infrared TOC analysis method or a combustion oxidation-infrared TOC automatic measurement method.
According to the study by the present inventors, the decrease in the concentration of organic substances such as BOD, COD and TOC is strongly related to the aerobic treatment time, and by focusing on the concentration of organic substances such as BOD, COD and TOC, there is little data. Therefore, it is easy to calculate the target aerobic treatment time that can be applied throughout the year without being affected by the water temperature.

紫外線吸光度計などの検出装置による検出値は、処理水質項目に応じて、検量線からBODやCODに換算して制御装置4で演算することも可能である。水質特性値は、紫外線吸光度からの換算値であることが好ましい。紫外線吸光度計は連続測定可能なものが好ましい。
紫外線吸光度計による検出値は、以下の手順でBOD又はCODに換算すればよい。
The value detected by a detection device such as an ultraviolet absorbance meter can be calculated by the control device 4 by converting the calibration curve into BOD or COD according to the treated water quality item. The water quality characteristic value is preferably a converted value from the ultraviolet absorbance. The ultraviolet absorptiometer is preferably one capable of continuous measurement.
The value detected by the ultraviolet absorptiometer may be converted into BOD or COD by the following procedure.

紫外線吸光度計(UV計)としては、例えば、堀場アドバンスドテクノ製有機性汚濁物質測定装置CW−150を用いることができる。
BODは、JIS K0102 21.「生物化学的酸素消費量」に準拠した分析値と紫外線吸光度計の測定値から定めた検量線を用いて、紫外線吸光度から換算する。
CODは、JIS K0102 17.「100℃における過マンガン酸カリウムによる酸素消費量」に準拠した分析値と紫外線吸光度計の測定値から定めた検量線を用いて、
紫外線吸光度から換算する。
また、紫外線吸光度の代わりにJIS K0102 22.「有機体炭素」に準拠したTOC自動計測器により測定したTOCを用いて、TOCとBOD又はCODとの相関関係よりTOCからBOD又はCODに換算することも可能である。
As the ultraviolet absorbance meter (UV meter), for example, an organic pollutant measuring device CW-150 manufactured by HORIBA Advanced Techno can be used.
BOD is JIS K0102 21. Convert from the ultraviolet absorbance using the calibration curve determined from the analytical value based on "biochemical oxygen consumption" and the measured value of the ultraviolet absorbance meter.
COD is JIS K0102 17. Using the calibration curve determined from the analytical values based on "Oxygen consumption by potassium permanganate at 100 ° C" and the measured values of the ultraviolet absorptiometer,
Convert from UV absorbance.
Also, instead of UV absorbance, JIS K0102 22. It is also possible to convert TOC to BOD or COD from the correlation between TOC and BOD or COD by using TOC measured by a TOC automatic measuring instrument compliant with "organic carbon".

制御装置4の演算部は、被処理水の水質特性値に基づき、予め準備した被処理水の水質特性値と好気処理時間との関係式から目標好気処理時間を演算する。上記関係式を取得する手段は特に制限されない。
例えば、あらかじめ、好気処理時間と、有機物濃度などの水質特性値と、の関係(時系列データ)を取得し、これらから得られた関係式を採用することができる。まず、好気処理時間に応じた有機物濃度などの水質特性値の時系列データを複数取得する。これらのデータをプロットしたデータ群から最小二乗法により、好気処理時間と水質特性値との関係式を求める。
The calculation unit of the control device 4 calculates the target aerobic treatment time from the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time prepared in advance based on the water quality characteristic value of the water to be treated. The means for obtaining the above relational expression is not particularly limited.
For example, the relationship (time series data) between the aerobic treatment time and the water quality characteristic value such as the organic matter concentration can be acquired in advance, and the relational expression obtained from these can be adopted. First, a plurality of time-series data of water quality characteristic values such as organic matter concentration according to the aerobic treatment time are acquired. From the data group in which these data are plotted, the relational expression between the aerobic treatment time and the water quality characteristic value is obtained by the least squares method.

時系列データの取得は一度でもよいし、季節ごとに複数回行ってもよい。
関係式を求める際は、排水処理に供する被処理水のうち、通常時の水質特性値を有する被処理水から得られた水質特性値を使用すればよい。すなわち、普段、その排水処理に供している被処理水を使用すればよい。その排水処理に供している被処理水のうち、平均的な水質特性値を有する被処理水を使用することが好ましい。
そして、得られた関係式に基づき、制御装置4により、所望の水質特性値となる目標好気処理時間を算出すればよい。
The time series data may be acquired once or multiple times for each season.
When obtaining the relational expression, the water quality characteristic value obtained from the water to be treated having the normal water quality characteristic value among the water to be treated for wastewater treatment may be used. That is, the water to be treated, which is usually used for the wastewater treatment, may be used. Of the water to be treated that is used for the wastewater treatment, it is preferable to use the water to be treated having an average water quality characteristic value.
Then, based on the obtained relational expression, the control device 4 may calculate the target aerobic treatment time, which is a desired water quality characteristic value.

BOD及び/又はCODを指標として、下記式(A)により目標好気処理時間を演算することで、年間を通じて好適な目標好気処理時間を演算できるため好ましい。
すなわち、上記関係式が、下記式(A)であることが好ましい。制御装置において、目標好気処理時間を、下記式(A)で演算した好気処理後の処理水の水質特性値が予め設定した適正値以下となる時間T(分)の最小値として設定することが好ましい。
(好気処理後の処理水の水質特性値)=
{(被処理水の水質特性値)−α}e−kT+αe−mT (A)
好気処理後の処理水の水質特性値を、任意の管理値以下(例えば、COD60mg/L以下)とするために最低限必要な目標好気処理時間Tは、被処理水の水質特性値(例えばCOD)から、式(A)により好気処理後の処理水の水質特性値が管理値(60mg/L)となる時間T(分)を求めることで、制御装置4により自動設定できる。
係数であるα、k及びmは、排水処理に供する被処理水の水質特性値に応じて、好気処理時間と水質特性値との時系列データから、最小二乗法により決定することができる。
By calculating the target aerobic treatment time by the following formula (A) using BOD and / or COD as an index, it is preferable because a suitable target aerobic treatment time can be calculated throughout the year.
That is, it is preferable that the above relational expression is the following expression (A). In the control device, the target aerobic treatment time is set as the minimum value of the time T (minutes) at which the water quality characteristic value of the treated water after the aerobic treatment calculated by the following formula (A) becomes equal to or less than a preset appropriate value. Is preferable.
(Water quality characteristic value of treated water after aerobic treatment) =
{(Water quality characteristic value of water to be treated) −α} e −kT + αe −mT (A)
The minimum target aerobic treatment time T required to keep the water quality characteristic value of the treated water after aerobic treatment below an arbitrary control value (for example, COD 60 mg / L or less) is the water quality characteristic value of the water to be treated (for example, COD 60 mg / L or less). For example, from COD), the time T (minutes) at which the water quality characteristic value of the treated water after the aerobic treatment becomes the control value (60 mg / L) is obtained by the formula (A), and the control device 4 can automatically set the time T (minutes).
The coefficients α, k and m can be determined by the least squares method from the time series data of the aerobic treatment time and the water quality characteristic value according to the water quality characteristic value of the water to be treated for wastewater treatment.

水質特性値がCODである場合は、紫外線吸光度から検量線で換算した被処理水のCOD(mg/L)を下記式(1)に代入し、式(1)の好気処理後の処理水のCOD(mg/L)が目標値以下となる最低の時間T(分)を目標好気処理時間とすることが好ましい。
(好気処理後の処理水のCOD)=
{(被処理水のCOD)−α}e−kT+αe−mT ・・・(1)
When the water quality characteristic value is COD, the COD (mg / L) of the water to be treated converted from the absorbance of ultraviolet rays by the calibration curve is substituted into the following formula (1), and the treated water after the aerobic treatment of the formula (1) is substituted. It is preferable that the minimum time T (minutes) at which the COD (mg / L) of the above is equal to or less than the target value is set as the target aerobic treatment time.
(COD of treated water after aerobic treatment) =
{(COD of water to be treated) -α} e- kT + αe- mT ... (1)

式(1)中、Tは時間(分)である。αは、予め通常時の水質特性値を有する被処理水を、6時間以上好気処理(より好ましくは6時間好気処理)して得られたCOD(mg/L)の0.5倍〜2倍の値とすることが好ましい。より好ましくは、0.7倍〜1.5倍、0.8倍〜1.3倍、0.9倍〜1.2倍である。
また、具体的には、好ましくは、αは、40〜80、50〜70、55〜65、58〜62である。特に好ましくは、αは60である。
k(分−1)は、好ましくは1以下である。より好ましくは、0.5以下、0.3以下
、0.2以下、0.15以下である。一方、k(分−1)は、好ましくは0.01以上、0.05以上、0.08以上である。k(分−1)は、特に好ましくは0.12である。
m(分−1)は、好ましくは0.0100以下である。m(分−1)は、より好ましくは0.0015以下である。一方、m(分−1)は、好ましくは0.00001以上、0.0001以上、0.0005以上、0.0008以上である。m(分−1)は、特に好ましくは0.001である。
上記、数値範囲の上限及び下限は、任意に組み合わせることができる。
In equation (1), T is the hour (minutes). α is 0.5 times to COD (mg / L) obtained by aerobically treating (more preferably, 6 hours aerobic treatment) the water to be treated, which has the water quality characteristic value at the normal time, for 6 hours or more. The value is preferably doubled. More preferably, it is 0.7 times to 1.5 times, 0.8 times to 1.3 times, and 0.9 times to 1.2 times.
Specifically, α is preferably 40 to 80, 50 to 70, 55 to 65, and 58 to 62. Particularly preferably, α is 60.
k (minute- 1 ) is preferably 1 or less. More preferably, it is 0.5 or less, 0.3 or less, 0.2 or less, and 0.15 or less. On the other hand, k (minute- 1 ) is preferably 0.01 or more, 0.05 or more, and 0.08 or more. k (minute- 1 ) is particularly preferably 0.12.
m (minute- 1 ) is preferably 0.0100 or less. m (minute- 1 ) is more preferably 0.0015 or less. On the other hand, m (minute- 1 ) is preferably 0.00001 or more, 0.0001 or more, 0.0005 or more, and 0.0008 or more. m (minute- 1 ) is particularly preferably 0.001.
The upper and lower limits of the above numerical range can be arbitrarily combined.

水質特性値がBODである場合は、紫外線吸光度から検量線で換算した被処理水のBOD(mg/L)を下記式(2)に代入し、式(2)の好気処理後の処理水のBOD(mg/L)が目標値以下となる最低の時間T(分)を目標好気処理時間とすることが好ましい。
(好気処理後の処理水のBOD)=
{(被処理水のBOD)−α}e−kT+αe−mT ・・・(2)
When the water quality characteristic value is BOD, the BOD (mg / L) of the water to be treated converted from the absorbance of ultraviolet rays by the calibration curve is substituted into the following formula (2), and the treated water after the aerobic treatment of the formula (2) is substituted. It is preferable that the minimum time T (minutes) at which the BOD (mg / L) of the above is equal to or less than the target value is set as the target aerobic treatment time.
(BOD of treated water after aerobic treatment) =
{(BOD of water to be treated) -α} e- kT + αe- mT ... (2)

式(2)中、Tは時間(分)である。αは被処理水のBODの1.00倍未満の実数値である。すなわち、被処理水のBOD濃度(mg/L)をbとしたとき、αは、1.00b未満である。αは、好ましくは0.49b以下、0.30b以下、0.20b以下、0.10b以下である。一方、αは、好ましくは0.01b以上、0.04b以上、0.05b以上、0.06b以上である。αは、特に好ましくは0.08bである。
k(分−1)は、好ましくは1以下である。より好ましくは、0.5以下、0.4以下、0.3以下、0.25以下である。一方、k(分−1)は、好ましくは0.01以上、0.05以上、0.08以上である。k(分−1)は、特に好ましくは0.1である。
m(分−1)は、好ましくは0.010以下である。m(分−1)は、より好ましくは0.007以下、0.005以下である。一方、m(分−1)は、好ましくは0.0001以上、0.001以上、0.003以上である。m(分−1)は、特に好ましくは0.004である。
上記、数値範囲の上限及び下限は、任意に組み合わせることができる。
In equation (2), T is the hour (minutes). α is a real value less than 1.00 times the BOD of the water to be treated. That is, when the BOD concentration (mg / L) of the water to be treated is b, α is less than 1.00b. α is preferably 0.49b or less, 0.30b or less, 0.20b or less, and 0.10b or less. On the other hand, α is preferably 0.01b or more, 0.04b or more, 0.05b or more, and 0.06b or more. α is particularly preferably 0.08b.
k (minute- 1 ) is preferably 1 or less. More preferably, it is 0.5 or less, 0.4 or less, 0.3 or less, and 0.25 or less. On the other hand, k (minute- 1 ) is preferably 0.01 or more, 0.05 or more, and 0.08 or more. k (minute- 1 ) is particularly preferably 0.1.
m (minute- 1 ) is preferably 0.010 or less. m (minute- 1 ) is more preferably 0.007 or less and 0.005 or less. On the other hand, m (minute- 1 ) is preferably 0.0001 or more, 0.001 or more, and 0.003 or more. m (minute- 1 ) is particularly preferably 0.004.
The upper and lower limits of the above numerical range can be arbitrarily combined.

制御装置4の演算部が演算した目標好気処理時間に基づき、曝気装置2の運休転時間を制御すればよい。システムが曝気槽5及び曝気装置2を複数備える場合、好気処理時間は曝気装置2の運転台数の調整により制御してもよい。
図3に示す第三の実施形態は、曝気槽5が、隔壁等で直列に複数段に分割された系列が1系列又は複数系列(図3では2系列)から構成される連続処理方式の態様である。分割された各曝気槽5に曝気装置2が個別に設置され、個別の曝気装置2の運休転を、制御装置4が演算した目標好気処理時間に応じ調整する。
すなわち、直列に設置された曝気槽5における、一室あたりの平均滞留時間に応じて好気処理時間を調整すればよい。演算された目標好気処理時間が短い場合は、直列に設置された曝気槽における一部の曝気装置を停止させておくこともできる。
The operation suspension time of the aeration device 2 may be controlled based on the target aerobic processing time calculated by the calculation unit of the control device 4. When the system includes a plurality of aeration tanks 5 and aeration devices 2, the aerobic processing time may be controlled by adjusting the number of operating units of the aeration devices 2.
The third embodiment shown in FIG. 3 is an embodiment of a continuous processing method in which the aeration tank 5 is composed of one series or a plurality of series (two series in FIG. 3) in which the series divided into a plurality of stages in series by a partition wall or the like is formed. Is. An aeration device 2 is individually installed in each of the divided aeration tanks 5, and the suspension of operation of the individual aeration devices 2 is adjusted according to the target aerobic processing time calculated by the control device 4.
That is, the aerobic treatment time may be adjusted according to the average residence time per room in the aeration tanks 5 installed in series. If the calculated target aerobic treatment time is short, some aeration devices in the aeration tanks installed in series can be stopped.

曝気槽は、特に制限されず、公知の好気的生物処理に用いられる曝気槽を適用しうる。例えば、活性汚泥処理槽(標準活性汚泥処理槽、オキシデーションディッチ槽、膜分離活性汚泥処理槽、嫌気好気活性汚泥処理槽及び嫌気無酸素好気活性汚泥処理槽などの連続式活性汚泥処理槽並びに回分式活性汚泥処理槽)、生物膜処理槽(接触酸化槽、回転円盤生物膜処理槽、固定床担体生物膜処理槽、流動床担体生物膜処理槽、生物膜ろ過処理槽など)が挙げられる。
曝気槽が、回分式活性汚泥処理槽の場合、回分式で処理する際の曝気時間を、制御装置4の演算部が演算した目標好気処理時間以上となるよう調整すればよい。
The aeration tank is not particularly limited, and a known aeration tank used for aerobic biological treatment can be applied. For example, a continuous activated sludge treatment tank such as an activated sludge treatment tank (standard activated sludge treatment tank, oxidation ditch tank, membrane separation activated sludge treatment tank, anaerobic aerobic activated sludge treatment tank and anaerobic anoxic aerobic activated sludge treatment tank). Also listed are batch-type activated sludge treatment tanks) and biofilm treatment tanks (contact oxidation tanks, rotating disk biofilm treatment tanks, fixed bed carrier biofilm treatment tanks, fluidized bed carrier biofilm treatment tanks, biofilm filtration treatment tanks, etc.). Be done.
When the aeration tank is a batch type activated sludge treatment tank, the aeration time for batch treatment may be adjusted to be equal to or longer than the target aerobic treatment time calculated by the calculation unit of the control device 4.

曝気槽は、活性汚泥処理槽又は生物膜処理槽であることが好ましい。
連続式活性汚泥処理槽又は生物膜処理槽の場合、制御装置の演算部により演算された目標好気処理時間を、曝気時間及び被処理水の流入量の制御により達成することが好ましい。
また、曝気槽が回分式の活性汚泥処理槽の場合、制御装置により演算された目標好気処理時間を、曝気時間の制御により達成することが好ましい。
なお、生物膜処理槽において逆洗浄工程を行う場合、逆洗浄工程では目標好気処理時間を、曝気時間の制御により達成することが好ましい。この場合、被処理水の水質特性値と好気処理時間との関係式を取得するにあたり、好気処理時間に応じた有機物濃度などの水質特性値の時系列データを、逆洗浄工程を実施して取得すればよい。
なお、本開示の排水処理システムにより、適切な好気処理時間を設定できるため、従来と比較して好気処理時間を短縮できる。短縮された時間を有効活用して逆洗浄工程を実施することもできる。
The aeration tank is preferably an activated sludge treatment tank or a biofilm treatment tank.
In the case of a continuous activated sludge treatment tank or a biofilm treatment tank, it is preferable to achieve the target aerobic treatment time calculated by the calculation unit of the control device by controlling the aeration time and the inflow amount of the water to be treated.
Further, when the aeration tank is a batch type activated sludge treatment tank, it is preferable to achieve the target aerobic treatment time calculated by the control device by controlling the aeration time.
When the backwashing step is performed in the biofilm treatment tank, it is preferable to achieve the target aerobic treatment time in the backwashing step by controlling the aeration time. In this case, in order to acquire the relational expression between the water quality characteristic value of the water to be treated and the aerobic treatment time, a backwashing step is performed on the time series data of the water quality characteristic value such as the organic matter concentration according to the aerobic treatment time. You can get it.
Since the wastewater treatment system of the present disclosure can set an appropriate aerobic treatment time, the aerobic treatment time can be shortened as compared with the conventional case. The backwashing process can also be carried out by effectively utilizing the shortened time.

被処理水は、好気性処理を適用しうる排水であれば特に制限されない。被処理水は、食品工場、農水産物加工工場又は紙パルプ工場等からの排水や公共下水など、いわゆる有機性排水であることが好ましい。
被処理水のBOD(mg/L)は、好ましくは10000以下、3000以下、1000以下、500以下、300以下、200以下であればよい。一方、下限は、好ましくは50以上、100以上、150以上であればよい。
被処理水のCOD(mg/L)は、好ましくは10000以下、3000以下、1000以下、500以下、300以下、200以下であればよい。一方、下限は、好ましくは50以上、100以上、150以上であればよい。
被処理水のBOD/CODが極端に高い場合は、上記濃度となるように希釈装置などにより水で希釈すればよい。上記のような被処理水であれば、排水処理システムを好適に適用できる。
The water to be treated is not particularly limited as long as it is wastewater to which aerobic treatment can be applied. The water to be treated is preferably so-called organic wastewater such as wastewater from food factories, agricultural and marine product processing factories, pulp and paper factories, public sewage, and the like.
The BOD (mg / L) of the water to be treated is preferably 10,000 or less, 3000 or less, 1000 or less, 500 or less, 300 or less, and 200 or less. On the other hand, the lower limit may be preferably 50 or more, 100 or more, and 150 or more.
The COD (mg / L) of the water to be treated is preferably 10,000 or less, 3000 or less, 1000 or less, 500 or less, 300 or less, and 200 or less. On the other hand, the lower limit may be preferably 50 or more, 100 or more, and 150 or more.
When the BOD / COD of the water to be treated is extremely high, it may be diluted with water using a diluting device or the like so as to have the above concentration. The wastewater treatment system can be preferably applied to the water to be treated as described above.

被処理水の水温は、特に制限されないが、10℃〜42℃程度であればよい。好ましくは13℃〜38℃であり、より好ましくは15℃〜36℃である。上記温度であれば、排水処理システムを好適に適用できる。 The water temperature of the water to be treated is not particularly limited, but may be about 10 ° C. to 42 ° C. It is preferably 13 ° C. to 38 ° C., and more preferably 15 ° C. to 36 ° C. At the above temperatures, the wastewater treatment system can be suitably applied.

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples.

以下の手順により、BOD/CODと、好気処理時間との関係式を設定した。
工場の活性汚泥装置は曝気槽が2系列あり、それぞれ直列で1系は15室、2系は7室で構成される。曝気装置を間引き運転可能なため、曝気装置を停止している槽は処理に寄与していないと仮定した積算曝気時間T(以下、時間T/単位:分)と、COD又はBODとの関係を調査した。
COD/BOD(mg/L)を管理値以下とするのに必要な時間T(目的変数)を、被処理水のCOD/BOD(説明変数)から推定することを考えた。
The relational expression between BOD / COD and aerobic treatment time was set by the following procedure.
The activated sludge equipment in the factory has two aeration tanks, each of which consists of 15 rooms in series 1 and 7 rooms in system 2. Since the aeration device can be thinned out, the relationship between the integrated aeration time T (hereinafter, time T / unit: minute) and COD or BOD, assuming that the tank in which the aeration device is stopped does not contribute to the processing. investigated.
It was considered to estimate the time T (objective variable) required to keep the COD / BOD (mg / L) below the control value from the COD / BOD (explanatory variable) of the water to be treated.

曝気槽の各室の滞留時間と曝気装置の稼働状況から各室の積算曝気時間Tが定まるため、各室から時間Tの異なるサンプルを採取した。採取したサンプルから汚泥をろ過したろ液のCOD/BODを分析し、時間Tに対するCOD/BODの変化の数式化を試みた。
サンプルの採取は、2018年11月27日から2019年9月17日までの期間中に計7回実施した。
7回それぞれの調査ごとに、1系、2系それぞれの時間T(目的変数)とCOD又はBOD(説明変数)を系列に関係なくプロットし、両者に以下の関係式が成立すると仮定し、プロットしたデータ群から最小二乗法で関係式の4つの係数を決定した。
COD又はBOD = Ae−k・T+Be−m・T
(A,B,k,mは係数)
Since the cumulative aeration time T of each room is determined from the residence time of each room of the aeration tank and the operating status of the aeration device, samples having different times T were collected from each room. The COD / BOD of the filtrate obtained by filtering sludge from the collected sample was analyzed, and an attempt was made to formulate the change in COD / BOD with respect to time T.
Samples were collected 7 times in total during the period from November 27, 2018 to September 17, 2019.
For each of the 7 surveys, plot the time T (objective variable) and COD or BOD (explanatory variable) of each of the 1st and 2nd systems regardless of the series, and assume that the following relational expression holds for both, and plot. The four coefficients of the relational expression were determined by the least squares method from the obtained data group.
COD or BOD = Ae- k · T + Be- m · T
(A, B, k, m are coefficients)

7回の調査で得られた関係式を比較し、係数の関係性から、年間を通じて適用可能な以下の統一式でCOD及びBODを表現できた。具体的には、7回の調査それぞれで、データから最小二乗法で得た回帰式の定数係数と原水濃度の関係を、COD及びBODそれぞれについてまとめ、回帰式の形式より各係数を決定した。
COD=(C−60)e−0.12T+60e−0.001T
BOD=C{(1−0.08)e−0.1T+0.08e−0.004T
(ただし、Cは、被処理水(原水)のCOD又はBOD(mg/L)である。)
得られた各回帰式における主要項の係数と、原水のCOD/BODとの関係から、BOD及びCODの処理速度の衰える濃度が原水濃度に比例し、水温の影響はあまり受けていないと推測された。
The relational expressions obtained in the seven surveys were compared, and from the relational relationship of the coefficients, COD and BOD could be expressed by the following unified formulas applicable throughout the year. Specifically, in each of the seven surveys, the relationship between the constant coefficient of the regression equation obtained from the data by the least squares method and the raw water concentration was summarized for each of COD and BOD, and each coefficient was determined from the format of the regression equation.
COD = (C 0 -60) e -0.12T + 60e -0.001T
BOD = C 0 {(1-0.08) e- 0.1T + 0.08e -0.004T }
(However, C 0 is the COD or BOD (mg / L) of the water to be treated (raw water).)
From the relationship between the coefficients of the main terms in each of the obtained regression equations and the COD / BOD of the raw water, it is estimated that the concentration at which the treatment rate of BOD and COD declines is proportional to the concentration of the raw water and is not significantly affected by the water temperature. It was.

(実施例1)
板紙工場の曝気槽が直列に8室(曝気装置No.1〜No.8)に分割された標準活性汚泥施設において、処理水のBODが15mg/L以下となるように曝気条件を調整した。曝気槽は、各室の容積が225mであり、8槽合計1800mである。調査時の処理排水量は10,000m/日であったことから、1室あたりの平均滞留時間は32分である。
曝気槽流入原水のUV吸光度をBODに換算したところ300mg/Lであったことから、下記処理時間Tと処理水BODとの関係式に基づき、処理水BODが15mg/L以下となる目標好気処理時間Tを求めたところ73分であった。
(処理水BOD)=
300×{(1−0.08)e−0.1T+0.08e−0.004T
上記試算された目標好気処理時間73分に基づき、曝気装置の運用を表1の通りとしたところ、処理後の処理水のBODは14mg/Lとなった。
なお、第二槽(曝気装置No.2)出口(滞留時間64分)での処理水のBODは、16mg/Lで目標とした15mg/L以下に未達であった。
また、すべての曝気装置の運用を10分間運転、25分間停止の間欠運転としたところ、いずれの室においても曝気装置稼働後90秒で好気状態となり、曝気槽停止後120秒間好気状態を維持し、処理水のBODは15mg/Lとなった。
(Example 1)
In the standard activated sludge facility where the aeration tanks of the paperboard factory were divided into eight chambers (aeration devices No. 1 to No. 8) in series, the aeration conditions were adjusted so that the BOD of the treated water was 15 mg / L or less. The volume of each chamber of the aeration tank is 225 m 3 , and the total volume of eight tanks is 1800 m 3 . Since the amount of treated wastewater at the time of the survey was 10,000 m 3 / day, the average residence time per room was 32 minutes.
When the UV absorbance of the raw water flowing into the aeration tank was converted into BOD, it was 300 mg / L. Therefore, based on the following relational expression between the treatment time T and the treated water BOD, the target aerobic condition is that the treated water BOD is 15 mg / L or less. When the processing time T was calculated, it was 73 minutes.
(Treatment water BOD) =
300 × {(1-0.08) e -0.1T + 0.08e -0.004T }
Based on the above-calculated target aerobic treatment time of 73 minutes, when the operation of the aeration device was as shown in Table 1, the BOD of the treated water after the treatment was 14 mg / L.
The BOD of the treated water at the outlet (retention time 64 minutes) of the second tank (aeration device No. 2) was 16 mg / L, which did not reach the target of 15 mg / L or less.
In addition, when all the aeration devices were operated for 10 minutes and intermittently stopped for 25 minutes, all the rooms became aerobic 90 seconds after the aeration device was operated, and 120 seconds after the aeration tank was stopped. The BOD of the treated water was maintained at 15 mg / L.

Figure 0006841365
Figure 0006841365

(実施例2)
板紙工場の曝気槽が直列に8室(曝気装置No.1〜No.8)に分割された標準活性汚泥施設において、処理水のCODが60mg/L以下となるように曝気条件を調整した。曝気槽は、各室の容積が225mであり、8槽合計1800mである。調査時の処理排水量は10,000m/日であったことから、1室あたりの平均滞留時間は32分である。
曝気槽流入原水のUV吸光度をCODに換算したところ180mg/Lであったことから、下記処理時間Tと処理水CODとの関係式に基づき、処理水CODが60mg/L以下となる目標好気処理時間Tを求めたところ41分であった。
(処理水COD)=
{180−60}e−0.12T+60e−0.001T
上記試算された滞留時間41分に基づき、曝気装置の運用を表2の通りとしたところ、処理水のCODは57mg/Lとなった。
なお、第一槽出口(滞留時間32分)での処理水のCODは、63mg/Lで目標とした60mg/L以下に未達であった。
また、すべての曝気装置の運用を60分間に15分間運転の間欠運転としたところ、いずれの室においても曝気装置稼働後90秒で好気状態となり、曝気槽停止後120秒間好気状態を維持し、処理水のCODは57mg/Lとなった。
(Example 2)
In the standard activated sludge facility where the aeration tanks of the paperboard factory were divided into eight chambers (aeration devices No. 1 to No. 8) in series, the aeration conditions were adjusted so that the COD of the treated water was 60 mg / L or less. The volume of each chamber of the aeration tank is 225 m 3 , and the total volume of eight tanks is 1800 m 3 . Since the amount of treated wastewater at the time of the survey was 10,000 m 3 / day, the average residence time per room was 32 minutes.
The UV absorbance of the raw water flowing into the aeration tank was 180 mg / L when converted to COD. Therefore, based on the following relational expression between the treatment time T and the treated water COD, the target aerobic condition is that the treated water COD is 60 mg / L or less. When the processing time T was calculated, it was 41 minutes.
(Treatment water COD) =
{180-60} e -0.12T + 60e -0.001T
Based on the above-estimated residence time of 41 minutes, when the operation of the aeration device was as shown in Table 2, the COD of the treated water was 57 mg / L.
The COD of the treated water at the outlet of the first tank (residence time 32 minutes) was 63 mg / L, which did not reach the target of 60 mg / L or less.
In addition, when all the aeration devices were operated intermittently for 15 minutes every 60 minutes, the aeration system became aerobic 90 seconds after the aeration device was operated, and maintained aerobic for 120 seconds after the aeration tank was stopped. However, the COD of the treated water was 57 mg / L.

Figure 0006841365
Figure 0006841365

100:好気性排水処理システム、1:原水槽、2:曝気装置、3:検出装置、4:制御装置、5:曝気槽、6:前処理装置 100: Aerobic wastewater treatment system, 1: Raw water tank, 2: Aeration device, 3: Detection device, 4: Control device, 5: Aeration tank, 6: Pretreatment device

Claims (16)

被処理水を好気処理する曝気装置を有する曝気槽、及び該曝気装置を制御する制御装置を少なくとも備える好気性排水処理システムであって、
該制御装置は、該被処理水の水質特性値に基づき、予め準備した該被処理水の水質特性値と好気処理後の処理水の水質特性値と好気処理時間との関係式により、該好気処理後の該処理水の該水質特性値が予め設定した適正値以下となる目標好気処理時間を演算する演算部を有し、
該演算部により演算されて得られた該目標好気処理時間以上の時間、該曝気装置により好気処理を行い、
該水質特性値が、有機物濃度であることを特徴とする好気性排水処理システム。
An aerobic wastewater treatment system including at least an aeration tank having an aeration device for aerobically treating water to be treated and a control device for controlling the aeration device.
Based on the water quality characteristic value of the water to be treated, the control device is based on the relational expression between the water quality characteristic value of the water to be treated, the water quality characteristic value of the treated water after aerobic treatment, and the aerobic treatment time. It has a calculation unit for calculating a target aerobic treatment time at which the water quality characteristic value of the treated water after the aerobic treatment is equal to or less than a preset appropriate value.
The target aerobic treatment time or longer obtained by being calculated by the calculation unit, have rows aerobic treatment by該曝gas device,
An aerobic wastewater treatment system characterized in that the water quality characteristic value is an organic matter concentration.
前記好気性排水処理システムが、前記被処理水の前記水質特性値を検出し前記制御装置に出力する検出装置を備え、
前記演算部は、該検出装置で検出された前記水質特性値に基づき、前記目標好気処理時間を演算する請求項に記載の好気性排水処理システム。
The aerobic wastewater treatment system includes a detection device that detects the water quality characteristic value of the water to be treated and outputs it to the control device.
The aerobic wastewater treatment system according to claim 1 , wherein the calculation unit calculates the target aerobic treatment time based on the water quality characteristic value detected by the detection device.
前記好気性排水処理システムが、原水槽及び該原水槽から前記曝気槽へ被処理水を送水する送水手段を備え、
該原水槽が、前記検出装置を有する請求項に記載の好気性排水処理システム。
The aerobic wastewater treatment system includes a raw water tank and a water supply means for sending water to be treated from the raw water tank to the aeration tank.
The aerobic wastewater treatment system according to claim 2 , wherein the raw water tank has the detection device.
前記検出装置が、紫外線吸光度計又は有機体炭素(TOC)自動計測器であり、
前記水質特性値が、該紫外線吸光度計により得られた紫外線吸光度から換算されたBOD若しくはCOD、該有機体炭素(TOC)自動計測器により得られたTOC、又は該TOCから換算されたBOD若しくはCODである請求項2又は3に記載の好気性排水処理システム。
The detection device is an ultraviolet absorptiometer or organic carbon (TOC) Ri automatic instrument der,
The water quality characteristic value is BOD or COD converted from the ultraviolet absorbance obtained by the ultraviolet absorptiometer, TOC obtained by the organic carbon (TOC) automatic measuring instrument, or BOD or COD converted from the TOC. aerobic wastewater treatment system according to claim 2 or 3 Ru der.
前記紫外線吸光度計又は前記有機体炭素(TOC)自動計測器が、懸濁質除去装置を備える請求項に記載の好気性排水処理システム。 The aerobic wastewater treatment system according to claim 4 , wherein the ultraviolet absorptiometer or the organic carbon (TOC) automatic measuring instrument includes a suspension removing device. 前記水質特性値が、BOD、COD及びTOCからなる群から選択される少なくとも一
である請求項1〜のいずれか一項に記載の好気性排水処理システム。
The aerobic wastewater treatment system according to any one of claims 1 to 5 , wherein the water quality characteristic value is at least one selected from the group consisting of BOD, COD and TOC.
前記関係式が、下記式(1)であり、
前記制御装置において、前記目標好気処理時間を、下記式(1)で演算した好気処理後の処理水の水質特性値が予め設定した適正値以下となる時間T(分)の最小値として設定する請求項1〜のいずれか一項に記載の好気性排水処理システム。
(好気処理後の処理水の水質特性値)=
{(被処理水の水質特性値)−α}e−kT+αe−mT (1)
(式(1)中、該水質特性値がCOD(mg/L)であり、αは予め通常時の水質特性値を有する被処理水を6時間以上好気処理して得られたCODの0.5倍〜2倍の値であり、k(分−1)が1以下であり、m(分−1)が0.0100以下である。)
The relational expression is the following expression (1).
In the control device, the target aerobic treatment time is set as the minimum value of the time T (minutes) at which the water quality characteristic value of the treated water after the aerobic treatment calculated by the following formula (1) becomes equal to or less than a preset appropriate value. The aerobic wastewater treatment system according to any one of claims 1 to 6 to be set.
(Water quality characteristic value of treated water after aerobic treatment) =
{(Water quality characteristic value of water to be treated) −α} e −kT + αe −mT (1)
(In the formula (1), the water quality characteristic value is COD (mg / L), and α is 0 of COD obtained by aerobically treating the water to be treated having the normal water quality characteristic value for 6 hours or more in advance. .5 to 2 times the value, k (minute- 1 ) is 1 or less, and m (minute- 1 ) is 0.0100 or less.)
前記関係式が、下記式(2)であり、
前記制御装置において、前記目標好気処理時間を、下記式(2)で演算した好気処理後の処理水の水質特性値が予め設定した適正値以下となる時間T(分)の最小値として設定する請求項1〜のいずれか一項に記載の好気性排水処理システム。
(好気処理後の処理水の水質特性値)=
{(被処理水の水質特性値)−α}e−kT+αe−mT (2)
(式(2)中、該水質特性値がBOD(mg/L)であり、αが該被処理水の該BODの1.00倍未満の値であり、k(分−1)が1以下であり、m(分−1)が0.010以下である。)
The relational expression is the following expression (2).
In the control device, the target aerobic treatment time is set as the minimum value of the time T (minutes) at which the water quality characteristic value of the treated water after the aerobic treatment calculated by the following equation (2) becomes equal to or less than a preset appropriate value. The aerobic wastewater treatment system according to any one of claims 1 to 6 to be set.
(Water quality characteristic value of treated water after aerobic treatment) =
{(Water quality characteristic value of water to be treated) −α} e −kT + αe −mT (2)
(In the formula (2), the water quality characteristic value is BOD (mg / L), α is a value less than 1.00 times the BOD of the water to be treated, and k (minute- 1 ) is 1 or less. And m (minute- 1 ) is 0.010 or less.)
前記曝気槽が、連続式活性汚泥処理槽又は生物膜処理槽であり、
前記目標好気処理時間を、曝気時間及び前記被処理水の流入量の制御により達成する請求項1〜のいずれか一項に記載の好気性排水処理システム。
The aeration tank is a continuous activated sludge treatment tank or a biofilm treatment tank.
The aerobic wastewater treatment system according to any one of claims 1 to 8 , wherein the target aerobic treatment time is achieved by controlling the aeration time and the inflow amount of the water to be treated.
前記曝気槽が、回分式活性汚泥処理槽であり、
前記目標好気処理時間を、曝気時間の制御により達成する請求項1〜のいずれか一項に記載の好気性排水処理システム。
The aeration tank is a batch type activated sludge treatment tank.
The aerobic wastewater treatment system according to any one of claims 1 to 8 , wherein the target aerobic treatment time is achieved by controlling the aeration time.
被処理水を好気処理する曝気装置を有する曝気槽を少なくとも備える好気性排水処理システムによる排水処理方法であって、
該被処理水の水質特性値に基づき、予め準備した該被処理水の水質特性値と好気処理後の処理水の水質特性値と好気処理時間との関係式により、該好気処理後の該処理水の該水質特性値が予め設定した適正値以下となる目標好気処理時間を演算する演算工程、及び
該目標好気処理時間以上の時間、該曝気装置により好気処理を行う処理工程、を含み、
該演算工程において用いる該水質特性値が、有機物濃度である排水処理方法。
It is a wastewater treatment method by an aerobic wastewater treatment system including at least an aeration tank having an aeration device for aerobically treating the water to be treated.
After the aerobic treatment, the relational expression between the water quality characteristic value of the water to be treated, the water quality characteristic value of the treated water after the aerobic treatment, and the aerobic treatment time prepared in advance based on the water quality characteristic value of the water to be treated A calculation step for calculating a target aerobic treatment time at which the water quality characteristic value of the treated water is equal to or less than a preset appropriate value, and a process for performing aerobic treatment by the aeration device for a time equal to or longer than the target aerobic treatment time. process, only including,
A wastewater treatment method in which the water quality characteristic value used in the calculation step is an organic matter concentration.
前記好気性排水処理システムが、前記被処理水の前記水質特性値を検出する検出装置を備え、
前記演算工程において、該検出装置で検出された前記水質特性値に基づき、前記目標好気処理時間を演算する請求項11に記載の排水処理方法。
The aerobic wastewater treatment system includes a detection device for detecting the water quality characteristic value of the water to be treated.
The wastewater treatment method according to claim 11 , wherein in the calculation step, the target aerobic treatment time is calculated based on the water quality characteristic value detected by the detection device.
前記好気性排水処理システムが、原水槽及び該原水槽から前記曝気槽へ被処理水を送水する送水手段を備え、
該原水槽が、前記検出装置を有する請求項12に記載の排水処理方法。
The aerobic wastewater treatment system includes a raw water tank and a water supply means for sending water to be treated from the raw water tank to the aeration tank.
The wastewater treatment method according to claim 12 , wherein the raw water tank has the detection device.
前記演算工程において用いる水質特性値が、BOD、COD及びTOCからなる群から選択される少なくとも一である請求項11〜13のいずれか一項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 11 to 13 , wherein the water quality characteristic value used in the calculation step is at least one selected from the group consisting of BOD, COD and TOC. 前記関係式が、下記式(1)であり、The relational expression is the following expression (1).
前記演算工程において、前記目標好気処理時間を、下記式(1)で演算した好気処理後の処理水の水質特性値が予め設定した適正値以下となる時間T(分)の最小値として設定する請求項11〜14のいずれか一項に記載の好気性排水処理方法。 In the calculation step, the target aerobic treatment time is set as the minimum value of the time T (minutes) at which the water quality characteristic value of the treated water after the aerobic treatment calculated by the following formula (1) becomes equal to or less than a preset appropriate value. The aerobic wastewater treatment method according to any one of claims 11 to 14 to be set.
(好気処理後の処理水の水質特性値)=(Water quality characteristic value of treated water after aerobic treatment) =
{(被処理水の水質特性値)−α}e {(Water quality characteristic value of water to be treated) -α} e −kT-KT +αe+ Αe −mT−mT (1) (1)
(式(1)中、該水質特性値がCOD(mg/L)であり、αは予め通常時の水質特性値を有する被処理水を6時間以上好気処理して得られたCODの0.5倍〜2倍の値であり、k(分(In the formula (1), the water quality characteristic value is COD (mg / L), and α is 0 of COD obtained by aerobically treating the water to be treated having the normal water quality characteristic value for 6 hours or more in advance. .5 to 2 times the value, k (minutes) −1-1 )が1以下であり、m(分) Is 1 or less, and m (minutes) −1-1 )が0.0100以下である。)) Is 0.0100 or less. )
前記関係式が、下記式(2)であり、The relational expression is the following expression (2).
前記演算工程において、前記目標好気処理時間を、下記式(2)で演算した好気処理後の処理水の水質特性値が予め設定した適正値以下となる時間T(分)の最小値として設定する請求項11〜14のいずれか一項に記載の好気性排水処理方法。 In the calculation step, the target aerobic treatment time is set as the minimum value of the time T (minutes) at which the water quality characteristic value of the treated water after the aerobic treatment calculated by the following formula (2) becomes equal to or less than a preset appropriate value. The aerobic wastewater treatment method according to any one of claims 11 to 14 to be set.
(好気処理後の処理水の水質特性値)=(Water quality characteristic value of treated water after aerobic treatment) =
{(被処理水の水質特性値)−α}e {(Water quality characteristic value of water to be treated) -α} e −kT-KT +αe+ Αe −mT−mT (2) (2)
(式(2)中、該水質特性値がBOD(mg/L)であり、αが該被処理水の該BODの1.00倍未満の値であり、k(分(In the formula (2), the water quality characteristic value is BOD (mg / L), α is a value less than 1.00 times the BOD of the water to be treated, and k (minutes). −1-1 )が1以下であり、m(分) Is 1 or less, and m (minutes) −1-1 )が0.010以下である。)) Is 0.010 or less. )
JP2020095047A 2020-05-29 2020-05-29 Aerobic wastewater treatment system and wastewater treatment method Active JP6841365B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020095047A JP6841365B1 (en) 2020-05-29 2020-05-29 Aerobic wastewater treatment system and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020095047A JP6841365B1 (en) 2020-05-29 2020-05-29 Aerobic wastewater treatment system and wastewater treatment method

Publications (2)

Publication Number Publication Date
JP6841365B1 true JP6841365B1 (en) 2021-03-10
JP2021186754A JP2021186754A (en) 2021-12-13

Family

ID=74845331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020095047A Active JP6841365B1 (en) 2020-05-29 2020-05-29 Aerobic wastewater treatment system and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6841365B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113830888A (en) * 2021-10-21 2021-12-24 李龙才 Sewage treatment system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113830888A (en) * 2021-10-21 2021-12-24 李龙才 Sewage treatment system and method

Also Published As

Publication number Publication date
JP2021186754A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
Sarioglu et al. Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor
Álvarez et al. Constructed wetlands and solar-driven disinfection technologies for sustainable wastewater treatment and reclamation in rural India: SWINGS project
Arévalo et al. Effect of temperature on membrane bioreactor performance working with high hydraulic and sludge retention time
US7655142B2 (en) Dynamic control of membrane bioreactor system
WO2007055440A1 (en) Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous
US20140319055A1 (en) Using Continuous Nitrate Measurement to Control Aeration in an Aerated-Anoxic Process
JP6659404B2 (en) Wastewater treatment control device and wastewater treatment system
Mhlanga et al. Characterisation of wastewater for modelling of wastewater treatment plants receiving industrial effluent
Guglielmi et al. Full-scale application of MABR technology for upgrading and retrofitting an existing WWTP: performances and process modelling
EP4377691A1 (en) Water quality monitoring method and device
JP6841365B1 (en) Aerobic wastewater treatment system and wastewater treatment method
Jiang et al. Comparison of the modeling approach between membrane bioreactor and conventional activated sludge processes
Ferrero et al. Development of a control algorithm for air‐scour reduction in membrane bioreactors for wastewater treatment
Parada-Albarracín et al. Bioindicator value of flagellates in urban wastewater treatment using membrane bioreactors
Park et al. Reduction of membrane fouling by simultaneous upward and downward air sparging in a pilot-scale submerged membrane bioreactor treating municipal wastewater
Checa Fernández et al. Influence of activated sludge dissolved oxygen concentration on a membrane bioreactor performance with intermittent aeration
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
KR20150064574A (en) Energy-saving system for treatment of wastewater and method for control of the same
FI130483B (en) A control system of a wastewater treatment plant
JPH07185583A (en) Waste water disposing method and device using continuous breath measuring device
Tunçal et al. Treatment of dyehouse effluents using sequential combinations of electrochemical oxidation, membrane separation, and activated sludge
Gao Enhancement of wastewater treatment under low carbon/nitrogen ratio by using submerged membrane electro-bioreactor (SMEBR)
US20230219833A1 (en) Wastewater treatment systems and methods of use
JP4146491B2 (en) Water treatment using activated sludge
US20240279094A1 (en) Control of ozone dosing with bio-electrochemical sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200529

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6841365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250