JP2013202472A - Operation method of membrane separator, and membrane separator - Google Patents

Operation method of membrane separator, and membrane separator Download PDF

Info

Publication number
JP2013202472A
JP2013202472A JP2012072917A JP2012072917A JP2013202472A JP 2013202472 A JP2013202472 A JP 2013202472A JP 2012072917 A JP2012072917 A JP 2012072917A JP 2012072917 A JP2012072917 A JP 2012072917A JP 2013202472 A JP2013202472 A JP 2013202472A
Authority
JP
Japan
Prior art keywords
value
target value
amount
membrane
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012072917A
Other languages
Japanese (ja)
Other versions
JP5841474B2 (en
Inventor
Yasuyuki Yoshida
康之 吉田
Yuji Otsuka
裕司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012072917A priority Critical patent/JP5841474B2/en
Priority to PCT/JP2013/059179 priority patent/WO2013146976A1/en
Publication of JP2013202472A publication Critical patent/JP2013202472A/en
Priority to US14/496,852 priority patent/US10010834B2/en
Application granted granted Critical
Publication of JP5841474B2 publication Critical patent/JP5841474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation method of a membrane separator, capable of effectively reducing the operation cost of the membrane separator, and the membrane separator.SOLUTION: A membrane separator 6 includes a separation membrane 60 which is immersed in water to be treated, and an air diffuser 7 arranged below the separation membrane 60, and obtains treated water penetrating the separation membrane 60 while performing air diffusion from the air diffuser 7 to the separation membrane 60. The membrane separator includes a target value setting means (computation unit) 10a for setting the target value of the air diffusion from the air diffuser 7 based on the inter-membrane differential pressure, and an air diffusion quantity control means (PID control unit) 10b for controlling the air diffuser 6 so that the air diffusion reaches the target value. The target value setting means 10a sets the change or the absolute value of the rate of change of the target value when the air diffusion quantity is increased to be the value larger than the change or the absolute value of the rate of change of the target value when the air diffusion quantity is decreased.

Description

本発明は、被処理水中に浸漬して配置された分離膜と、分離膜の下方に配置された散気装置とを備え、散気装置から分離膜に向けて散気しながら分離膜を透過した処理水を得る膜分離装置の運転方法及び膜分離装置に関する。   The present invention comprises a separation membrane immersed in the water to be treated and an air diffuser disposed below the separation membrane, and permeates the separation membrane while being diffused from the air diffuser toward the separation membrane. The present invention relates to a method for operating a membrane separation apparatus for obtaining treated water and a membrane separation apparatus.

従来、有機性排水等(以下「被処理水」という)を処理する方法として、活性汚泥中の微生物を用いて有機物を分解する浄化処理とともに、活性汚泥を分離膜により固液分離して分離水を得る膜分離活性汚泥法が広く採用されている。固液分離の方法として、精密ろ過膜、限外ろ過膜等の分離膜を備えた膜分離装置を用いて、被処理水を固液分離する方法が種々検討されている。   Conventionally, as a method for treating organic wastewater (hereinafter referred to as “treated water”), along with purification treatment for decomposing organic matter using microorganisms in activated sludge, activated sludge is separated into solid and liquid by a separation membrane and separated water. Membrane separation activated sludge method is widely adopted. As a method for solid-liquid separation, various methods for solid-liquid separation of water to be treated have been studied using a membrane separation apparatus equipped with a separation membrane such as a microfiltration membrane and an ultrafiltration membrane.

このような膜分離装置は被処理水中に浸漬状態で配置され、処理槽内の活性汚泥自体や処理槽に流入する被処理水中の夾雑物等の固形分、さらには被処理水または微生物由来の高分子の溶質、コロイド、微小固形物等のいわゆるファウリング物質が分離膜表面に付着してろ過効率が低下しないように分離膜の下部に設置した散気装置を備え、散気装置から槽内に空気等を散気し、気泡及び被処理水の上昇流によって、分離膜表面への固形分等の付着を抑制し、または付着した固形分等を剥離させている。   Such a membrane separation device is placed in a state of being immersed in the water to be treated, and the activated sludge itself in the treatment tank itself, solids such as contaminants in the water to be treated flowing into the treatment tank, and further, it is derived from the water to be treated or microorganisms. It is equipped with a diffuser installed at the bottom of the separation membrane to prevent so-called fouling substances such as polymer solutes, colloids, and micro solids from adhering to the surface of the separation membrane, thereby reducing the filtration efficiency. Air or the like is diffused to the surface, and the adhering solid content or the like to the surface of the separation membrane is suppressed or the adhering solid content or the like is peeled off by the upward flow of bubbles and water to be treated.

従来、汚泥性状等の影響により分離膜面が閉塞し易い状況になっても分離膜面が容易に閉塞することがないように、散気装置から供給される散気量は、膜面の洗浄に最低限必要な量より過剰な量に設定されており、散気のための電力コストが嵩むという問題があった。   Conventionally, the amount of diffused air supplied from the diffuser is a cleaning of the membrane surface so that the separation membrane surface is not easily clogged even if the separation membrane surface is likely to be clogged due to sludge properties, etc. Therefore, there is a problem that the power cost for air diffusion increases.

膜分離活性汚泥法を採用した処理設備に要する運転コストの約半分が散気のために費やされている現状、分離膜の閉塞を回避しながら散気量を削減することが重要な課題になっている。   Currently, about half of the operating cost required for treatment facilities using the membrane separation activated sludge method is spent for aeration, reducing the amount of aeration while avoiding clogging of the separation membrane is an important issue It has become.

特許文献1には、曝気風量に要するエネルギーコストを抑制することを目的として、膜分離装置の膜間差圧を監視し、膜間差圧が非定常時を除く通常のレベルの範囲内であるときの曝気風量を、予め定めた許容定常値に設定し、膜間差圧が所定値以上に急上昇する非定常時に、曝気装置から供給される曝気風量を増加させるよう制御する曝気風量の制御方法が提案されている。   In Patent Document 1, for the purpose of suppressing the energy cost required for the amount of aeration air, the transmembrane pressure difference of the membrane separation apparatus is monitored, and the transmembrane pressure difference is within a normal level excluding the unsteady state. The aeration air volume is controlled to increase the aeration air volume supplied from the aeration apparatus at a non-steady time in which the transmembrane pressure difference rapidly rises above a predetermined value. Has been proposed.

尚、本公報には、膜間差圧の挙動が定常時のレベルにあるときの曝気風量として、これ以下に低下させると膜差圧が急激に増加するという許容される下限の曝気風量(許容下限値)を予め予備試験によって定めておき、その許容下限値に設定すること、膜間差圧が所定値以上に急上昇したか否かは、膜間差圧上昇速度(例えばkPa/日で表す)で評価することが記載されている。   In this publication, as the aeration air volume when the behavior of the transmembrane pressure difference is at a steady level, the lower aeration air volume (allowable) The lower limit value is determined in advance by a preliminary test and set to the allowable lower limit value, and whether or not the transmembrane pressure difference has rapidly increased to a predetermined value or more is expressed by a transmembrane pressure increase rate (for example, kPa / day). ) Is evaluated.

特開2005‐144291号公報JP 2005-144291 A

しかし、分離膜の膜間差圧は経時的に上昇するという特性があり、また汚泥処理装置に流入する被処理水の性状は季節や時間により変化し、それに対応して分離膜の詰まりの状況が変動するため、許容下限値で長時間運転することは現実的に困難であり、逆に分離膜の早期の閉塞を招く虞もあった。   However, there is a characteristic that the transmembrane pressure difference of the separation membrane increases with time, and the properties of the water to be treated flowing into the sludge treatment equipment change according to the season and time, and the state of the separation membrane clogging accordingly. Therefore, it is practically difficult to operate for a long time at the allowable lower limit value, and conversely, there is a possibility that early separation of the separation membrane may be caused.

また、膜間差圧が所定値以上に急上昇したか否かを、kPa/日で表される膜間差圧上昇速度で評価する場合、評価に少なくとも1日の時間を要することになり、その間に目詰まりが酷くなる虞がある。   Further, when evaluating whether or not the transmembrane pressure difference has rapidly increased to a predetermined value or more with the rate of increase in transmembrane pressure difference expressed in kPa / day, the evaluation takes at least one day. There is a risk of clogging.

特許文献1に開示された方法以外に他に様々な試みがなされているが、何れも効果的に電力コストを低減させることが困難な状況である。   Various attempts have been made in addition to the method disclosed in Patent Document 1, but it is difficult to effectively reduce the power cost.

本発明の目的は、上述した問題点に鑑み、膜分離装置の運転コストを効果的に低減可能な膜分離装置の運転方法及び膜分離装置を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a method for operating a membrane separator and a membrane separator that can effectively reduce the operating cost of the membrane separator.

上述の目的を達成するため、本発明による膜分離装置の運転方法の第一特徴構成は、被処理水中に浸漬して配置された分離膜と、前記分離膜の下方に配置された散気装置とを備え、前記散気装置から前記分離膜に向けて散気しながら前記分離膜を透過した処理水を得る膜分離装置の運転方法であって、膜間差圧に基づいて前記散気装置からの散気量の目標値を設定する目標値設定ステップと、散気量が前記目標値になるように前記散気装置を制御する散気量制御ステップを含み、前記目標値設定ステップでは、散気量を増加する場合の目標値の変化量または変化率の絶対値が、散気量を減少する場合の目標値の変化量または変化率の絶対値よりも大きな値に設定される点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the operation method of the membrane separation device according to the present invention includes a separation membrane immersed in the water to be treated and an air diffuser arranged below the separation membrane. An operation method of a membrane separation device for obtaining treated water that has permeated through the separation membrane while being diffused from the diffusion device toward the separation membrane, the diffusion device based on a transmembrane pressure difference A target value setting step for setting a target value of the amount of air diffused from, and an air amount control step for controlling the air diffuser so that the amount of air diffused becomes the target value. In the target value setting step, The absolute value of the change or rate of change in the target value when increasing the amount of air diffused is set to a value that is greater than the absolute value of the change or rate of change in the target value when decreasing the amount of air diffused. is there.

上述の構成によれば、目標値設定ステップで、膜間差圧が大きいときには散気装置からの散気量の目標値が増加設定され、膜間差圧が低いときには散気装置からの散気量の目標値が減少設定される。このとき、散気量を増加する場合の目標値の変化量または変化率の絶対値が、散気量を減少する場合の目標値の変化量または変化率の絶対値よりも大きな値に設定される。そして、散気量制御ステップで散気量が目標値になるように散気装置が制御される。尚、膜間差圧とは、ろ過により透過水を得るために必要な圧力をいい、ろ過差圧、TMP(Trans Membrane Pressure)ともいう。   According to the above configuration, in the target value setting step, the target value of the amount of air diffused from the air diffuser is set to increase when the transmembrane pressure difference is large, and the air diffused from the air diffuser device when the transmembrane pressure difference is low. The target value of quantity is set to decrease. At this time, the absolute value of the change amount or rate of change of the target value when increasing the amount of aeration is set to a value larger than the absolute value of the change amount or rate of change of the target value when decreasing the amount of aeration. The Then, the air diffuser is controlled so that the air diffused amount becomes the target value in the air diffused amount control step. The transmembrane pressure difference is a pressure necessary for obtaining permeate by filtration, and is also referred to as a filtration pressure difference and TMP (Trans Membrane Pressure).

膜間差圧が高い場合には、既に分離膜表面に固形物質等が付着した状態にあるので、その状態を解除するために、散気量を減少する場合の変化量よりも大きな変化量で増加することによって、気泡及び被処理水の上昇流による分離膜の洗浄効果を高め、分離膜表面の付着物を効果的に剥離させることができる。そして、膜間差圧が低い場合には、散気量を減少させた場合の分離膜表面の閉塞の発生リスクを抑えるために、散気量を増加する場合の変化量よりも小さな変化量で減少することによって、気泡及び被処理水の上昇流の急激な変動を抑制し、分離膜表面の洗浄効果の急激な低下を回避し、また新たな付着を抑制する。   When the transmembrane pressure is high, solid substances etc. are already attached to the surface of the separation membrane, so in order to cancel the state, the change amount is larger than the change amount when reducing the amount of air diffused. By increasing, the cleaning effect of the separation membrane by the rising flow of bubbles and water to be treated can be enhanced, and the deposits on the separation membrane surface can be effectively peeled off. And when the transmembrane pressure is low, in order to reduce the risk of clogging of the separation membrane surface when the amount of air diffused is reduced, the amount of change is smaller than the amount of change when the amount of air diffused is increased. By decreasing, the rapid fluctuation of the upward flow of bubbles and the water to be treated is suppressed, the rapid decrease of the cleaning effect on the separation membrane surface is avoided, and new adhesion is suppressed.

同第二の特徴構成は、上述の第一の特徴構成に加えて、散気量制御ステップでは、膜間差圧にかかわらず、散気量を増加するように設定された場合の目標値の保持時間が、散気量を減少するように設定された場合の目標値の保持時間よりも長い時間に設定される点にある。   In the second feature configuration, in addition to the first feature configuration described above, in the air diffusion amount control step, the target value when the air diffusion amount is set to be increased regardless of the transmembrane pressure difference. The holding time is set to a time longer than the holding time of the target value when it is set so as to reduce the amount of air diffusion.

散気量を増加するように設定された場合には、そのときの膜間差圧にかかわらず、散気量を減少するように設定された場合よりも長い時間その状態が維持されるので、分離膜表面の洗浄効果を一層高めることができる。散気量を減少する場合には、その状態を維持する時間を短くすることにより、比較的速やかに更なる散気量の減少機会を確保することができる。   When it is set to increase the amount of diffused air, the state is maintained for a longer time than when it is set to decrease the amount of diffused air regardless of the transmembrane pressure difference at that time, The cleaning effect on the separation membrane surface can be further enhanced. In the case of reducing the amount of diffused air, it is possible to secure a further opportunity for reducing the amount of diffused air relatively quickly by shortening the time for maintaining the state.

同第三の特徴構成は、上述の第一または第二の特徴構成に加えて、目標値設定ステップでは、目標値を下げるための閾値よりも低い値を示す膜間差圧の継続時間が、目標値を上げるための閾値よりも高い値を示す膜間差圧の継続時間よりも長い時間に設定され、膜間差圧と閾値との関係がそれぞれの閾値に対して設定された継続時間を越えて維持されたときに目標値が変更される点にある。   In the third feature configuration, in addition to the first or second feature configuration described above, in the target value setting step, the duration of the transmembrane pressure difference indicating a value lower than the threshold value for lowering the target value, The duration is set to be longer than the duration of the transmembrane pressure difference, which is higher than the threshold for raising the target value, and the duration of the relationship between the transmembrane pressure difference and the threshold is set for each threshold value. The target value is changed when it is maintained beyond.

散気量の目標値を上昇させる場合には、目標値を下降させる場合よりも短時間で判断して、迅速に分離膜表面の付着・堆積物を剥離させるように目標値を設定し、散気量の目標値を下降させる場合には、その状況の確からしさを見極めるべく、相対的に長い時間をかけて判断する。つまり、膜間差圧が上昇して膜が閉塞に到る可能性があるときは、その状況の確からしさの確認よりも分離膜表面の付着・堆積物の剥離を優先し、膜間差圧が下降して膜の詰まりが解消されつつあるときには、散気量の低減よりもその状況の確からしさの確認を優先することにより、分離膜の状態を良好に調整できるようになる。   When increasing the target value of the air diffusion amount, make a judgment in a shorter time than when lowering the target value, set the target value so that the adhesion / deposits on the separation membrane surface are peeled off quickly, and When lowering the target value of the volume, it is determined over a relatively long time to determine the certainty of the situation. In other words, when there is a possibility that the transmembrane pressure rises and the membrane may become clogged, priority is given to adhesion of the separation membrane surface and separation of deposits over confirmation of the certainty of the situation, and transmembrane pressure differential When the clogging is decreasing and the clogging of the membrane is being resolved, the state of the separation membrane can be adjusted well by prioritizing the confirmation of the certainty over the reduction of the amount of air diffused.

本発明による膜分離装置の特徴構成は、被処理水中に浸漬して配置された分離膜と、前記分離膜の下方に配置された散気装置とを備え、前記散気装置から前記分離膜に向けて散気しながら前記分離膜を透過した処理水を得る膜分離装置であって、膜間差圧に基づいて前記散気装置からの散気量の目標値を設定する目標値設定手段と、散気量が前記目標値になるように前記散気装置を制御する散気量制御手段とを含み、前記目標値設定手段は、散気量を増加する場合の目標値の変化量または変化率の絶対値を、散気量を減少する場合の目標値の変化量または変化率の絶対値よりも大きな値に設定する点にある。   A characteristic configuration of a membrane separation device according to the present invention includes a separation membrane that is disposed soaked in water to be treated, and an air diffuser disposed below the separation membrane, from the air diffuser to the separation membrane. A membrane separation device for obtaining treated water that has permeated through the separation membrane while diffusing toward the target, and a target value setting means for setting a target value of the amount of air diffused from the air diffusion device based on a transmembrane differential pressure; A diffused amount control means for controlling the diffuser so that the diffused amount becomes the target value, and the target value setting means changes or changes the target value when increasing the diffused amount. The absolute value of the rate is set to a value greater than the absolute value of the change amount of the target value or the change rate when the amount of air diffusion is reduced.

以上説明した通り、本発明によれば、膜分離装置の運転コストを効果的に低減可能な膜分離装置の運転方法及び膜分離装置を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a method for operating a membrane separator and a membrane separator that can effectively reduce the operating cost of the membrane separator.

膜分離装置の説明図Illustration of membrane separator 分離膜の説明図Illustration of separation membrane 膜間差圧の評価手順の説明図Explanatory diagram of evaluation procedure for transmembrane pressure difference (a),(b)は、膜間差圧の基準値の更新設定の説明図、(c),(d)は、分離膜の膜間差圧の変動と膜間差圧の基準値の関係の説明図(A), (b) is explanatory drawing of the update setting of the reference value of transmembrane differential pressure, (c), (d) is the fluctuation | variation of the transmembrane differential pressure of a separation membrane, and the reference value of transmembrane differential pressure Illustration of relationship 散気量の変化を示す説明図Explanatory diagram showing changes in air diffused volume ろ過運転制御を示すフローチャートFlow chart showing filtration operation control 1周期内の膜間差圧の評価手順を示すフローチャートFlow chart showing the procedure for evaluating the transmembrane pressure difference within one cycle 散気量の目標値設定手順を示すフローチャートFlow chart showing the target value setting procedure 膜間差圧の基準値の設定手順を示すフローチャートFlow chart showing the procedure for setting the reference value for transmembrane pressure (a)は基準膜間差圧の推移を示すグラフ、(b)は基準膜間差圧と、ΔTMPに対する空気量の推移を示すグラフ(A) is a graph showing the transition of the reference transmembrane pressure difference, (b) is a graph showing the transition of the reference transmembrane pressure difference and the air amount with respect to ΔTMP.

以下、本発明による膜分離装置の運転方法及び膜分離装置を説明する。
図1には、膜分離装置6が組み込まれた汚水処理設備1の一例が示されている。汚水処理設備1は、前処理設備2と、流量調整槽3と、活性汚泥が充填された嫌気槽4aと膜分離槽4bとからなる活性汚泥処理槽4と、膜分離槽4bに浸漬配置され槽内の被処理水から透過水を得る膜分離装置6と、膜分離装置6でろ過された処理水を受け入れる処理水槽5を備えている。
Hereinafter, a method for operating a membrane separator and a membrane separator according to the present invention will be described.
FIG. 1 shows an example of a sewage treatment facility 1 in which a membrane separation device 6 is incorporated. The sewage treatment facility 1 is immersed in a pretreatment facility 2, a flow rate adjustment tank 3, an activated sludge treatment tank 4 comprising an anaerobic tank 4a and a membrane separation tank 4b filled with activated sludge, and a membrane separation tank 4b. A membrane separation device 6 that obtains permeate from the treated water in the tank and a treated water tank 5 that receives the treated water filtered by the membrane separation device 6 are provided.

前処理設備2には原水に混入している夾雑物を除去するバースクリーン2a等が設けられ、バースクリーン2a等で夾雑物が除去された被処理水が流量調整槽3に一旦貯留される。原水の流入量が変動する場合であっても、ポンプやバルブ等の流量調整機構3aによって、流量調整槽3からは一定流量の被処理水が活性汚泥処理槽4に安定供給されるように構成されている。   The pretreatment facility 2 is provided with a bar screen 2a for removing contaminants mixed in the raw water, and the treated water from which the contaminants have been removed by the bar screen 2a or the like is temporarily stored in the flow rate adjusting tank 3. Even when the inflow amount of raw water fluctuates, the flow rate adjusting mechanism 3a such as a pump or a valve is configured to stably supply the water to be treated at a constant flow rate from the flow rate adjusting tank 3 to the activated sludge treatment tank 4. Has been.

膜分離槽4bの被処理水の一部が返送ポンプで引き抜かれ、返送路4cを介して嫌気槽4aに返送される。また、余剰汚泥は引き抜かれて廃棄される。   A part of the water to be treated in the membrane separation tank 4b is pulled out by the return pump and returned to the anaerobic tank 4a through the return path 4c. In addition, excess sludge is withdrawn and discarded.

膜分離装置6は、複数の膜エレメント60と、膜エレメント60の下方に設置された散気装置7を備えている。複数の膜エレメント60は各膜面が縦姿勢となるように、ケーシングに一定間隔を隔てて配列収容されている。   The membrane separation device 6 includes a plurality of membrane elements 60 and an air diffuser 7 installed below the membrane elements 60. The plurality of membrane elements 60 are accommodated in the casing at regular intervals so that each membrane surface is in a vertical posture.

図2に示すように、膜エレメント60は上部に集水管60cを備えた樹脂製の膜支持体60aの表裏両面に分離膜60bが配置されて構成されている。本実施形態では、分離膜60bは、不織布の表面に多孔性を有する樹脂が塗布及び含浸されて接合された公称孔径が0.4μm程度の精密ろ過膜で構成されている。分離膜60bを透過した処理水は、膜支持体60aに形成された溝部に沿って集水管60cに流れる。   As shown in FIG. 2, the membrane element 60 is configured by disposing separation membranes 60b on both the front and back surfaces of a resin membrane support 60a provided with a water collecting pipe 60c at the top. In the present embodiment, the separation membrane 60b is composed of a microfiltration membrane having a nominal pore diameter of about 0.4 μm bonded and impregnated with a porous resin on the surface of the nonwoven fabric. The treated water that has passed through the separation membrane 60b flows into the water collecting pipe 60c along the groove formed in the membrane support 60a.

尚、本発明に用いられる分離膜60bの種類及び膜エレメント60の形態は、このような構成に限定されるものではなく、任意の種類の分離膜及び任意の形態の膜エレメント(中空糸膜エレメント、管状膜エレメント、モノリス膜エレメント等)に用いることも可能である。   The type of the separation membrane 60b and the form of the membrane element 60 used in the present invention are not limited to such a configuration, and any type of separation membrane and any form of membrane element (hollow fiber membrane element) , Tubular membrane element, monolith membrane element, etc.).

各膜エレメント60から集水管60cを介して吸引ろ過するろ過ポンプ8がヘッダー管に接続され、ろ過ポンプ8により生じる差圧で膜分離槽4b内の被処理水が分離膜60bを透過する。   A filtration pump 8 that performs suction filtration from each membrane element 60 through a water collecting pipe 60c is connected to the header pipe, and the water to be treated in the membrane separation tank 4b permeates the separation membrane 60b with a differential pressure generated by the filtration pump 8.

散気装置7は、複数の散気孔7cが形成された散気管7bと、散気管7bに空気等を供給するブロワ7aでなる給気源を備えている。尚、ろ過ポンプ8を用いずに、分離膜60bと処理水槽5間の自然水頭によってろ過する構成であってもよい。   The air diffuser 7 includes an air supply source including an air diffuser 7b in which a plurality of air diffusers 7c are formed and a blower 7a that supplies air and the like to the air diffuser 7b. In addition, the structure filtered by the natural water head between the separation membrane 60b and the treated water tank 5 without using the filtration pump 8 may be sufficient.

図1に戻り、膜分離装置6は、さらに分離膜60bを透過する処理水量が一定となるように、図示しない流量調整バルブや図示しないろ過ポンプ8のインバータ回路によりろ過ポンプ8を運転制御するとともに、散気装置7からの散気量を制御するコンピュータを用いた制御装置10を備えている。
制御装置10は、演算部10a、PID制御部10b、インバータ回路10c、ろ過運転制御部10d、操作入力部10e等のブロックで構成されている。
Returning to FIG. 1, the membrane separation device 6 further controls the operation of the filtration pump 8 by a flow rate adjustment valve (not shown) or an inverter circuit of the filtration pump 8 (not shown) so that the amount of treated water that permeates the separation membrane 60 b becomes constant. A control device 10 using a computer for controlling the amount of air diffused from the air diffuser 7 is provided.
The control device 10 includes blocks such as a calculation unit 10a, a PID control unit 10b, an inverter circuit 10c, a filtration operation control unit 10d, and an operation input unit 10e.

ろ過運転制御部10dは、演算部10aからの制御指令に基づいてろ過ポンプ8を一定の制御サイクルで間歇駆動するブロックである。インバータ回路10cは、PID制御部10bからの制御指令に基づいてブロワ7aのモータの回転数を増減して駆動することにより散気量を増減調整するブロックである。   The filtration operation control unit 10d is a block that intermittently drives the filtration pump 8 in a constant control cycle based on a control command from the calculation unit 10a. The inverter circuit 10c is a block that increases / decreases the amount of air diffused by driving the motor of the blower 7a by increasing / decreasing the rotational speed based on a control command from the PID control unit 10b.

PID制御部10bは、散気管7bに設けられたエアフローセンサFmからの空気量PVを入力し、当該空気量PVが演算部10aから入力された散気量目標値SVになるようにPID演算して、演算結果であるブロワ7aのモータに対する駆動周波数をインバータ回路10cに出力するブロックである。   The PID control unit 10b inputs the air amount PV from the air flow sensor Fm provided in the diffuser pipe 7b, and performs PID calculation so that the air amount PV becomes the aeration amount target value SV input from the calculation unit 10a. In this block, the drive frequency for the motor of the blower 7a, which is the calculation result, is output to the inverter circuit 10c.

操作入力部10eは入力操作用のタッチパネルを備え、演算部10aで実行される制御用の演算処理に必要な各種の制御情報、例えばろ過ポンプ8の制御サイクル、散気量目標値SVの設定範囲、膜間差圧を求めるために必要な停止圧や運転圧の入力タイミング、膜間差圧の差分値の評価用の閾値等を入力するブロックである。   The operation input unit 10e includes a touch panel for input operation, and various control information necessary for arithmetic processing for control executed by the arithmetic unit 10a, for example, a control cycle of the filtration pump 8, a set range of the air diffusion target value SV. This is a block for inputting a stop pressure and an operating pressure input timing required for obtaining the transmembrane pressure difference, a threshold value for evaluating the differential value of the transmembrane pressure difference, and the like.

演算部10aは、操作入力部10eを介して入力された制御サイクルでろ過ポンプ8を間歇作動するための制御指令をろ過運転制御部10dに出力するブロックである。さらに、演算部10aは、ろ過ポンプ8の上流側管路に設置された圧力センサPmからの圧力を入力し、その値に基づいて散気量目標値SVを算出し、PID制御部10bに出力するブロックである。   The calculation unit 10a is a block that outputs a control command for intermittently operating the filtration pump 8 to the filtration operation control unit 10d in a control cycle input via the operation input unit 10e. Furthermore, the calculation part 10a inputs the pressure from the pressure sensor Pm installed in the upstream pipe line of the filtration pump 8, calculates the air diffusion amount target value SV based on the value, and outputs it to the PID control part 10b. It is a block to do.

以下、制御装置10により実行される膜分離装置6の運転方法を説明する。
図6には、ろ過運転制御部10dにより実行される制御手順が示されている。ろ過運転制御部10dは、ろ過ポンプ8を作動して(SA1)、9分のろ過作動タイマTMonをセットし(SA2)、タイマTMonの経時を待つ(SA3)。
Hereinafter, an operation method of the membrane separation device 6 executed by the control device 10 will be described.
FIG. 6 shows a control procedure executed by the filtration operation control unit 10d. The filtration operation control unit 10d operates the filtration pump 8 (SA1), sets a filtration operation timer TMon for 9 minutes (SA2), and waits for the timer TMon to elapse (SA3).

タイマTMonがカウントアップすると(SA3,Y)、ろ過ポンプ8を停止して(SA4)、1分のろ過作動タイマTMoffをセットし(SA5)、タイマTMoffの経時を待つ(SA6)。   When the timer TMon counts up (SA3, Y), the filtration pump 8 is stopped (SA4), a 1-minute filtration operation timer TMoff is set (SA5), and the passage of the timer TMoff is awaited (SA6).

タイマTMoffがカウントアップすると(SA6,Y)、ステップSA1に戻り、以下同様の動作を繰り返す。つまり、ろ過運転制御部10dは、1分間の停止と9分間のろ過運転を10分のサイクルで繰り返すようにろ過ポンプ8を制御する。尚、ろ過ポンプ8が停止している間も散気装置からの散気は継続することで、分離膜表面を積極的に洗浄している。   When the timer TMoff counts up (SA6, Y), the process returns to step SA1, and thereafter the same operation is repeated. That is, the filtration operation control unit 10d controls the filtration pump 8 so as to repeat the stop for 1 minute and the filtration operation for 9 minutes in a cycle of 10 minutes. In addition, while the filtration pump 8 is stopped, the air diffusion from the air diffuser is continued, so that the surface of the separation membrane is actively washed.

図3(a)には、圧力センサPmによって検知される圧力の挙動が例示されている。ろ過ポンプ8の作動時に検知される運転圧力は、ろ過ポンプ8の運転期間Tfon(本実施形態では9分)の初期に停止圧力から次第に低くなり、終期にほぼ一定の値を示すように変化する。ろ過ポンプ8の停止時に検知される停止圧力は、ろ過ポンプ8の停止期間Tfoff(本実施形態では1分)の初期に速やかに上昇し、ほぼ一定の圧力に維持される。このような挙動がTfcycle(本実施形態では10分)で繰り返される。   FIG. 3A illustrates the behavior of the pressure detected by the pressure sensor Pm. The operating pressure detected when the filtration pump 8 is activated gradually decreases from the stop pressure at the beginning of the operation period Tfon (9 minutes in the present embodiment) of the filtration pump 8 and changes so as to show a substantially constant value at the end. . The stop pressure detected when the filtration pump 8 is stopped rises quickly at the beginning of the stop period Tfoff (1 minute in the present embodiment) of the filtration pump 8 and is maintained at a substantially constant pressure. Such behavior is repeated at Tfcycle (10 minutes in this embodiment).

最大運転圧力Pon/max.は分離膜60bの表面状態によって変動し、膜詰まりの程度が大きくなると最大運転圧力Pon/max.が低下(負側に上昇)する。従って、運転圧力をモニタすることにより分離膜60bの詰まりの程度を把握することができる。   Maximum operating pressure Pon / max. Varies depending on the surface state of the separation membrane 60b, and when the degree of membrane clogging increases, the maximum operating pressure Pon / max. Decreases (rises to the negative side). Therefore, the degree of clogging of the separation membrane 60b can be grasped by monitoring the operating pressure.

演算部10aは、圧力センサPmの値が入力されると、膜間差圧TMPを次式に基づいて算出する。
TMP=停止圧(Poff)−運転圧(Pon)
次に、演算部10aは、膜間差圧TMPの基準膜間差圧との差分値ΔTMPを次式に基づいて算出する。
ΔTMP=TMP(cur.value)−TMP(ref.value)
上式中、TMP(cur.value)は現在値を示し、TMP(ref.value)は基準膜間差圧(以下では、単に「基準値」とも記す。)を示す。
When the value of the pressure sensor Pm is input, the calculation unit 10a calculates the transmembrane pressure difference TMP based on the following equation.
TMP = stop pressure (Poff) -operating pressure (Pon)
Next, the calculation unit 10a calculates a difference value ΔTMP between the transmembrane pressure difference TMP and the reference transmembrane pressure difference based on the following equation.
ΔTMP = TMP (cur.value) −TMP (ref.value)
In the above formula, TMP (cur. Value) indicates a current value, and TMP (ref. Value) indicates a reference transmembrane pressure difference (hereinafter, also simply referred to as “reference value”).

図3(b)には、図3(a)に示した圧力に対応した膜間差圧が示され、図3(c)には、膜間差圧TMPの現在値と基準値の関係、及び膜間差圧の差分値ΔTMP1,ΔTMP2,ΔTMP3,ΔTMP4,・・・が示されている。   3 (b) shows the transmembrane pressure difference corresponding to the pressure shown in FIG. 3 (a), and FIG. 3 (c) shows the relationship between the current value of the transmembrane pressure difference TMP and the reference value, In addition, differential values ΔTMP1, ΔTMP2, ΔTMP3, ΔTMP4,.

膜間差圧がほぼ一定の値に安定するろ過ポンプ8の運転期間Tfonの後半以降に設定された有効判定期間(図3(c)参照)に算出される値が、散気量の制御に用いる膜間差圧に採用される。本実施形態では、9分の運転期間Tfonのうち、6分経過後からの3分間が有効判定期間に設定されている。尚、有効判定期間はこの範囲に限るものではないが、比較的安定した期間に設定する必要がある。   The value calculated in the effective determination period (see FIG. 3C) set after the second half of the operation period Tfon of the filtration pump 8 where the transmembrane pressure is stabilized at a substantially constant value is used for controlling the amount of air diffused. Adopted for transmembrane pressure difference. In the present embodiment, 3 minutes after the elapse of 6 minutes is set as the validity determination period in the 9-minute operation period Tfon. The validity determination period is not limited to this range, but needs to be set to a relatively stable period.

図3(d)には、この有効判定期間に算出された膜間差圧の差分値ΔTMP1,ΔTMP2,ΔTMP3,ΔTMP4が示されている。図3(d)には当該差分値がほぼ一定の値として直線状に示されているが、実際には上下に変動している。基準値と同値であれば0になり、基準値よりも低ければ負の値を示し、基準値よりも高ければ正の値を示す。   FIG. 3D shows the difference values ΔTMP1, ΔTMP2, ΔTMP3, and ΔTMP4 of the transmembrane pressure difference calculated during the validity determination period. In FIG. 3D, the difference value is shown in a straight line as a substantially constant value, but actually fluctuates up and down. If the value is the same as the reference value, the value is 0. If the value is lower than the reference value, a negative value is indicated. If the value is higher than the reference value, a positive value is indicated.

演算部10aは、有効判定期間での膜間差圧の差分値ΔTMPに二つの閾値Th(a)とTh(b)(Th(b)<Th(a))を設定し、差分値ΔTMPが閾値Th(b)(本実施形態では0.05kPa)以下または未満であれば、膜詰まり状態が軽減され比較的良好な状態であると判定し、差分値ΔTMPが閾値Th(a)(本実施形態では0.2kPa)以上またはそれより大であれば、膜詰まり状態が進み散気による浄化を促進する必要がある状態であると判定し、差分値ΔTMPが閾値Th(b)とTh(a)の間にあれば、膜詰まり状態がそれほど酷くなく、現在の散気状態で維持可能な状態であると判定する。   The calculation unit 10a sets two threshold values Th (a) and Th (b) (Th (b) <Th (a)) as the difference value ΔTMP of the transmembrane pressure difference in the validity determination period, and the difference value ΔTMP is If the threshold Th (b) (0.05 kPa in the present embodiment) is less than or less than the threshold Th (b), it is determined that the film clogging state is reduced and the state is relatively good, and the difference value ΔTMP is the threshold Th (a) (this implementation) If the form is 0.2 kPa) or greater, or greater than that, it is determined that the state of film clogging has progressed and purification by air diffusion needs to be promoted, and the difference value ΔTMP is determined as the threshold value Th (b) and Th (a ), It is determined that the film clogging state is not so severe and can be maintained in the current aeration state.

図4(b)に示すように、演算部10aは、直近に基準膜間差圧TMP(ref.value)を更新設定した後、少なくとも3時間経過し、12時間を超えない所定時間間隔で、基準膜間差圧TMP(ref.value)を更新設定する。更新のための時間間隔は、被処理水の特性により適切な値を採用することができる。例えば、被処理水が下水の場合で変動の大きな昼間は3時間ごとに更新し、変動の小さな夜間は6時間ごとに更新する等、任意に設定することができる。本実施形態では、6時間間隔で基準膜間差圧が更新設定される。   As shown in FIG. 4 (b), the calculation unit 10a has updated the reference transmembrane pressure difference TMP (ref.value) most recently, and has passed at least 3 hours and at a predetermined time interval not exceeding 12 hours. The reference transmembrane pressure difference TMP (ref. Value) is updated. An appropriate value can be adopted as the time interval for updating depending on the characteristics of the water to be treated. For example, when the water to be treated is sewage, it can be arbitrarily set such that it is updated every 3 hours during daytime when the fluctuation is large, and is updated every 6 hours during nighttime when the fluctuation is small. In this embodiment, the reference transmembrane pressure difference is updated and set every 6 hours.

詳述すると、図4(a),(b)のタイミングチャート及び図9のフローチャートに示すように、演算部10aは、6時間経過する度に(SD1)、ろ過ポンプ8の運転期間Tfonの終期の所定時間に設定された運転圧検知領域(例えば、6分経過以降9分までの時間)で代表運転圧を特定し(SD2)、ろ過ポンプ8の停止期間Tfoffの終期の所定時間に設定された停止圧検知領域(例えば、40秒経過以降60秒までの時間)で代表停止圧を特定し(SD2)、それらの値から膜間差圧を算出する処理を連続して数サイクル行ない(SD3,SD4)、その平均値を新たな基準膜間差圧TMP(ref.value)に更新設定する(SD5)。   More specifically, as shown in the timing charts of FIGS. 4A and 4B and the flowchart of FIG. 9, the calculation unit 10a ends the operation period Tfon of the filtration pump 8 every time 6 hours pass (SD1). The representative operating pressure is specified in the operating pressure detection area (for example, the time from 6 minutes to 9 minutes) set at a predetermined time (SD2), and is set to the predetermined time at the end of the stop period Tfoff of the filtration pump 8 The representative stop pressure is specified in the stop pressure detection region (for example, the time from 40 seconds to 60 seconds) (SD2), and the process of calculating the transmembrane pressure difference from these values is continuously performed for several cycles (SD3 , SD4), and the average value is updated to a new reference transmembrane pressure difference TMP (ref. Value) (SD5).

本実施形態では、運転期間Tfon開始後8分50秒での運転圧を代表運転圧とし、停止期間Tfoff開始後の59秒での停止圧を代表停止圧に特定し、連続3サイクルの膜間差圧の平均値を新たな基準膜間差圧TMP(ref.value)に更新設定する。   In this embodiment, the operation pressure at 8 minutes 50 seconds after the start of the operation period Tfon is set as the representative operation pressure, the stop pressure at 59 seconds after the start of the stop period Tfoff is specified as the representative stop pressure, The average value of the differential pressure is updated and set to a new reference transmembrane pressure difference TMP (ref. Value).

尚、これらの条件は例示であり、適宜設定すればよく、例えば、運転圧検知領域の一定時間ごとの平均値で代表運転圧を特定し、停止圧検知領域の一定時間ごとの平均値で代表停止圧を特定してもよいし、膜間差圧の平均値を求めるサイクル数を増加してもよい。   These conditions are merely examples, and may be set as appropriate. For example, the representative operating pressure is specified by an average value for every fixed time in the operating pressure detection region, and the representative value is expressed by an average value for every fixed time in the stop pressure detection region. The stop pressure may be specified, or the number of cycles for obtaining the average value of the transmembrane pressure difference may be increased.

図4(c)に示すように、所定時間間隔で算出された基準膜間差圧TMP(ref.value)を実線で示す新たな基準膜間差圧TMP(ref.value)に設定するのであるが、算出された基準膜間差圧TMP(ref.value)が前回値よりも下降している場合には、破線で示すように、新たに更新することなく現在値を維持するのが、散気量の過剰な増大を招かないように安全側で散気量を調整できる点で好ましい。   As shown in FIG. 4C, the reference transmembrane pressure difference TMP (ref. Value) calculated at predetermined time intervals is set to a new reference transmembrane pressure difference TMP (ref. Value) indicated by a solid line. However, when the calculated reference transmembrane pressure difference TMP (ref. Value) is lower than the previous value, as shown by the broken line, it is difficult to maintain the current value without newly updating. This is preferable in that the amount of air diffused can be adjusted on the safe side so as not to cause an excessive increase in air volume.

尚、図4(d)の右上がりの斜めの直線で示されるように、本実施形態に用いられる膜分離装置は、被処理水やろ過運転条件にもよるが、例えば、7L/(min.枚)の十分な散気量で散気しながらろ過ポンプ8を連続作動させた場合に、1日当たりおよそ0.1kPa運転圧が上昇し、半年に一回洗浄メンテナンスを行なえばよいような性能を備えている。   4 (d), the membrane separation apparatus used in the present embodiment is, for example, 7 L / (min. When the filtration pump 8 is continuously operated with a sufficient amount of air diffused, the operating pressure rises by about 0.1 kPa per day, and cleaning performance is required only once every six months. I have.

図4(d)のステップ的な線分で示された特性は、このような分離膜60bに対して、6時間間隔で算出された基準膜間差圧TMP(ref.value)が例示されている。つまり、基準膜間差圧TMP(ref.value)が経時的に変化する分離膜60bの膜間差圧に実質的に追随した値となり、この基準膜間差圧に対して現在の膜間差圧が低いのか高いのかを判定して散気量を調整することにより、過剰な散気を行なうことなくろ過性能を維持することができるようになる。   The characteristic indicated by the step-like line segment in FIG. 4D illustrates the reference transmembrane pressure difference TMP (ref. Value) calculated at intervals of 6 hours for such a separation membrane 60b. Yes. That is, the reference transmembrane pressure difference TMP (ref. Value) is a value substantially following the transmembrane pressure difference of the separation membrane 60b that changes with time, and the current transmembrane pressure difference with respect to the reference transmembrane pressure difference. By determining whether the pressure is low or high and adjusting the amount of aeration, the filtration performance can be maintained without excessive aeration.

以下、散気量の制御を詳述する。
図7には、間歇作動されるろ過ポンプ8の一サイクル毎に、演算部10aで行なわれる膜間差圧の基準値との差分値と閾値との比較処理が示されている。
Hereinafter, the control of the amount of air diffusion will be described in detail.
FIG. 7 shows a comparison process between the difference value of the transmembrane pressure difference and the threshold value, which is performed by the calculation unit 10a, for each cycle of the filtration pump 8 that is intermittently operated.

停止圧検知タイミングになると(SB1)、停止圧を入力し(SB2)、運転圧検知タイミングになると(SB3)、運転圧を入力する(SB4)。続いて膜間差圧TMPを算出し(SB5)、膜間差圧TMPの基準膜間差圧との差分値ΔTMPを算出(SB6)する。   When the stop pressure detection timing is reached (SB1), the stop pressure is input (SB2), and when the operation pressure detection timing is reached (SB3), the operation pressure is input (SB4). Subsequently, the transmembrane pressure difference TMP is calculated (SB5), and a difference value ΔTMP between the transmembrane pressure difference TMP and the reference transmembrane pressure difference is calculated (SB6).

停止圧検知タイミングは、図4(a)の停止圧検知領域に対応する区間であり、運転圧検知タイミングは、図4(a)の運転圧検知領域に対応する区間であり、図3(c),(d)の有効判定期間でもある。   The stop pressure detection timing is a section corresponding to the stop pressure detection region in FIG. 4A, and the operation pressure detection timing is a section corresponding to the operation pressure detection region in FIG. ) And (d) are valid determination periods.

運転圧検知タイミングでは、差分値ΔTMPが閾値Th(a)以上である状態が10秒連続すると(SB7)、フラグFbがセットされていないことを条件にフラグFaをセットし(SB9)、差分値ΔTMPが閾値Th(b)以下である状態が30秒連続すると(SB10)、フラグFaがセットされていないことを条件にフラグFbをセットする(SB12)。   At the operating pressure detection timing, if the state in which the difference value ΔTMP is equal to or greater than the threshold value Th (a) continues for 10 seconds (SB7), the flag Fa is set on the condition that the flag Fb is not set (SB9). When the state where ΔTMP is equal to or less than the threshold Th (b) continues for 30 seconds (SB10), the flag Fb is set on the condition that the flag Fa is not set (SB12).

つまり、最終的に何れのフラグもセットされない場合には、差分値ΔTMPが閾値Th(a)とTh(b)の間に存在することになる。尚、本例ではろ過ポンプ8の一周期で双方のフラグが同時にセットされることなく、先にセットされたフラグが有効になるが、一方のフラグのセット時期に他方のフラグをリセットするように処理してもよく、その場合には最新にセットされたフラグが有効となる。   That is, if no flag is finally set, the difference value ΔTMP exists between the threshold values Th (a) and Th (b). In this example, both flags are not set at the same time in one cycle of the filtration pump 8, and the previously set flag is valid. However, the other flag is reset when one flag is set. Processing may be performed, in which case the latest set flag is valid.

図8には、演算部10aで行なわれる差分値ΔTMPに基づく散気量の目標値設定処理が示されている。当該処理は、図7で説明した差分値ΔTMPと閾値との比較処理の終了後に実行され、ろ過ポンプ8の間歇運転の複数サイクルでの差分値ΔTMPの傾向に基づいて、散気量を増加するか減少するかを設定する処理である。   FIG. 8 shows a target value setting process for the amount of air diffused based on the difference value ΔTMP performed by the calculation unit 10a. The process is executed after the comparison process between the difference value ΔTMP and the threshold value described with reference to FIG. 7, and increases the amount of air diffusion based on the tendency of the difference value ΔTMP in a plurality of cycles of intermittent operation of the filtration pump 8. It is a process to set whether to decrease.

フラグFaがセットされていると(SC1)、図7で説明した次の比較処理のためにフラグFaがリセットされ(SC2)、フラグFaに対応したカウンタが+1加算され、フラグFbに対応したカウンタがリセットされる(SC3)。   When the flag Fa is set (SC1), the flag Fa is reset (SC2) for the next comparison process described in FIG. 7, the counter corresponding to the flag Fa is incremented by 1, and the counter corresponding to the flag Fb is added. Is reset (SC3).

それぞれのカウンタは、図7で説明した比較処理の結果、複数サイクルで連続してフラグがセットされるか否かを判定するためのカウンタである。ステップSC3の処理は、フラグFaに対応したカウンタが連続して所定数カウントされる間は、フラグFbに対応するカウンタをリセットする処理である。   Each counter is a counter for determining whether or not the flag is set continuously in a plurality of cycles as a result of the comparison processing described with reference to FIG. The process of step SC3 is a process of resetting the counter corresponding to the flag Fb while the counter corresponding to the flag Fa is continuously counted a predetermined number.

フラグFaに対応したカウンタが所定数、本実施形態では3に達すると(SC4)、当該カウンタをリセットして(SC5)、散気量目標値SVを上昇設定する(SC6)。   When the counter corresponding to the flag Fa reaches a predetermined number, 3 in this embodiment (SC4), the counter is reset (SC5), and the aeration amount target value SV is set to increase (SC6).

ステップSC1で、フラグFaがセットされていない場合には、フラグFbの状態が判定され(SC7)、フラグFbがセットされていれば、図7で説明した次の比較処理のためにフラグFbがリセットされ(SC8)、フラグFbに対応したカウンタが+1加算され、フラグFaに対応したカウンタがリセットされる(SC9)。   If the flag Fa is not set in step SC1, the state of the flag Fb is determined (SC7). If the flag Fb is set, the flag Fb is set for the next comparison process described in FIG. It is reset (SC8), the counter corresponding to the flag Fb is incremented by 1, and the counter corresponding to the flag Fa is reset (SC9).

ステップSC9の処理は、フラグFbに対応したカウンタが連続して所定数カウントされる間は、フラグFaに対応するカウンタをリセットする処理である。   The process of step SC9 is a process of resetting the counter corresponding to the flag Fa while the counter corresponding to the flag Fb is continuously counted a predetermined number.

フラグFbに対応したカウンタが所定数、本実施形態では4に達すると(SC10)、当該カウンタをリセットして(SC11)、散気量目標値SVを下降設定する(SC12)。尚、フラグFaに対応したカウンタの最大値を3、フラグFbに対応したカウンタの最大値を4とする例を示しているが、この値に限るものではなく、フラグFaに対応したカウンタの最大値よりもフラグFbに対応したカウンタの最大値が大きな値であればよい。   When the counter corresponding to the flag Fb reaches a predetermined number, 4 in this embodiment (SC10), the counter is reset (SC11) and the aeration amount target value SV is set to decrease (SC12). Although the maximum value of the counter corresponding to the flag Fa is 3 and the maximum value of the counter corresponding to the flag Fb is 4, an example is not limited to this value, and the maximum value of the counter corresponding to the flag Fa is shown. It is sufficient that the maximum value of the counter corresponding to the flag Fb is larger than the value.

図5には、ステップSC6,SC12で設定される散気量の遷移状態が示されている。初期に2Q(=7l/(min.枚))の散気量に設定されていたのが、領域A1では、フラグFbに対応したカウンタが4を示す度に、つまり、差分値ΔTMPが下限閾値Th(b)以下の状態が4サイクル経過する度に、Q/3という僅かな値で徐々に下降設定される。   FIG. 5 shows the transition state of the air diffusion amount set in steps SC6 and SC12. The air diffusion amount of 2Q (= 7 l / (min.)) Was initially set, but in the area A1, every time the counter corresponding to the flag Fb indicates 4, that is, the difference value ΔTMP is the lower threshold value. Each time four cycles of the state below Th (b), the value is gradually lowered by a slight value of Q / 3.

領域A2では、そのような状態が継続し、最小散気量がQに固定された状態を示している。領域A3では、フラグFaに対応したカウンタが3を示すと、つまり、差分値ΔTMPが上限閾値Th(a)以上の状態が3サイクル経過すると、最大散気量3Qに一気に上昇設定され、この状態が60分継続される。   In the region A2, such a state continues and the minimum air diffusion amount is fixed to Q. In the region A3, when the counter corresponding to the flag Fa indicates 3, that is, when the state where the difference value ΔTMP is equal to or larger than the upper limit threshold Th (a) has passed three cycles, the maximum air diffusion amount 3Q is immediately set to be increased. Is continued for 60 minutes.

60分経過後、領域A4で散気量が2Qに低下設定され、その後、図8で説明した散気量目標値設定処理が行なわれる。尚、領域A4で散気量を2Qに低下することなく、最大散気量3Qに設定された状態で散気量目標値設定処理が行なわれてもよい。また、最大散気量3Qは例示であり、この値に限定されるものではない。また、一気に最大散気量3Qに増加する態様に限るものでなく、数サイクルに渡り複数段階に増加して最大散気量3Qに設定するものでもよい。   After 60 minutes, the amount of air diffused is set to 2Q in the area A4, and then the air amount target value setting process described with reference to FIG. 8 is performed. Note that the air diffusion amount target value setting process may be performed in the state where the maximum air diffusion amount 3Q is set without reducing the air diffusion amount to 2Q in the region A4. Further, the maximum air diffusion amount 3Q is an example, and is not limited to this value. Moreover, it is not restricted to the aspect which increases to the maximum air diffusion amount 3Q at a stretch, and may be set to the maximum air diffusion amount 3Q by increasing in a plurality of stages over several cycles.

つまり、散気量を増加する場合の目標値SVの変化量または変化率の絶対値が、散気量を減少する場合の目標値SVの変化量または変化率の絶対値よりも大きな値に設定される。   That is, the absolute value of the change amount or change rate of the target value SV when increasing the air diffusion amount is set to a value larger than the absolute value of the change amount or change rate of the target value SV when decreasing the air diffusion amount. Is done.

これにより、膜間差圧が高い場合には、既に分離膜表面に固形物等が付着した状態にあるので、その状態を速やかに且つ確実に解除するために、散気量を減少する場合の変化量よりも大きな変化量で増加することによって、気泡及び被処理水の上昇流による分離膜の洗浄効果を高め、分離膜表面の付着物等を効果的に剥離させることができる。   As a result, when the transmembrane pressure difference is high, solids etc. are already attached to the surface of the separation membrane, so in order to release the state quickly and reliably, the amount of air diffused is reduced. By increasing the amount of change larger than the amount of change, the effect of cleaning the separation membrane due to the rising flow of bubbles and water to be treated can be enhanced, and the deposits on the surface of the separation membrane can be effectively peeled off.

そして、膜間差圧が低い場合には、散気量を減少させた場合の分離膜表面の閉塞リスクを抑え、慎重に減少の判断を行なうために、散気量を増加する場合の変化量よりも小さな変化量で減少することによって、気泡及び被処理水の上昇流の急激な変動を抑制し、分離膜表面への付着物等の剥離作用の急激な低下を回避し、また新たな付着を抑制することができる。   And when the transmembrane pressure is low, the amount of change when increasing the amount of air diffused to reduce the risk of clogging the surface of the separation membrane when reducing the amount of air diffused and to carefully judge the decrease. By reducing the amount of change with a smaller amount, the rapid fluctuations in the upward flow of bubbles and water to be treated are suppressed, the sudden decrease in the peeling action of the deposits, etc. on the separation membrane surface is avoided, and new adhesion Can be suppressed.

さらに、散気量を上昇設定した場合には、その後の差分値ΔTMPにかかわらず、少なくとも1時間は目標値が保持されるように構成されている。保持時間は30分から3時間の間の適当な値に設定されていればよい。つまり、膜間差圧にかかわらず、散気量を増加するように設定された場合の目標値SVの保持時間が、散気量を減少するように設定された場合の目標値SVの保持時間よりも長い時間に設定される。   Further, when the air diffusion amount is set to increase, the target value is held for at least one hour regardless of the subsequent difference value ΔTMP. The holding time may be set to an appropriate value between 30 minutes and 3 hours. That is, regardless of the transmembrane pressure difference, the retention time of the target value SV when it is set to increase the amount of aeration is the retention time of the target value SV when it is set to decrease the amount of aeration. Is set to a longer time.

演算部10aで設定された散気量の目標値SVはPID制御部10bに出力され、PID制御部10bはエアフローセンサFmからの空気量PVと目標値SVとの偏差等に基づいてPID演算を行ない、空気量PVが目標値SVになるために必要な制御値MVがインバータ回路10cに入力される。インバータ回路10cによってブロワBの駆動源であるモータの周波数が制御され、散気量が調整される。   The target value SV of the air diffusion amount set by the calculation unit 10a is output to the PID control unit 10b, and the PID control unit 10b performs PID calculation based on the deviation between the air amount PV from the air flow sensor Fm and the target value SV. The control value MV necessary for the air amount PV to become the target value SV is input to the inverter circuit 10c. The frequency of the motor that is the drive source of the blower B is controlled by the inverter circuit 10c, and the amount of aeration is adjusted.

つまり、本発明による膜分離装置6は、膜間差圧に基づいて散気装置7からの散気量の目標値を設定する目標値設定手段としての演算部10aと、散気量が目標値になるように散気装置7を制御する散気量制御手段としてのPID演算部10bとを含み、目標値設定手段は、散気量を増加する場合の目標値の変化量または変化率の絶対値を、散気量を減少する場合の目標値の変化量または変化率の絶対値よりも大きな値に設定するように構成されている。   That is, the membrane separation device 6 according to the present invention includes a calculation unit 10a as target value setting means for setting a target value of the amount of air diffused from the air diffuser 7 based on the transmembrane pressure, and the amount of air diffused is a target value. And a PID calculation unit 10b as an aeration amount control means for controlling the aeration device 7 so that the target value setting means is the absolute value of the change amount or change rate of the target value when the aeration amount is increased. The value is set to a value larger than the absolute value of the amount of change or rate of change of the target value when the amount of air diffusion is reduced.

また、演算部10aは、膜間差圧の測定値を評価するための基準膜間差圧を一定時間毎に更新設定する基準膜間差圧設定手段と、基準膜間差圧と膜間差圧の測定値との差分値に基づいて、散気装置7からの散気量の目標値を設定する目標値設定手段としても機能する。   In addition, the calculation unit 10a includes a reference transmembrane differential pressure setting unit that updates and sets a reference transmembrane differential pressure for evaluating a measured value of the transmembrane differential pressure every predetermined time, and a reference transmembrane differential pressure and a transmembrane difference. It also functions as target value setting means for setting the target value of the amount of air diffused from the air diffuser 7 based on the difference value from the measured pressure value.

このような制御装置10によって、本発明による膜分離装置の運転方法が実現される。即ち、膜間差圧に基づいて散気装置7からの散気量の目標値SVを設定する目標値設定ステップと、散気量が目標値SVになるように散気装置7を制御する散気量制御ステップを含み、目標値設定ステップでは、散気量を増加する場合の目標値の変化量または変化率の絶対値が、散気量を減少する場合の目標値の変化量または変化率の絶対値よりも大きな値に設定される膜分離装置の運転方法である。   By such a control device 10, the operation method of the membrane separation device according to the present invention is realized. That is, a target value setting step for setting a target value SV for the amount of air diffused from the air diffuser 7 based on the transmembrane pressure, and a diffuser for controlling the air diffuser 7 so that the amount of air diffused becomes the target value SV. Including the air volume control step, in the target value setting step, the absolute value of the change or change rate of the target value when increasing the aeration amount is the change or change rate of the target value when decreasing the aeration amount This is a method of operating the membrane separation apparatus set to a value larger than the absolute value of.

そして、散気量制御ステップでは、膜間差圧にかかわらず、散気量を増加するように設定された場合の目標値SVの保持時間が、散気量を減少するように設定された場合の目標値SVの保持時間よりも長い時間に設定される。   In the aeration amount control step, when the retention time of the target value SV is set so as to decrease the aeration amount when it is set to increase the aeration amount regardless of the transmembrane pressure difference. Is set to a time longer than the holding time of the target value SV.

また、目標値設定ステップでは、目標値を下げるための閾値Th(b)よりも低い値を示す膜間差圧の継続時間(本実施形態では30秒と例示されているが、固定値ではない)が、目標値を上げるための閾値Th(a)よりも高い値を示す膜間差圧の継続時間(本実施形態では10秒と例示されているが、固定値ではない)よりも長い時間に設定され、膜間差圧と閾値との関係がそれぞれの閾値に対して設定された継続時間を越えて維持されたときに目標値が変更される。   In the target value setting step, the duration of the transmembrane pressure difference that is lower than the threshold value Th (b) for lowering the target value is exemplified as 30 seconds in this embodiment, but it is not a fixed value. ) Is longer than the duration of the transmembrane pressure difference that is higher than the threshold value Th (a) for increasing the target value (in this embodiment, it is exemplified as 10 seconds but is not a fixed value). The target value is changed when the relationship between the transmembrane pressure difference and the threshold value is maintained beyond the duration set for each threshold value.

さらに、このような膜分離装置の運転方法では、目標値設定ステップでは、基準膜間差圧と膜間差圧の測定値との差分値に基づいて、散気装置7からの散気量の目標値を設定することが好ましく、膜間差圧の測定値を評価するための基準膜間差圧を一定時間毎に更新設定する基準膜間差圧設定ステップを実行することが好ましい。   Further, in such an operation method of the membrane separation apparatus, in the target value setting step, the amount of air diffused from the air diffuser 7 is determined based on the difference value between the reference transmembrane differential pressure and the measured value of the transmembrane differential pressure. It is preferable to set a target value, and it is preferable to execute a reference transmembrane pressure setting step for updating and setting a reference transmembrane pressure difference for evaluating a measured value of the transmembrane pressure difference at regular intervals.

同様に、目標値設定ステップでは、基準膜間差圧TMP(ref.value)と膜間差圧の測定値TMP(cur.value)との差分値ΔTMPに2つの閾値を設定し、差分値が第一の閾値Th(a)超または以上になると目標値を大きくし、差分値が第一の閾値Th(a)よりも小さな第二の閾値Th(b)未満または以下になると目標値を小さくし、差分値が第一の閾値と第二の閾値との間になると目標値を維持するように、目標値が設定される。   Similarly, in the target value setting step, two threshold values are set for the difference value ΔTMP between the reference transmembrane pressure difference TMP (ref. Value) and the transmembrane pressure difference measurement value TMP (cur. Value). When the first threshold Th (a) exceeds or exceeds the target value, the target value is increased, and when the difference value is less than or less than the second threshold Th (b), which is smaller than the first threshold Th (a), the target value is decreased. Then, the target value is set so that the target value is maintained when the difference value is between the first threshold value and the second threshold value.

そして、基準膜間差圧設定ステップでは、基準膜間差圧TMP(ref.value)の更新設定値が直近の過去に更新設定した基準膜間差圧よりも小さい場合に、当該直近の過去に更新設定した基準膜間差圧を引き続き基準膜間差圧として採用するように、基準膜間差圧が更新設定される。   In the reference transmembrane pressure setting step, when the updated setting value of the reference transmembrane pressure TMP (ref. Value) is smaller than the reference transmembrane pressure that has been updated and set in the latest past, The reference transmembrane differential pressure is updated and set so that the updated reference transmembrane differential pressure is continuously adopted as the reference transmembrane differential pressure.

さらに、基準膜間差圧設定ステップでは、少なくとも3時間経過し、12時間を超えない時間に基準膜間差圧が更新設定される。   Further, in the reference transmembrane pressure setting step, at least 3 hours have elapsed and the reference transmembrane pressure difference is updated and set at a time not exceeding 12 hours.

図10(a)には、上述の制御装置10によって制御される膜分離装置6の三日間の基準膜間差圧の推移を示す実験データが示されている。ここでは散気量が低く抑えられた実験データではなく、本発明に特有の散気量の変化をよく表す図4(c)に対応する実験データを採用した。ちなみに、実験データ中の散気量の最大値が、従来一定流量で散気を行なっている値である。基準膜間差圧は約6時間のインタバルで更新されている。   FIG. 10 (a) shows experimental data showing the transition of the reference transmembrane pressure difference for three days of the membrane separation device 6 controlled by the control device 10 described above. Here, the experimental data corresponding to FIG. 4C, which represents the change in the amount of air diffusion peculiar to the present invention, was employed instead of the experimental data in which the amount of air diffusion was kept low. Incidentally, the maximum value of the amount of air diffused in the experimental data is the value that has been diffused at a constant flow rate. The reference transmembrane pressure difference is updated at an interval of about 6 hours.

図10(b)には、同じ膜分離装置6の散気装置7から散気される空気量と、その基となる膜間差圧TMPの基準膜間差圧との差分値ΔTMPと、基準膜間差圧の各推移が示されている。   FIG. 10B shows a difference value ΔTMP between the amount of air diffused from the air diffuser 7 of the same membrane separation device 6 and the reference transmembrane differential pressure of the transmembrane differential pressure TMP as a basis thereof, Each transition of transmembrane pressure is shown.

空気量がステップ的に大きく上昇する二つのタイミングA,Bが把握できる。この直前に差分値ΔTMPが大きな値を示しているように、分離膜の詰まりが大きくなったと判断されている。その後、差分値ΔTMPは0を挟んでほぼ低い値に維持され、空気量がステップ的に減少されるようになる。   Two timings A and B in which the air amount rises stepwise can be grasped. Immediately before this, it is determined that the clogging of the separation membrane has increased as the difference value ΔTMP shows a large value. Thereafter, the difference value ΔTMP is maintained at a substantially low value across 0, and the air amount is reduced stepwise.

本実験では、タイミングBで空気量が増加した後、タイミングCで基準膜間差圧が直前よりも低い値に更新されている。その後しばらくの間、差分値ΔTMPが大きな値を示していることからも把握できるように、基準膜間差圧が前回値よりも下降している場合には、新たに更新することなく現在値を維持することが好ましい。   In this experiment, after the air amount increases at timing B, the reference transmembrane pressure difference is updated to a value lower than that immediately before at timing C. As can be understood from the fact that the difference value ΔTMP shows a large value for a while after that, when the reference transmembrane pressure difference is lower than the previous value, the current value is not updated again. It is preferable to maintain.

尚、第一の閾値Th(a)及び第二の閾値Th(b)の値は例示であり、上述の値に限るものではなく、適宜設定すればよい。また、閾値が一つの値で構成し、差分値ΔTMPが閾値よりも大となる場合に散気量の目標値を大きくし、小となる場合に散気量の目標値を小さくしてもよい。   Note that the values of the first threshold value Th (a) and the second threshold value Th (b) are examples, and are not limited to the above-described values, and may be set as appropriate. Further, the threshold value is configured by one value, and the target value of the air diffusion amount may be increased when the difference value ΔTMP is larger than the threshold value, and the target value of the air diffusion amount may be decreased when the difference value ΔTMP is smaller. .

上述した実施形態では、膜分離活性汚泥処理装置が嫌気槽と膜分離槽の二槽で構成された場合を説明したが、嫌気槽と曝気槽と膜分離槽の三槽で構成されていてもよい。尚、嫌気槽は必ずしも必要ではなく、また、最初沈殿地と曝気槽と膜分離槽を備えた膜分離活性汚泥法が採用される汚水処理装置であってもよい。   In embodiment mentioned above, although the case where the membrane separation activated sludge processing apparatus was comprised with two tanks of an anaerobic tank and a membrane separation tank, even if comprised with three tanks of an anaerobic tank, an aeration tank, and a membrane separation tank, is demonstrated. Good. The anaerobic tank is not necessarily required, and may be a sewage treatment apparatus that employs a membrane separation activated sludge method including an initial settling site, an aeration tank, and a membrane separation tank.

上述した実施形態は本発明の一態様であり、該記載により本発明が限定されるものではなく、各部の具体的構成や制御態様は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   The above-described embodiment is one aspect of the present invention, and the present invention is not limited by the description. Specific configurations and control aspects of each part can be appropriately changed and designed within the scope of the effects of the present invention. Needless to say.

1:汚水処理設備
2:前処理設備
3:流量調整槽
4:活性汚泥処理槽
4a:嫌気槽
4b:膜分離槽
5:処理水槽
6:膜分離装置
60:分離膜
7:散気装置
8:ろ過ポンプ
10:制御装置
1: Sewage treatment facility 2: Pretreatment facility 3: Flow rate adjustment tank 4: Activated sludge treatment tank 4a: Anaerobic tank 4b: Membrane separation tank 5: Treated water tank 6: Membrane separation device 60: Separation membrane 7: Aeration device 8: Filtration pump 10: Control device

Claims (4)

被処理水中に浸漬して配置された分離膜と、前記分離膜の下方に配置された散気装置とを備え、前記散気装置から前記分離膜に向けて散気しながら前記分離膜を透過した処理水を得る膜分離装置の運転方法であって、
膜間差圧に基づいて前記散気装置からの散気量の目標値を設定する目標値設定ステップと、
散気量が前記目標値になるように前記散気装置を制御する散気量制御ステップを含み、
前記目標値設定ステップでは、散気量を増加する場合の目標値の変化量または変化率の絶対値が、散気量を減少する場合の目標値の変化量または変化率の絶対値よりも大きな値に設定されることを特徴とする膜分離装置の運転方法。
A separation membrane that is immersed in the water to be treated and a diffuser disposed below the separation membrane, and passes through the separation membrane while being diffused from the diffuser toward the separation membrane An operation method of a membrane separation device for obtaining treated water,
A target value setting step of setting a target value of the amount of air diffused from the air diffuser based on the transmembrane pressure difference;
An aeration amount control step of controlling the aeration device so that the aeration amount becomes the target value;
In the target value setting step, the absolute value of the change amount or change rate of the target value when increasing the amount of air diffusion is greater than the absolute value of the change amount or change rate of the target value when decreasing the air diffusion amount. A method for operating a membrane separator characterized in that the value is set to a value.
散気量制御ステップでは、膜間差圧にかかわらず、散気量を増加するように設定された場合の目標値の保持時間が、散気量を減少するように設定された場合の目標値の保持時間よりも長い時間に設定されることを特徴とする請求項1に記載の膜分離装置の運転方法。   In the aeration amount control step, the target value holding time when the aeration amount is set to increase regardless of the transmembrane pressure is the target value when the aeration amount is set to decrease. 2. The method for operating a membrane separation device according to claim 1, wherein the time is set to be longer than the holding time. 目標値設定ステップでは、目標値を下げるための閾値よりも低い値を示す膜間差圧の継続時間が、目標値を上げるための閾値よりも高い値を示す膜間差圧の継続時間よりも長い時間に設定され、膜間差圧と閾値との関係がそれぞれの閾値に対して設定された継続時間を越えて維持されたときに目標値が変更されることを特徴とする請求項1または請求項2に記載の膜分離装置の運転方法。   In the target value setting step, the duration of the transmembrane pressure difference showing a value lower than the threshold value for lowering the target value is longer than the duration time of the transmembrane pressure difference showing a value higher than the threshold value for raising the target value. The target value is changed when a long time is set and the relationship between the transmembrane pressure difference and the threshold is maintained beyond the duration set for each threshold. The operation method of the membrane separator according to claim 2. 被処理水中に浸漬して配置された分離膜と、前記分離膜の下方に配置された散気装置とを備え、前記散気装置から前記分離膜に向けて散気しながら前記分離膜を透過した処理水を得る膜分離装置であって、
膜間差圧に基づいて前記散気装置からの散気量の目標値を設定する目標値設定手段と、
散気量が前記目標値になるように前記散気装置を制御する散気量制御手段とを含み、
前記目標値設定手段は、散気量を増加する場合の目標値の変化量または変化率の絶対値を、散気量を減少する場合の目標値の変化量または変化率の絶対値よりも大きな値に設定することを特徴とする膜分離装置。
A separation membrane that is immersed in the water to be treated and a diffuser disposed below the separation membrane, and passes through the separation membrane while being diffused from the diffuser toward the separation membrane A membrane separator for obtaining treated water,
Target value setting means for setting a target value of the amount of air diffused from the air diffuser based on the transmembrane pressure difference;
An aeration amount control means for controlling the aeration device so that the aeration amount becomes the target value,
The target value setting means has an absolute value of a change amount or a change rate of the target value when increasing the amount of air diffusion, and is larger than an absolute value of the change amount or the change rate of the target value when decreasing the air diffusion amount. A membrane separator characterized by being set to a value.
JP2012072917A 2012-03-28 2012-03-28 Method of operating membrane separator and membrane separator Active JP5841474B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012072917A JP5841474B2 (en) 2012-03-28 2012-03-28 Method of operating membrane separator and membrane separator
PCT/JP2013/059179 WO2013146976A1 (en) 2012-03-28 2013-03-28 Operating method for membrane separation device and membrane separation device
US14/496,852 US10010834B2 (en) 2012-03-28 2014-09-25 Operating method for membrane separation device and membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072917A JP5841474B2 (en) 2012-03-28 2012-03-28 Method of operating membrane separator and membrane separator

Publications (2)

Publication Number Publication Date
JP2013202472A true JP2013202472A (en) 2013-10-07
JP5841474B2 JP5841474B2 (en) 2016-01-13

Family

ID=49522180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072917A Active JP5841474B2 (en) 2012-03-28 2012-03-28 Method of operating membrane separator and membrane separator

Country Status (1)

Country Link
JP (1) JP5841474B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034836A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Membrane surface washing method in membrane separation activated sludge method
JP2015127027A (en) * 2013-12-27 2015-07-09 川崎重工業株式会社 Operation mode calculating device and water treatment system comprising it
KR20150093409A (en) * 2014-02-07 2015-08-18 삼성에스디아이 주식회사 Method of cleaning membrane
WO2017006988A1 (en) * 2015-07-07 2017-01-12 株式会社東芝 Wastewater treatment control unit and wastewater treatment system
JP2018079442A (en) * 2016-11-18 2018-05-24 三菱ケミカル株式会社 Siphon type diffuser pipe, membrane separation activated sludge device, and water treatment method
KR20190112140A (en) 2017-03-23 2019-10-02 미쓰비시덴키 가부시키가이샤 Membrane Separator and Membrane Separation Method
KR20200106960A (en) 2018-02-27 2020-09-15 미쓰비시덴키 가부시키가이샤 Aeration amount control system and aeration amount control method
US11584433B2 (en) 2017-06-22 2023-02-21 Mitsubishi Electric Cornoration Electric power steering apparatus and vehicle mounted therewith

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201102A (en) * 1982-05-19 1983-11-22 Hitachi Ltd Controlling method of feedback controlling system
JPH08173965A (en) * 1994-12-22 1996-07-09 Matsushita Electric Works Ltd Electrolytic water-producing method
JP2005144291A (en) * 2003-11-13 2005-06-09 Ngk Insulators Ltd Method for controlling aeration quantity
JP2006021066A (en) * 2004-07-06 2006-01-26 Japan Organo Co Ltd Washing method for immersion type membrane module and washing apparatus
JP2006075804A (en) * 2004-09-13 2006-03-23 Toshiba Corp Apparatus for assisting operation of sewage disposal plant
JP2009061398A (en) * 2007-09-06 2009-03-26 Mitsubishi Rayon Eng Co Ltd Operation method of membrane separating activated sludge treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201102A (en) * 1982-05-19 1983-11-22 Hitachi Ltd Controlling method of feedback controlling system
JPH08173965A (en) * 1994-12-22 1996-07-09 Matsushita Electric Works Ltd Electrolytic water-producing method
JP2005144291A (en) * 2003-11-13 2005-06-09 Ngk Insulators Ltd Method for controlling aeration quantity
JP2006021066A (en) * 2004-07-06 2006-01-26 Japan Organo Co Ltd Washing method for immersion type membrane module and washing apparatus
JP2006075804A (en) * 2004-09-13 2006-03-23 Toshiba Corp Apparatus for assisting operation of sewage disposal plant
JP2009061398A (en) * 2007-09-06 2009-03-26 Mitsubishi Rayon Eng Co Ltd Operation method of membrane separating activated sludge treatment apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034836A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Membrane surface washing method in membrane separation activated sludge method
JP2015127027A (en) * 2013-12-27 2015-07-09 川崎重工業株式会社 Operation mode calculating device and water treatment system comprising it
KR20150093409A (en) * 2014-02-07 2015-08-18 삼성에스디아이 주식회사 Method of cleaning membrane
KR101715994B1 (en) 2014-02-07 2017-03-27 롯데케미칼 주식회사 Method of cleaning membrane
WO2017006988A1 (en) * 2015-07-07 2017-01-12 株式会社東芝 Wastewater treatment control unit and wastewater treatment system
JP2018079442A (en) * 2016-11-18 2018-05-24 三菱ケミカル株式会社 Siphon type diffuser pipe, membrane separation activated sludge device, and water treatment method
KR20190112140A (en) 2017-03-23 2019-10-02 미쓰비시덴키 가부시키가이샤 Membrane Separator and Membrane Separation Method
US11584433B2 (en) 2017-06-22 2023-02-21 Mitsubishi Electric Cornoration Electric power steering apparatus and vehicle mounted therewith
KR20200106960A (en) 2018-02-27 2020-09-15 미쓰비시덴키 가부시키가이샤 Aeration amount control system and aeration amount control method

Also Published As

Publication number Publication date
JP5841474B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5841474B2 (en) Method of operating membrane separator and membrane separator
WO2013146976A1 (en) Operating method for membrane separation device and membrane separation device
JP5841473B2 (en) Method of operating membrane separator and membrane separator
KR102329058B1 (en) A computer readable recording medium recording a clogged point specific program of the separation membrane module, a tidal system and a tidal method
US20070084795A1 (en) Method and system for treating wastewater
US20160102003A1 (en) Advanced control system for wastewater treatment plants with membrane bioreactors
JP6027474B2 (en) Operation method of organic waste water treatment device and organic waste water treatment device
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP6479277B1 (en) Aeration amount control system and aeration amount control method
JP5034381B2 (en) Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same
WO2018043154A1 (en) Method for operating membrane separation device, and membrane separation device
CN108602021B (en) Separation membrane diagnostic method, water treatment method, separation membrane diagnostic device, water treatment device, and separation membrane diagnostic program
JP5588099B2 (en) Membrane filtration treatment method and membrane filtration treatment equipment
JP4979519B2 (en) Operation method of membrane separation activated sludge treatment equipment
JPWO2016178366A1 (en) Membrane separation activated sludge treatment method and membrane separation activated sludge treatment system
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JP2003300071A (en) Water treatment method utilizing membrane filtration
JP5034337B2 (en) Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same
JP2012152669A (en) Method of operating membrane separation device
JP2005270934A (en) Membrane filtration method and apparatus
WO2024122570A1 (en) System for controlling amount of membrane-cleaning wind, method for controlling amount of membrane-cleaning wind, and program for controlling amount of membrane-cleaning wind
JP5548378B2 (en) Water treatment apparatus and water treatment method
JP2016067967A (en) Cleaning method
WO2017057501A1 (en) Membrane-separated activated sludge treatment method and membrane-separated activated sludge treatment system
JP2005058970A (en) Immersion type membrane filter and method for manufacturing clarified water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151113

R150 Certificate of patent or registration of utility model

Ref document number: 5841474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150