JP2005144291A - Method for controlling aeration quantity - Google Patents

Method for controlling aeration quantity Download PDF

Info

Publication number
JP2005144291A
JP2005144291A JP2003383781A JP2003383781A JP2005144291A JP 2005144291 A JP2005144291 A JP 2005144291A JP 2003383781 A JP2003383781 A JP 2003383781A JP 2003383781 A JP2003383781 A JP 2003383781A JP 2005144291 A JP2005144291 A JP 2005144291A
Authority
JP
Japan
Prior art keywords
membrane
aeration
method
membrane separation
aeration quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003383781A
Other languages
Japanese (ja)
Inventor
Motoharu Noguchi
基治 野口
Original Assignee
Ngk Insulators Ltd
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators Ltd, 日本碍子株式会社 filed Critical Ngk Insulators Ltd
Priority to JP2003383781A priority Critical patent/JP2005144291A/en
Publication of JP2005144291A publication Critical patent/JP2005144291A/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • Y02W10/15Aerobic processes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling aeration quantity capable of reducing an energy cost by suppressing the aeration quantity up to the minimum level low and responding to the usual change of filtration conditions. <P>SOLUTION: Inside a treating tank 2 such as a biological reactor in an activated sludge method, a membrane separator 3 in which a membrane filtration module comprising a filter membrane for separating raw water (a) to be treated into a sludge solid component and treated water (b) is loaded is immersed and disposed and, just under the membrane separator, an aerator 4 is attached and diffuses the air supplied from a blower 41 and floated air bubbles wash the membrane separator 3. A membrane differential pressure of the membrane separator 3 is monitored by a pressure sensor 32 and, at the non-stationary time when the membrane differential pressure rises suddenly over the predetermined value, the aeration quantity supplied from the aerator 4 is increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、膜分離活性汚泥法における曝気風量の制御方法の改良に関する。 The present invention relates to an improved method for controlling the aeration air flow in the membrane bioreactor.

従来、汚泥など汚濁固形分を含む汚水を固液分離する膜分離装置は、特許文献1〜6にあるように実用化されている。 Conventionally, membrane separation device for solid-liquid separation wastewater containing pollutant solids sludge is practically as described in Patent Documents 1 to 6. その基本的構造について図2によって概説すると、この膜分離装置11には、汚水を汚濁固形分と処理水とに分離するためのろ過膜からなる膜ろ過モジュールが格納されていて、例えば活性汚泥法における生物反応槽などの処理槽1の内部に浸漬、配設される。 When outlines the basic structure by Figure 2, this membrane separation device 11, the membrane filtration module comprising a filtration membrane for separating dirty water and treated water and polluted solids are stored, for example, activated sludge method immersed into the processing tank 1, such as bioreactor in, it is arranged. そして、その直下には曝気装置12が付設され、ブロア13から送給される空気を散気して、浮上した気泡が膜分離装置11に沿って上昇するように構成されている。 Then, it is attached aerator 12 is immediately below, and aeration air fed from the blower 13, the air bearing air bubbles is configured to increase along the membrane separator 11.
特開平9−136021号公報:解決手段、図。 JP-9-136021 discloses: solutions, FIG. 特開平10−34181号公報:解決手段、図。 JP-10-34181 discloses: solutions, FIG. 特開平10−296252号公報:解決手段、図。 JP 10-296252 discloses: solutions, FIG. 特開2002−166276号公報:解決手段、図。 JP 2002-166276 JP: solutions, FIG. 特開2002−210486号公報:解決手段、図。 JP 2002-210486 JP: solutions, FIG. 特開2002−292254号公報:解決手段、図。 JP 2002-292254 JP: solutions, FIG.

かくして、処理槽1に導入された汚泥など汚濁固形分を含む汚水である処理原水aは、膜分離装置11によって固液分離され、固形分を除いた処理水bは、排水ポンプ14によって排出される。 Thus, processing raw water a, which is wastewater containing pollutant solid sludge that has been introduced into the processing tank 1 is solid-liquid separated by the membrane separation device 11, treated water b excluding the solids, is discharged by the drain pump 14 that. なお、処理水bは、排水ポンプ14を用いずに水位差を駆動力とした方法でも良い。 Incidentally, the treated water b is a water level difference without using the drainage pump 14 may be a method in which a driving force. この場合、膜分離装置11に沿って上昇する気泡は、その上昇流によってろ過膜面に付着する固形分を除去し、また付着するのを抑制するなどして、目詰まりによるろ過抵抗の増加を抑えるよう作用するのである。 In this case, air bubbles rises along the membrane separator 11 removes the solid matter adhering to the filtration membrane surface by the upward flow, also to such inhibit the attachment of, an increase in filtration resistance due to clogging than it acts to suppress.

このように、膜分離装置11に対する曝気運転は、膜分離装置11の運転に対応して常時運転され、かつかなりの曝気風量を確保する必要があることから、ブロア13を運転するためのエネルギコストは、通常、処理槽1基当たりの全ランニングコストの18〜37%を占めるなど、そのウエイトがかなり高いという実情があった。 Thus, aeration operation for membrane separation apparatus 11 is operated at all times in response to operation of the membrane separator 11, and it is necessary to secure a considerable aeration volume, the energy cost for operating the blower 13 typically such accounts for 18-37% of the total running costs per treatment tank 1 group, the weights had circumstances that significantly higher.

一方、エネルギコスト節減のため曝気風量のレベルを単純に低下させると、処理原水の汚濁物濃度や流量の日常変動、あるいは生物反応条件の変化、その他ろ過条件の変動などがあったとき、膜差圧が急上昇し対応できないという問題があった。 On the other hand, if simply reduce the level of aeration air quantity for energy cost savings, pollution concentration and flow rate of the daily variations in processing raw water, or a change in the biological reaction conditions, when there is such variation in other filtration conditions, membrane difference pressure there is a problem that does not spike can respond.

本発明は、上記の問題点を解決するためになされたものであり、曝気風量を最低のレベルを低く抑えることによりエネルギコストを抑制するとともに、日常のろ過条件の変動にも対応することを可能とする曝気風量の制御方法を提供する。 The present invention has been made to solve the above problems, it is possible to suppress the energy cost by suppressing the aeration air flow the lowest levels of low, allowing to cope with variations in the filtration conditions daily to provide a method of controlling the aeration air quantity to be.

上記の問題は、生物処理槽内に配設した、曝気装置を付設した膜分離装置を用いる膜分離活性汚泥法において、前記膜分離装置の膜差圧を監視し、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置から供給される曝気風量を増加させるよう制御することを特徴とする本発明の曝気風量の制御方法によって、解決することができる。 The above problem was provided to the biological treatment tank, the membrane separation activated sludge method using a membrane separation device annexed aeration device, to monitor the transmembrane pressure difference of the membrane separation device, transmembrane pressure difference is greater than a predetermined value at the time of non-stationary is to zoom, the control method of the aeration amount of the present invention, characterized by controlling so as to increase the aeration amount supplied from the aeration device can be solved. ここで膜差圧が所定値以上に急上昇したか否かは、膜差圧上昇速度(例えばkPa/日で表す)で評価される。 Here transmembrane pressure difference is whether soared above a predetermined value is evaluated in membrane differential pressure increase rate (e.g., expressed in kPa / day). また、膜差圧は水温の影響を受けるため、処理槽内の水温を測定し、水温補正した値を用いる方が望ましい。 Moreover, transmembrane pressure difference is influenced by temperature, the water temperature in the treatment tank is measured, it is preferable to use a water temperature correction value.
また、本発明は、膜差圧が非定常時を除く通常のレベルの範囲内であるときの曝気風量を、あらかじめ定めた許容下限値に設定する形態の曝気風量の制御方法として具体化される。 Further, the present invention is membrane pressure difference of the aeration amount when within the ordinary level except during non-stationary, is embodied as a control method of the aeration amount of the form to be set to a predetermined allowable lower limit value .

本発明者らは、生物処理槽内に配設した、曝気装置を付設した膜分離装置を用いる膜分離活性汚泥法における、曝気風量と膜分離装置の目詰まり防止作用の関係や、処理槽のろ過条件の変動要因、例えば前記したような処理原水の汚濁物濃度や流量の日常変動、あるいは生物反応条件の変化、その他ろ過条件について、多くの実機を研究、調査した結果、次の(1)(2)の事実を見出したことから本発明を完成したのである。 The present inventors have provided the biological treatment tank, the membrane separation activated sludge method using a membrane separation device annexed aeration device, relations and prevent clogging effects of aeration volume and membrane separator, the treatment tank variable factors filtration conditions, for example, pollutant concentration and flow rate of the daily variations in processing raw water as described above, or a change in the biological reaction conditions for other filtration conditions, study the many actual, results of the investigation, the following (1) (2) than is the present invention has been completed from the finding facts.

(1)膜分離装置のろ過抵抗に急激に悪影響を及ぼすろ過条件は、日常変動の大部分を占める緩慢な変動ではなく、短時間の相当に急激な変動であって、そのような非定常的な変動は、膜分離装置の膜差圧の動きを常時監視していて、それが所定値以上に急上昇した場合に発生したと判断することができることを見出した。 (1) rapidly adversely affect filtration conditions to filtration resistance of the membrane separation device is not a slow variation occupying most of the daily variation, a fairly sharp fluctuations in a short time, such unsteady the Do variations, have constantly monitors the movement of the transmembrane pressure difference of the membrane separator, it was found that it can be judged to have occurred when the jumped more than a predetermined value.

(2)定常的なろ過条件では、膜分離装置のろ過抵抗は緩慢に増加するものであって、これは曝気風量を増加させても抑止効果は比例的に増加しないが、また曝気風量を順次低下させた場合、ある値以下に下がるとろ過抵抗は急激に増加することを見出した。 (2) In the steady filtration conditions, there is a filtration resistance of the membrane separation device to increase slowly, this is not deterrent effect by increasing the aeration air quantity increases proportionally and the aeration amount sequentially If reduced, filtration resistance and drop below certain values ​​were found to increase rapidly. すなわち、定常的なろ過条件では、前記のようなろ過抵抗が急激に増加する現象がおきる直前の曝気風量を許容下限値としてろ過運転するのが、ろ過抵抗の増加を極力抑制し、かつ曝気風量を最小にできることが分かったのである。 That is, in the steady filtration conditions, for filtration operation the aeration amount immediately before phenomenon filtration resistance increases sharply as the occurs as an allowable lower limit, as much as possible to suppress the increase in the filtration resistance, and aeration amount the it was found to be the minimum.

かくして、本発明はこのような知見に基づいて完成したものであり、前記膜分離装置の膜差圧を監視し、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置から供給される曝気風量を増加させるよう制御するので、定常的なろ過条件では、曝気風量をミニマムに設定できるので、曝気装置のエネルギコストを抑制できる。 Thus, the present invention has been completed based on these findings, to monitor the transmembrane pressure difference of the membrane separation device, at the time of non-stationary membrane differential pressure rises rapidly above a predetermined value, supplied from the aeration device and controls so as to increase that aeration air volume in steady filtration conditions, since the aeration amount can be set to minimum, it is possible to suppress energy cost of the aeration device. そして、膜分離装置の目詰まりを急激に惹起するようなろ過条件の大きな変動があった場合には、曝気風量を増加させて目詰まりを抑制できるという優れた効果がある。 When there is a large variation in the filtration conditions, such as eliciting a clogging of the membrane separation device suddenly may excellent effect that clogging by increasing the aeration air quantity can be suppressed. よって本発明は、従来の問題点を解消した曝気風量の制御方法として、実用的価値はきわめて大なるものがある。 Thus, the present invention is, as a control method of aeration air quantity which solves the conventional problems, practical value is those very becomes large.

次に、本発明の曝気風量の制御方法に係る実施形態について、図1を参照しながら説明する。 Next, an embodiment according to the method of controlling the aeration of the present invention will be described with reference to FIG.
本発明が実施できる膜分離活性汚泥装置のフローを例示する図1において、その基本的な構造は先に説明したものと同様である。 In Figure 1 illustrating the flow of the membrane separation activated sludge system in which the invention may be practiced, its basic structure is similar to that previously described. すなわち、例えば活性汚泥法における生物反応槽などの処理槽2の内部に、処理原水aを汚濁固形分と処理水bとに分離するためのろ過膜からなる膜ろ過モジュールが格納されている膜分離装置3が、浸漬、配設される。 That is, for example, into the processing vessel 2, such as biological reactor in the active sludge method, film membrane filtration module comprising a filtration membrane for separating the processing raw water a into the polluted solids and treated water b is stored separated 3 is immersed, is arranged. そして、その直下には曝気装置4が付設され、ブロア41から送給される空気を散気して、浮上した気泡が膜分離装置3に沿って上昇して洗浄するように構成されている。 Then, is attached aeration device 4 immediately below, the diffuser air fed from the blower 41, the air bearing air bubbles is configured to clean and rises along the membrane separator 3.

かくして、処理槽2に導入された処理原水aは、膜分離装置3によって固液分離され、固形分を除いた処理水bは、排水ポンプ31によって排出される。 Thus, processing raw water a, which is introduced into the processing tank 2 is solid-liquid separated by the membrane separation device 3, treated water b excluding the solids, is discharged by the drain pump 31. この場合、膜分離装置3に沿って上昇する気泡は、その上昇流によってろ過膜面に付着する固形分を除去し、また付着するのを抑制するなどして、目詰まりによるろ過抵抗の増加を抑えるよう作用するのは如上の通りである。 In this case, the bubbles rising along the membrane separator 3 is to remove the solid matter adhering to the filtration membrane surface by the upward flow, also to such inhibit the attachment of, an increase in filtration resistance due to clogging it is as According to the process 30 to act to suppress.

本発明は、このようなシステムを前提として、前記膜分離装置3の膜差圧を監視し、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置4から供給される曝気風量を増加させるよう制御する点を特徴とする曝気風量の制御方法であるが、この膜分離装置の運転に関して、日常のろ過条件の変動からみて、短時間ではあるが急激に変動する非定常時と、それ以外の多くの時間を占める緩慢に変動する定常時とに区分されること、およびこの非定常時と定常時の区別は、前記曝気装置4の膜差圧を常時測定することによって判断できることは、先に述べた通りである。 The present invention is, assuming such a system to monitor the transmembrane pressure difference of the membrane separation device 3, at the time of non-stationary membrane differential pressure rises rapidly above a predetermined value, the aeration amount supplied from the aeration device 4 is a method of controlling the aeration air flow, characterized in that the controls to increase, with respect to operation of the membrane separation device, as viewed from the variation in the filtration conditions daily, and unsteady there is varying abruptly in a short time, it is divided into a steady varying slowly occupying a lot of time for the other, and this distinction at unsteady and steady, it can be determined by continuously measuring the transmembrane pressure difference of the aeration device 4 , it is as previously described.

そこで、本発明においては、膜差圧の挙動が定常時のレベルにあるときの曝気風量として、これ以下に低下させると膜差圧が急激に増加するという許容される下限の曝気風量(許容下限値)をあらかじめ予備試験によって定めておき、その許容下限値に設定するのが好ましい。 Therefore, in the present invention, as aeration amount when the behavior of the transmembrane pressure difference is at the level of the steady state, aeration amount of the lower limit acceptable that this transmembrane pressure difference when lowering below is rapidly increased (allowable lower limit is determined in advance by the advance preliminary test values), it is preferable to set the allowable lower limit value. なお、この許容下限値は、個々のシステムや処理原水水質などによってその値が変化するので一概に定めることができないが、このように、低常時の曝気風量を許容下限値としてろ過運転すれば、ろ過抵抗の増加を極力抑制し、かつ曝気風量を最小にできるのである。 Incidentally, the allowable lower limit, can not be determined indiscriminately because its value changes depending on the individual system and processing raw water quality, this way, if filtration operation the aeration amount of the low constant as allowable lower limit value, the increase in the filtration resistance is minimized, and it can be an aeration amount to a minimum.

そして、本発明では、圧力センサ32を前記膜分離装置3のろ過側に設置し、ろ過膜の膜差圧を常時監視するものとし、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置4から供給される曝気風量を増加させ、分離膜面に対する汚濁固形分の付着や堆積を防止、解消するよう制御する点を最大の特徴とする。 In the present invention, established the pressure sensor 32 to the filtration side of the membrane separation device 3, it is assumed that constantly monitors the transmembrane pressure difference of the filtration membrane, the unsteady the transmembrane pressure difference rises rapidly above a predetermined value, the aeration amount supplied from the aeration device 4 increases, preventing pollution solids deposition and deposition for the separation membrane surface, the maximum feature points to control so as to eliminate. なお、膜差圧は、膜を通して処理水を得る際に膜の原水側と透過側(処理水側)で生じる圧力の差のことである。 Incidentally, transmembrane pressure difference is that the difference in pressure caused by the raw water side and the permeate side of the membrane in obtaining treated water through a membrane (treated water side).

さらに、この非定常時が生じたことを判断するための膜差圧の所定値および急上昇の程度は、個々のシステムについて実験的に定められるが、多くの経験からその膜差圧の所定値は、0〜150kPaの範囲内、好ましくは0〜20kPaの範囲内で設定するのがよく、また、膜差圧の急上昇の程度は、1kPa/日以上が1時間以上継続する場合に設定するのが好ましい。 Furthermore, the degree of predetermined value and spikes transmembrane pressure difference for determining the time of the unsteady occurs is determined empirically for each system, the predetermined value of the transmembrane pressure difference from many experiences , in the range of 0~150KPa, preferably may be set within a range of 0 to 20 kPa, also, the degree of spikes transmembrane pressure difference is to set if more than 1 kPa / day continues over 1 hour preferable.

かくして、本発明では、定常的なろ過条件では、曝気風量をミニマムに設定できるので、曝気装置のエネルギコストを抑制でき、平均的な処理槽1基当たりエネルギコストを最大60%程度節減することができた。 Thus, in the present invention, in the steady filtration conditions, since the aeration amount can be set to minimum, it is possible to suppress energy costs aeration device, an average processing tank 1 energy cost per group to be reduced up to about 60% did it. そして、膜分離装置の目詰まりを急激に惹起するようなろ過条件の大きな変動があった場合には、曝気風量を増加させて目詰まりを抑制できるという優れた効果がある。 When there is a large variation in the filtration conditions, such as eliciting a clogging of the membrane separation device suddenly may excellent effect that clogging by increasing the aeration air quantity can be suppressed. よって本発明は、従来の問題点を解消した曝気風量の制御方法として、実用的価値はきわめて大なるものがある。 Thus, the present invention is, as a control method of aeration air quantity which solves the conventional problems, practical value is those very becomes large.

なお、本発明が適用される処理槽としては、通常の生物反応槽を含み、下水、返流水、工場排水、ゴミ浸出水、し尿廃水、農業廃水、畜産廃水、養殖廃水など広範囲の処理原水の排水処理に利用されている活性汚泥を用いる生物処理槽の他、一般的な好気槽、硝化液循環法による硝化+脱窒処理槽、AO法またはA2O法などによる処理槽やこれらに微生物固定化担体を組み合わせた処理槽を含むのである。 As the treatment tank to which the present invention is applied, it includes a conventional biological reactor, sewage, return water flow, industrial wastewater, waste leachate, night soil waste, agricultural waste, livestock waste, aquaculture wastewater such extensive processing raw water other biological treatment tank using an activated sludge which is used in waste water treatment, general aerobic tank, nitrification circulation method by nitrification + denitrification treatment tank, AO method or the like according to the processing tank A2O method and these microorganisms fixed it contain a treatment bath which combines pellets. また、これらの処理槽の後に生物処理槽とは別に膜分離槽を設けてもよい。 It is also possible to provide a separate membrane separation tank and the biological treatment tank after these processing tanks.

また、本発明の適用され得る膜分離装置としては、外圧方式または内圧方式のいずれでもよく、使用される膜は、高分子材(PEG、PVA、PP、PU、PE、PVdFなど合成樹脂材料)またはセラミックス材料を用いたMF膜およびUF膜であり、そのろ過体形状は、モノリス、チューブラー、ハニカム、中空糸、または平膜状などの多くの形式の膜分離装置に適用される。 As the applied may membrane separation apparatus of the present invention may be either external pressure type or internal pressure method, the membrane used, the polymeric material (PEG, PVA, PP, PU, ​​PE, PVdF synthetic resin material) or a MF membrane and UF membranes with ceramic materials, the filtration body shape is applied monolith, tubular, honeycomb, many types of membrane separation device such as a hollow fiber or flat film.

本発明を説明するための膜分離活性汚泥装置のフロー概要図。 Flow schematic diagram of a membrane separation activated sludge device for illustrating the present invention. 従来の膜分離活性汚泥装置のフロー概要図。 Flow schematic diagram of a conventional membrane separation activated sludge unit.

符号の説明 DESCRIPTION OF SYMBOLS

2:処理槽3:膜分離装置、31:排水ポンプ、32:圧力センサ4:曝気装置a:処理原水b:処理水 2: process vessel 3: membrane separator, 31: drainage pump, 32: pressure sensor 4: aerator a: processing raw water b: treated water

Claims (2)

  1. 生物処理槽内に配設した、曝気装置を付設した膜分離装置を用いる膜分離活性汚泥法において、前記膜分離装置の膜差圧を監視し、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置から供給される曝気風量を増加させるよう制御することを特徴とする曝気風量の制御方法。 Is disposed in the biological treatment tank, unsteady in membrane separation activated sludge method using a membrane separation device annexed aeration device, which monitors the transmembrane pressure difference of the membrane separation device, the transmembrane pressure difference increases sharply above a predetermined value sometimes, the control method of the aeration amount and controlling so as to increase the aeration amount supplied from the aeration device.
  2. 膜差圧が非定常時を除く通常のレベルの範囲内であるときの曝気風量を、あらかじめ定めた許容定常値に設定する請求項1に記載の曝気風量の制御方法。 The method of aeration amount according to claim 1, wherein the aeration amount is set to a predetermined allowable steady value when transmembrane pressure difference is within the ordinary level except during non-stationary.

JP2003383781A 2003-11-13 2003-11-13 Method for controlling aeration quantity Pending JP2005144291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383781A JP2005144291A (en) 2003-11-13 2003-11-13 Method for controlling aeration quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383781A JP2005144291A (en) 2003-11-13 2003-11-13 Method for controlling aeration quantity

Publications (1)

Publication Number Publication Date
JP2005144291A true JP2005144291A (en) 2005-06-09

Family

ID=34692403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383781A Pending JP2005144291A (en) 2003-11-13 2003-11-13 Method for controlling aeration quantity

Country Status (1)

Country Link
JP (1) JP2005144291A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029465A1 (en) * 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
WO2007006153A1 (en) 2005-07-12 2007-01-18 Zenon Technology Partnership Process control for an immersed membrane system
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
WO2013146976A1 (en) * 2012-03-28 2013-10-03 株式会社クボタ Operating method for membrane separation device and membrane separation device
JP2013202472A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator
JP2013202471A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator
WO2014034836A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Membrane surface washing method in membrane separation activated sludge method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
JP6342101B1 (en) * 2017-03-23 2018-06-13 三菱電機株式会社 Membrane separation apparatus and membrane separation method
WO2018173354A1 (en) * 2017-03-23 2018-09-27 三菱電機株式会社 Membrane separation device and membrane separation method
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
WO2006029465A1 (en) * 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
EP1904216A4 (en) * 2005-07-12 2008-11-19 Zenon Technology Partnership Process control for an immersed membrane system
WO2007006153A1 (en) 2005-07-12 2007-01-18 Zenon Technology Partnership Process control for an immersed membrane system
EP1904216A1 (en) * 2005-07-12 2008-04-02 Zenon Technology Partnership Process control for an immersed membrane system
US9783434B2 (en) 2005-07-12 2017-10-10 Zenon Technology Partnership Real-time process control for an immersed membrane filtration system using a control hierarchy of discrete-state parameter changes
EP3189885A1 (en) * 2005-07-12 2017-07-12 Zenon Technology Partnership Process control for an immersed membrane system
EP2314368A3 (en) * 2005-07-12 2011-12-21 Zenon Technology Partnership Process control for an immersed membrane system
US8357299B2 (en) 2005-07-12 2013-01-22 Zenon Technology Partnership Process control for an immersed membrane system
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
JP2013202471A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator
WO2013146976A1 (en) * 2012-03-28 2013-10-03 株式会社クボタ Operating method for membrane separation device and membrane separation device
JP2013202472A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator
US10010834B2 (en) 2012-03-28 2018-07-03 Kubota Corporation Operating method for membrane separation device and membrane separation device
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
WO2014034836A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Membrane surface washing method in membrane separation activated sludge method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
WO2018173354A1 (en) * 2017-03-23 2018-09-27 三菱電機株式会社 Membrane separation device and membrane separation method
JP6342101B1 (en) * 2017-03-23 2018-06-13 三菱電機株式会社 Membrane separation apparatus and membrane separation method

Similar Documents

Publication Publication Date Title
Chiemchaisri et al. Household membrane bioreactor in domestic wastewater treatment
KR100600636B1 (en) Method and system for treating wastewater containing organic compounds
AU2005240524B2 (en) Filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
Le-Clech Membrane bioreactors and their uses in wastewater treatments
Mendoza-Espinosa et al. A review of biological aerated filters (BAFs) for wastewater treatment
US7718057B2 (en) Wastewater treatment system
US7510655B2 (en) Process to improve the efficiency of a membrane filter activated sludge system
US7481933B2 (en) Process to improve the efficiency of a membrane filter activated sludge system
US6743362B1 (en) Sewage treatment process
EP1044928B1 (en) Water treating method
Shim et al. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor
Gander et al. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations
US5126042A (en) Floating media biofilter
US7713413B2 (en) Aerated anoxic membrane bioreactor
KR101125165B1 (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
Li et al. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling
CA2629910C (en) Sewage treatment
US7329344B2 (en) Grease and scum removal in a filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
US6616843B1 (en) Submerged membrane bioreactor for treatment of nitrogen containing water
US8623202B2 (en) Infiltration/inflow control for membrane bioreactor
US6808628B2 (en) Membrane bioreactor using non-woven fabric filtration
Ndinisa et al. Fouling control in a submerged flat sheet membrane system: part I–bubbling and hydrodynamic effects
JP2005279447A (en) Water treatment method and apparatus
EP1270514A1 (en) Method and apparatus for treating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091030