JP2005144291A - Method for controlling aeration quantity - Google Patents

Method for controlling aeration quantity Download PDF

Info

Publication number
JP2005144291A
JP2005144291A JP2003383781A JP2003383781A JP2005144291A JP 2005144291 A JP2005144291 A JP 2005144291A JP 2003383781 A JP2003383781 A JP 2003383781A JP 2003383781 A JP2003383781 A JP 2003383781A JP 2005144291 A JP2005144291 A JP 2005144291A
Authority
JP
Japan
Prior art keywords
membrane
differential pressure
aeration
air volume
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003383781A
Other languages
Japanese (ja)
Inventor
Motoharu Noguchi
基治 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003383781A priority Critical patent/JP2005144291A/en
Publication of JP2005144291A publication Critical patent/JP2005144291A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling aeration quantity capable of reducing an energy cost by suppressing the aeration quantity up to the minimum level low and responding to the usual change of filtration conditions. <P>SOLUTION: Inside a treating tank 2 such as a biological reactor in an activated sludge method, a membrane separator 3 in which a membrane filtration module comprising a filter membrane for separating raw water (a) to be treated into a sludge solid component and treated water (b) is loaded is immersed and disposed and, just under the membrane separator, an aerator 4 is attached and diffuses the air supplied from a blower 41 and floated air bubbles wash the membrane separator 3. A membrane differential pressure of the membrane separator 3 is monitored by a pressure sensor 32 and, at the non-stationary time when the membrane differential pressure rises suddenly over the predetermined value, the aeration quantity supplied from the aerator 4 is increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、膜分離活性汚泥法における曝気風量の制御方法の改良に関する。   The present invention relates to an improvement in a method for controlling the amount of aeration air in a membrane separation activated sludge method.

従来、汚泥など汚濁固形分を含む汚水を固液分離する膜分離装置は、特許文献1〜6にあるように実用化されている。その基本的構造について図2によって概説すると、この膜分離装置11には、汚水を汚濁固形分と処理水とに分離するためのろ過膜からなる膜ろ過モジュールが格納されていて、例えば活性汚泥法における生物反応槽などの処理槽1の内部に浸漬、配設される。そして、その直下には曝気装置12が付設され、ブロア13から送給される空気を散気して、浮上した気泡が膜分離装置11に沿って上昇するように構成されている。
特開平9−136021号公報:解決手段、図。 特開平10−34181号公報:解決手段、図。 特開平10−296252号公報:解決手段、図。 特開2002−166276号公報:解決手段、図。 特開2002−210486号公報:解決手段、図。 特開2002−292254号公報:解決手段、図。
Conventionally, a membrane separation apparatus for solid-liquid separation of sewage containing contaminated solids such as sludge has been put into practical use as disclosed in Patent Documents 1-6. The basic structure will be outlined with reference to FIG. 2. The membrane separation device 11 stores a membrane filtration module comprising a filtration membrane for separating sewage into polluted solids and treated water. Is immersed and disposed in a processing tank 1 such as a biological reaction tank. An aeration device 12 is attached immediately below, and is configured so that air supplied from the blower 13 is diffused so that the air bubbles that have risen rise along the membrane separation device 11.
Japanese Patent Laid-Open No. 9-136021: Solution means, diagram. Japanese Patent Laid-Open No. 10-34181: Solution means, diagram. Japanese Patent Laid-Open No. 10-296252: Solution means, diagram. Unexamined-Japanese-Patent No. 2002-166276: Solution means, figure. Unexamined-Japanese-Patent No. 2002-210486: Solution means, figure. Unexamined-Japanese-Patent No. 2002-292254: Solution means, figure.

かくして、処理槽1に導入された汚泥など汚濁固形分を含む汚水である処理原水aは、膜分離装置11によって固液分離され、固形分を除いた処理水bは、排水ポンプ14によって排出される。なお、処理水bは、排水ポンプ14を用いずに水位差を駆動力とした方法でも良い。この場合、膜分離装置11に沿って上昇する気泡は、その上昇流によってろ過膜面に付着する固形分を除去し、また付着するのを抑制するなどして、目詰まりによるろ過抵抗の増加を抑えるよう作用するのである。   Thus, the treated raw water a, which is sewage containing contaminated solids such as sludge introduced into the treatment tank 1, is solid-liquid separated by the membrane separator 11, and the treated water b excluding the solids is discharged by the drainage pump 14. The The treated water b may be a method using the water level difference as a driving force without using the drain pump 14. In this case, the bubbles rising along the membrane separation device 11 remove the solid content adhering to the filtration membrane surface by the upward flow and suppress the adhesion, thereby increasing the filtration resistance due to clogging. It acts to suppress it.

このように、膜分離装置11に対する曝気運転は、膜分離装置11の運転に対応して常時運転され、かつかなりの曝気風量を確保する必要があることから、ブロア13を運転するためのエネルギコストは、通常、処理槽1基当たりの全ランニングコストの18〜37%を占めるなど、そのウエイトがかなり高いという実情があった。   As described above, since the aeration operation for the membrane separation device 11 is always operated corresponding to the operation of the membrane separation device 11 and it is necessary to secure a considerable amount of aeration air, the energy cost for operating the blower 13 is required. Usually accounted for 18 to 37% of the total running cost per treatment tank, and the weight was considerably high.

一方、エネルギコスト節減のため曝気風量のレベルを単純に低下させると、処理原水の汚濁物濃度や流量の日常変動、あるいは生物反応条件の変化、その他ろ過条件の変動などがあったとき、膜差圧が急上昇し対応できないという問題があった。   On the other hand, if the level of aeration air volume is simply reduced to save energy costs, there will be membrane differences when there are daily fluctuations in the concentration and flow rate of raw water in the treated raw water, changes in biological reaction conditions, fluctuations in other filtration conditions, etc. There was a problem that the pressure rose rapidly and could not be dealt with.

本発明は、上記の問題点を解決するためになされたものであり、曝気風量を最低のレベルを低く抑えることによりエネルギコストを抑制するとともに、日常のろ過条件の変動にも対応することを可能とする曝気風量の制御方法を提供する。   The present invention has been made in order to solve the above-described problems, and by suppressing the aeration air volume to a minimum level, it is possible to suppress energy costs and cope with fluctuations in daily filtration conditions. A method for controlling the amount of aeration air is provided.

上記の問題は、生物処理槽内に配設した、曝気装置を付設した膜分離装置を用いる膜分離活性汚泥法において、前記膜分離装置の膜差圧を監視し、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置から供給される曝気風量を増加させるよう制御することを特徴とする本発明の曝気風量の制御方法によって、解決することができる。ここで膜差圧が所定値以上に急上昇したか否かは、膜差圧上昇速度(例えばkPa/日で表す)で評価される。また、膜差圧は水温の影響を受けるため、処理槽内の水温を測定し、水温補正した値を用いる方が望ましい。
また、本発明は、膜差圧が非定常時を除く通常のレベルの範囲内であるときの曝気風量を、あらかじめ定めた許容下限値に設定する形態の曝気風量の制御方法として具体化される。
In the membrane separation activated sludge method using a membrane separation device provided with an aeration device, disposed in a biological treatment tank, the membrane differential pressure of the membrane separation device is monitored, and the membrane differential pressure exceeds a predetermined value. In a non-stationary state where the aeration suddenly increases, the aeration air volume control method according to the present invention can be solved by controlling to increase the aeration air volume supplied from the aeration apparatus. Here, whether or not the membrane differential pressure has rapidly increased to a predetermined value or more is evaluated by a membrane differential pressure increase rate (for example, expressed in kPa / day). Further, since the membrane differential pressure is affected by the water temperature, it is desirable to measure the water temperature in the treatment tank and use a value obtained by correcting the water temperature.
In addition, the present invention is embodied as a method for controlling the aeration air volume in such a manner that the aeration air volume when the membrane differential pressure is within a normal level range excluding unsteady times is set to a predetermined allowable lower limit value. .

本発明者らは、生物処理槽内に配設した、曝気装置を付設した膜分離装置を用いる膜分離活性汚泥法における、曝気風量と膜分離装置の目詰まり防止作用の関係や、処理槽のろ過条件の変動要因、例えば前記したような処理原水の汚濁物濃度や流量の日常変動、あるいは生物反応条件の変化、その他ろ過条件について、多くの実機を研究、調査した結果、次の(1)(2)の事実を見出したことから本発明を完成したのである。   In the membrane separation activated sludge method using a membrane separation device provided with an aeration device, disposed in a biological treatment tank, the relationship between the amount of aeration air and the clogging prevention effect of the membrane separation device, As a result of researching and investigating many factors related to fluctuation conditions of filtration conditions, such as daily fluctuations in the concentration and flow rate of treated raw water, changes in biological reaction conditions, and other filtration conditions, the following (1) The present invention was completed from finding the fact (2).

(1)膜分離装置のろ過抵抗に急激に悪影響を及ぼすろ過条件は、日常変動の大部分を占める緩慢な変動ではなく、短時間の相当に急激な変動であって、そのような非定常的な変動は、膜分離装置の膜差圧の動きを常時監視していて、それが所定値以上に急上昇した場合に発生したと判断することができることを見出した。   (1) Filtration conditions that have a detrimental effect on the filtration resistance of the membrane separation apparatus are not slow fluctuations that account for the majority of daily fluctuations, but rather abrupt fluctuations in a short period of time. It has been found that such a fluctuation can be judged to occur when the movement of the membrane differential pressure of the membrane separation apparatus is constantly monitored and when it rapidly rises above a predetermined value.

(2)定常的なろ過条件では、膜分離装置のろ過抵抗は緩慢に増加するものであって、これは曝気風量を増加させても抑止効果は比例的に増加しないが、また曝気風量を順次低下させた場合、ある値以下に下がるとろ過抵抗は急激に増加することを見出した。すなわち、定常的なろ過条件では、前記のようなろ過抵抗が急激に増加する現象がおきる直前の曝気風量を許容下限値としてろ過運転するのが、ろ過抵抗の増加を極力抑制し、かつ曝気風量を最小にできることが分かったのである。   (2) Under steady filtration conditions, the filtration resistance of the membrane separator increases slowly, and this does not increase the suppression effect proportionally even if the aeration air volume is increased. It was found that the filtration resistance suddenly increases when the value drops below a certain value. In other words, under steady filtration conditions, the filtration operation is performed with the aeration air volume immediately before the phenomenon of the sudden increase in filtration resistance as described above being the allowable lower limit, and the increase in filtration resistance is suppressed as much as possible and the aeration air volume is It has been found that can be minimized.

かくして、本発明はこのような知見に基づいて完成したものであり、前記膜分離装置の膜差圧を監視し、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置から供給される曝気風量を増加させるよう制御するので、定常的なろ過条件では、曝気風量をミニマムに設定できるので、曝気装置のエネルギコストを抑制できる。そして、膜分離装置の目詰まりを急激に惹起するようなろ過条件の大きな変動があった場合には、曝気風量を増加させて目詰まりを抑制できるという優れた効果がある。よって本発明は、従来の問題点を解消した曝気風量の制御方法として、実用的価値はきわめて大なるものがある。   Thus, the present invention has been completed based on such knowledge. The membrane differential pressure of the membrane separation device is monitored, and the membrane differential pressure is supplied from the aeration device at a non-steady time when the membrane differential pressure rapidly rises above a predetermined value. Since the aeration air volume is controlled to be increased, the aeration air volume can be set to a minimum under a steady filtration condition, so that the energy cost of the aeration apparatus can be suppressed. When there is a large change in the filtration conditions that causes the clogging of the membrane separation device suddenly, there is an excellent effect that the clogging can be suppressed by increasing the aeration air volume. Therefore, the present invention has an extremely large practical value as a method for controlling the amount of aeration air that has solved the conventional problems.

次に、本発明の曝気風量の制御方法に係る実施形態について、図1を参照しながら説明する。
本発明が実施できる膜分離活性汚泥装置のフローを例示する図1において、その基本的な構造は先に説明したものと同様である。すなわち、例えば活性汚泥法における生物反応槽などの処理槽2の内部に、処理原水aを汚濁固形分と処理水bとに分離するためのろ過膜からなる膜ろ過モジュールが格納されている膜分離装置3が、浸漬、配設される。そして、その直下には曝気装置4が付設され、ブロア41から送給される空気を散気して、浮上した気泡が膜分離装置3に沿って上昇して洗浄するように構成されている。
Next, an embodiment according to the method for controlling the aeration air volume of the present invention will be described with reference to FIG.
In FIG. 1 illustrating the flow of the membrane separation activated sludge apparatus in which the present invention can be implemented, the basic structure is the same as that described above. That is, for example, a membrane separation module in which a membrane filtration module comprising a filtration membrane for separating the treated raw water a into contaminated solids and treated water b is stored inside the treatment tank 2 such as a biological reaction tank in the activated sludge method. A device 3 is immersed and arranged. An aeration device 4 is attached immediately below, and the air supplied from the blower 41 is diffused so that the air bubbles that have risen rise along the membrane separation device 3 and are washed.

かくして、処理槽2に導入された処理原水aは、膜分離装置3によって固液分離され、固形分を除いた処理水bは、排水ポンプ31によって排出される。この場合、膜分離装置3に沿って上昇する気泡は、その上昇流によってろ過膜面に付着する固形分を除去し、また付着するのを抑制するなどして、目詰まりによるろ過抵抗の増加を抑えるよう作用するのは如上の通りである。   Thus, the treated raw water a introduced into the treatment tank 2 is subjected to solid-liquid separation by the membrane separation device 3, and the treated water b excluding the solid content is discharged by the drainage pump 31. In this case, the bubbles rising along the membrane separation device 3 remove the solid content adhering to the filtration membrane surface by the upward flow and suppress the adhesion, thereby increasing the filtration resistance due to clogging. It is as above that it acts to suppress.

本発明は、このようなシステムを前提として、前記膜分離装置3の膜差圧を監視し、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置4から供給される曝気風量を増加させるよう制御する点を特徴とする曝気風量の制御方法であるが、この膜分離装置の運転に関して、日常のろ過条件の変動からみて、短時間ではあるが急激に変動する非定常時と、それ以外の多くの時間を占める緩慢に変動する定常時とに区分されること、およびこの非定常時と定常時の区別は、前記曝気装置4の膜差圧を常時測定することによって判断できることは、先に述べた通りである。   Based on such a system, the present invention monitors the membrane differential pressure of the membrane separation device 3 and determines the amount of aeration air supplied from the aeration device 4 when the membrane differential pressure suddenly rises above a predetermined value. Although it is a control method of the aeration air volume characterized by controlling to increase, regarding the operation of this membrane separation device, from the fluctuation of daily filtration conditions, it is a short-time but abrupt fluctuation, It can be determined by constantly measuring the membrane differential pressure of the aeration apparatus 4 that it is divided into the steady state that slowly changes and occupies many other times, and the distinction between the unsteady time and the steady time. As described above.

そこで、本発明においては、膜差圧の挙動が定常時のレベルにあるときの曝気風量として、これ以下に低下させると膜差圧が急激に増加するという許容される下限の曝気風量(許容下限値)をあらかじめ予備試験によって定めておき、その許容下限値に設定するのが好ましい。なお、この許容下限値は、個々のシステムや処理原水水質などによってその値が変化するので一概に定めることができないが、このように、低常時の曝気風量を許容下限値としてろ過運転すれば、ろ過抵抗の増加を極力抑制し、かつ曝気風量を最小にできるのである。   Therefore, in the present invention, as the aeration air volume when the behavior of the membrane differential pressure is at a steady level, the lower limit aeration air volume (allowable lower limit) that the membrane differential pressure rapidly increases when the behavior is reduced below this level. (Value) is preferably determined in advance by a preliminary test and set to the allowable lower limit value. Note that this allowable lower limit value cannot be determined unconditionally because the value varies depending on the individual system and the quality of the treated raw water, etc.In this way, if filtration operation is carried out with the low normal aeration air volume as the allowable lower limit value, The increase in filtration resistance can be suppressed as much as possible and the aeration air volume can be minimized.

そして、本発明では、圧力センサ32を前記膜分離装置3のろ過側に設置し、ろ過膜の膜差圧を常時監視するものとし、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置4から供給される曝気風量を増加させ、分離膜面に対する汚濁固形分の付着や堆積を防止、解消するよう制御する点を最大の特徴とする。なお、膜差圧は、膜を通して処理水を得る際に膜の原水側と透過側(処理水側)で生じる圧力の差のことである。   And in this invention, the pressure sensor 32 shall be installed in the filtration side of the said membrane separator 3, and the membrane differential pressure | voltage of a filtration membrane shall always be monitored, and at the time of the unsteady state where a membrane differential pressure | voltage rises more than a predetermined value, The greatest feature is that the amount of aeration air supplied from the aeration device 4 is increased, and control is performed so as to prevent and eliminate adhesion and accumulation of contaminated solids on the separation membrane surface. The membrane differential pressure is a difference in pressure generated between the raw water side and the permeate side (treated water side) of the membrane when the treated water is obtained through the membrane.

さらに、この非定常時が生じたことを判断するための膜差圧の所定値および急上昇の程度は、個々のシステムについて実験的に定められるが、多くの経験からその膜差圧の所定値は、0〜150kPaの範囲内、好ましくは0〜20kPaの範囲内で設定するのがよく、また、膜差圧の急上昇の程度は、1kPa/日以上が1時間以上継続する場合に設定するのが好ましい。   Further, the predetermined value of the membrane differential pressure and the degree of sudden rise for determining that this unsteady time has occurred are experimentally determined for each system, but from many experiences, the predetermined value of the membrane differential pressure is In the range of 0 to 150 kPa, preferably in the range of 0 to 20 kPa, the degree of rapid increase in the membrane differential pressure is set when 1 kPa / day or more continues for 1 hour or more. preferable.

かくして、本発明では、定常的なろ過条件では、曝気風量をミニマムに設定できるので、曝気装置のエネルギコストを抑制でき、平均的な処理槽1基当たりエネルギコストを最大60%程度節減することができた。そして、膜分離装置の目詰まりを急激に惹起するようなろ過条件の大きな変動があった場合には、曝気風量を増加させて目詰まりを抑制できるという優れた効果がある。よって本発明は、従来の問題点を解消した曝気風量の制御方法として、実用的価値はきわめて大なるものがある。   Thus, in the present invention, since the aeration air volume can be set to a minimum under the steady filtration conditions, the energy cost of the aeration apparatus can be suppressed, and the average energy cost per treatment tank can be reduced by about 60%. did it. When there is a large change in the filtration conditions that causes the clogging of the membrane separation device suddenly, there is an excellent effect that the clogging can be suppressed by increasing the aeration air volume. Therefore, the present invention has an extremely large practical value as a method for controlling the amount of aeration air that has solved the conventional problems.

なお、本発明が適用される処理槽としては、通常の生物反応槽を含み、下水、返流水、工場排水、ゴミ浸出水、し尿廃水、農業廃水、畜産廃水、養殖廃水など広範囲の処理原水の排水処理に利用されている活性汚泥を用いる生物処理槽の他、一般的な好気槽、硝化液循環法による硝化+脱窒処理槽、AO法またはA2O法などによる処理槽やこれらに微生物固定化担体を組み合わせた処理槽を含むのである。また、これらの処理槽の後に生物処理槽とは別に膜分離槽を設けてもよい。   The treatment tank to which the present invention is applied includes a normal biological reaction tank, and includes a wide range of raw water for treatment such as sewage, return water, industrial wastewater, waste leachate, human waste wastewater, agricultural wastewater, livestock wastewater, and aquaculture wastewater. In addition to biological treatment tanks using activated sludge used for wastewater treatment, general aerobic tanks, nitrification and denitrification treatment tanks by nitrification liquid circulation method, treatment tanks by AO method or A2O method, etc. It includes a treatment tank combined with a chemical carrier. Moreover, you may provide a membrane separation tank separately from a biological treatment tank after these treatment tanks.

また、本発明の適用され得る膜分離装置としては、外圧方式または内圧方式のいずれでもよく、使用される膜は、高分子材(PEG、PVA、PP、PU、PE、PVdFなど合成樹脂材料)またはセラミックス材料を用いたMF膜およびUF膜であり、そのろ過体形状は、モノリス、チューブラー、ハニカム、中空糸、または平膜状などの多くの形式の膜分離装置に適用される。   The membrane separation apparatus to which the present invention can be applied may be either an external pressure method or an internal pressure method, and the membrane used is a polymer material (synthetic resin material such as PEG, PVA, PP, PU, PE, PVdF). Or it is the MF membrane and UF membrane using ceramic material, The filter body shape is applied to many types of membrane separators, such as monolith, tubular, honeycomb, hollow fiber, or flat membrane shape.

本発明を説明するための膜分離活性汚泥装置のフロー概要図。The flow schematic diagram of the membrane separation activated sludge apparatus for demonstrating this invention. 従来の膜分離活性汚泥装置のフロー概要図。The flow schematic diagram of the conventional membrane separation activated sludge apparatus.

符号の説明Explanation of symbols

2:処理槽
3:膜分離装置、31:排水ポンプ、32:圧力センサ
4:曝気装置
a:処理原水
b:処理水

2: treatment tank 3: membrane separation device, 31: drainage pump, 32: pressure sensor 4: aeration device a: treated raw water b: treated water

Claims (2)

生物処理槽内に配設した、曝気装置を付設した膜分離装置を用いる膜分離活性汚泥法において、前記膜分離装置の膜差圧を監視し、膜差圧が所定値以上に急上昇する非定常時には、前記曝気装置から供給される曝気風量を増加させるよう制御することを特徴とする曝気風量の制御方法。   In a membrane separation activated sludge method using a membrane separation device provided with an aeration device disposed in a biological treatment tank, the membrane differential pressure of the membrane separation device is monitored, and the membrane differential pressure rapidly rises above a predetermined value A control method of the aeration air volume, characterized in that control is performed to increase the aeration air volume supplied from the aeration apparatus. 膜差圧が非定常時を除く通常のレベルの範囲内であるときの曝気風量を、あらかじめ定めた許容定常値に設定する請求項1に記載の曝気風量の制御方法。

The aeration air volume control method according to claim 1, wherein the aeration air volume when the membrane differential pressure is within a normal level range excluding unsteady time is set to a predetermined allowable steady value.

JP2003383781A 2003-11-13 2003-11-13 Method for controlling aeration quantity Pending JP2005144291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383781A JP2005144291A (en) 2003-11-13 2003-11-13 Method for controlling aeration quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383781A JP2005144291A (en) 2003-11-13 2003-11-13 Method for controlling aeration quantity

Publications (1)

Publication Number Publication Date
JP2005144291A true JP2005144291A (en) 2005-06-09

Family

ID=34692403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383781A Pending JP2005144291A (en) 2003-11-13 2003-11-13 Method for controlling aeration quantity

Country Status (1)

Country Link
JP (1) JP2005144291A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029465A1 (en) * 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
WO2007006153A1 (en) 2005-07-12 2007-01-18 Zenon Technology Partnership Process control for an immersed membrane system
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
WO2013146976A1 (en) * 2012-03-28 2013-10-03 株式会社クボタ Operating method for membrane separation device and membrane separation device
JP2013202471A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator
JP2013202472A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator
WO2014034836A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Membrane surface washing method in membrane separation activated sludge method
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
JP6342101B1 (en) * 2017-03-23 2018-06-13 三菱電機株式会社 Membrane separation apparatus and membrane separation method
WO2018173354A1 (en) * 2017-03-23 2018-09-27 三菱電機株式会社 Membrane separation device and membrane separation method
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN111727174A (en) * 2018-02-27 2020-09-29 三菱电机株式会社 Aeration amount control system and aeration amount control method
JP2020199472A (en) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 Membrane treatment control system and membrane treatment control method
JP7462549B2 (en) 2020-12-23 2024-04-05 株式会社クボタ Method for detecting abnormalities in a submerged membrane separation device

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
WO2006029465A1 (en) * 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
EP3189885A1 (en) * 2005-07-12 2017-07-12 Zenon Technology Partnership Process control for an immersed membrane system
US8357299B2 (en) 2005-07-12 2013-01-22 Zenon Technology Partnership Process control for an immersed membrane system
WO2007006153A1 (en) 2005-07-12 2007-01-18 Zenon Technology Partnership Process control for an immersed membrane system
EP1904216A1 (en) * 2005-07-12 2008-04-02 Zenon Technology Partnership Process control for an immersed membrane system
EP1904216A4 (en) * 2005-07-12 2008-11-19 Zenon Technology Partnership Process control for an immersed membrane system
EP2314368A3 (en) * 2005-07-12 2011-12-21 Zenon Technology Partnership Process control for an immersed membrane system
US9783434B2 (en) 2005-07-12 2017-10-10 Zenon Technology Partnership Real-time process control for an immersed membrane filtration system using a control hierarchy of discrete-state parameter changes
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
JP2013202472A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator
JP2013202471A (en) * 2012-03-28 2013-10-07 Kubota Corp Operation method of membrane separator, and membrane separator
US10010834B2 (en) 2012-03-28 2018-07-03 Kubota Corporation Operating method for membrane separation device and membrane separation device
WO2013146976A1 (en) * 2012-03-28 2013-10-03 株式会社クボタ Operating method for membrane separation device and membrane separation device
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
WO2014034836A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Membrane surface washing method in membrane separation activated sludge method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
WO2018173354A1 (en) * 2017-03-23 2018-09-27 三菱電機株式会社 Membrane separation device and membrane separation method
CN110431111A (en) * 2017-03-23 2019-11-08 三菱电机株式会社 Membrane separation device and membrane separating method
CN110431111B (en) * 2017-03-23 2021-09-07 三菱电机株式会社 Membrane separation device and membrane separation method
JP6342101B1 (en) * 2017-03-23 2018-06-13 三菱電機株式会社 Membrane separation apparatus and membrane separation method
CN111727174A (en) * 2018-02-27 2020-09-29 三菱电机株式会社 Aeration amount control system and aeration amount control method
CN111727174B (en) * 2018-02-27 2022-07-12 三菱电机株式会社 Aeration amount control system and aeration amount control method
JP2020199472A (en) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 Membrane treatment control system and membrane treatment control method
JP7378972B2 (en) 2019-06-12 2023-11-14 東芝インフラシステムズ株式会社 Membrane treatment control system and membrane treatment control method
JP7462549B2 (en) 2020-12-23 2024-04-05 株式会社クボタ Method for detecting abnormalities in a submerged membrane separation device

Similar Documents

Publication Publication Date Title
JP2005144291A (en) Method for controlling aeration quantity
JP5969593B2 (en) Method and apparatus for treating wastewater containing oil
JP5933854B1 (en) Method and apparatus for cleaning filtration membrane of water to be treated, and water treatment system
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
JPH07155758A (en) Waste water treating device
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP4793635B2 (en) Recycling method of organic wastewater
AU2007298198B2 (en) Method of wastewater disposal
JP4666902B2 (en) MLSS control method
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP6661060B2 (en) Water treatment control system
JP5947067B2 (en) Wastewater treatment system and method
JP5772759B2 (en) Water treatment method and water treatment apparatus
JP2008168219A (en) Membrane separation type activated sludge treatment apparatus
KR100547463B1 (en) Nitrogen removal system in aeration tank using sulfur packed MBR reactor
JP7122761B2 (en) water purification system
JP2010125366A (en) Water treating method and water treating apparatus
JP2001047089A (en) Method and apparatus for treating sewage
JP2011194305A (en) Membrane-separation activated sludge treatment method and apparatus for sewage
JP2005163411A (en) Circulating flush toilet system
JP2006075736A (en) Biological purifying and circulating system tray
KR20200121291A (en) Aerobic biological treatment device and operation method thereof
JP2006075784A (en) Biological purifying and circulating system tray
JP7213711B2 (en) Water treatment device and water treatment method
JP2005074345A (en) Sewage treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091030