JP4793635B2 - Recycling method of organic wastewater - Google Patents

Recycling method of organic wastewater Download PDF

Info

Publication number
JP4793635B2
JP4793635B2 JP2006054574A JP2006054574A JP4793635B2 JP 4793635 B2 JP4793635 B2 JP 4793635B2 JP 2006054574 A JP2006054574 A JP 2006054574A JP 2006054574 A JP2006054574 A JP 2006054574A JP 4793635 B2 JP4793635 B2 JP 4793635B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
membrane
water
fouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006054574A
Other languages
Japanese (ja)
Other versions
JP2007229623A (en
Inventor
清和 武村
真人 大西
一彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006054574A priority Critical patent/JP4793635B2/en
Publication of JP2007229623A publication Critical patent/JP2007229623A/en
Application granted granted Critical
Publication of JP4793635B2 publication Critical patent/JP4793635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は有機性汚水の再生方法に係り、特に有機物を含む原水を生物処理によって浄化した後、さらに高度処理することによって、飲料水や工業用水として利用可能なレベルにまで再生する有機性汚水の再生方法に関する。   The present invention relates to a method for regenerating organic sewage, and in particular, organic sewage that is reclaimed to a level that can be used as drinking water or industrial water by purifying raw water containing organic matter by biological treatment and then further advanced treatment. It relates to a reproduction method.

有機物や窒素成分を含む原水を活性汚泥によって生物学的に処理して浄化するとともに、活性汚泥を高濃度に含む生物処理水を精密ろ過膜や限外ろ過膜などによって膜分離する方法が知られている(例えば、特許文献1参照)。この方法によれば膜分離によって清澄な処理水が得られ、また、生物処理水から活性汚泥を沈澱分離するための沈殿池が不要になるという利点がある。   A method is known in which raw water containing organic matter and nitrogen components is biologically treated and purified with activated sludge, and biologically treated water containing activated sludge at a high concentration is membrane-separated using a microfiltration membrane or ultrafiltration membrane. (For example, refer to Patent Document 1). According to this method, clear treated water can be obtained by membrane separation, and there is an advantage that a sedimentation basin for separating activated sludge from biological treated water becomes unnecessary.

また、有機性汚水の再生方法としては、上記の方法で得られた膜分離水を逆浸透膜装置によって処理し、飲料水や工業用水として利用可能なレベルにまで再生する方法が注目されている。しかしながら、逆浸透膜装置においては、逆浸透膜装置を構成している逆浸透膜の膜面に膜透過性を阻害する物質が付着、繁殖して膜の閉塞を起こす現象、いわゆるファウリングを招く問題が常に発生する。   In addition, as a method for regenerating organic wastewater, a method in which the membrane separation water obtained by the above method is treated with a reverse osmosis membrane device and regenerated to a level that can be used as drinking water or industrial water has attracted attention. . However, in a reverse osmosis membrane device, a substance that inhibits membrane permeability adheres to and propagates on the membrane surface of the reverse osmosis membrane constituting the reverse osmosis membrane device, causing a so-called fouling. Problems always occur.

通常、逆浸透膜装置に供給される水のファウリングの危険性評価はFI値が用いられる。このFI値は逆浸透膜装置に供給される水中の濁質を定量化したものであり、逆浸透膜のファウリングを予測するための指標となる。上記した生物処理後の膜分離水は膜分離によって微細な濁質も除去されているため、FI値は極めて小さく、ファウリングの危険性は比較的低いと考えられる。
特開2004−243248号公報
Usually, the FI value is used for risk assessment of fouling of water supplied to the reverse osmosis membrane device. This FI value is obtained by quantifying the turbidity in water supplied to the reverse osmosis membrane device, and is an index for predicting fouling of the reverse osmosis membrane. Since the membrane-separated water after the biological treatment described above has fine turbidity removed by membrane separation, the FI value is extremely small and the risk of fouling is considered to be relatively low.
JP 2004-243248 A

しかしながら、この種の有機性汚水の再生方法においても、逆浸透膜装置を構成している逆浸透膜に急激なファウリングを招くことがある。   However, even in this type of organic sewage regeneration method, rapid fouling may occur in the reverse osmosis membrane constituting the reverse osmosis membrane device.

本発明の目的は、生物処理後の膜分離水を逆浸透膜装置に供給し逆浸透膜処理する際の逆浸透膜の急激なファウリングを防止するための有機性汚水の再生方法を提供することにある。   An object of the present invention is to provide a method for regenerating organic sewage for preventing a rapid fouling of a reverse osmosis membrane when a membrane separation water after biological treatment is supplied to a reverse osmosis membrane device to perform the reverse osmosis membrane treatment. There is.

上記目的を達成するために、本発明に係る有機性汚水の再生方法は、有機物を含む原水を生物処理する第1工程と、前記第1工程を経た生物処理水を膜分離する第2工程と、前記第2工程の膜分離水を逆浸透膜装置によって処理する第3工程とからなる有機性汚水の再生方法において、前記第1工程の生物処理水又は第2工程の膜分離水の溶解性有機物濃度が増大した時に、前記逆浸透膜装置の逆浸透膜に対するファウリング抑制剤の注入手段から前記逆浸透膜に注入する前記ファウリング抑制剤の注入量を増加させることを特徴とする。 In order to achieve the above object, a method for regenerating organic wastewater according to the present invention includes a first step of biologically treating raw water containing organic matter, and a second step of membrane-separating biologically treated water that has undergone the first step. In the method for regenerating organic wastewater comprising the third step of treating the membrane separation water in the second step with a reverse osmosis membrane device, the solubility of the biologically treated water in the first step or the membrane separation water in the second step When the organic substance concentration increases, the injection amount of the fouling inhibitor injected into the reverse osmosis membrane from the injection means of the fouling inhibitor into the reverse osmosis membrane of the reverse osmosis membrane device is increased .

また、本発明に係る有機性汚水の再生方法は、有機物を含む原水を生物処理する第1工程と、前記第1工程を経た生物処理水を膜分離する第2工程と、前記第2工程の膜分離水を逆浸透膜装置によって処理する第3工程とからなる有機性汚水の再生方法において、前記第1工程の生物処理水又は第2工程の膜分離水の溶解性有機物濃度が増大した時に、前記逆浸透膜装置の逆浸透膜に対する内部液循環手段によって前記逆浸透膜に循環させる内部液の循環ラインに設けた背圧弁の開度を大きくして前記内部液の循環量を増加させることを特徴とする。 The organic wastewater regeneration method according to the present invention includes a first step of biologically treating raw water containing organic matter, a second step of membrane-separating biologically treated water that has undergone the first step, and a second step of the second step. In a method for regenerating organic wastewater comprising a third step of treating membrane separation water with a reverse osmosis membrane device, when the concentration of soluble organic matter in the biologically treated water in the first step or the membrane separation water in the second step is increased. Increasing the amount of the internal liquid by increasing the degree of opening of the back pressure valve provided in the internal liquid circulation line to be circulated to the reverse osmosis membrane by the internal liquid circulation means for the reverse osmosis membrane of the reverse osmosis membrane device It is characterized by.

本発明は生物処理後の膜分離水を逆浸透膜装置で処理する際の逆浸透膜の急激なファウリングの原因が、膜分離水に残存する濁質ではなく、主に膜分離水中の溶解性有機物であることに着目し、創案されたものである。   In the present invention, the cause of the rapid fouling of the reverse osmosis membrane when treating the membrane separation water after biological treatment with the reverse osmosis membrane device is not the turbidity remaining in the membrane separation water but mainly the dissolution in the membrane separation water. It was created by paying attention to the fact that it is an organic material.

すなわち、この種の有機物を含む原水の水質は時間、日、季節によって変動する場合が多い。また、生物処理は水温変化の影響を大きく受ける。このため、後段の逆浸透膜装置に供給される膜分離水の水質が大きく変動する場合がある。膜分離水には生物処理によっては生分解が困難な溶解性有機物や活性汚泥が分泌する溶解性有機物が含まれることがあり、逆浸透膜装置でのファウリングの原因となる。あるいは、これらの溶解性有機物を栄養源とする細菌が逆浸透膜の表面に増殖してファウリングを助長する。   In other words, the quality of raw water containing this kind of organic matter often varies with time, day, and season. Biological treatment is also greatly affected by changes in water temperature. For this reason, the quality of the membrane separation water supplied to the subsequent reverse osmosis membrane device may fluctuate greatly. Membrane separation water may contain soluble organic matter that is difficult to biodegrade by biological treatment or soluble organic matter secreted by activated sludge, which causes fouling in the reverse osmosis membrane device. Alternatively, bacteria using these soluble organic substances as nutrients grow on the surface of the reverse osmosis membrane and promote fouling.

本発明では、有機物を含む原水を生物処理する第1工程と、第1工程を経た生物処理水を膜分離する第2工程と、第2工程の膜分離水を逆浸透膜装置によって処理する第3工程とからなる有機性汚水の再生方法において、第1工程の生物処理水又は第2工程の膜分離水の溶解性有機物濃度に基づいて、前記逆浸透膜装置におけるファウリング抑制手段の運転条件を制御するようにした。   In the present invention, a first step of biologically treating raw water containing organic matter, a second step of membrane-separating biologically treated water that has passed through the first step, and a second step of treating the membrane-separated water of the second step with a reverse osmosis membrane device. In the method for regenerating organic wastewater comprising three steps, the operating conditions of the fouling suppression means in the reverse osmosis membrane device based on the concentration of soluble organic matter in the biologically treated water in the first step or the membrane separation water in the second step To control.

このため、前記第1工程の生物処理水又は第2工程の膜分離水の溶解性有機物濃度が増大した時に、ファウリング抑制手段の運転条件を増強することにより、逆浸透膜装置の急激なファウリングを抑制することができる。   For this reason, when the concentration of the soluble organic matter in the biologically treated water in the first step or the membrane separation water in the second step is increased, the operating conditions of the fouling suppression means are enhanced, thereby increasing the rapid fouling of the reverse osmosis membrane device. Rings can be suppressed.

図1は本発明に係る有機性汚水の再生方法の実施形態を示す系統図である。生物処理装置10は脱窒槽12と硝化槽14とによって構成される。脱窒槽12の底部には攪拌機16が設置されており、この攪拌機16を駆動することによって脱窒槽12内の生物処理水は混合攪拌され、嫌気状態に維持される。脱窒槽12と硝化槽14は水路18によって連通している。硝化槽14には膜分離ユニット20が浸漬されている。膜分離ユニット20の下方には散気管22が配設されており、ブロア24から供給された圧縮空気が散気管22から硝化槽14内に散気される。散気管22からの散気によって硝化槽14内の生物処理水は好気状態に維持される。   FIG. 1 is a system diagram showing an embodiment of a method for regenerating organic sewage according to the present invention. The biological treatment apparatus 10 includes a denitrification tank 12 and a nitrification tank 14. A stirrer 16 is installed at the bottom of the denitrification tank 12. By driving the stirrer 16, the biologically treated water in the denitrification tank 12 is mixed and stirred and maintained in an anaerobic state. The denitrification tank 12 and the nitrification tank 14 communicate with each other through a water channel 18. A membrane separation unit 20 is immersed in the nitrification tank 14. A diffuser tube 22 is disposed below the membrane separation unit 20, and the compressed air supplied from the blower 24 is diffused from the diffuser tube 22 into the nitrification tank 14. The biologically treated water in the nitrification tank 14 is maintained in an aerobic state by diffusing from the diffusing tube 22.

膜分離ユニット20は精密ろ過膜又は限外ろ過膜を素材とした平膜又は中空糸膜によって構成されており、この膜分離ユニット20によって硝化槽14内の生物処理水中の活性汚泥が膜分離される。膜分離ユニット20の膜材を透過した膜分離水26は膜ろ過ポンプ28によって、後段の調整槽30に送られる。硝化槽14には循環ポンプ32が接続され、循環ポンプ32によって抜き出された活性汚泥を高濃度に含む生物処理水の一部は余剰汚泥34として系外に排出され、残部は脱窒槽12に循環される。   The membrane separation unit 20 is configured by a flat membrane or a hollow fiber membrane made of a microfiltration membrane or an ultrafiltration membrane, and activated sludge in biologically treated water in the nitrification tank 14 is membrane-separated by the membrane separation unit 20. The Membrane separation water 26 that has passed through the membrane material of the membrane separation unit 20 is sent to a subsequent adjustment tank 30 by a membrane filtration pump 28. A circulation pump 32 is connected to the nitrification tank 14, a part of the biologically treated water containing activated sludge extracted at a high concentration extracted by the circulation pump 32 is discharged out of the system as surplus sludge 34, and the remainder is sent to the denitrification tank 12. Circulated.

調整槽30には供給ポンプ38が接続されており、調整槽30の内部液40が供給ポンプ38によって逆浸透膜装置42に供給される。逆浸透膜装置42の逆浸透膜44を透過した処理水46は再生水として有効利用される。処理水46を送給する管路には流量計48が配設されており、流量計48で検出した処理水46の流量が第1の制御器50に送信される。第1の制御器50では流量計48から送信された処理水46の流量が設定値を維持するように供給ポンプ38の回転数を制御する。   A supply pump 38 is connected to the adjustment tank 30, and the internal liquid 40 in the adjustment tank 30 is supplied to the reverse osmosis membrane device 42 by the supply pump 38. The treated water 46 that has passed through the reverse osmosis membrane 44 of the reverse osmosis membrane device 42 is effectively used as reclaimed water. A flow meter 48 is disposed in a pipeline for supplying the treated water 46, and the flow rate of the treated water 46 detected by the flow meter 48 is transmitted to the first controller 50. The first controller 50 controls the rotation speed of the supply pump 38 so that the flow rate of the treated water 46 transmitted from the flow meter 48 maintains a set value.

逆浸透膜装置42によって濃縮された濃縮液52の大部分は第1の背圧弁54を介して循環液56として調整槽30に循環される。濃縮液52の残部は第2の背圧弁58を介して脱窒槽12に返送される。なお、濃縮液52の輸送ラインに濃縮液52の排出ライン78が分岐しており、この排出ライン78に設けた第3の背圧弁80を介して濃縮液52を定期的に排出し、系内の塩類濃度が過度に上昇することを防止している。   Most of the concentrated liquid 52 concentrated by the reverse osmosis membrane device 42 is circulated to the adjustment tank 30 as the circulating liquid 56 through the first back pressure valve 54. The remaining portion of the concentrated liquid 52 is returned to the denitrification tank 12 via the second back pressure valve 58. A concentrated liquid 52 discharge line 78 is branched into the concentrated liquid 52 transport line, and the concentrated liquid 52 is periodically discharged via a third back pressure valve 80 provided in the discharged line 78, so that Prevents excessive increase in salt concentration.

また、調整槽30にはファウリング抑制剤の注入手段60が接続されている。すなわち、薬液貯留槽62には逆浸透膜44のファウリングを抑制するための薬液(ファウリング抑制剤)が所定の濃度に調整されて貯留されている。薬液貯留槽62には薬液注入ポンプ64が接続され、この薬液注入ポンプ64によって所定流量のファウリング抑制剤66が連続的又は間欠的に調整槽30に注入される。   The adjusting tank 30 is connected to a fouling inhibitor injection means 60. That is, the chemical solution (fouling inhibitor) for suppressing fouling of the reverse osmosis membrane 44 is adjusted to a predetermined concentration and stored in the chemical solution storage tank 62. A chemical solution injection pump 64 is connected to the chemical solution storage tank 62, and a fouling inhibitor 66 having a predetermined flow rate is injected into the adjustment tank 30 continuously or intermittently by the chemical solution injection pump 64.

硝化槽14には生物処理水の溶解性有機物濃度を検出可能なセンサ68が接続されている。センサ68の検出値は第2の制御器70に送信される。第2の制御器70ではセンサ68から送信された生物処理水の溶解性有機物濃度に基づいて薬液注入ポンプ64の運転条件を制御する。また、第2の制御器70ではセンサ68から送信された生物処理水の溶解性有機物濃度に基づいて第1の背圧弁54及び第2の背圧弁58の開度を制御することもできる。   A sensor 68 capable of detecting the dissolved organic matter concentration of biologically treated water is connected to the nitrification tank 14. The detection value of the sensor 68 is transmitted to the second controller 70. The second controller 70 controls the operating condition of the chemical solution injection pump 64 based on the dissolved organic substance concentration of the biologically treated water transmitted from the sensor 68. The second controller 70 can also control the opening degree of the first back pressure valve 54 and the second back pressure valve 58 based on the dissolved organic matter concentration of the biologically treated water transmitted from the sensor 68.

生物処理水の溶解性有機物濃度を検出するセンサ68としては例えば連続自動分析が可能なCOD計や紫外線吸光度計が好ましく用いられる。ただし、生物処理水は非溶解性有機物として高濃度の活性汚泥を含んでおり、生物処理水をそのままセンサ68にかけると非溶解性有機物も有機物濃度として検出されることになり、検出値に大きな誤差が生じる。したがって、生物処理水の溶解性有機物濃度の検出に際しては、前処理として生物処理水をろ紙などによって固液分離し、分離した液分のみについてセンサ68による検出を行うことが肝要である。   As the sensor 68 for detecting the concentration of soluble organic matter in biologically treated water, for example, a COD meter capable of continuous automatic analysis or an ultraviolet absorbance meter is preferably used. However, the biologically treated water contains high-concentration activated sludge as an insoluble organic substance. If the biologically treated water is directly applied to the sensor 68, the insoluble organic substance is also detected as the organic substance concentration. An error occurs. Therefore, when detecting the dissolved organic substance concentration of biologically treated water, it is important to separate the biologically treated water as a pretreatment with a filter paper or the like and detect only the separated liquid by the sensor 68.

上記構成の処理システムにおいて、原水として有機物及び窒素成分を含む有機性汚水72が脱窒槽12に流入する。脱窒槽12では嫌気条件下で生物処理水中の硝酸性窒素が活性汚泥を構成する脱窒菌によって脱窒され、窒素ガスとして大気に放出される。この脱窒反応に伴い、流入した有機性汚水72中の有機物もその大部分が生分解して除去される。脱窒槽12で脱窒処理を受けた生物処理水は水路18を介して硝化槽14に流入する。硝化槽14では好気条件下で生物処理水中のアンモニア窒素が活性汚泥を構成する硝化菌によって硝化され、硝酸性窒素となる。また、硝化槽14では生物処理水中に残存する有機物が活性汚泥を構成する有機物分解菌によって生分解され除去される。なお、散気管22からの散気は硝化槽14内を好気状態に維持するとともに、散気した気泡が膜分離ユニット20の膜材に沿って上昇する過程で膜材の膜面を洗浄し、膜面の汚れや目詰まりを防止するのに役立つ。   In the treatment system having the above-described configuration, organic sewage 72 containing organic matter and a nitrogen component as raw water flows into the denitrification tank 12. In the denitrification tank 12, nitrate nitrogen in the biologically treated water is denitrified by denitrifying bacteria constituting the activated sludge under anaerobic conditions, and released to the atmosphere as nitrogen gas. Along with this denitrification reaction, most of the organic matter in the organic sewage 72 that has flowed in is also biodegraded and removed. The biologically treated water that has undergone the denitrification process in the denitrification tank 12 flows into the nitrification tank 14 via the water channel 18. In the nitrification tank 14, ammonia nitrogen in the biologically treated water is nitrified by nitrifying bacteria constituting the activated sludge under aerobic conditions to become nitrate nitrogen. In the nitrification tank 14, organic matter remaining in the biologically treated water is biodegraded and removed by organic matter-decomposing bacteria constituting the activated sludge. The air diffused from the air diffuser 22 maintains the inside of the nitrification tank 14 in an aerobic state, and cleans the membrane surface of the membrane material in the process in which the diffused bubbles rise along the membrane material of the membrane separation unit 20. Helps prevent dirt and clogging of the membrane surface.

硝化槽14では内部に浸漬された膜分離ユニット20によって膜分離が行われ、膜分離ユニット20の膜材を透過した膜分離水26は膜ろ過ポンプ28によって、後段の調整槽30に送られる。この膜分離ユニット20による膜分離によって硝化槽14内の生物処理水中の活性汚泥は濃縮され、高濃度に保持される。循環ポンプ32によって抜き出された活性汚泥を高濃度に含む生物処理水の一部は余剰汚泥34として系外に排出され、残部は脱窒槽12に循環される。循環された生物処理水中の硝酸性窒素が前記したように脱窒菌によって脱窒され、窒素ガスとして大気に放出される。   In the nitrification tank 14, membrane separation is performed by the membrane separation unit 20 immersed therein, and the membrane separation water 26 that has passed through the membrane material of the membrane separation unit 20 is sent to the subsequent adjustment tank 30 by the membrane filtration pump 28. By the membrane separation by the membrane separation unit 20, the activated sludge in the biologically treated water in the nitrification tank 14 is concentrated and kept at a high concentration. A part of biologically treated water containing activated sludge extracted at a high concentration by the circulation pump 32 is discharged out of the system as surplus sludge 34, and the remainder is circulated to the denitrification tank 12. As described above, nitrate nitrogen in the circulated biological treated water is denitrified by denitrifying bacteria and released into the atmosphere as nitrogen gas.

調整槽30には膜分離ユニット20からの膜分離水26と逆浸透膜装置42を循環する循環液56とファウリング抑制剤の注入手段60からのファウリング抑制剤が流入し、攪拌機74によって混合される。これらの液が混合した調整槽30の内部液40は供給ポンプ38によって逆浸透膜装置42に供給され、逆浸透膜装置42の逆浸透膜44を透過した処理水46は再生水として系外に排出される。逆浸透膜44を透過する処理水46の流量は逆浸透膜44の一次側に作用する背圧に依存する。処理水46の流量を所定レベルにするために前記した背圧弁54,58が設けられている。また、処理水46の流量を設定値に維持するために、第1の制御器50による供給ポンプ38の回転数制御が行われる。すなわち、逆浸透膜44の膜透過性能がファウリング等によって低下した場合には、供給ポンプ38の回転数を大きくし、逆浸透膜44の一次側に供給する内部液40の流量を増加させる。その結果、逆浸透膜44の一次側の背圧が上昇し、処理水46の流量が回復する。   The adjustment tank 30 is supplied with the membrane separation water 26 from the membrane separation unit 20, the circulating fluid 56 circulating through the reverse osmosis membrane device 42, and the fouling inhibitor from the fouling inhibitor injection means 60, and is mixed by the stirrer 74. Is done. The internal liquid 40 of the adjustment tank 30 in which these liquids are mixed is supplied to the reverse osmosis membrane device 42 by the supply pump 38, and the treated water 46 that has permeated the reverse osmosis membrane 44 of the reverse osmosis membrane device 42 is discharged out of the system as reclaimed water. Is done. The flow rate of the treated water 46 passing through the reverse osmosis membrane 44 depends on the back pressure acting on the primary side of the reverse osmosis membrane 44. The back pressure valves 54 and 58 described above are provided in order to set the flow rate of the treated water 46 to a predetermined level. Further, in order to maintain the flow rate of the treated water 46 at the set value, the rotation speed control of the supply pump 38 is performed by the first controller 50. That is, when the membrane permeation performance of the reverse osmosis membrane 44 is deteriorated due to fouling or the like, the rotation speed of the supply pump 38 is increased and the flow rate of the internal liquid 40 supplied to the primary side of the reverse osmosis membrane 44 is increased. As a result, the back pressure on the primary side of the reverse osmosis membrane 44 increases and the flow rate of the treated water 46 is recovered.

逆浸透膜44の一次側から排出された濃縮液52の大部分は第1の背圧弁54を介して循環液56として調整槽30に循環される。濃縮液52の残部は第2の背圧弁58を介して脱窒槽12に返送される。循環液56の流量は第1の背圧弁54の開度を増減させることによって調節することができる。循環液56の流量を増加させることは、供給ポンプ38によって逆浸透膜44の一次側に供給する内部液40の流量を増加させることを意味する。内部液40の流量を増加させると逆浸透膜44に沿って流れる内部液40の流速が大きくなり、逆浸透膜44の膜面に対する洗浄作用が高まって、逆浸透膜44のファウリング抑制に寄与する。また、濃縮液52の一部を第2の背圧弁58を介して脱窒槽12に返送することによって、内部液40中の塩類や有機物や過度な濃縮を防止することができ、塩類濃度などを一定レベルにバランスさせ、逆浸透膜44のファウリングを抑制するのに役立つ。流入原水である有機性汚水72の塩類濃度が高い時には、第2の背圧弁58の開度を大きくし、脱窒槽12に返送する濃縮液52の流量を増加させる。この濃縮液52の返送先は脱窒槽12に限らず、硝化槽14に返送してもよい。なお、塩類濃度の調整は排出ライン78に設けた第3の背圧弁80の開閉によっても行うことができる。   Most of the concentrated liquid 52 discharged from the primary side of the reverse osmosis membrane 44 is circulated to the adjustment tank 30 as the circulating liquid 56 through the first back pressure valve 54. The remaining portion of the concentrated liquid 52 is returned to the denitrification tank 12 via the second back pressure valve 58. The flow rate of the circulating fluid 56 can be adjusted by increasing or decreasing the opening degree of the first back pressure valve 54. Increasing the flow rate of the circulating liquid 56 means increasing the flow rate of the internal liquid 40 supplied to the primary side of the reverse osmosis membrane 44 by the supply pump 38. When the flow rate of the internal liquid 40 is increased, the flow rate of the internal liquid 40 flowing along the reverse osmosis membrane 44 increases, and the cleaning action on the membrane surface of the reverse osmosis membrane 44 increases, contributing to suppression of fouling of the reverse osmosis membrane 44. To do. In addition, by returning a part of the concentrated liquid 52 to the denitrification tank 12 through the second back pressure valve 58, it is possible to prevent salt and organic substances and excessive concentration in the internal liquid 40, and to adjust the salt concentration and the like. It balances to a certain level and helps to suppress fouling of the reverse osmosis membrane 44. When the salt concentration of the organic waste water 72 that is the inflow raw water is high, the opening degree of the second back pressure valve 58 is increased, and the flow rate of the concentrated liquid 52 returned to the denitrification tank 12 is increased. The return destination of the concentrate 52 is not limited to the denitrification tank 12 and may be returned to the nitrification tank 14. The salt concentration can also be adjusted by opening and closing the third back pressure valve 80 provided in the discharge line 78.

ファウリング抑制剤の注入手段60によるファウリング抑制剤の注入は、文字どおり逆浸透膜44のファウリングを抑制するために行われる。すなわち、前記したように膜分離水26には生物処理によっては生分解が困難な溶解性有機物や活性汚泥が分泌する溶解性有機物が膜分離ユニット20の膜材を透過して含まれる。これらの溶解性有機物が逆浸透膜44の閉塞(ファウリング)の原因となる。あるいは、これらの溶解性有機物を栄養源とする細菌が逆浸透膜44の表面に増殖してファウリングを助長する。したがって、ファウリング抑制剤の注入手段60では逆浸透膜44の膜面に付着、増殖したファウリングの原因物質を分解もしくは剥離除去したり、殺菌するためのファウリング抑制剤を調整槽30に連続的又は間欠的に注入する。図1ではファウリング抑制剤の注入手段60を単一で図示しているが、本実施形態においては種類の異なるファウリング抑制剤の注入手段を複数設けるようにしてもよい。   The injection of the fouling inhibitor by the fouling inhibitor injection means 60 is literally performed to suppress the fouling of the reverse osmosis membrane 44. That is, as described above, the membrane separation water 26 contains a soluble organic material that is difficult to biodegrade by biological treatment or a soluble organic material secreted by activated sludge that permeates the membrane material of the membrane separation unit 20. These soluble organic substances cause the fouling of the reverse osmosis membrane 44. Alternatively, bacteria that use these soluble organic substances as nutrients grow on the surface of the reverse osmosis membrane 44 and promote fouling. Therefore, in the fouling inhibitor injection means 60, a fouling inhibitor for disassembling or peeling off or sterilizing the causative substance that has adhered and proliferated on the membrane surface of the reverse osmosis membrane 44 or sterilized is continuously provided in the adjustment tank 30. Inject intermittently or intermittently. In FIG. 1, a single fouling inhibitor injection means 60 is illustrated, but in this embodiment, a plurality of different types of fouling inhibitor injection means may be provided.

上記したように、逆浸透膜44のファウリングを抑制する主な手段としては、背圧弁54,58の開度調整とファウリング抑制剤の注入を挙げることができる。しかしながら、これらの方法には主に経済的な側面からの制約がある。すなわち、第1の背圧弁54の開度を最大にして循環液56(換言すれば内部液40)の流量を増加させると、ファウリングの抑制には有効であるが、その分、運転動力が増加して不経済な運転になる。また、第2の背圧弁58の開度を最大にして脱窒槽12に返送する濃縮液52の流量を増加させると、同様にファウリングの抑制には有効であるが、濃縮液52の循環量が増大する結果、処理システム全体の設備規模が大きくなり、イニシャル及びランニングの高騰を招く。また、ファウリング抑制剤の注入量を最大にすれば、ファウリングの抑制には有効であるが、ファウリング抑制剤の注入コストが膨らむとともに、余剰の抑制剤が処理水46の汚染を引き起こす。したがって、ファウリング抑制手段には主に経済的な観点から標準的な運転条件を定めておき、ファウリングが進行したか又はファウリングの進行が予測される場合にのみ、臨時的にファウリング抑制手段の運転条件を増強することが得策である。   As described above, main means for suppressing fouling of the reverse osmosis membrane 44 include adjustment of the opening of the back pressure valves 54 and 58 and injection of a fouling inhibitor. However, these methods have limitations mainly from the economic aspect. That is, increasing the flow rate of the circulating fluid 56 (in other words, the internal fluid 40) by maximizing the opening degree of the first back pressure valve 54 is effective in suppressing fouling, but the operating power is correspondingly increased. Increased and uneconomical driving. Further, increasing the flow rate of the concentrated liquid 52 returned to the denitrification tank 12 with the opening degree of the second back pressure valve 58 being maximized is also effective for suppressing fouling. As a result, the facility scale of the entire processing system increases, and initial and running costs rise. Further, if the injection amount of the fouling inhibitor is maximized, it is effective for suppressing fouling, but the injection cost of the fouling inhibitor increases, and the excess inhibitor causes contamination of the treated water 46. Therefore, standard operating conditions are set for fouling suppression measures mainly from an economic point of view, and fouling suppression is only temporarily performed when fouling progresses or fouling progress is predicted. It is advisable to increase the operating conditions of the means.

しかしながら、逆浸透膜44におけるファウリング現象は、原因物質が何らかの要因によって増加すると急激に進行するケースが多く、ファウリングの程度が一定レベルを超えると回復が困難となり、逆浸透膜装置42の運転継続が不可能な事態を招く。そこで、本実施形態ではこのような不測の事態を予防するために、以下に説明するフォワード制御を実行する。   However, the fouling phenomenon in the reverse osmosis membrane 44 often proceeds abruptly when the causative substance increases due to some factor, and recovery becomes difficult when the degree of fouling exceeds a certain level. It causes a situation that cannot be continued. Therefore, in the present embodiment, forward control described below is executed in order to prevent such an unexpected situation.

すなわち、硝化槽14に接続したセンサ68によって生物処理水の溶解性有機物濃度を検出する。この生物処理水中の溶解性有機物はそのまま膜分離ユニット20の膜材を透過して膜分離水に含まれ、逆浸透膜44におけるファウリングの原因になり得る。そこで、第2の制御器70ではセンサ68で検出した生物処理水の溶解性有機物濃度が増大した時に、薬液注入ポンプ64の運転を制御して注入手段60から調整槽30へ送り込むファウリング抑制剤66の注入量を増加させる。すると、調整槽30の内部液40のファウリング抑制剤濃度が上昇し、逆浸透膜装置42における逆浸透膜44のファウリングを抑制する。なお、ファウリング抑制剤66の注入量を増加させる方法としては、注入が連続的な場合には注入流量を増加させ、また注入が間欠的な場合には注入頻度を上げる。   That is, the dissolved organic matter concentration of the biologically treated water is detected by the sensor 68 connected to the nitrification tank 14. The soluble organic matter in the biologically treated water passes through the membrane material of the membrane separation unit 20 as it is and is contained in the membrane separation water, which may cause fouling in the reverse osmosis membrane 44. Therefore, the second controller 70 controls the operation of the chemical solution injection pump 64 and sends it to the adjustment tank 30 from the injection means 60 when the dissolved organic matter concentration detected by the sensor 68 increases. Increase injection volume of 66. Then, the fouling inhibitor concentration of the internal liquid 40 in the adjustment tank 30 increases, and fouling of the reverse osmosis membrane 44 in the reverse osmosis membrane device 42 is suppressed. As a method of increasing the injection amount of the fouling inhibitor 66, the injection flow rate is increased when the injection is continuous, and the injection frequency is increased when the injection is intermittent.

また、第2の制御器70ではセンサ68から送信された生物処理水の溶解性有機物濃度が増大した時に、第1の背圧弁54又は第2の背圧弁58の少なくとも一方の開度を大きくするように制御することもできる。これらの背圧弁の開度を大きくすると、逆浸透膜44の一次側の背圧が低下する。すると逆浸透膜44を透過する処理水46の流量が低下するので、第1の制御器50では処理水46の流量を維持するために供給ポンプ38の回転数を上げるように制御する。その結果、供給ポンプ38によって逆浸透膜44の一次側に供給する内部液40の流量を増加し、逆浸透膜44の膜面に対する洗浄作用が高まって、逆浸透膜44のファウリング抑制に寄与する。なお、第2の背圧弁58の開度を大きくした場合には、脱窒槽12に返送される濃縮液52の流量が増加するので、逆浸透膜44に循環させる内部液40中の塩類や有機物の濃度が低下し、ファウリング抑制に寄与する。   Further, the second controller 70 increases the opening degree of at least one of the first back pressure valve 54 and the second back pressure valve 58 when the dissolved organic matter concentration transmitted from the sensor 68 increases. It can also be controlled. When the opening degree of these back pressure valves is increased, the back pressure on the primary side of the reverse osmosis membrane 44 decreases. Then, since the flow rate of the treated water 46 that passes through the reverse osmosis membrane 44 decreases, the first controller 50 performs control so as to increase the rotation speed of the supply pump 38 in order to maintain the flow rate of the treated water 46. As a result, the flow rate of the internal liquid 40 supplied to the primary side of the reverse osmosis membrane 44 by the supply pump 38 is increased, and the cleaning action on the membrane surface of the reverse osmosis membrane 44 is enhanced, contributing to suppression of fouling of the reverse osmosis membrane 44. To do. In addition, when the opening degree of the second back pressure valve 58 is increased, the flow rate of the concentrated liquid 52 returned to the denitrification tank 12 increases. Therefore, the salts and organic substances in the internal liquid 40 circulated through the reverse osmosis membrane 44 are used. This contributes to the suppression of fouling.

上記説明では、硝化槽14に接続したセンサ68によって生物処理水の溶解性有機物濃度に基づいて、逆浸透膜装置におけるファウリング抑制手段の運転条件を制御する場合について説明した。このような方法によれば、生物処理の早い段階でファウリングの原因となる溶解性有機物の濃度を察知して、ファウリング抑制手段の運転条件を制御できるので安全で確実なフォワード制御を実行することができる。   In the above description, the case where the operating condition of the fouling suppression means in the reverse osmosis membrane device is controlled by the sensor 68 connected to the nitrification tank 14 based on the dissolved organic matter concentration of the biologically treated water has been described. According to such a method, it is possible to detect the concentration of soluble organic substances that cause fouling at an early stage of biological treatment, and to control the operating conditions of the fouling suppression means, so that safe and reliable forward control is executed. be able to.

しかしながら、本発明はこのような方法に限定されない。図1に示したように、膜分離水26の供給管路にセンサ76を取り付け、このセンサ76で検出した膜分離水26の溶解性有機物濃度に基づいて、逆浸透膜装置におけるファウリング抑制手段の運転条件を制御するようにしてもよい。この方法によれば、活性汚泥などの非溶解性有機物は膜分離ユニット20によって除去され、膜分離水26は非溶解性有機物を含まない。このため、溶解性有機物濃度の検出に際しては、前処理としての固液分離操作を省略できる利点がある。   However, the present invention is not limited to such a method. As shown in FIG. 1, a sensor 76 is attached to the supply line of the membrane separation water 26, and the fouling suppressing means in the reverse osmosis membrane device is based on the dissolved organic substance concentration of the membrane separation water 26 detected by the sensor 76. The operating conditions may be controlled. According to this method, non-soluble organic substances such as activated sludge are removed by the membrane separation unit 20, and the membrane separation water 26 does not contain non-soluble organic substances. For this reason, when detecting the soluble organic substance concentration, there is an advantage that the solid-liquid separation operation as the pretreatment can be omitted.

上述のとおり、本実施形態の有機性汚水の再生方法によれば、第1工程の生物処理装置10の生物処理水又は第2工程である膜分離ユニット20の膜分離水の溶解性有機物濃度に基づいて、逆浸透膜装置42におけるファウリング抑制手段の運転条件を制御するようにした。このため、逆浸透膜装置の急激なファウリングを抑制することができる。   As described above, according to the organic wastewater regeneration method of the present embodiment, the concentration of soluble organic matter in the biologically treated water of the biological treatment apparatus 10 in the first step or the membrane separation water of the membrane separation unit 20 in the second step is set. Based on this, the operating conditions of the fouling suppression means in the reverse osmosis membrane device 42 are controlled. For this reason, the rapid fouling of a reverse osmosis membrane apparatus can be suppressed.

本発明に係る有機性汚水の再生方法の実施形態を示す系統図である。It is a systematic diagram which shows embodiment of the regeneration method of the organic wastewater which concerns on this invention.

符号の説明Explanation of symbols

10………生物処理装置、12………脱窒槽、14………硝化槽、16………攪拌機、20………膜分離ユニット、22………散気管、24………ブロア、26………膜分離水、28………膜ろ過ポンプ、30………調整槽、32………循環ポンプ、34………余剰汚泥、38………供給ポンプ、40………内部液、42………逆浸透膜装置、44………逆浸透膜、46………処理水、48………流量計、50………第1の制御器、52………濃縮液、54………第1の背圧弁、56………循環液、58………第2の背圧弁、60………ファウリング抑制剤の注入手段、62………薬液貯留槽、64………薬液注入ポンプ、66………ファウリング抑制剤、68………センサ、70………第2の制御器、72………有機性汚水、74………攪拌機、76………センサ、78………排出ライン、80………第3の背圧弁。 DESCRIPTION OF SYMBOLS 10 ......... Biotreatment apparatus, 12 ......... Denitrification tank, 14 ......... Nitrification tank, 16 ......... Stirrer, 20 ......... Membrane separation unit, 22 ......... Air diffuser, 24 ...... Blower, 26 ......... Membrane separation water, 28 ......... Membrane filtration pump, 30 ......... Regulation tank, 32 ......... Circulating pump, 34 ...... Excess sludge, 38 ......... Supply pump, 40 ......... Internal liquid, 42 ......... Reverse osmosis membrane device, 44 ......... Reverse osmosis membrane, 46 ......... Treatment water, 48 ......... Flow meter, 50 ......... First controller, 52 ......... Concentrated liquid, 54 ... ...... First back pressure valve, 56 ......... Circulating fluid, 58 ......... Second back pressure valve, 60 ......... Fouling inhibitor injection means, 62 ......... Medium solution storage tank, 64 ...... Medium solution Infusion pump, 66 ......... Fouling inhibitor, 68 ......... Sensor, 70 ......... Second controller, 72 ...... Organic sewage, 74 ......... Stir Machine, 76 ......... sensor, 78 ......... discharge line, 80 ......... third back pressure valve.

Claims (2)

有機物を含む原水を生物処理する第1工程と、前記第1工程を経た生物処理水を膜分離する第2工程と、前記第2工程の膜分離水を逆浸透膜装置によって処理する第3工程とからなる有機性汚水の再生方法において、
前記第1工程の生物処理水又は第2工程の膜分離水の溶解性有機物濃度が増大した時に、前記逆浸透膜装置の逆浸透膜に対するファウリング抑制剤の注入手段から前記逆浸透膜に注入する前記ファウリング抑制剤の注入量を増加させることを特徴とする有機性汚水の再生方法。
A first step of biologically treating raw water containing organic matter, a second step of membrane-separating biologically treated water that has undergone the first step, and a third step of treating the membrane-separated water of the second step by a reverse osmosis membrane device In the method for recycling organic sewage comprising
Injected into the reverse osmosis membrane from the injection means of the fouling inhibitor for the reverse osmosis membrane of the reverse osmosis membrane device when the concentration of soluble organic matter in the biologically treated water in the first step or the membrane separation water in the second step is increased A method for regenerating organic sewage characterized by increasing the amount of the fouling inhibitor injected .
有機物を含む原水を生物処理する第1工程と、前記第1工程を経た生物処理水を膜分離する第2工程と、前記第2工程の膜分離水を逆浸透膜装置によって処理する第3工程とからなる有機性汚水の再生方法において、
前記第1工程の生物処理水又は第2工程の膜分離水の溶解性有機物濃度が増大した時に、前記逆浸透膜装置の逆浸透膜に対する内部液循環手段によって前記逆浸透膜に循環させる内部液の循環ラインに設けた背圧弁の開度を大きくして前記内部液の循環量を増加させることを特徴とする有機性汚水の再生方法。
A first step of biologically treating raw water containing organic matter, a second step of membrane-separating biologically treated water that has undergone the first step, and a third step of treating the membrane-separated water of the second step by a reverse osmosis membrane device In the method for recycling organic sewage comprising
The internal liquid circulated through the reverse osmosis membrane by the internal liquid circulation means for the reverse osmosis membrane of the reverse osmosis membrane device when the concentration of soluble organic matter in the biologically treated water in the first step or the membrane separation water in the second step is increased. A method for regenerating organic sewage characterized in that the amount of circulation of the internal liquid is increased by increasing the opening of a back pressure valve provided in the circulation line .
JP2006054574A 2006-03-01 2006-03-01 Recycling method of organic wastewater Expired - Fee Related JP4793635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054574A JP4793635B2 (en) 2006-03-01 2006-03-01 Recycling method of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054574A JP4793635B2 (en) 2006-03-01 2006-03-01 Recycling method of organic wastewater

Publications (2)

Publication Number Publication Date
JP2007229623A JP2007229623A (en) 2007-09-13
JP4793635B2 true JP4793635B2 (en) 2011-10-12

Family

ID=38550750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054574A Expired - Fee Related JP4793635B2 (en) 2006-03-01 2006-03-01 Recycling method of organic wastewater

Country Status (1)

Country Link
JP (1) JP4793635B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240902A (en) * 2008-03-31 2009-10-22 Toray Ind Inc Water treating method and water treating apparatus
JP2010012434A (en) * 2008-07-04 2010-01-21 Hitachi Plant Technologies Ltd Structure of mbr+ro system and operation method for the system
AU2009320741B2 (en) * 2008-11-28 2012-03-15 Kobelco Eco-Solutions Co., Ltd. Generation of fresh water
RU2515859C2 (en) * 2009-10-09 2014-05-20 Тийода Корпорейшн Industrial effluents cleaning
JP2012045488A (en) * 2010-08-26 2012-03-08 Hitachi Plant Technologies Ltd Water treatment apparatus and method for operation thereof
JP2016190218A (en) * 2015-03-31 2016-11-10 東洋エンジニアリング株式会社 Oil-containing water treatment system, and operation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310703A (en) * 1988-06-09 1989-12-14 Japan Organo Co Ltd Method for controlling concentration in membrane separator
JPH02157086A (en) * 1988-12-10 1990-06-15 Takuma Co Ltd Preparation of ultrapure water
JPH05285490A (en) * 1992-04-03 1993-11-02 Fujita Corp Method for highly treating organic waste water
JPH06277665A (en) * 1993-03-26 1994-10-04 Japan Organo Co Ltd Producing apparatus for high purity water
JP3327371B2 (en) * 1996-03-05 2002-09-24 株式会社 日立インダストリイズ Membrane liquid concentrator
JP2000093753A (en) * 1998-07-22 2000-04-04 Toray Ind Inc Method for operating filter membrane module device and filter membrane module device
JP2000061466A (en) * 1998-08-20 2000-02-29 Nkk Corp Device for treating membrane-filtration waste water and its operation
JP2003126855A (en) * 2001-10-26 2003-05-07 Toshiba Corp Membrane filter system
JP4958384B2 (en) * 2003-08-18 2012-06-20 栗田工業株式会社 Biological treatment water treatment method for organic carbon-containing water discharged from semiconductor manufacturing process

Also Published As

Publication number Publication date
JP2007229623A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
US7569148B2 (en) Continuous membrane filtration and solids reduction
Rautenbach et al. Waste water treatment by a combination of bioreactor and nanofiltration
JP4793635B2 (en) Recycling method of organic wastewater
JP4997724B2 (en) Organic wastewater treatment method
KR101887332B1 (en) Advanced Sewage treatment system with continuous single bioreactor and reverse osmosis membrane and reverse osmosis concentrated water treatment system
JP6210063B2 (en) Fresh water generation method and fresh water generation apparatus
JP2010012434A (en) Structure of mbr+ro system and operation method for the system
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
Park et al. Reduction of membrane fouling by simultaneous upward and downward air sparging in a pilot-scale submerged membrane bioreactor treating municipal wastewater
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
KR100540986B1 (en) Wastewater treatment system by means of membrane bio-reactor
KR100624768B1 (en) System and method for advanced sewage treatment using microorganism and separation membrane
JP5366364B2 (en) Membrane separation activated sludge treatment equipment
JP5947067B2 (en) Wastewater treatment system and method
JP2001047089A (en) Method and apparatus for treating sewage
JP4612078B2 (en) Biological treatment method and biological treatment apparatus
KR0164580B1 (en) A water recycling system using membrane process and operating method thereof
JP3697938B2 (en) Wastewater treatment equipment
JP2003266096A (en) Wastewater treatment apparatus
KR20010109804A (en) Treatment of concentrated organic wastewater with a reverse osmosis process
CN104981437A (en) Sewage purification treatment method and sewage purification treatment device
RU2757589C1 (en) Method for purifying domestic waste water and station for implementation thereof
JP2001062471A (en) Device for treating sewage containing nitrogen
Hussain et al. Membrane bio reactors (MBR) in waste water treatment: a review of the recent patents
JP2004305926A (en) Immersion membrane separation type activated sludge treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Ref document number: 4793635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees