JP2008168219A - Membrane separation type activated sludge treatment apparatus - Google Patents

Membrane separation type activated sludge treatment apparatus Download PDF

Info

Publication number
JP2008168219A
JP2008168219A JP2007004596A JP2007004596A JP2008168219A JP 2008168219 A JP2008168219 A JP 2008168219A JP 2007004596 A JP2007004596 A JP 2007004596A JP 2007004596 A JP2007004596 A JP 2007004596A JP 2008168219 A JP2008168219 A JP 2008168219A
Authority
JP
Japan
Prior art keywords
motor
membrane separation
load
raw water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007004596A
Other languages
Japanese (ja)
Other versions
JP5366364B2 (en
Inventor
Kenji Honjo
賢治 本城
Masahiro Nakamaru
昌弘 中丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Engineering Co Ltd
Priority to JP2007004596A priority Critical patent/JP5366364B2/en
Publication of JP2008168219A publication Critical patent/JP2008168219A/en
Application granted granted Critical
Publication of JP5366364B2 publication Critical patent/JP5366364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane separation type activated sludge treatment apparatus reduced in load to a membrane separation unit while suppressing increase of the number of parts. <P>SOLUTION: The membrane separation type activated sludge treatment apparatus is provided with the membrane separation unit separating solid from liquid of raw water when sending out raw water in an aeration tank 4, an air diffuser 15 discharging air supplied from a blower 20 driven by a motor 24 as bubbles into the raw water to clean the membrane surface of the membrane separation unit 5, and a current sensor 32 detecting the load of the motor 24. When the load of the motor 24 is determined lower than a given load based on a detection result of the current sensor 32, sending of the raw water is stopped. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、膜分離活性汚泥処理装置に関するものである。   The present invention relates to a membrane separation activated sludge treatment apparatus.

従来から、下水道処理や産業排水処理などの水処理を行う膜分離活性汚泥処理装置が知られている。この膜分離活性汚泥処理装置では、処理槽内に中空糸膜などのフィルタを複数備えた膜分離ユニットを浸漬し、この膜分離ユニットを介して処理槽内の原水の不純物を分離除去した処理水を、処理水導出管路経由で処理槽外に導出するようになっている。また、この膜分離ユニットを用いた場合、原水中に含まれる懸濁物質や有機物等がフィルタの一時側に付着する目詰まりなどの、いわゆる膜のファウリングが生じてしまうため、ブロアによって膜分離ユニットの下方の散気装置にエアを送り込み、この散気装置から放出される微細な気泡によって膜のバブリング洗浄を行っている。   2. Description of the Related Art Conventionally, a membrane separation activated sludge treatment apparatus that performs water treatment such as sewerage treatment or industrial wastewater treatment is known. In this membrane separation activated sludge treatment apparatus, treated water is obtained by immersing a membrane separation unit having a plurality of filters such as hollow fiber membranes in the treatment tank, and separating and removing impurities in the raw water in the treatment tank via the membrane separation unit. Is led out of the treatment tank via the treated water lead-out pipeline. In addition, when this membrane separation unit is used, so-called membrane fouling such as clogging of suspended substances or organic substances contained in the raw water adhering to the temporary side of the filter occurs. Air is sent to the diffuser below the unit, and the film is bubble-washed by fine bubbles released from the diffuser.

一般に、ファンとモータとで構成されたブロアによってエアを処理槽内の散気装置に送り込んで気泡を放出させているが、例えば、何らかの原因でモータの負荷が増加して駆動電流の値が上昇するような異常状態となった場合には、正常にバブリング洗浄が行えないものと判定してモータの駆動とともに膜分離ユニットに接続されたポンプを停止するようになっている。しかし、例えば、ブロアのモータからファンへの駆動力を伝達するファンベルトが外れたり破断してモータの動力がファンへ伝達されない場合、モータは通常通り回転を続けるものの散気装置にエアが送り込まれなくなりバブリング洗浄が行われない状態となる。そのため、処理水導出管路経由で処理水が流れ続けると、膜のファウリングが進行してしまい膜分離ユニットへの負担が増加する虞があった。   In general, a blower composed of a fan and a motor sends air to the diffuser in the processing tank to release air bubbles. For example, for some reason, the motor load increases and the drive current increases. In such an abnormal state, it is determined that the bubbling cleaning cannot be normally performed, and the pump connected to the membrane separation unit is stopped along with the driving of the motor. However, for example, if the fan belt that transmits the driving force from the blower motor to the fan comes off or breaks and the motor power is not transmitted to the fan, the motor continues to rotate normally, but air is sent to the diffuser. It disappears and bubbling cleaning is not performed. For this reason, if the treated water continues to flow through the treated water outlet conduit, fouling of the membrane proceeds and there is a possibility that the burden on the membrane separation unit increases.

そこで近年、膜分離ユニットの負担を軽減すべく、処理水導出管路に、ブロアの吐出側の圧力を受けて弁体を開方向へ作動させる受圧部を設け、ブロアの吐出側に発生している所定の圧力が受圧部に作用しているときにだけ弁体を開放して処理水導出管路に処理水を流過させる膜分離活性汚泥処理装置が提案されている(例えば、特許文献1参照)。
特開2004−305885号公報
Therefore, in recent years, in order to reduce the burden on the membrane separation unit, a pressure receiving part that operates the valve body in the opening direction in response to the pressure on the discharge side of the blower is provided in the treated water outlet pipe, There has been proposed a membrane separation activated sludge treatment apparatus that opens a valve body and allows treated water to flow through a treated water outlet pipe only when a predetermined pressure is applied to the pressure receiving portion (for example, Patent Document 1). reference).
JP 2004-305895 A

しかしながら、上述した膜分離活性汚泥処理装置では、ブロアの吐出側から分岐して処理水導出管路に設けられた受圧部に至る管路を設ける必要があるため、部品点数が増加して装置が複雑化しまうという課題がある。   However, in the above-described membrane separation activated sludge treatment apparatus, it is necessary to provide a pipe branching from the discharge side of the blower to the pressure receiving part provided in the treated water outlet pipe. There is a problem that it becomes complicated.

そこで、この発明は、部品点数の増加を抑制しつつ膜分離ユニットへの負担を軽減することが可能な膜分離活性汚泥処理装置を提供するものである。   Therefore, the present invention provides a membrane separation activated sludge treatment apparatus capable of reducing the burden on the membrane separation unit while suppressing an increase in the number of parts.

上記課題を解決するために、請求項1に記載した発明は、処理槽(例えば、実施の形態におけるばっ気槽4)中の原水を槽外に送出する際に前記原水の固液分離を行う膜分離手段(例えば、実施の形態における膜濾過ユニット5)を備えるとともに、モータ(例えば、実施の形態におけるモータ24)を駆動源とした送気手段(例えば、実施の形態におけるブロア20)から供給されるエアを原水中に気泡として放出して前記膜分離手段の膜表面を洗浄する散気手段(例えば、実施の形態における散気発生装置15)を備えた膜分離活性汚泥処理装置において、前記モータの負荷を検出する負荷検出手段(例えば、実施の形態における電流センサ32)を設け、該負荷検出手段の検出結果に基づいて、前記モータの負荷が所定の負荷よりも低いと判定された場合に、前記原水の送出を停止させることを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 performs solid-liquid separation of the raw water when the raw water in the treatment tank (for example, the aeration tank 4 in the embodiment) is sent out of the tank. Supplying from air supply means (for example, the blower 20 in the embodiment) including a membrane separation means (for example, the membrane filtration unit 5 in the embodiment) and using a motor (for example, the motor 24 in the embodiment) as a drive source In the membrane separation activated sludge treatment apparatus provided with aeration means (for example, aeration generation apparatus 15 in the embodiment) for discharging the air to be discharged as bubbles in the raw water and cleaning the membrane surface of the membrane separation means, Load detecting means for detecting the load of the motor (for example, the current sensor 32 in the embodiment) is provided, and the load of the motor is lower than a predetermined load based on the detection result of the load detecting means. If it is determined that, characterized in that stopping the transmission of the raw water.

請求項2に記載した発明は、前記モータの電流値を検出する電流センサ(例えば、実施の形態における電流センサ32)を備え、該電流センサの検出結果に基づいて前記モータの負荷を判定することを特徴とする。   The invention described in claim 2 includes a current sensor (for example, the current sensor 32 in the embodiment) that detects a current value of the motor, and determines a load of the motor based on a detection result of the current sensor. It is characterized by.

請求項1に記載した発明によれば、負荷検出手段によってモータ負荷の低下を検出することができるため、モータの負荷が所定の負荷よりも低くなった場合に、送気手段のモータに接続されている例えばファンベルトが外れたり破断している異常状態であると判定することができるため、処理槽内の原水の槽外への送出を停止させることができる。したがって、散気手段による膜の洗浄が行われない状態で原水を送出し続けることを防止することができ、従来のように管路を増設する場合と比較して部品点数を低減しつつ膜分離手段のファウリング進行を抑制することができる効果がある。   According to the first aspect of the present invention, since the load detection means can detect a decrease in the motor load, when the motor load becomes lower than a predetermined load, the load detection means is connected to the motor of the air supply means. For example, since it can be determined that the fan belt is in an abnormal state where it is detached or broken, it is possible to stop the raw water in the treatment tank from being fed out of the tank. Therefore, it is possible to prevent the raw water from being sent out without the membrane being cleaned by the air diffuser, and membrane separation while reducing the number of parts as compared with the case of adding a pipeline as in the past. There is an effect that the fouling progress of the means can be suppressed.

請求項2に記載した発明によれば、モータの電流値を電流センサによって検出し、この電流センサの検出結果に基づいてモータの負荷を判定することができるため、例えば、従来から過電流などを監視するためにモータに設けられている電流センサを有効利用してファンベルトの異常状態を検出することができる。したがって、部品点数を増加させることなしにモータ負荷の低下を検出することができる効果がある。   According to the second aspect of the present invention, the current value of the motor can be detected by the current sensor, and the load of the motor can be determined based on the detection result of the current sensor. An abnormal state of the fan belt can be detected by effectively using a current sensor provided in the motor for monitoring. Therefore, there is an effect that it is possible to detect a decrease in motor load without increasing the number of parts.

以下、この発明の実施の形態における膜分離活性汚泥処理装置の一例を図面に基づいて説明する。
図1に示すように、この実施の形態の膜分離活性汚泥処理装置は、排水中の比較的大きな固形分を除去する微細目スクリーン1を備えており、この微細目スクリーン1を通過させた排水を原水調整槽2に導入するようになっている。
Hereinafter, an example of a membrane separation activated sludge treatment apparatus in an embodiment of the present invention will be described based on the drawings.
As shown in FIG. 1, the membrane separation activated sludge treatment apparatus of this embodiment includes a fine screen 1 that removes a relatively large solid content in the waste water, and the waste water that has passed through the fine screen 1. Is introduced into the raw water adjustment tank 2.

原水調整槽2は、微細目スクリーン1を通過した排水を貯留するものであって、この排水液面を図示せぬ液面計測器によって測定可能になっている。この測定結果に基づいて、原水調整槽2の出口管路に設けられた第1送液ポンプP1を間欠作動することで原水調整槽2内の液面高さを所定の範囲内で調整するように構成されている。   The raw water adjustment tank 2 stores the wastewater that has passed through the fine screen 1, and the drainage liquid level can be measured by a liquid level measuring instrument (not shown). Based on this measurement result, the liquid level height in the raw water adjustment tank 2 is adjusted within a predetermined range by intermittently operating the first liquid feed pump P1 provided in the outlet pipe of the raw water adjustment tank 2. It is configured.

また、原水調整槽2には、出口管路を介して無酸素槽3が接続されている。この無酸素槽3はいわゆる脱窒反応を行うものであり、この無酸素槽3中の原水は、ばっ気によって酸化反応を行うばっ気槽(処理槽)4との間で循環可能になっている。ここで、原水調整槽2から第1送液ポンプP1によって無酸素槽3に送られた原水は、無酸素槽3から溢流し、この溢流した原水がばっ気槽4に流れ込む。   In addition, an oxygen-free tank 3 is connected to the raw water adjustment tank 2 through an outlet pipe. The oxygen-free tank 3 performs a so-called denitrification reaction, and the raw water in the oxygen-free tank 3 can be circulated with an aeration tank (treatment tank) 4 that performs an oxidation reaction by aeration. Yes. Here, the raw water sent from the raw water adjustment tank 2 to the anoxic tank 3 by the first liquid feed pump P 1 overflows from the anoxic tank 3, and the overflowed raw water flows into the aeration tank 4.

ばっ気槽4は、多数基の膜濾過ユニット(膜分離手段)5が浸漬され、この膜濾過ユニット5によって原水に含まれる懸濁物質や有機物等の固体と処理水とに固液分離される。この膜濾過ユニット5のそれぞれに管路22aが接続され、管路22aは、それぞれ吸引ポンプPvが介装された吸引管路22に合流接続されており、この吸引ポンプ(P)Pvを吸引作動させることで、原水が膜濾過ユニット5にて活性汚泥と処理水とに分離されるようになっている。なお、管路22aには、それぞれ開閉バルブ23が介装されている。   In the aeration tank 4, a large number of membrane filtration units (membrane separation means) 5 are immersed, and the membrane filtration unit 5 separates solid and liquid into solids such as suspended substances and organic substances contained in raw water and treated water. . A pipe line 22a is connected to each of the membrane filtration units 5, and the pipe lines 22a are connected to the suction pipe line 22 in which a suction pump Pv is interposed, respectively, and the suction pump (P) Pv is operated for suction. By doing so, raw water is separated into activated sludge and treated water by the membrane filtration unit 5. Note that an opening / closing valve 23 is interposed in each pipe line 22a.

また、ばっ気槽4には、汚泥貯蔵槽7が接続されている。この汚泥貯蔵槽7には、ばっ気槽4内にてばっ気処理されて生育した汚泥の固形分が自重で槽底部へと沈殿したものが貯蔵されるようになっている。さらに、ばっ気槽4には、膜濾過ユニット5にて固液分離されて得られた処理水を一時的に貯める処理水槽8が接続されており、この処理水槽8に貯められた処理水が出口管路を介して適宜排水されるようになっている。また、ばっ気槽4内部の汚泥の一部は第2送液ポンプP2によって無酸素槽3へ返送されて循環するようになっている。   In addition, a sludge storage tank 7 is connected to the aeration tank 4. The sludge storage tank 7 is configured to store a solid content of sludge that has been aerated in the aeration tank 4 and has grown to its bottom by its own weight. Furthermore, the aeration tank 4 is connected to a treated water tank 8 for temporarily storing treated water obtained by solid-liquid separation in the membrane filtration unit 5, and the treated water stored in the treated water tank 8 is stored in the aerated tank 4. The water is appropriately drained through the outlet pipe. A part of the sludge in the aeration tank 4 is returned to the anoxic tank 3 by the second liquid feed pump P2 and circulated.

膜濾過ユニット5は、中空糸膜の長さ方向を上下方向に沿って配した複数枚の中空糸膜エレメント(図示せず)を並列させて支持固定した中空糸膜モジュール9と、この中空糸膜モジュール9の下方に所要の間隔を置いて配置され、中空糸膜モジュール9の膜をエアスクラビング(またはバブリングとも言う)により洗浄する散気発生装置(散気手段)15とを備えている。なお、中空糸膜モジュール9を構成する中空糸膜エレメントは、多数本の多孔性中空糸膜を平行に並列配置させた中空糸膜シートの上端開口端部をポッティング材を介して処理水取出し管に連通支持させ、濾過水取出し管及び下枠により固定支持したものである。   The membrane filtration unit 5 includes a hollow fiber membrane module 9 in which a plurality of hollow fiber membrane elements (not shown) arranged in parallel in the vertical direction in the length direction of the hollow fiber membrane are supported and fixed, and the hollow fiber An aeration generating device (aeration means) 15 is disposed below the membrane module 9 at a required interval and cleans the membrane of the hollow fiber membrane module 9 by air scrubbing (or bubbling). The hollow fiber membrane element constituting the hollow fiber membrane module 9 has a treated water take-off pipe through a potting material at the upper end opening end of a hollow fiber membrane sheet in which a large number of porous hollow fiber membranes are arranged in parallel. And fixedly supported by a filtered water discharge pipe and a lower frame.

この膜分離活性汚泥処理装置によれば、原水は無酸素槽3及びばっ気槽4において、活性汚泥により生物学的に浄化される。窒素の除去は、無酸素槽3とばっ気槽4との間で汚泥を循環させることにより、いわゆる硝化脱窒反応によってなされる。生物化学的酸素要求量(BOD)に換算される有機物は、主としてばっ気槽4内に配置されたばっ気装置である膜濾過ユニット5の散気発生装置15から排出される空気により好気的に酸化され分解される。またリンの除去は、汚泥中の微生物(リン蓄積細菌)の作用によりポリリン酸として微生物の体内に取り込まれることにより行われる。この微生物は好気状態においてリンを取り込み、嫌気状態において体内に蓄えたリンを放出する。リン蓄積細菌は嫌気状態、好気状態を繰り返して晒されると、嫌気状態で放出したリンの量より多くのリンを好気状態で吸収する。   According to this membrane separation activated sludge treatment apparatus, raw water is biologically purified by activated sludge in the anoxic tank 3 and the aeration tank 4. Nitrogen is removed by a so-called nitrification denitrification reaction by circulating sludge between the anoxic tank 3 and the aeration tank 4. The organic matter converted into the biochemical oxygen demand (BOD) is aerobic by the air discharged from the diffuser generator 15 of the membrane filtration unit 5 which is mainly an aeration apparatus disposed in the aeration tank 4. It is oxidized and decomposed. The removal of phosphorus is performed by being taken into the body of the microorganism as polyphosphoric acid by the action of microorganisms (phosphorus-accumulating bacteria) in the sludge. This microorganism takes up phosphorus in an aerobic state and releases phosphorus stored in the body in an anaerobic state. When phosphorus-accumulating bacteria are repeatedly exposed to anaerobic and aerobic conditions, they absorb more phosphorus than the amount of phosphorus released in anaerobic conditions.

また、生物由来の排泄物や死骸などの窒素化合物の一部は、肥料として植物やバクテリアに同化される。また、こうした窒素化合物の一部は、酸素の多い好気条件下で独立栄養アンモニア最近や独立亜硝酸酸化細菌により、亜硝酸、硝酸へと酸化される。他方、酸素がない嫌気条件下では、脱窒菌と呼ばれる微生物が酸素に代わって硝酸から亜硝酸を生成し、さらには一酸化二窒素、窒素ガスへと還元する。この還元反応が上記硝化脱窒反応と称される。   In addition, some of the nitrogen compounds such as biological excrement and carcasses are assimilated into plants and bacteria as fertilizer. Some of these nitrogen compounds are oxidized to nitrous acid and nitric acid by autotrophic ammonia recently and independent nitrite-oxidizing bacteria under aerobic conditions rich in oxygen. On the other hand, under anaerobic conditions without oxygen, microorganisms called denitrifying bacteria produce nitrous acid from nitric acid instead of oxygen, and further reduce to dinitrogen monoxide and nitrogen gas. This reduction reaction is referred to as the nitrification denitrification reaction.

無酸素槽3及びばっ気槽4の間での汚泥の循環は、どちらの槽からポンプを用いて送液するかは必ずしも限定されないが、通常は第2送液ポンプP2を用いてばっ気槽4から無酸素槽3へと送液し、無酸素槽3から溢流によってばっ気槽4に流入させる。ここで、ばっ気槽4からの循環液が無酸素槽3に入る部位における溶存有機物濃度(以下、DOCと呼ぶ)を0.2mg/L以下、および、ばっ気槽4より循環液を取り出す部位のDOCを0.5mg/L以下のうち少なくともいずれかの条件とすると安定化するため好ましい。なお、DOCの測定は隔膜電極法による通常のDO計を用いて測定することができる。   The circulation of sludge between the anaerobic tank 3 and the aeration tank 4 is not necessarily limited from which tank the liquid is fed using the pump, but normally the aeration tank using the second liquid feeding pump P2. The liquid is fed from 4 to the anaerobic tank 3 and is allowed to flow from the anoxic tank 3 into the aeration tank 4 by overflow. Here, the dissolved organic matter concentration (hereinafter referred to as DOC) in the portion where the circulating fluid from the aeration tank 4 enters the anoxic tank 3 is 0.2 mg / L or less, and the portion where the circulating fluid is taken out from the aeration tank 4 It is preferable that the DOC is at least one of 0.5 mg / L or less because of stabilization. In addition, the measurement of DOC can be measured using the normal DO meter by the diaphragm electrode method.

ばっ気槽4からの循環液を取り出す部位6のDOCを0.5mg/L以下とするためには、ばっ気槽4から無酸素槽3へ汚泥を取り出す部位を汚泥の滞留部とすることが好ましい。汚泥の滞留部とは、ばっ気による汚泥の流動の影響を受けにくい部位を意味する。例えば、膜濾過ユニット5とばっ気槽4の底部との間に空間を設けてやると、膜濾過ユニット5の下の部分に存在する汚泥はよく攪拌されないため滞留部となる。   In order to set the DOC of the portion 6 where the circulating fluid from the aeration tank 4 is taken out to 0.5 mg / L or less, the portion where the sludge is taken out from the aeration tank 4 to the anoxic tank 3 can be a sludge retention part. preferable. The sludge retention part means a part that is not easily affected by sludge flow caused by aeration. For example, if a space is provided between the membrane filtration unit 5 and the bottom of the aeration tank 4, the sludge present in the lower part of the membrane filtration unit 5 is not well agitated and becomes a staying portion.

したがって、図1に示すように、膜濾過ユニット5の位置よりも下から汚泥を取り出すことにより、ばっ気槽4より循環液を取り出す部位6のDOCを0.5mg/L以下とすることができる。なお、ばっ気槽4内に複数基の膜濾過ユニット5が並列状態で配置されている場合は、循環液を取り出す部位6を散気発生装置15の下方とする。また、膜濾過ユニット5から汚泥を取り出す部位までは20cm以上下方に離間することが好ましく30cm以上離間することがさらに好ましい。   Therefore, as shown in FIG. 1, the DOC of the portion 6 where the circulating fluid is extracted from the aeration tank 4 can be reduced to 0.5 mg / L or less by removing the sludge from below the position of the membrane filtration unit 5. . When a plurality of membrane filtration units 5 are arranged in parallel in the aeration tank 4, the portion 6 from which the circulating fluid is taken out is located below the air diffuser 15. Further, it is preferable that the part from which the sludge is taken out from the membrane filtration unit 5 is separated downward by 20 cm or more, more preferably 30 cm or more.

ばっ気槽4内における汚泥の流動は、主として膜濾過ユニット5によるばっ気部分において空気の噴出し口から気泡の上昇に伴って汚泥も上昇し、ばっ気されていない部分において汚泥が下降し、これにより全体が攪拌される。この際、ばっ気槽4内の汚泥の酸素利用速度を高く維持すると、ばっ気されていない部分で酸素が急速に消費されることからばっ気槽4中溶存酸素が低くなる部位を形成しやすくなる。ここで、ばっ気槽4内の汚泥の酸素利用速度とは、ばっ気槽4のばっ気されている部分から取った汚泥の酸素利用速度をいい、測定方法は下水道試験方法(1997年、社団法人日本下水道協会)にしたがって求めることができる。   The flow of sludge in the aeration tank 4 is mainly due to the rise of air bubbles from the air outlet at the aeration part by the membrane filtration unit 5, and the sludge descends at the part not aerated. Thereby, the whole is stirred. At this time, if the oxygen utilization rate of the sludge in the aeration tank 4 is kept high, oxygen is rapidly consumed in the non-aerated area, so that it is easy to form a part where the dissolved oxygen in the aeration tank 4 becomes low. Become. Here, the oxygen utilization rate of the sludge in the aeration tank 4 refers to the oxygen utilization rate of the sludge taken from the aerated portion of the aeration tank 4, and the measuring method is a sewer test method (1997, corporation). It can be determined according to the Japan Sewerage Association.

ところで、図2に示すように、ばっ気槽4内に浸漬された膜濾過ユニット5の散気発生装置15には給気管18を介してブロア(B;送気手段)20が接続されている。このブロア20は、エアを送出するファン(F)21と、このファン21を駆動するモータ(M)24とを備えている。より具体的には、ファン21の従動軸21aの軸端に設けられたプーリ25と、モータ24の駆動軸24aの軸端に設けられたプーリ26とに渡ってファンベルト27が巻回されており、モータ24の駆動軸24aの回転がファンベルト27を介してファン21の従動軸21aに伝達されるようになっている。また、モータ24には、制御部30からの制御指令を受けてモータ24の駆動電流を制御するドライバ(D)31が接続されており、さらに、これらモータ24とドライバ31との間にモータ24の駆動電流を検出する電流センサ(A;負荷検出手段)32が介装されている。なお、図示都合上、図2では開閉バルブ19,23を省略している。   Incidentally, as shown in FIG. 2, a blower (B; air supply means) 20 is connected to an air diffuser 15 of the membrane filtration unit 5 immersed in the aeration tank 4 through an air supply pipe 18. . The blower 20 includes a fan (F) 21 that sends out air and a motor (M) 24 that drives the fan 21. More specifically, the fan belt 27 is wound around the pulley 25 provided at the shaft end of the driven shaft 21 a of the fan 21 and the pulley 26 provided at the shaft end of the drive shaft 24 a of the motor 24. The rotation of the drive shaft 24 a of the motor 24 is transmitted to the driven shaft 21 a of the fan 21 via the fan belt 27. The motor 24 is connected to a driver (D) 31 that receives a control command from the control unit 30 and controls the driving current of the motor 24, and the motor 24 is connected between the motor 24 and the driver 31. A current sensor (A; load detecting means) 32 for detecting the drive current is interposed. For convenience of illustration, the on-off valves 19 and 23 are omitted in FIG.

制御部30は、膜濾過ユニット5の出口側に接続されている吸引ポンプPvのON,OFFを、電流センサ32の検出結果に基づいて制御するようになっている。より具体的には、制御部30は、電流センサ32による検出の結果、モータ24の負荷が低下してモータ24の駆動電流が所定値(例えば、4A程度)以下に減少した場合に吸引ポンプPvをOFF状態に制御して処理水の吸引を停止すように設定されている。なお、駆動電流の所定値とは、ハンチングすることなしにモータ24の負荷減少に伴う駆動電流の低下を判定することができる適宜の電流値である。   The control unit 30 controls ON / OFF of the suction pump Pv connected to the outlet side of the membrane filtration unit 5 based on the detection result of the current sensor 32. More specifically, the control unit 30 detects the suction pump Pv when the load of the motor 24 decreases and the driving current of the motor 24 decreases to a predetermined value (for example, about 4 A) or less as a result of detection by the current sensor 32. Is set to stop suction of treated water. The predetermined value of the drive current is an appropriate current value that can determine a decrease in the drive current accompanying a decrease in the load on the motor 24 without hunting.

次に、上記した実施の形態における膜分離活性汚泥処理装置の作用を説明する。
まず、操作者からの始動操作があると、制御部30はブロア20のドライバ31に対してモータ24の駆動指令を出力し、その結果ブロア20と吸引ポンプPvとが始動する。すると、ドライバ31はモータ24への通電を開始し、電力が供給されたモータ24の駆動軸24aが回転を始める。そして、プーリ26、ファンベルト27、プーリ25を介してファン21にモータ24の回転が伝達されて散気発生装置15にエアが供給される。ここで、散気発生装置15にエアが供給されると、散気発生装置15の複数の孔(図示せず)からばっ気槽4中に微細な気泡が放出され、これらの気泡が膜濾過ユニット5の中空糸膜モジュールを構成する中空糸膜エレメントの表面に接触しながら上昇することでこの中空糸膜エレメントの外表面がバブリング洗浄される。
Next, the operation of the membrane separation activated sludge treatment apparatus in the above embodiment will be described.
First, when there is a start operation from the operator, the control unit 30 outputs a drive command for the motor 24 to the driver 31 of the blower 20, and as a result, the blower 20 and the suction pump Pv are started. Then, the driver 31 starts energizing the motor 24, and the drive shaft 24a of the motor 24 to which power is supplied starts to rotate. Then, the rotation of the motor 24 is transmitted to the fan 21 through the pulley 26, the fan belt 27, and the pulley 25, and air is supplied to the diffuser generator 15. Here, when air is supplied to the air diffuser 15, fine bubbles are released into the aeration tank 4 from a plurality of holes (not shown) of the air diffuser 15, and these air bubbles are subjected to membrane filtration. The outer surface of this hollow fiber membrane element is bubble-washed by raising while contacting the surface of the hollow fiber membrane element constituting the hollow fiber membrane module of unit 5.

また、制御部30は、上記ブロア20の始動と略同時に吸引ポンプPvをONに制御する。すると、ばっ気槽4内の原水が膜濾過ユニット5にて吸引濾過され、この吸引濾過された処理水がばっ気槽4の外に配置された処理水槽8に排出される。   Further, the control unit 30 controls the suction pump Pv to be ON substantially simultaneously with the start of the blower 20. Then, the raw water in the aeration tank 4 is suction filtered by the membrane filtration unit 5, and the suction-filtered treated water is discharged to the treated water tank 8 arranged outside the aeration tank 4.

一方、制御部30は、電流センサ32の検出結果を常時監視しており、この電流センサ32の検出結果に基づいてモータ24の駆動電流が所定値以下となった場合に、吸引ポンプPvの電源をOFF状態に制御して停止させる。ここで、モータ24の駆動電流が所定値以下となる場合としては、例えば、経年劣化によってファンベルト27が破断したり、何らかの原因でファンベルト27がプーリ25,26から脱落してモータ24の回転がファン21に伝達されなくなる、あるいは給気管18が脱落したり破断する場合などがある。   On the other hand, the control unit 30 constantly monitors the detection result of the current sensor 32, and when the drive current of the motor 24 becomes a predetermined value or less based on the detection result of the current sensor 32, the power source of the suction pump Pv Is controlled to be turned off. Here, as a case where the drive current of the motor 24 becomes a predetermined value or less, for example, the fan belt 27 is broken due to deterioration over time, or the fan belt 27 is dropped from the pulleys 25 and 26 for some reason, and the motor 24 rotates. May not be transmitted to the fan 21, or the air supply pipe 18 may drop or break.

より具体的には、図3に示すように、ファンベルト27が正常状態でモータ24の回転がファン21に伝達されている場合(図3中、矢印よりも左側の領域)、モータ24にとってファン21が負荷となっているため、電流センサ32で検出される電流(図3の縦軸)は、相対的に高い値(例えば10A程度)となる。これに対して、図3中の矢印のタイミングで例えばファンベルト27の外れが生じると、モータ24の負荷となっているファン21がモータ24から切り離されて、モータ24の負荷が急に減少することとなる。そして、この負荷の減少に伴ってモータ24の消費電力、つまり、駆動電流が大幅に(例えば、3A程度まで)減少し、この電流の減少が電流センサ32によって検出されることとなる。そして、この電流センサ32での検出結果を受信した制御部30は、駆動電流が所定値以下に低下したことでファンベルト27に何らかの異常が発生してモータ24の負荷が減少したと判定して吸引ポンプPvを停止制御する。   More specifically, as shown in FIG. 3, when the fan belt 27 is in a normal state and the rotation of the motor 24 is transmitted to the fan 21 (the region on the left side of the arrow in FIG. 3), Since 21 is a load, the current (vertical axis in FIG. 3) detected by the current sensor 32 is a relatively high value (for example, about 10 A). On the other hand, for example, when the fan belt 27 is detached at the timing of the arrow in FIG. 3, the fan 21 serving as the load of the motor 24 is disconnected from the motor 24 and the load of the motor 24 is suddenly reduced. It will be. As the load decreases, the power consumption of the motor 24, that is, the drive current is significantly reduced (for example, up to about 3A), and the current sensor 32 detects the decrease in current. Then, the control unit 30 that has received the detection result of the current sensor 32 determines that some abnormality has occurred in the fan belt 27 and the load on the motor 24 has decreased because the drive current has dropped below a predetermined value. The suction pump Pv is stopped and controlled.

したがって、上述した実施の形態によれば、電流センサ32によってモータ24の負荷が低下したことを検出することができるため、モータ24の負荷が所定の負荷よりも低くなった場合に、ファンベルト27が外れたり破断している異常状態であると判定して、ばっ気槽4中の原水を吸引ポンプPvによって吸引するのを停止させることができ、この結果、散気発生装置15によるバブリング洗浄が行われない状態で吸引ポンプPvが駆動し続けるのを防止することができるため、従来のように管路を増設した場合よりも部品点数を低減しつつ膜のファウリング進行を抑制することができる。そして、この結果、膜の寿命を延ばすことができる。   Therefore, according to the above-described embodiment, since the load of the motor 24 can be detected by the current sensor 32, the fan belt 27 is reduced when the load of the motor 24 becomes lower than a predetermined load. Therefore, it is possible to stop the suction of the raw water in the aeration tank 4 by the suction pump Pv, and as a result, the bubbling cleaning by the air diffuser 15 can be performed. Since it is possible to prevent the suction pump Pv from continuing to be driven in a state where it is not performed, it is possible to suppress the progress of fouling of the membrane while reducing the number of parts compared to the case where the number of pipes is increased as in the prior art. . As a result, the lifetime of the film can be extended.

尚、上記実施の形態に限られるものではなく、例えば、ファンベルト27をチェーンに、プーリ25,26をスプロケットに置き換えても良い。
また、上記実施の形態では、複数の膜濾過ユニット5をばっ気槽4に浸漬した場合について説明したが、少なくとも一つの膜濾過ユニット5が浸漬されたばっ気槽4であれば良い。
The present invention is not limited to the above embodiment, and for example, the fan belt 27 may be replaced with a chain and the pulleys 25 and 26 may be replaced with sprockets.
Moreover, although the said embodiment demonstrated the case where the several membrane filtration unit 5 was immersed in the aeration tank 4, what is necessary is just the aeration tank 4 in which the at least 1 membrane filtration unit 5 was immersed.

また、上記実施の形態では、モータ24の負荷が低下したと判定された際に、吸引ポンプPvをOFFさせる場合について説明したが、全てのポンプ、すなわち上記実施の形態における第1送液ポンプP1、第2送液ポンプP2を全て停止制御するようにしても良い。さらに、吸引ポンプPvの停止を行う場合について説明したが、分岐管路22に設けられた開閉バルブ23を閉塞作動させてばっ気槽4の原水の排出を停止させるようにしてもよい。
また、ばっ気槽4と無酸素槽3との間で原水を循環させる場合の処理について説明したが、膜濾過ユニットが浸漬される好気性の処理槽を備えたものであれば適用することができる。
In the above embodiment, the case where the suction pump Pv is turned off when it is determined that the load of the motor 24 is reduced has been described. However, all the pumps, that is, the first liquid feeding pump P1 in the above embodiment, are described. The second liquid feed pump P2 may all be controlled to stop. Furthermore, although the case where the suction pump Pv is stopped has been described, the open / close valve 23 provided in the branch conduit 22 may be closed to stop the discharge of raw water from the aeration tank 4.
Moreover, although the process in the case of circulating raw | natural water between the aeration tank 4 and the anaerobic tank 3 was demonstrated, it is applicable if it has an aerobic processing tank in which a membrane filtration unit is immersed. it can.

本発明の実施の形態における膜分離活性汚泥処理装置のシステム構成を示す概略図である。It is the schematic which shows the system configuration | structure of the membrane separation activated sludge processing apparatus in embodiment of this invention. 本発明の実施の形態におけるばっ気槽の説明図である。It is explanatory drawing of the aeration tank in embodiment of this invention. 本発明の実施の形態におけるモータの負荷変動による駆動電流の変化を示すグラフである。It is a graph which shows the change of the drive current by the load fluctuation | variation of the motor in embodiment of this invention.

符号の説明Explanation of symbols

4 ばっ気槽(処理槽)
5 膜濾過ユニット(膜分離手段)
15 散気発生装置(散気手段)
20 ブロア(送気手段)
24 モータ
32 電流センサ(負荷検出手段)
Pv 吸引ポンプ
4 Aeration tank (treatment tank)
5 Membrane filtration unit (membrane separation means)
15 Air diffuser (air diffuser)
20 Blower (Air supply means)
24 motor 32 current sensor (load detection means)
Pv suction pump

Claims (2)

処理槽内の原水を槽外に送出する際に前記原水の固液分離を行う膜分離手段を備えるとともに、モータを駆動源とした送気手段から供給されるエアを原水中に気泡として放出して前記膜分離手段の膜表面を洗浄する散気手段を備えた膜分離活性汚泥処理装置において、
前記モータの負荷を検出する負荷検出手段を設け、該負荷検出手段の検出結果に基づいて、前記モータの負荷が所定の負荷よりも低いと判定された場合に、前記原水の送出を停止させることを特徴とする膜分離活性汚泥処理装置。
A membrane separation means for performing solid-liquid separation of the raw water when the raw water in the treatment tank is sent out of the tank, and air supplied from an air supply means using a motor as a drive source is released as bubbles into the raw water. In the membrane separation activated sludge treatment apparatus provided with aeration means for cleaning the membrane surface of the membrane separation means,
Load detecting means for detecting the load of the motor is provided, and when the load of the motor is determined to be lower than a predetermined load based on the detection result of the load detecting means, the sending of the raw water is stopped. A membrane separation activated sludge treatment apparatus characterized by
前記負荷検出手段は、前記モータの駆動電流を検出する電流センサであり、該電流センサの検出結果に基づいて、駆動電流が所定電流値よりも低いと判定された場合に前記原水の送出を停止させることを特徴とする請求項1に記載の膜分離活性汚泥処理装置。   The load detecting means is a current sensor that detects a driving current of the motor, and stops sending the raw water when it is determined that the driving current is lower than a predetermined current value based on a detection result of the current sensor. The membrane separation activated sludge treatment apparatus according to claim 1, wherein
JP2007004596A 2007-01-12 2007-01-12 Membrane separation activated sludge treatment equipment Active JP5366364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004596A JP5366364B2 (en) 2007-01-12 2007-01-12 Membrane separation activated sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004596A JP5366364B2 (en) 2007-01-12 2007-01-12 Membrane separation activated sludge treatment equipment

Publications (2)

Publication Number Publication Date
JP2008168219A true JP2008168219A (en) 2008-07-24
JP5366364B2 JP5366364B2 (en) 2013-12-11

Family

ID=39696816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004596A Active JP5366364B2 (en) 2007-01-12 2007-01-12 Membrane separation activated sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP5366364B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069361A (en) * 2008-09-16 2010-04-02 Mitsubishi Rayon Eng Co Ltd Membrane washing apparatus, membrane separation apparatus, and wastewater treatment apparatus
WO2013002242A1 (en) * 2011-06-29 2013-01-03 東レ株式会社 Film separation activated sludge method film surface cleaning method
JP2014058039A (en) * 2013-11-28 2014-04-03 Makita Corp Driving tool
JP2021053637A (en) * 2019-09-25 2021-04-08 株式会社アート電子 Maintenance/inspection system for septic tank blowers, pumps and water quality sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975964A (en) * 1995-09-12 1997-03-25 Nishihara Neo Kogyo Kk System and method for automatically detecting and announcing abnormality of small-scale septic tank
JPH11347585A (en) * 1998-06-04 1999-12-21 Toshiba Corp Sewage treatment apparatus
JP2004305885A (en) * 2003-04-07 2004-11-04 Kubota Corp Membrane separation type activated sludge treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975964A (en) * 1995-09-12 1997-03-25 Nishihara Neo Kogyo Kk System and method for automatically detecting and announcing abnormality of small-scale septic tank
JPH11347585A (en) * 1998-06-04 1999-12-21 Toshiba Corp Sewage treatment apparatus
JP2004305885A (en) * 2003-04-07 2004-11-04 Kubota Corp Membrane separation type activated sludge treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069361A (en) * 2008-09-16 2010-04-02 Mitsubishi Rayon Eng Co Ltd Membrane washing apparatus, membrane separation apparatus, and wastewater treatment apparatus
WO2013002242A1 (en) * 2011-06-29 2013-01-03 東レ株式会社 Film separation activated sludge method film surface cleaning method
JP2014058039A (en) * 2013-11-28 2014-04-03 Makita Corp Driving tool
JP2021053637A (en) * 2019-09-25 2021-04-08 株式会社アート電子 Maintenance/inspection system for septic tank blowers, pumps and water quality sensors

Also Published As

Publication number Publication date
JP5366364B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US7314563B2 (en) Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous
EP2253596A1 (en) Method for removing phosphorus using membrane bioreactor
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
KR100876323B1 (en) Advanced treatment apparatus for treatment of sewage water or waste water using aerobic microorganism activation apparatus
KR101005422B1 (en) Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling
JP2010247120A (en) Operation method of immersion type membrane separator
JP5366364B2 (en) Membrane separation activated sludge treatment equipment
JP2008183517A (en) Waste water treatment system
JP2003053363A (en) Treatment method and treatment equipment for organic matter-containing water
JP4793635B2 (en) Recycling method of organic wastewater
JP2009061349A (en) Sewage treatment method by membrane separation activated sludge process
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
KR100628908B1 (en) Method and apparatus for instrumentation and control of membrane coupled activated sludge method and reactor operating anoxic/anaerobic process alternatively for removal of nitrogen and phosphorus
JP4557851B2 (en) Anaerobic water treatment device
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP2008221133A (en) Wastewater treatment equipment
JP2020097023A (en) Wastewater treatment method and system
JP2006043705A (en) Anaerobic water treatment apparatus
JP5456238B2 (en) Membrane separator
JP4403495B2 (en) Wastewater treatment equipment
RU70512U1 (en) COMPACT INSTALLATION OF BIOLOGICAL CLEANING AND DISINFECTION OF SEWAGE WATER USING MEMBRANE FILTRATION
JP2006007221A (en) Anaerobic water treatment apparatus
JP2013248566A (en) Membrane separation activated sludge process and reforming method of activated sludge
JP2008194649A (en) Sludge blocking detection method and wastewater treatment method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R151 Written notification of patent or utility model registration

Ref document number: 5366364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250