KR101005422B1 - Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling - Google Patents

Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling Download PDF

Info

Publication number
KR101005422B1
KR101005422B1 KR20080082110A KR20080082110A KR101005422B1 KR 101005422 B1 KR101005422 B1 KR 101005422B1 KR 20080082110 A KR20080082110 A KR 20080082110A KR 20080082110 A KR20080082110 A KR 20080082110A KR 101005422 B1 KR101005422 B1 KR 101005422B1
Authority
KR
South Korea
Prior art keywords
membrane
filtration
backwashing
treated water
immersion
Prior art date
Application number
KR20080082110A
Other languages
Korean (ko)
Other versions
KR20100023383A (en
Inventor
김형수
이억재
김관엽
이의종
나유미
Original Assignee
주식회사 엔텍
주식회사 태영건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔텍, 주식회사 태영건설 filed Critical 주식회사 엔텍
Priority to KR20080082110A priority Critical patent/KR101005422B1/en
Priority to PCT/KR2008/004984 priority patent/WO2010021422A1/en
Publication of KR20100023383A publication Critical patent/KR20100023383A/en
Application granted granted Critical
Publication of KR101005422B1 publication Critical patent/KR101005422B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/12Use of permeate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

본 발명은 하폐수 처리장치 및 방법에 관한 것으로, 침지형막에 의하여 처리수를 생산하고, 침지형막의 막오염 초기에 자동제어를 통한 약품역세척을 실시하여 고플럭스로 여과하는 초기막오염제어를 이용한 막여과 하폐수 처리장치 및 처리방법을 제공한다. 여기서 자동제어를 통한 약품역세척은 침지형막의 막간차압으로부터 산출한 순간차압변화율을 산정한 후, 산출된 순간차압변화율이 일정하면 약품역세척없이 여과를 계속하고, 산출된 순간차압변화율이 급격히 변화하면 초기 막오염물질을 제거하기 위해 약품역세척하는 방법을 말한다. 본 발명에 따르면 막오염을 초기에 효율적으로 제어하여 여과성능을 향상시키고, 이를 통하여 막사용량 및 막여과에 필요한 부대설비를 1/2로 감소시킬 수 있다.The present invention relates to an apparatus and a method for treating sewage water, wherein the treated water is produced by immersion membranes, and membranes using initial membrane fouling control to filter with high flux by performing chemical backwashing through automatic control at the initial stage of membrane fouling of immersion membranes. Provided is a filtration sewage treatment system and treatment method. Here, the chemical backwash through automatic control calculates the instantaneous differential pressure change rate calculated from the interlayer differential pressure of the immersion membrane, and if the calculated instantaneous differential pressure change rate is constant, the filtration is continued without chemical backwashing, and if the calculated instantaneous differential pressure change rate changes rapidly It is a method of backwashing drugs to remove initial membrane contaminants. According to the present invention, by effectively controlling membrane fouling at an early stage, the filtration performance can be improved, and through this, the amount of membrane used and additional equipment required for membrane filtration can be reduced to 1/2.

막분리, 막오염, 약품역세척, 초기 막오염 제어, 순간차압변화율, 고플럭스 Membrane Separation, Membrane Contamination, Chemical Backwash, Initial Membrane Control, Instantaneous Pressure Change Rate, High Flux

Description

초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치 및 처리방법{Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling}Application and method for high flux membrane wastewater treatment using early stage control of membrane fouling

본 발명은 하폐수 처리장치 및 처리방법에 관한 것으로, 보다 상세하게는 막오염을 초기에 효율적으로 제어하여 여과성능을 향상시킬 수 있는 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치 및 처리방법에 관한 것이다.The present invention relates to a wastewater treatment apparatus and a treatment method, and more particularly, to a high flux membrane filtration wastewater treatment apparatus and treatment method using an initial membrane contamination control that can efficiently control membrane contamination at an early stage to improve filtration performance. It is about.

막여과 활성슬러지 공법은 분리막으로 고액분리를 완벽히 수행하고 생물 반응조 내에 고농도의 미생물을 유지함으로써 안정적인 처리수질을 얻을 수 있고, 생물 반응조의 부피를 현저히 감소시킬 수 있으며 자동운전이 가능한 장점이 있다.Membrane filtration activated sludge method can achieve a stable treated water quality by completely performing solid-liquid separation with a membrane and maintaining a high concentration of microorganisms in a bioreactor, can significantly reduce the volume of the bioreactor and can be operated automatically.

그러나 이러한 다양한 장점에도 불구하고 상용화가 어려운 이유는 분리막사용에 과다한 초기투자비용 및 에너지 비용 그리고 분리막의 오염에 따른 막의 세정 및 교체때문이다. 따라서 분리막사용을 최소화하기 위해 막면적당 생산되는 처리수량(플럭스,ℓ/㎡/h)을 증가시키기 위한 노력을 하고 있으나 플럭스 증가에 따라 막오염 속도가 증가하기 때문에 막여과 활성슬러지법은 적정한 플럭스, 소위 임계플럭스(critical flux)이하에서 운전해야 하는 단점이 있다. PVDF재질의 중공사 막(hollow fiber membrane)을 사용한 대부분 막여과 활성슬러지 공법에서는 안정적인 여과성능을 유지하기 위하여 20ℓ/㎡/h의 플럭스를 채택하고 있다.However, despite these various advantages, the commercialization is difficult due to excessive initial investment and energy costs for membrane use and membrane cleaning and replacement due to contamination of the membrane. Therefore, to minimize the use of membranes, efforts are being made to increase the amount of water produced per membrane area (flux, ℓ / ㎡ / h), but membrane fouling rate increases with increasing flux. There is a disadvantage to operate below the so-called critical flux. Most membrane filtration activated sludge process using hollow fiber membrane of PVDF material adopts flux of 20ℓ / ㎡ / h to maintain stable filtration performance.

임계플럭스 이하로 막여과를 실시하면 분리막의 오염은 서서히 진행되어 여과성능이 안정되게 유지되나 어느 시점에 도달하면 막오염이 급격히 진행되어 여과성능의 급격한 변화를 가져온다. 따라서 이러한 변화를 막기 위해 역세척시 화학약품을 첨가하여 유지세정(maintenance cleaning)을 주기적으로 실시하고 있으나 이를 위해 별도의 약품역세척펌프를 사용하고 있고 이 경우에도 임계플럭스 이상으로 막여과를 실시하지 못하고 있다.When membrane filtration is carried out below the critical flux, contamination of the membrane proceeds slowly and the filtration performance remains stable. However, when a certain point is reached, membrane fouling progresses rapidly, resulting in a drastic change in filtration performance. Therefore, in order to prevent such changes, maintenance cleaning is periodically performed by adding chemicals during backwashing, but for this purpose, a separate chemical backwash pump is used, and in this case, membrane filtration is not performed beyond the critical flux. I can't.

이러한 문제점을 해결하기 위한 방안으로서, 본 발명의 목적은 막오염 진행 초기에 막오염 성분을 효과적으로 제거하여 임계플럭스 이상의 고플럭스 막여과 운전을 하기 위한 것이다.As a solution to this problem, an object of the present invention is to effectively remove membrane fouling components at the early stage of membrane fouling to operate high flux membrane filtration above the critical flux.

본 발명의 다른 목적은 종래보다 막여과 활성슬러지 공법보다 2배 높은 40ℓ/㎡/hr의 고플럭스로 막여과를 하여 막사용량 및 막여과에 필요한 밸브, 흡입펌프, 블로워 등과 같은 부대설비의 사용량을 1/2로 감소시키기 위한 것이다.Another object of the present invention is to filter the membrane using a high flux of 40 l / ㎡ / hr, which is twice as high as the conventional membrane filtration activated sludge method, and the amount of auxiliary equipment such as valve, suction pump, blower, etc. required for membrane filtration. To reduce to half.

이러한 목적들을 달성하기 위하여, 본 발명은 침지형막이 설치된 막여과 활성슬러지장치와, 여과역세척장치를 포함하는 하폐수 처리장치를 제공한다. 상기 여과역세척장치는 처리수 저장탱크, 역세척약품펌프, 자동밸브, 압력계 및 자동제어장치를 포함하여 구성된다. 상기 처리수 저장탱크는 흡입여과시에 상기 침지형막에서 여과된 처리수를 저장한다. 상기 역세척약품펌프는 약품역세척시에 역세척라인으로 역세척약품을 공급한다. 상기 자동밸브는 상기 침지형막과 상기 처리수 저장탱크 사이의 처리수의 흐름 방향을 조절한다. 상기 압력계는 상기 침지형막의 막간차압을 측정한다. 그리고 상기 자동제어장치는 상기 측정된 막간차압을 이용하여 순간차압변화율을 산출하고, 상기 산출된 순간차압변화율이 일정하면, 여과를 계속하고, 상기 산출된 순간차압변화율이 급격히 변화하면, 상기 자동밸브를 제어하여 상기 처리수 저장탱크의 처리수를 상기 침지형막으로 보내되, 상기 처리수에 상기 역세척약품을 혼합하여 상기 침지형막으로 보내는 약품역세척을 실시하게 한다.In order to achieve these objects, the present invention provides a sewage treatment apparatus including a membrane filtration activated sludge device provided with an immersion membrane and a filtration backwash device. The filtration backwashing device includes a treated water storage tank, a backwash chemical pump, an automatic valve, a pressure gauge, and an automatic control device. The treated water storage tank stores the treated water filtered by the immersion membrane during suction filtration. The backwashing chemical pump supplies the backwashing chemical to the backwashing line at the time of chemical backwashing. The automatic valve adjusts the flow direction of the treated water between the immersion membrane and the treated water storage tank. The pressure gauge measures the interlayer differential pressure of the immersion membrane. And the automatic control device calculates the instantaneous differential pressure change rate using the measured intermembrane differential pressure, and if the calculated instantaneous differential pressure change rate is constant, continues filtration, and if the calculated instantaneous differential pressure change rate changes abruptly, the automatic valve The control to send the treated water of the treated water storage tank to the immersion membrane, the backwashing chemicals mixed with the treated water to perform the chemical backwash to send to the immersion membrane.

본 발명은 상기의 고플럭스 막여과 하폐수 처리장치의 하폐수 처리방법을 제공한다. 본 발명에 따른 하폐수 처리방법은 상기 침지형막에 의하여 오염물질을 여과하는 단계와, 상기 침지형막의 막간차압으로부터 산출한 순간차압변화율을 산정하는 단계와, 상기 산출된 순간차압변화율이 일정하면, 여과를 계속하는 단계와, 상기 산출된 순간차압변화율이 급격히 변화하면, 상기 자동밸브를 제어하여 상기 처리수 저장탱크의 처리수를 상기 침지형막으로 보내되, 상기 처리수에 상기 역세척약품을 혼합하여 상기 침지형막으로 주입하고, 막오염 물질을 용해시켜 제거하기 위해 일정 시간동안 정치하는 단계를 포함하여 구성된다.The present invention provides a wastewater treatment method of the high flux membrane filtration sewage treatment apparatus. The wastewater treatment method according to the present invention comprises the steps of: filtering the contaminants by the immersion membrane; calculating the instantaneous differential pressure change rate calculated from the interlayer differential pressure of the immersion membrane; and if the calculated instantaneous differential pressure change rate is constant, filtering is performed. The step of continuing, and if the calculated instantaneous differential pressure change rate is suddenly changed, by controlling the automatic valve to send the treated water of the treated water storage tank to the immersion membrane, by mixing the backwash chemical to the treated water And implanting into the immersion membrane and allowing it to settle for a period of time to dissolve and remove the membrane fouling material.

본 발명의 초기막오염동제어를 이용한 고플럭스 막여과 하폐수처리방법은 초기에 막오염 성분을 제거하여 고플럭스 막여과를 실시할 수 있으므로 막사용량 및 막여과에 필요한 압력계, 흡입펌프, 블로워, 밸브 등의 사용량을 1/2로 감소시킨다.The high flux membrane filtration sewage water treatment method using the initial membrane fouling control of the present invention can remove the membrane fouling component at an early stage and thus perform the high flux membrane filtration, thus requiring a pressure gauge, a suction pump, a blower, a valve required for membrane use and membrane filtration. Reduce the usage of the back to 1/2.

또한, 여과시 흡입하는 여과펌프와 약품역세척시 역세척용액을 공급하는 역세척펌프를 별도로 설치하지 않고 동일한 펌프를 사용하므로 설치 및 유지관리가 용이하고 경제적이다.In addition, it is easy and economical to install and maintain because the same pump is used without separately installing a filtration pump that sucks during filtration and a backwashing pump that supplies a backwashing solution for chemical backwashing.

이하, 본 발명을 첨부된 도면에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail by the accompanying drawings.

도 1은 본 발명의 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장 치의 개략적인 구성을 나타낸 도면으로, 본 발명의 하폐수 처리장치는 침지형 막분리 활성슬러지장치(100)와 여과역세척장치(200)를 포함하여 구성된다.1 is a view showing a schematic configuration of a high flux membrane filtration sewage treatment apparatus using the initial membrane fouling control of the present invention, the sewage treatment apparatus of the present invention is an immersion type membrane separation activated sludge apparatus 100 and filtration backwash apparatus 200 It is configured to include).

침지형 막여과 활성슬러지장치(100)는 혐기조(111), 무산소조(112) 및 막분리 호기조(113)를 구비하고 있다. 혐기조(111)로 유입된 원수는 무산소조(112)를 지나 막분리 호기조(113)로 유입된다. 또한 막분리 호기조(113)내 슬러지는 제1슬러지 반송장치(130)에 의해 무산소조(112)로 반송되고, 무산소조(112) 내 슬러지는 제2슬러지 반송장치(140)에 의해 혐기조(111)로 반송된다.The submerged membrane filtration activated sludge device 100 is provided with an anaerobic tank 111, an anaerobic tank 112, and a membrane separation aeration tank 113. Raw water introduced into the anaerobic tank 111 is introduced into the membrane separation aeration tank 113 through the anaerobic tank 112. In addition, the sludge in the membrane separation aeration tank 113 is conveyed to the anaerobic tank 112 by the first sludge conveying apparatus 130, and the sludge in the anoxic tank 112 is transferred to the anaerobic tank 111 by the second sludge conveying apparatus 140. Is returned.

여기서 혐기조(111)에서는 미생물에서 인 성분이 방출된다. 무산소조(112)에서는 질산성질소가 질소가스로 환원되어 질소가 제거된다. 그리고 막분리 호기조(113)에서는 유입수 중 암모니아성 질소가 질산성질소로 산화되고, 유입수 중 인 성분이 미생물에 의해 과잉섭취되고, 유입수 중 유기물 성분이 미생물에 의해 산화되어 제거된다. 막분리 호기조(113)에서 미생물에 의해 과잉섭취된 인 성분은 슬러지 배출펌프(150)에 의해 배출된 슬러지 내 미생물에 포함되어 제거된다.In the anaerobic tank 111, the phosphorus component is released from the microorganism. In the oxygen-free tank 112, nitrate nitrogen is reduced to nitrogen gas to remove nitrogen. In the membrane separation aeration tank 113, ammonia nitrogen in the influent is oxidized to nitrate nitrogen, phosphorus components in the influent are excessively ingested by the microorganism, and organic components in the influent are oxidized and removed by the microorganism. Phosphorus component excessively ingested by the microorganisms in the membrane separation aeration tank 113 is included in and removed from the microorganisms in the sludge discharged by the sludge discharge pump 150.

막분리 호기조(113) 외측 하부에는 슬러지를 간헐적으로 배출하는 슬러지 배출펌프(150)가 설치되어 있다. 막분리 호기조(113)의 내부에는 여과운전시 고형물을 걸러주는 침지형막(114)이 설치되어 있다. 또한 여과운전에 의해 걸러진 고형물이 침지형막(114)에 부착되는 것을 방지하기 위해 침지형막(114) 하부에 제1산기장치(115)가 설치되어 있다. 막분리 호기조(113) 내 미생물 생장에 필요한 산소를 공급하기 위해 제2산기장치(116)가 설치되어 있다. 제1산기장치(115) 및 제2산기장치(116)에 공기를 공급하도록 막분리 호기조(113)의 외부에는 공기공급장치(120)가 설치되어 있다.The sludge discharge pump 150 for intermittently discharging the sludge is installed at the outer lower portion of the membrane separation exhalation tank 113. Inside the membrane separation aeration tank 113, an immersion type membrane 114 for filtering solids during filtration operation is installed. In addition, in order to prevent the solids filtered out by the filtration operation from being attached to the immersion membrane 114, the first diffuser device 115 is installed below the immersion membrane 114. In order to supply oxygen necessary for microbial growth in the membrane separation aeration tank 113, a second acid generator 116 is installed. An air supply device 120 is installed outside the membrane separation exhalation tank 113 to supply air to the first and second air dispersing devices 115 and 116.

여과역세척장치(200)는 여과역세척펌프(430), 압력계(260) 및 자동제어장치(250)를 포함하여 구성된다. 그리고 여과와 약품역세척 방향을 조절하는 자동밸브(210, 220, 230, 240), 처리수 저장탱크(310) 및 역세척약품펌프(420)가 있고, 역세척약품은 역세척약품 탱크(410)에 저장되어 있다.The filtration backwash device 200 includes a filtration backwash pump 430, a pressure gauge 260, and an automatic control device 250. And there is an automatic valve (210, 220, 230, 240), the treated water storage tank 310 and the backwash chemical pump 420, which controls the filtration and chemical backwash direction, the backwash chemical tank backwash chemical tank (410) )

여과역세척펌프(430)는 침지형막(114)의 여과운전시에는 처리수를 흡입하여 처리수 저장탱크(310)로 보내고, 약품역세척시에는 처리수 저장탱크(310)의 처리수를 침지형막(114)으로 주입한다. 종래의 막여과 활성슬러지법에서는 여과시 흡입하는 여과펌프와 역세척시의 약품역세척펌프를 별도로 설치하였으나, 본 발명에서는 여과역세척 펌프(430)를 여과와 약품역세척에 함께 사용한다.The filtration backwash pump 430 sucks the treated water during the filtration operation of the immersion membrane 114 and sends the treated water to the treated water storage tank 310. During the chemical backwash, the filtered backwash pump 430 immerses the treated water in the treated water storage tank 310. Injection into the membrane 114. In the conventional membrane filtration activated sludge method, a filtration pump suctioned during filtration and a chemical backwash pump for backwashing are separately installed, but in the present invention, the filtration backwash pump 430 is used together for filtration and chemical backwashing.

압력계(260)는 분리막의 막간차압을 측정하고, 자동제어장치(250)는 압력계(260)에서 측정한 막간차압을 전송받아 순간차압변화율을 산정하고 여과시와 약품역세척시에 역세척약품펌프(420) 및 자동밸브(210, 220, 230, 240)의 운전 및 개폐를 제어하는 기능을 수행한다. 자동밸브(210, 220, 230, 240)는 4개로 구성되어 있다. 제1자동밸브(210)는 여과시 처리수가 여과역세척 펌프(430)로 이송되도록 흐름을 제어한다. 제2자동밸브(220)는 여과시 여과역세척 펌프(430)를 지나 처리수 저장탱크(310)로 이송되도록 흐름을 제어한다. 제3자동밸브(230)는 약품역세척시 처리수 저장탱크(310)에 저장된 처리수가 여과역세척 펌프(430)로 이송되도록 흐름을 제어한다. 그리고 제4자동밸브(240)는 약품역세척시 처리수 저장탱크(310)에 저장된 처리수가 여과역세척 펌프(430)를 지나 침지형막(114)으로 공급되도록 흐름을 제어한다.The pressure gauge 260 measures the interlayer differential pressure of the membrane, and the automatic control unit 250 receives the interlayer differential pressure measured by the pressure gauge 260 to calculate the instantaneous differential pressure change rate and backwash the chemical pump at the time of filtration and at the backwash of the chemical. 420 and the function of controlling the operation and opening and closing of the automatic valve (210, 220, 230, 240). Automatic valve 210, 220, 230, 240 is composed of four. The first automatic valve 210 controls the flow to transfer the treated water to the filtration backwash pump 430 during filtration. The second automatic valve 220 controls the flow to be transferred to the treated water storage tank 310 through the filtration backwash pump 430 during filtration. The third automatic valve 230 controls the flow so that the treated water stored in the treated water storage tank 310 is transferred to the filtered backwash pump 430 during chemical backwashing. In addition, the fourth automatic valve 240 controls the flow such that the treated water stored in the treated water storage tank 310 is supplied to the immersion membrane 114 through the filtered backwash pump 430 during the chemical backwash.

이하에서는 도 2 내지 도 4를 참조하여 본 발명에 따른 초기막오염 제어를 이용한 막여과 하폐수 처리방법을 설명한다.Hereinafter, the membrane filtration sewage treatment method using the initial membrane contamination control according to the present invention will be described with reference to FIGS.

먼저 침지형막(114)에 의하여 처리수를 생산하는 여과 단계(S11)를 거친다. 즉 도 2는 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치의 여과 단계를 나타낸 것으로, 제1자동밸브(210) 및 제2자동밸브(220)가 열리고, 제3자동밸브(230) 및 제4자동밸브(240)가 닫힘으로써 여과라인(300)을 형성한다.First, the immersion membrane 114 undergoes a filtration step (S11) of producing treated water. That is, Figure 2 shows the filtration step of the high flux membrane filtration sewage treatment apparatus using the initial membrane fouling control, the first automatic valve 210 and the second automatic valve 220 is opened, the third automatic valve 230 and The fourth automatic valve 240 is closed to form the filtration line 300.

침지형 막여과 활성슬러지장치(100)의 혐기조(111)로 유입된 원수는 무산소조(112)를 지나고 막분리 호기조(113)로 유입된다. 막분리 호기조(113) 내 슬러지는 제1슬러지 반송장치(130)에 의해 무산소조(112)로 반송되고, 무산소조(112) 내 슬러지는 제2슬러지 반송장치(140)에 의해 혐기조(111)로 반송된다.Raw water introduced into the anaerobic tank 111 of the submerged membrane filtration activated sludge device 100 passes through the anaerobic tank 112 and flows into the membrane separation aeration tank 113. The sludge in the membrane separation aeration tank 113 is conveyed to the anaerobic tank 112 by the first sludge conveying apparatus 130, and the sludge in the anoxic tank 112 is conveyed to the anaerobic tank 111 by the second sludge conveying apparatus 140. do.

또한 막분리 호기조(113) 내의 고형물은 여과시 침지형막(114)의 표면에서 걸러지고, 정화된 처리수만 분리막 내로 유입되게 된다. 이 때 상기 침지형막(114)의 표면에 붙은 고형물은 공기공급장치(120)로부터 공급된 공기가 침지형막(114) 하부에 설치된 제1산기장치(115)를 통해 공기방울 형태로 상승하면서 털어줌으로써 제거된다.In addition, the solids in the membrane separation aeration tank 113 are filtered from the surface of the immersion membrane 114 during filtration, and only purified water is introduced into the separation membrane. At this time, the solid material adhered to the surface of the immersion membrane 114 is shaken while the air supplied from the air supply device 120 rises in the form of air bubbles through the first diffuser device 115 installed below the immersion membrane 114. Removed.

다음으로, 침지형막(114)의 막간차압으로부터 산출한 순간차압변화율을 산정한다(S12).Next, the instantaneous differential pressure change rate calculated from the interlayer differential pressure of the immersion type film 114 is calculated (S12).

S12단계의 산정결과 순간차압변화율이 일정하면, 여과단계인 S11단계를 계속해서 수행한다.As a result of the calculation of step S12, if the rate of change of the instantaneous differential pressure is constant, step S11, which is a filtration step, is continuously performed.

반면, S12단계의 비교결과 막간차압으로부터 산출한 순간차압변화율이 급격히 변화하면 침지형막(114)을 약품역세척한다(S14). 여기서 약품역세척은 자동제어장치(250)가 압력계(260)에서 감지되는 막간차압을 전송받아 순간차압변화율(ΔP/ΔT), 즉 막오염 속도를 산출하여 각 자동밸브(210, 220, 230, 240)의 개폐를 제어함으로써 여과운전의 역방향으로 처리수와 역세척약품이 혼합된 역세척용액을 침지형막(114)으로 보내는 것으로 실시된다.On the other hand, if the instantaneous differential pressure change rate calculated from the interlayer differential pressure as a result of the comparison of step S12, the immersion membrane 114 is backwashed with the chemical (S14). Here, the chemical backwashing is performed by the automatic control device 250 receiving the interlayer differential pressure sensed by the pressure gauge 260 to calculate the instantaneous differential pressure change rate (ΔP / ΔT), that is, the membrane fouling rate, and thus, each automatic valve 210, 220, 230, By controlling the opening and closing of 240, the backwashing solution in which the treated water and the backwashing chemical are mixed is sent to the immersion membrane 114 in the reverse direction of the filtration operation.

도 3은 본 발명의 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치의 약품역세척 단계를 나타낸 것으로, 제1자동밸브(210) 및 제2자동밸브(220)는 닫히고, 제3자동밸브(230) 및 제4자동밸브(240)가 열림으로써 역세척 라인(400)을 형성한다.Figure 3 shows the chemical backwashing step of the high flux membrane filtration sewage treatment apparatus using the initial membrane fouling control of the present invention, the first automatic valve 210 and the second automatic valve 220 is closed, the third automatic valve 230 and the fourth automatic valve 240 is opened to form a back washing line 400.

여과역세척 펌프(430)에 의해 처리수 저장탱크(310)의 처리수가 역세척 라인(400)으로 공급되고, 이는 소정의 위치에서 역세척약품펌프(420)를 통해 주입되는 역세척약품과 혼합된다. 이렇게 혼합된 역세척용액을 일정시간 침지형막(114)으로 주입하여 역세척함으로써 분리막 표면 또는 내부에 부착된 가역적인 막오염 물질을 떼어낸다. 역세척 후에는 자동제어장치(250)의 신호에 의해 모든 자동밸브(210, 220, 230, 240)가 닫히고, 여과역세척 펌프(430)도 운전이 중지되어 침지형막(114) 내부에 역세척용액이 채워진 상태로 일정시간 정치된다. 이는 비가역적인 막오염 물질을 역세척용액의 화학작용으로 용해시켜 제거하기 위한 것이다.The filtered water of the treated water storage tank 310 is supplied to the backwashing line 400 by the filtration backwash pump 430, which is mixed with the backwashing chemical injected through the backwashing chemical pump 420 at a predetermined position. do. The mixed backwashing solution is injected into the submerged membrane 114 for a predetermined time and backwashed to remove the reversible membrane fouling material attached to the surface or inside of the separator. After backwashing, all automatic valves 210, 220, 230, and 240 are closed by the signal of the automatic control device 250, and the filtration backwash pump 430 is also stopped and backwashed in the immersion membrane 114. It is allowed to stand for a while with the solution filled. This is to remove and remove irreversible membrane contaminants by chemical action of backwash solution.

이러한 약품역세척을 함으로써 종래의 화학세정보다 저농도의 약품으로 단시간 내에 막오염 성분을 제거하게 되고, 고플럭스(40ℓ/㎡/hr)에서도 안정적인 막여 과 운전이 지속될 수 있다.By backwashing such chemicals, membrane fouling components can be removed within a short time with chemicals of low concentration than conventional chemical cleaning information, and stable membrane filtration operation can be continued even at high flux (40 L / m 2 / hr).

역세척약품으로는 침지형막(114)의 세정에 유효한 것이라면 어떠한 약품을 사용하여도 무방하다. 바람직하게는 차아염소산나트륨(NaOCl)을 사용하는 것이다. 이는 경제적이면서도 막여과 활성슬러지법에서의 침지형막(114)의 세정에 효율적인 것으로 알려져 있기 때문이다.As the backwash chemical, any chemical may be used as long as it is effective for cleaning the immersion membrane 114. Preferably, sodium hypochlorite (NaOCl) is used. This is because it is known to be economical and effective for cleaning the immersion type membrane 114 in the membrane filtration activated sludge method.

상기 일련의 약품역세척이 종료되면 침지형막(114)의 여과성능이 회복되고, 다시 상기 여과운전이 재개된다(S11). When the series of chemical backwash is finished, the filtration performance of the immersion membrane 114 is restored, and the filtration operation is resumed (S11).

약품역세척시 처리수량은 침지형막(114)의 형태 및 크기에 따라 다른데, 막 모듈당 10~40 L를 사용하고, 처리수와 역세척약품이 혼합된 역세척용액은 차아염소산나트륨으로 0.01 ~ 0.06 %의 농도로 실시한다. 상기 역세척용액의 농도가 0.01 % 미만이면 세정 효과가 떨어지고, 0.06 % 초과이면 역세척용액의 사용량의 증가로 인해 경제적 부담이 커지는 문제점이 있다.The amount of water treated during chemical backwashing varies depending on the shape and size of the immersion membrane 114, and 10-40 L per membrane module is used, and the backwashing solution mixed with the treated water and backwashing chemical is sodium hypochlorite 0.01 ~. Conduct at a concentration of 0.06%. If the concentration of the backwashing solution is less than 0.01%, the cleaning effect is lowered. If the concentration of the backwashing solution is more than 0.06%, the economic burden is increased due to the increase in the amount of the backwashing solution.

약품역세척시, 역세척용액 주입시간은 2~5분, 역세척플럭스는 여과시와 동일한 40ℓ/㎡/hr으로 하고, 정치시간은 30~60분으로 하는데, 시간은 작업 상황 등에 따라 조정 가능하다.In case of chemical backwashing, the backwashing solution injection time is 2 ~ 5 minutes, the backwashing flux is the same 40ℓ / ㎡ / hr as the filtration time, and the settling time is 30 ~ 60 minutes. Do.

본 명세서에 기재된 실시예와 도면에 의해 본 발명은 한정되지 않으며, 본 발명이 속하는 기술 분야에서 당업자에 의해 다양한 변경이 가능할 것이다.The present invention is not limited by the embodiments and drawings described herein, and various modifications may be made by those skilled in the art to which the present invention pertains.

본 발명은 막오염 초기에 약품역세척으로 막을 처음상태로 되돌림으로써, 여과효율이 향상되어 40ℓ/㎡/hr 이상의 높은 플럭스로 운전이 가능하게 한다.In the present invention, the membrane is returned to the initial state by chemical backwashing at the beginning of membrane fouling, so that the filtration efficiency is improved to allow operation at a high flux of 40 l / m 2 / hr or more.

또한, 여과역세척 펌프를 여과와 약품역세척에 함께 사용할 수 있고, 역세척 라인 내에서 역세척약품과 처리수를 혼합함으로써 별도의 역세척용액 탱크를 설치할 필요가 없으므로 장치의 경제성을 향상시킬 수 있다.In addition, the filtration backwash pump can be used for both filtration and chemical backwash, and the backwashing agent and the treated water can be mixed in the backwash line, thereby eliminating the need for a separate backwash solution tank to improve the economics of the apparatus. have.

도 1은 본 발명의 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치의 개략적인 구성을 나타낸 도면1 is a view showing a schematic configuration of a high flux membrane filtration sewage treatment apparatus using the initial membrane fouling control of the present invention

도 2는 본 발명의 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치의 여과단계를 나타낸 도면Figure 2 is a view showing the filtration step of the high flux membrane filtration sewage treatment apparatus using the initial membrane fouling control of the present invention

도 3은 본 발명의 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치의 약품역세척 단계를 나타낸 도면Figure 3 is a diagram showing the chemical backwashing step of the high flux membrane filtration sewage treatment apparatus using the initial membrane fouling control of the present invention

도 4는 본 발명의 실시예에 따른 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리방법을 보여주는 흐름도Figure 4 is a flow chart showing a high flux membrane filtration sewage treatment method using the initial membrane fouling control according to an embodiment of the present invention

** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **

100 : 활성슬러지장치 110 : 교반기100: activated sludge device 110: agitator

111 : 혐기조 112 : 무산소조111: anaerobic tank 112: anaerobic tank

113 : 막분리 호기조 114 : 침지형막113: membrane separation aerobic tank 114: immersion membrane

115 : 제1산기장치 116 : 제2산기장치115: first mountain device 116: second mountain device

120 : 공기공급장치 130 : 제1슬러지 반송장치120: air supply device 130: first sludge conveying device

140 : 제2슬러지 반송장치 150 : 슬러지 배출펌프140: second sludge conveying device 150: sludge discharge pump

200 : 여과역세척장치 210 : 제1자동밸브200: filtration backwash device 210: first automatic valve

220 : 제2자동밸브 230 : 제3자동밸브220: second automatic valve 230: third automatic valve

240 : 제4자동밸브 250 : 자동제어장치240: fourth automatic valve 250: automatic control device

260 : 압력계 300 : 여과라인260: pressure gauge 300: filtration line

310 : 처리수 저장탱크 400 : 역세척 라인310: treated water storage tank 400: backwash line

410 : 역세척약품 탱크 420 : 역세척약품펌프410: backwash chemical tank 420: backwash chemical pump

430 : 여과역세척 펌프430: filtration backwash pump

Claims (5)

침지형막이 설치된 막여과 활성슬러지장치와, 여과역세척장치를 포함하는 하폐수 처리장치에 있어서,In the sewage treatment apparatus comprising a membrane filtration activated sludge device with an immersion membrane and a filtration backwash device, 상기 여과역세척장치는,The filtration backwash device, 흡입여과시에 상기 침지형막에서 여과된 처리수가 저장되는 처리수 저장탱크와;A treated water storage tank storing the treated water filtered by the immersion membrane during suction filtration; 약품역세척시에 역세척라인으로 역세척약품을 공급하는 역세척약품펌프와;A backwashing chemical pump for supplying backwashing chemicals to the backwashing line at the time of chemical backwashing; 상기 침지형막과 상기 처리수 저장탱크 사이의 처리수의 흐름 방향을 조절하는 자동밸브와;An automatic valve controlling a flow direction of the treated water between the immersion membrane and the treated water storage tank; 상기 침지형막의 막간차압을 측정하는 압력계와;A pressure gauge for measuring the interlayer differential pressure of the immersion membrane; 상기 측정된 막간차압을 이용하여 순간차압변화율을 산출하고, 상기 산출된 순간차압변화율이 일정하면, 여과를 계속하고, 상기 산출된 순간차압변화율이 급격히 변화하면, 상기 자동밸브를 제어하여 상기 처리수 저장탱크의 처리수를 상기 침지형막으로 보내되, 상기 처리수에 상기 역세척약품을 혼합하여 상기 침지형막으로 보내는 약품역세척을 실시하게 하는 자동제어장치;를 포함하며, The instantaneous differential pressure change rate is calculated using the measured interlayer differential pressure. If the calculated instantaneous differential pressure change rate is constant, the filtration is continued. If the calculated instantaneous differential pressure change rate is rapidly changed, the automatic valve is controlled to control the treated water. And an automatic control device for sending the treated water from the storage tank to the immersion membrane, and mixing the backwashing chemical with the treated water to perform the reverse chemical washing to the immersion membrane. 상기 침지형막이 PVDF재질의 중공사막(hollow fiber membrane)일 경우 고플럭스(40ℓ/㎡/h)로 여과하는 것을 특징으로 하는 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치. When the immersion type membrane is a hollow fiber membrane of PVDF material, high flux membrane filtration sewage and wastewater treatment apparatus using an initial membrane contamination control, characterized in that the filtration with high flux (40ℓ / ㎡ / h). 제1항에 있어서,The method of claim 1, 처리수와 역세척약품이 혼합된 역세척용액의 차아염소산나트륨(NaOCl)의 농도는 0.01 ~ 0.06 % 인 것을 특징으로 하는 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치.A high flux membrane filtration sewage water treatment system using initial membrane fouling control, characterized in that the concentration of sodium hypochlorite (NaOCl) in the backwashing solution mixed with the treated water and the backwashing chemical is 0.01 to 0.06%. 삭제delete 제1 또는 제2항에 따른 막여과 하폐수 처리장치의 하폐수 처리방법에 있어서,In the wastewater treatment method of the membrane filtration sewage treatment apparatus according to claim 1, 상기 침지형막에 의하여 오염물질을 여과하는 단계;Filtering contaminants by the immersion membrane; 상기 침지형막의 막간차압으로부터 산출한 순간차압변화율을 산정하는 단계;Calculating an instantaneous differential pressure change rate calculated from the interlayer differential pressure of the immersion type film; 상기 산출된 순간차압변화율이 일정하면, 여과를 계속하는 단계;If the calculated instantaneous differential pressure change rate is constant, continuing filtration; 상기 산출된 순간차압변화율이 급격히 변화하면, 상기 자동밸브를 제어하여 상기 처리수 저장탱크의 처리수를 상기 침지형막으로 보내되, 상기 처리수에 상기 역세척약품을 혼합하여 상기 침지형막으로 주입하고, 막오염 물질을 용해시켜 제거하기 위해 일정 시간동안 정치하는 단계;를 포함하며,When the calculated instantaneous differential pressure change rate changes rapidly, the automatic valve is controlled to send the treated water from the treated water storage tank to the immersion membrane, and the backwashing chemical is mixed with the treated water to inject the immersion membrane. It includes a step of standing for a predetermined time to dissolve and remove the membrane contaminant, 상기 침지형막이 PVDF재질의 중공사막(hollow fiber membrane)일 경우 고플럭스(40ℓ/㎡/h)로 여과하는 것을 특징으로 하는 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리방법.When the immersion membrane is a hollow fiber membrane of PVDF material, high flux membrane filtration sewage water treatment method using the initial membrane fouling control, characterized in that the filtration with high flux (40ℓ / ㎡ / h). 제4항에 있어서,The method of claim 4, wherein 상기 약품역세척하는 단계는, 상기 처리수에 상기 역세척약품을 혼합하여 상기 침지형막으로 2~5분간 여과시와 같은 고플럭스로 침지형막에 주입하고, 막오염 물질을 용해시켜 제거하기 위해 30~60분 동안 정치하는 단계를 포함하는 것을 특징으로 하는 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리방법.The chemical backwashing step may be performed by mixing the backwashing chemical with the treated water and injecting the submerged membrane with high flux as in the case of filtration with the submerged membrane for 2 to 5 minutes, and dissolving and removing the membrane contaminant. High flux membrane filtration sewage treatment method using the initial membrane fouling control, characterized in that it comprises a step of standing for ~ 60 minutes.
KR20080082110A 2008-08-21 2008-08-21 Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling KR101005422B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20080082110A KR101005422B1 (en) 2008-08-21 2008-08-21 Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling
PCT/KR2008/004984 WO2010021422A1 (en) 2008-08-21 2008-08-26 Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080082110A KR101005422B1 (en) 2008-08-21 2008-08-21 Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling

Publications (2)

Publication Number Publication Date
KR20100023383A KR20100023383A (en) 2010-03-04
KR101005422B1 true KR101005422B1 (en) 2010-12-30

Family

ID=41707290

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080082110A KR101005422B1 (en) 2008-08-21 2008-08-21 Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling

Country Status (2)

Country Link
KR (1) KR101005422B1 (en)
WO (1) WO2010021422A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180034839A (en) * 2016-09-28 2018-04-05 롯데케미칼 주식회사 Method for predicting fouling
KR20230114425A (en) 2022-01-25 2023-08-01 주식회사 에이블박스 Purifying method of Non-biodegradable Organic Wastewater based on High speed Biological and physiochemical apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273547B1 (en) * 2012-02-27 2013-06-17 최민화 High oxidation economy filter system
CN106361566A (en) * 2016-08-22 2017-02-01 周丽丽 Medicament supply body and medicament supply apparatus
US20200339444A1 (en) * 2018-02-27 2020-10-29 Mitsubishi Electric Corporation Aeration amount control system and aeration amount control method
CN109179869A (en) * 2018-09-19 2019-01-11 梁善武 The sewage treatment process and autocontrol operation method of no additional carbon removal total nitrogen
KR102334017B1 (en) * 2020-02-27 2021-12-01 세종대학교산학협력단 Operation method of bioreactor and water treatment system for controlling contamination of membrane in bioreactor
KR20230031072A (en) * 2021-08-26 2023-03-07 삼성전자주식회사 Air conditioner and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647988A (en) * 1994-05-30 1997-07-15 Kubota Corporation Method of back-washing submerged-type ceramic membrane separation apparatus
JPH11319516A (en) 1998-05-21 1999-11-24 Nkk Corp Water filtration apparatus and method for operating the same
KR100540986B1 (en) * 2003-12-02 2006-01-10 주식회사 한화건설 Wastewater treatment system by means of membrane bio-reactor
EP1647530A1 (en) 2004-10-14 2006-04-19 ITT Manufacturing Enterprises, Inc. Energy-efficient biological treatment with membrane filtration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647988A (en) * 1994-05-30 1997-07-15 Kubota Corporation Method of back-washing submerged-type ceramic membrane separation apparatus
JPH11319516A (en) 1998-05-21 1999-11-24 Nkk Corp Water filtration apparatus and method for operating the same
KR100540986B1 (en) * 2003-12-02 2006-01-10 주식회사 한화건설 Wastewater treatment system by means of membrane bio-reactor
EP1647530A1 (en) 2004-10-14 2006-04-19 ITT Manufacturing Enterprises, Inc. Energy-efficient biological treatment with membrane filtration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180034839A (en) * 2016-09-28 2018-04-05 롯데케미칼 주식회사 Method for predicting fouling
KR101872109B1 (en) 2016-09-28 2018-06-27 롯데케미칼 주식회사 Method for predicting fouling
KR20230114425A (en) 2022-01-25 2023-08-01 주식회사 에이블박스 Purifying method of Non-biodegradable Organic Wastewater based on High speed Biological and physiochemical apparatus

Also Published As

Publication number Publication date
WO2010021422A1 (en) 2010-02-25
KR20100023383A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
KR101005422B1 (en) Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling
KR100649261B1 (en) External-submersed membrane bioreactor with minimized air scrubbing of membrane module
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
WO2001008789A2 (en) Maintenance cleaning for membranes
US20150034552A1 (en) Water Treatment System and Method for Removal of Contaminants Using Biological Systems
CN101573298B (en) Wastewater treatment system and method of wastewater treatment
CN1907883B (en) Method for treatment of organic drainage
JPWO2017033478A1 (en) Water treatment method and water treatment apparatus
CN111032578A (en) Water treatment membrane cleaning device and cleaning method
JP2006021066A (en) Washing method for immersion type membrane module and washing apparatus
CN110709153B (en) Cleaning device and cleaning method for water treatment membrane and water treatment system
JP2014008439A (en) Membrane separation type water treatment apparatus and method for cleaning water treatment separation membrane
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JP2007229623A (en) Method for regenerating organic sewage
JP5366364B2 (en) Membrane separation activated sludge treatment equipment
JP2005144290A (en) Method for controlling mlss
JP2016123920A (en) Wastewater treatment apparatus and method
KR101499539B1 (en) Hybrid type membrane cleaning system
WO2000027510A1 (en) Method for filtration with membrane
JPH05285490A (en) Method for highly treating organic waste water
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
US20110210065A1 (en) Device and Method for Treating Water Involving a Filtration Through At Least One Submerged Membrane
WO2023106000A1 (en) Organic waste water treatment device and operation method for organic waste water treatment device
KR101085872B1 (en) Wastewater treatment system using a membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131216

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141208

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151223

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190124

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191223

Year of fee payment: 10