JP2013248566A - Membrane separation activated sludge process and reforming method of activated sludge - Google Patents

Membrane separation activated sludge process and reforming method of activated sludge Download PDF

Info

Publication number
JP2013248566A
JP2013248566A JP2012124881A JP2012124881A JP2013248566A JP 2013248566 A JP2013248566 A JP 2013248566A JP 2012124881 A JP2012124881 A JP 2012124881A JP 2012124881 A JP2012124881 A JP 2012124881A JP 2013248566 A JP2013248566 A JP 2013248566A
Authority
JP
Japan
Prior art keywords
activated sludge
aeration tank
treatment
membrane
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012124881A
Other languages
Japanese (ja)
Inventor
Kazuaki Shibuya
和亮 渋谷
Norio Yamaguchi
典生 山口
Takashi Sakakibara
隆司 榊原
Hironori Kito
佑典 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012124881A priority Critical patent/JP2013248566A/en
Publication of JP2013248566A publication Critical patent/JP2013248566A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new membrane separation activated sludge process capable of efficient treatment while reducing a treatment cost, and to provide a reforming method of activated sludge.SOLUTION: A membrane separation activated sludge method includes: an activated sludge treatment of organic wastewater while maintaining DO to 10 mg/L or more in an aeration tank; and a membrane filtration treatment of the organic wastewater that has been subjected to the activated sludge treatment. A method for reforming activated sludge to separate the organic wastewater that has been subjected to the activated sludge treatment into solid and liquid by the membrane filtration treatment includes an activated sludge treatment of the organic wastewater while maintaining DO to 10 mg/L or more in the aeration tank.

Description

本発明は、膜分離活性汚泥法、及び活性汚泥の改質方法に関する。   The present invention relates to a membrane separation activated sludge method and a method for reforming activated sludge.

有機排水等の汚水を浄化する方法として、例えば、活性汚泥処理した後、膜を用いて固液分離する膜分離活性汚泥法(例えば、特許文献1)や、活性汚泥処理した後、自然沈降することによって固液分離する標準活性汚泥法といった活性汚泥法等がある。中でも、膜分離活性汚泥法は、標準活性汚泥法と比較して活性汚泥処理時のMLSS濃度を高く維持できることから容積負荷を上げることができる。その結果、活性汚泥処理を行う槽の大きさを小さくすることができ、建設費用等のイニシャルコストを低減することができるというメリットがある。また、膜分離活性汚泥法は、標準活性汚泥法と比較して、活性汚泥処理後の固液分離時に流出される活性汚泥が少ないことから、運用管理面において簡便であるというメリットもある。   As a method for purifying sewage such as organic wastewater, for example, activated sludge treatment is performed, and then a membrane separation activated sludge method (for example, Patent Document 1) in which solid-liquid separation is performed using a membrane, or activated sludge treatment is performed, followed by natural sedimentation There is an activated sludge method such as a standard activated sludge method for solid-liquid separation. Among these, the membrane separation activated sludge method can increase the volume load because it can maintain the MLSS concentration at the time of activated sludge treatment higher than the standard activated sludge method. As a result, there is an advantage that the size of the tank for performing the activated sludge treatment can be reduced, and initial costs such as construction costs can be reduced. In addition, the membrane separation activated sludge method also has an advantage that it is simple in terms of operation management because less activated sludge flows out during solid-liquid separation after the activated sludge treatment compared to the standard activated sludge method.

一方、膜分離活性汚泥法は、固液分離に濾過膜を用いることから、濾過膜設置のためのイニシャルコストや濾過膜の維持管理が必要となり、標準活性汚泥法と比較して汚水処理に要するランニングコストが高くなる。このため、例えば、膜面積当たりの透過水量を向上させ、設置する膜面積を削減することによって上記のコストを削減すること等が提案されている。透過水量を向上させる方法としては、例えば、活性汚泥処理した後、MLSS濃度を低下させたうえで膜濾過処理を行う方法(例えば、特許文献2)や、濾過膜が配置された活性汚泥処理槽を2つの槽に分割し、一方の槽のMLSS濃度を他方のそれより低く設定することによって、膜濾過性能を向上させる方法(例えば、特許文献3)等がある。その他の方法としては、例えば、分離膜の洗浄効率を向上させることによって膜濾過の目詰まりを防止し、それにより透過水量を向上させる方法(例えば、特許文献4)や、凝集剤を用いることによって透過水量を向上させる方法(例えば、特許文献5及び6)等がある。   On the other hand, since the membrane separation activated sludge method uses a filtration membrane for solid-liquid separation, initial cost for installing the filtration membrane and maintenance of the filtration membrane are required, which is required for sewage treatment compared with the standard activated sludge method. Running costs are high. For this reason, for example, it has been proposed to reduce the above-mentioned cost by improving the amount of permeated water per membrane area and reducing the membrane area to be installed. As a method of improving the amount of permeated water, for example, a method of performing membrane filtration treatment after reducing the MLSS concentration after activated sludge treatment (for example, Patent Document 2), or an activated sludge treatment tank in which a filtration membrane is disposed. Is divided into two tanks, and the MLSS concentration of one tank is set lower than that of the other, thereby improving the membrane filtration performance (for example, Patent Document 3). Other methods include, for example, a method of preventing clogging of membrane filtration by improving the cleaning efficiency of the separation membrane, thereby improving the amount of permeated water (for example, Patent Document 4), or by using a flocculant. There are methods for improving the amount of permeated water (for example, Patent Documents 5 and 6).

特開2008−188548号公報JP 2008-188548 A 特開2005−246310号公報JP 2005-246310 A 特開2006−235099号公報JP 2006-235099 A 特開2004−230222号公報JP 2004-230222 A 特開2010−125366号公報JP 2010-125366 A 特開2009−297688号公報JP 2009-297688 A

しかしながら、特許文献2の方法のように、MLSS濃度を低下させて膜濾過処理を行った場合、透過水量は向上するものの、十分な処理能力が得られないという問題がある。特許文献3の方法の場合、特別な処理槽が必要となるため、イニシャルコストが高くなるという問題がある。特許文献4の方法では、効率的な膜洗浄が可能となるものの、透過水量を十分に向上できるとはいえない。特許文献5及び6の方法では、凝集剤の添加により余剰汚泥が増加し、汚泥処理コストが増加するという問題がある。このため、有機排水等の汚水の処理に要するコストを低減しつつ、効率よく処理可能な新たな方法が求められている。   However, when the membrane filtration treatment is performed with the MLSS concentration lowered as in the method of Patent Document 2, the permeated water amount is improved, but there is a problem that sufficient treatment capacity cannot be obtained. In the case of the method of Patent Document 3, since a special treatment tank is required, there is a problem that the initial cost is increased. Although the method of Patent Document 4 enables efficient membrane cleaning, it cannot be said that the amount of permeated water can be sufficiently improved. In the methods of Patent Documents 5 and 6, surplus sludge increases due to the addition of the flocculant, and there is a problem that the sludge treatment cost increases. For this reason, the new method which can be processed efficiently is calculated | required, reducing the cost required for processing of sewage, such as organic waste water.

本発明は、処理コストを低減しつつ、効率よく処理可能な新たな膜分離活性汚泥法、及び活性汚泥の改質方法を提供する。   The present invention provides a new membrane separation activated sludge method that can be efficiently treated while reducing the treatment cost, and a method for reforming activated sludge.

本発明は、一つの態様として、曝気槽内において溶存酸素(DO)を10mg/L以上に維持しながら、有機排水を活性汚泥処理すること、及び前記活性汚泥処理した有機排水を膜濾過処理することを含む、膜分離活性汚泥法に関する。   The present invention, as one aspect, treats organic wastewater with activated sludge while maintaining dissolved oxygen (DO) at 10 mg / L or more in the aeration tank, and membrane-filters the organic wastewater treated with the activated sludge. The present invention relates to a membrane separation activated sludge method.

本発明は、その他の態様として、活性汚泥処理された有機排水を膜濾過処理して固液分離するために活性汚泥を改質する方法であって、曝気槽内でDOを10mg/L以上に維持しながら有機排水を活性汚泥処理することを含む、活性汚泥の改質方法に関する。   In another aspect, the present invention is a method for modifying activated sludge in order to solid-liquid-separate the organic sludge treated with activated sludge by membrane filtration, and the DO is increased to 10 mg / L or more in the aeration tank. The present invention relates to a method for reforming activated sludge, including treating activated wastewater with activated sludge while maintaining.

本発明によれば、処理コストを低減しつつ、効率よく処理可能な新たな方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the new method which can be processed efficiently can be provided, reducing processing cost.

図1は、実施形態1に用いる装置の構成の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an example of a configuration of an apparatus used in the first embodiment. 図2は、実施形態1に用いる装置の構成のその他の例を示す概略構成図である。FIG. 2 is a schematic configuration diagram illustrating another example of the configuration of the apparatus used in the first embodiment. 図3は、実施形態1に用いる装置の構成のさらにその他の例を示す概略構成図である。FIG. 3 is a schematic configuration diagram illustrating still another example of the configuration of the apparatus used in the first embodiment.

本発明は、標準活性汚泥法及び膜分離活性汚泥法を用いた汚水の処理において、10mg/L以上に維持しながら有機排水を活性汚泥処理することにより、膜濾過処理時の透過水量を向上できるという知見に基く。   In the treatment of sewage using the standard activated sludge method and the membrane separation activated sludge method, the present invention can improve the amount of permeated water during membrane filtration by treating the organic wastewater with activated sludge while maintaining it at 10 mg / L or more. Based on this knowledge.

本発明により、膜濾過処理時の透過水量を向上できるメカニズムの詳細については不明であるが以下のように推定される。DOを10mg/L以上に維持しながら有機排水を活性汚泥処理することによって、活性汚泥処理水に含まれる活性汚泥の粘性が低減することから、膜濾過処理時の透過水量が向上されると推定される。ただし、この推測は本発明を限定するものではない。   The details of the mechanism that can improve the amount of permeated water during the membrane filtration treatment according to the present invention are unknown, but are estimated as follows. Estimated that the amount of permeated water during membrane filtration treatment is improved because the viscosity of activated sludge contained in the activated sludge treated water is reduced by treating the organic wastewater with activated sludge while maintaining DO at 10 mg / L or more. Is done. However, this assumption does not limit the present invention.

(膜分離活性汚泥法)
本発明は、一態様において、曝気槽内においてDOを10mg/L以上に維持しながら、有機排水を活性汚泥処理すること、及び前記活性汚泥処理した有機排水を膜濾過処理することを含む膜分離活性汚泥法(以下、「本発明の膜分離活性汚泥法」ともいう)。本発明の膜分離活性汚泥法によれば、DOを10mg/L以上に維持しながら有機排水を活性汚泥処理するため、膜濾過時の透過水量を向上させることができる。このため、本発明の膜分離活性汚泥法によれば、例えば、濾過膜の設置面積を低減することができ、また、特殊な設備も必要としないため、設備コスト等のイニシャルコストや、膜管理に要するランニングコスト等を低減することができる。また、本発明の膜分離活性汚泥法によれば、例えば、MLSS濃度を低減させずに、十分な透過水量が得られることから、汚水処理効率を向上できる。
(Membrane separation activated sludge method)
In one aspect, the present invention is a membrane separation process comprising subjecting organic wastewater to activated sludge treatment and membrane filtration treatment of the organic wastewater treated with activated sludge while maintaining DO at 10 mg / L or more in an aeration tank. Activated sludge method (hereinafter also referred to as “membrane separation activated sludge method of the present invention”). According to the membrane separation activated sludge method of the present invention, the organic waste water is subjected to activated sludge treatment while maintaining DO at 10 mg / L or more, so that the amount of permeated water during membrane filtration can be improved. For this reason, according to the membrane separation activated sludge method of the present invention, for example, the installation area of the filtration membrane can be reduced, and since no special equipment is required, initial costs such as equipment costs, membrane management, etc. The running cost required for the operation can be reduced. Moreover, according to the membrane separation activated sludge method of the present invention, for example, a sufficient amount of permeate can be obtained without reducing the MLSS concentration, so that the sewage treatment efficiency can be improved.

本発明の膜分離活性汚泥法において、有機排水の活性汚泥処理は、曝気槽内のDOを10mg/L以上に維持しながら行う。活性汚泥処理は、ガス導入設備のコスト及びランニングコスト低減の点から、10〜30mg/Lの範囲に維持しながら行うことが好ましく、より好ましくは10〜20mg/Lの範囲、さらに好ましくは10mg/Lを超え18mg/L未満の範囲、さらに好ましくは略15mg/L程度である。   In the membrane separation activated sludge method of the present invention, the activated sludge treatment of organic waste water is performed while maintaining the DO in the aeration tank at 10 mg / L or more. The activated sludge treatment is preferably performed while maintaining in the range of 10 to 30 mg / L, more preferably in the range of 10 to 20 mg / L, and even more preferably 10 mg / L from the viewpoint of reducing the cost of gas introduction equipment and running cost. The range is more than L and less than 18 mg / L, more preferably about 15 mg / L.

本明細書において「活性汚泥処理」とは、有機物を分解する機能を有する好気性微生物の集団を用いた処理のことをいい、例えば、下水や排水に含まれる有機物を分解する微生物を繁殖させて生じる泥状の沈殿物の存在下で有機排水を曝気することにより行うことができる。本明細書において「有機排水」とは、有機物(BOD成分)を含む排水をいい、例えば、家庭から出る下水、し尿等の生活排水、食品系又はデバイス系等の工場などから出る有機系産業排水を含む。なお、溶存酸素濃度は、従来公知の溶存酸素濃度メータ(DOメータ)を使用して測定できる。   In the present specification, “activated sludge treatment” refers to treatment using a group of aerobic microorganisms having a function of decomposing organic matter, for example, by breeding microorganisms that degrade organic matter contained in sewage and wastewater. It can be carried out by aeration of organic waste water in the presence of the resulting mud precipitate. In this specification, “organic wastewater” refers to wastewater containing organic matter (BOD component), for example, domestic wastewater from homes, domestic wastewater such as human waste, organic industrial wastewater from factories such as food or devices. including. The dissolved oxygen concentration can be measured using a conventionally known dissolved oxygen concentration meter (DO meter).

本発明の膜分離活性汚泥法において有機排水の活性汚泥処理は、活性汚泥処理時の溶存酸素濃度をより安定させる点、並びに、汚水処理に要するランニングコストの低減、及び処理効率の向上の点から、曝気槽内の溶存酸素濃度を検出し、検出した溶存酸素濃度を用いて曝気槽内のDOを10mg/L以上となるように自動的に制御して行うことが好ましい。曝気槽内のDOは、曝気槽への酸素の供給量を制御することによって制御することができ、より好ましくは高濃度酸素を供給することによって制御することができる。よって、本発明の膜分離活性汚泥法は、曝気槽に高濃度酸素を供給することを含むことが好ましい。高濃度酸素の供給は、例えば、高濃度酸素含有気体、高濃度酸素含有水、及び/又は高濃度の酸素を含む活性汚泥を曝気槽に供給することにより行うことができ、高濃度の酸素を含む活性汚泥を循環させながら供給することにより行ってもよい。高濃度酸素含有気体とは、空気(酸素濃度:21体積%以上)よりも酸素含有濃度が高いガスをいい、例えば、酸素を22体積%〜99.9体積%含むガス、好ましくは酸素を30体積%〜93体積%含むガスである。高濃度酸素含有気体としては、例えば、酸素発生装置からの酸素、酸素ボンベからの酸素、及び窒素発生装置等の廃酸素等が挙げられる。高濃度酸素含有水とは、一般的な水よりも含まれる酸素の濃度が高い水をいい、例えば、DOで10〜100mg/L含む水、好ましくはDOで50〜100mg/L含む水である。高濃度酸素含有水としては、例えば、高濃度酸素含有気体を曝気させた水、酸素を含む気体を加圧して溶解させた水、水と酸素を含む気体を攪拌混合して生成した水等が挙げられる。また、曝気槽内のDOを均一にするため、酸素の供給は、例えば、攪拌しながら行ってもよい。   In the membrane separation activated sludge process of the present invention, the activated sludge treatment of organic wastewater is from the viewpoint of further stabilizing the dissolved oxygen concentration during the activated sludge treatment, reducing the running cost required for the sewage treatment, and improving the treatment efficiency. It is preferable to detect the dissolved oxygen concentration in the aeration tank and automatically control the DO in the aeration tank to be 10 mg / L or more using the detected dissolved oxygen concentration. The DO in the aeration tank can be controlled by controlling the amount of oxygen supplied to the aeration tank, and more preferably by supplying high-concentration oxygen. Therefore, it is preferable that the membrane separation activated sludge method of the present invention includes supplying high-concentration oxygen to the aeration tank. The supply of high-concentration oxygen can be performed, for example, by supplying high-concentration oxygen-containing gas, high-concentration oxygen-containing water, and / or activated sludge containing high-concentration oxygen to the aeration tank. You may carry out by supplying the activated sludge containing it, circulating. The high-concentration oxygen-containing gas refers to a gas having a higher oxygen-containing concentration than air (oxygen concentration: 21% by volume or more), for example, a gas containing 22% to 99.9% by volume of oxygen, preferably 30% oxygen. It is a gas containing volume% to 93 volume%. Examples of the high-concentration oxygen-containing gas include oxygen from an oxygen generator, oxygen from an oxygen cylinder, and waste oxygen from a nitrogen generator. High-concentration oxygen-containing water refers to water having a higher oxygen concentration than general water, for example, water containing 10 to 100 mg / L in DO, preferably water containing 50 to 100 mg / L in DO. . Examples of the high-concentration oxygen-containing water include water aerated with a high-concentration oxygen-containing gas, water obtained by pressurizing and dissolving a gas containing oxygen, and water generated by stirring and mixing a gas containing water and oxygen. Can be mentioned. Moreover, in order to make DO in the aeration tank uniform, supply of oxygen may be performed with stirring, for example.

酸素の供給は、例えば、槽に配置された散気管から高濃度酸素気体等の酸素を含むガスを供給したり、通常よりも高濃度の酸素を含む水を曝気槽に供給したり、高濃度の酸素を含む活性汚泥水を曝気槽に供給すること等によって制御することができる。また、酸素の供給は、例えば、微細気泡を供給することによって行ってもよい、微細気泡は、例えば、水に酸素を含む気体を加圧して溶解させる、または、水と酸素を含む気体を攪拌混合して生成させる等によって供給することができる。微細気泡を供給する場合、ガスは空気であってもよいし、上述する高濃度酸素含有気体であってもよい。また、予め、上記の微細気泡を水及び又は活性汚泥水を導入し、それを高濃度酸素含有水及び又は活性汚泥水として供給してもよい。   For example, oxygen can be supplied from a diffuser tube disposed in the tank to supply oxygen-containing gas such as high-concentration oxygen gas, to water containing oxygen higher than usual, or to an aeration tank, It can be controlled by supplying activated sludge water containing oxygen to the aeration tank. The supply of oxygen may be performed, for example, by supplying fine bubbles. For example, the fine bubbles may be dissolved by pressurizing a gas containing oxygen in water, or stirring a gas containing water and oxygen. It can be supplied by mixing and generating. When supplying fine bubbles, the gas may be air or the above-described high-concentration oxygen-containing gas. Alternatively, water and / or activated sludge water may be introduced into the fine bubbles in advance and supplied as high-concentration oxygen-containing water and / or activated sludge water.

本発明の膜分離活性汚泥法は、上記のようにDOを10mg/L以上に維持しながら活性汚泥処理を行うため、活性汚泥処理した有機排水を効率よく膜濾過処理することができる。膜濾過処理に用いられる濾過膜は、特に制限されるものではなく、例えば、MF(精度濾過)膜、UF(限外濾過)膜、NF(ナノ濾過)膜、等が挙げられる。濾過膜の形態は、特に制限されるものではなく、例えば、平膜、管状膜、及び中空糸等が挙げられる。濾過膜は、例えば、有機膜であってもよいし、無機膜であってもよい。有機膜の材質は、特に制限されるものではなく、例えば、PVDF、PE、PP、PTFE、CA、PAN、PI、PS、及びPES等が挙げられる。無機膜の材質は、特に制限されるものではなく、例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、SUS、及びガラス等が挙げられる。濾過膜は、曝気槽内に浸漬されて配置されていてもよいし、曝気槽外に配置されていてもよい。曝気槽外に配置される場合、濾過膜は、曝気槽とは異なる処理槽に浸漬されて配置される吸引型膜分離膜であってもよいし、加圧型(外圧式)分離膜であってもよい。   Since the membrane separation activated sludge method of the present invention performs activated sludge treatment while maintaining DO at 10 mg / L or more as described above, it is possible to efficiently membrane-treat the organic wastewater treated with activated sludge. The filtration membrane used for the membrane filtration treatment is not particularly limited, and examples thereof include an MF (precision filtration) membrane, a UF (ultrafiltration) membrane, and an NF (nanofiltration) membrane. The form of the filtration membrane is not particularly limited, and examples thereof include a flat membrane, a tubular membrane, and a hollow fiber. The filtration membrane may be, for example, an organic membrane or an inorganic membrane. The material of the organic film is not particularly limited, and examples thereof include PVDF, PE, PP, PTFE, CA, PAN, PI, PS, and PES. The material of the inorganic film is not particularly limited, and examples thereof include aluminum oxide, zirconium oxide, titanium oxide, SUS, and glass. The filtration membrane may be disposed so as to be immersed in the aeration tank, or may be disposed outside the aeration tank. In the case of being arranged outside the aeration tank, the filtration membrane may be a suction type membrane separation membrane arranged by being immersed in a processing tank different from the aeration tank, or a pressure type (external pressure type) separation membrane. Also good.

膜濾過処理は、特に制限されるものではないが、例えば、吸引式膜濾過処理、又は加圧型膜濾過処理が挙げられる。膜濾過処理は、例えば、活性汚泥処理した有機排水を固液分離槽に移送し、固液分離槽において行ってもよいし、活性汚泥処理が行われる曝気槽に行ってもよいし、曝気槽外に配置された濾過膜にて行ってもよい。   The membrane filtration treatment is not particularly limited, and examples thereof include a suction type membrane filtration treatment and a pressure type membrane filtration treatment. The membrane filtration treatment may be performed, for example, by transferring the organic sludge treated with activated sludge to a solid-liquid separation tank and performing it in a solid-liquid separation tank, or in an aeration tank in which activated sludge treatment is performed, or an aeration tank. You may carry out by the filtration membrane arrange | positioned outside.

(有機排水処理方法)
本発明は、その他の態様として、曝気槽内でDOを10mg/L以上に維持しながら有機排水を活性汚泥処理する活性汚泥処理工程、及び前記活性汚泥処理工程で処理された有機排水を膜濾過処理して汚泥を回収する分離工程を含む、有機排水処理方法(以下、「本発明の処理方法」ともいう)に関する。本発明の処理方法によれば、曝気槽内でDOを10mg/L以上に維持しながら有機排水を活性汚泥処理することによって、膜濾過処理時に十分な透過水量が得られることから、例えば、処理コストを低減しつつ、効率よく有機排水を処理することができる。本発明の処理方法における活性汚泥処理工程及び分離工程は、本発明の膜分離活性汚泥法の活性汚泥処理及び膜濾過処理とそれぞれ同様に行うことができる。
(Organic wastewater treatment method)
In another aspect, the present invention provides an activated sludge treatment step for treating organic wastewater with activated sludge while maintaining DO at 10 mg / L or more in the aeration tank, and membrane filtration of the organic wastewater treated in the activated sludge treatment step. The present invention relates to an organic wastewater treatment method (hereinafter, also referred to as “treatment method of the present invention”) including a separation step of treating and collecting sludge. According to the treatment method of the present invention, a sufficient amount of permeate can be obtained at the time of membrane filtration treatment by treating the organic wastewater with activated sludge while maintaining DO at 10 mg / L or more in the aeration tank. Organic wastewater can be treated efficiently while reducing costs. The activated sludge treatment step and the separation step in the treatment method of the present invention can be performed in the same manner as the activated sludge treatment and membrane filtration treatment of the membrane separation activated sludge method of the present invention, respectively.

(活性汚泥の改質方法)
本発明は、さらにその他の態様として、活性汚泥処理された有機排水を膜濾過処理して固液分離するために活性汚泥を改質する方法であって、曝気槽内でDOを10mg/L以上に維持しながら有機排水を活性汚泥処理することを含む、活性汚泥の改質方法(以下、「本発明の改質方法」ともいう)に関する。本発明の改質方法によれば、効率的な膜濾過処理が可能な程度に十分な透過水量を示すように改質された活性汚泥を得ることができる。本発明の改質方法における活性汚泥処理は、本発明の膜分離活性汚泥法における活性汚泥処理と同様である。
(Modification method of activated sludge)
The present invention, as yet another aspect, is a method for reforming activated sludge in order to solid-liquid-separate the organic wastewater treated with activated sludge by membrane filtration, wherein DO is 10 mg / L or more in the aeration tank. The present invention relates to a method for reforming activated sludge (hereinafter, also referred to as “the reforming method of the present invention”), which comprises treating organic wastewater with activated sludge while maintaining the same. According to the reforming method of the present invention, it is possible to obtain activated sludge modified so as to exhibit a permeated water amount sufficient to enable efficient membrane filtration treatment. The activated sludge treatment in the reforming method of the present invention is the same as the activated sludge treatment in the membrane separation activated sludge method of the present invention.

(膜分離活性汚泥処理システム)
本発明は、さらにその他の態様として、有機排水の活性汚泥処理を行う曝気槽と、活性汚泥処理された有機排水を膜濾過処理する濾過膜と、曝気槽内の溶存酸素濃度を測定する溶存酸素計と、溶存酸素計によって測定された溶存酸素濃度に基き、曝気槽のDOが10mg/L以上に維持されるように曝気槽のDOを制御する制御部を含む膜分離活性汚泥処理システム(以下、「本発明の処理システム」ともいう)に関する。本発明の処理システムは、曝気槽のDOが10mg/L以上に維持されるように曝気槽のDOを制御する制御部を含むことから、本発明の膜分離活性汚泥法、有機排水処理方法、及び活性汚泥の改質方法を効率よく行うことができる。
(Membrane separation activated sludge treatment system)
The present invention, as yet another aspect, an aeration tank that performs activated sludge treatment of organic wastewater, a filtration membrane that performs membrane filtration treatment of organic wastewater that has been treated with activated sludge, and dissolved oxygen that measures the dissolved oxygen concentration in the aeration tank Based on the dissolved oxygen concentration measured by the dissolved oxygen meter and a membrane separation activated sludge treatment system (hereinafter referred to as a control unit for controlling the DO of the aeration tank so that the DO of the aeration tank is maintained at 10 mg / L or more) , Also referred to as “processing system of the present invention”). Since the treatment system of the present invention includes a control unit that controls the DO of the aeration tank so that the DO of the aeration tank is maintained at 10 mg / L or more, the membrane separation activated sludge method, the organic wastewater treatment method of the present invention, And the reforming method of activated sludge can be performed efficiently.

制御部は、溶存酸素計によって測定された溶存酸素濃度に基き、曝気槽のDOが10mg/L以上に維持されるように制御することが好ましい。前記制御部は、例えば、曝気槽に供給される酸素の量を制御することが好ましい。制御部における制御は、例えば、曝気槽のDOが予め設定された基準値を下回った場合に酸素が供給され、また、DOが予め設定された基準値を上回った場合に酸素の供給が停止されるにように、曝気槽に配置された散気管及び又は散気管に接続した酸素供給手段を制御することにより行うことができる。   The controller is preferably controlled so that the DO of the aeration tank is maintained at 10 mg / L or more based on the dissolved oxygen concentration measured by the dissolved oxygen meter. For example, the control unit preferably controls the amount of oxygen supplied to the aeration tank. For example, when the DO in the aeration tank falls below a preset reference value, oxygen is supplied, and when the DO exceeds a preset reference value, the supply of oxygen is stopped. As described above, this can be achieved by controlling the air diffuser arranged in the aeration tank and / or the oxygen supply means connected to the air diffuser.

本発明の処理システムにおいて、濾過膜は曝気槽内に浸漬して配置されていてもよいし、曝気槽の外部に外圧型濾過膜として配置されていてもよい。また、本発明の処理システムは、曝気槽とは異なる膜分離を行うための処理槽を備え、その処理槽に濾過膜が浸漬配置されていてもよい。   In the treatment system of the present invention, the filtration membrane may be arranged soaked in the aeration tank, or may be arranged as an external pressure type filtration membrane outside the aeration tank. Moreover, the processing system of this invention is provided with the processing tank for performing membrane separation different from an aeration tank, and the filtration membrane may be immersed by the processing tank.

曝気槽には、溶存酸素濃度を均一にするため、例えば、プロペラ型、タービン型、パドル型、スクリュー型などの撹拌機や、エアリフト用の内筒が備えられていてもよい。また、濾過膜が曝気槽とは異なる処理槽に配置されている場合、濾過効率の向上の点から、処理槽には、上記の攪拌機等が配置されていてもよい。   In order to make the dissolved oxygen concentration uniform, the aeration tank may be provided with an agitator such as a propeller type, a turbine type, a paddle type, and a screw type, or an inner cylinder for an air lift. Moreover, when the filtration membrane is arrange | positioned in the processing tank different from an aeration tank, said stirrer etc. may be arrange | positioned at the processing tank from the point of the improvement of filtration efficiency.

以下、本発明について図面を用いて詳細に説明する。但し、以下の説明は一例に過ぎず、本発明はこれに限定されないことはいうまでもない。   Hereinafter, the present invention will be described in detail with reference to the drawings. However, the following description is merely an example, and it goes without saying that the present invention is not limited to this.

(実施形態1)
図1は、実施形態1の膜分離活性汚泥法に用いる装置の概略構成図である。実施形態1の装置は、原水槽1と、曝気槽2と、処理水槽3とを備える。原水槽1と曝気槽2、曝気槽2と処理水槽3とはそれぞれパイプによって接続している。曝気槽2は、槽内に、濾過膜5と、酸素供給用の散気管4と、攪拌用のエアーを供給するための散気管(図示せず)と、溶存酸素計(図示せず)と、水位計(図示せず)とを備える。濾過膜5にて固液分離された液分がパイプを通じて処理槽3に送液可能なように濾過膜5と処理槽3とは接続している。酸素供給用の散気管4の一端には、例えば、99%酸素内包のガスボンベ等の酸素供給手段(図示せず)が接続される。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an apparatus used in the membrane separation activated sludge method of the first embodiment. The apparatus of Embodiment 1 includes a raw water tank 1, an aeration tank 2, and a treated water tank 3. The raw water tank 1 and the aeration tank 2, and the aeration tank 2 and the treated water tank 3 are connected by pipes. The aeration tank 2 includes a filtration membrane 5, an oxygen supply air diffuser 4, an air diffuser (not shown) for supplying stirring air, and a dissolved oxygen meter (not shown). And a water level gauge (not shown). The filtration membrane 5 and the treatment tank 3 are connected so that the liquid component separated by the filtration membrane 5 can be sent to the treatment tank 3 through a pipe. For example, an oxygen supply means (not shown) such as a gas cylinder containing 99% oxygen is connected to one end of the oxygen supply diffuser tube 4.

以下に、実施形態1の装置を用いた膜分離活性汚泥法の一例について説明する。   Below, an example of the membrane separation activated sludge method using the apparatus of Embodiment 1 is demonstrated.

まず、原水槽1から曝気槽2に有機系産業排水(被処理水)を定量送液する。送液された被処理水は、曝気槽2内において酸素供給用散気管4から酸素が供給されて曝気されるとともに、攪拌用のエアーを供給するための散気管によって攪拌されながら、DOが10mg/L以上に維持された状態で活性汚泥処理がなされる。曝気槽2の溶存酸素濃度の制御は、散気管4から供給される酸素の量等によって制御され、例えば、曝気槽2に設置された溶存酸素計にて曝気槽2のDOを測定し、DOが予め設定された基準値を下回った場合に酸素が供給され、また、DOが予め設定された基準値を上回った場合に酸素の供給が停止されるにように曝気槽2に内に供給される酸素を制御することによって行うことができる。制御方法についての特に限定されない一例を挙げると、曝気槽2のDOが13mg/Lを下回ったら、酸素供給の電磁弁が開き、17mg/Lを上回ったら、酸素供給の電磁弁が閉じるよう制御する方法がある。攪拌用のエアーは、曝気する酸素の使用量を抑制し、ランニングコストを低減する点から、間欠運転としてもよい。   First, organic industrial wastewater (treated water) is quantitatively fed from the raw water tank 1 to the aeration tank 2. The treated water sent is aerated by supplying oxygen from the oxygen supply air diffuser 4 in the aeration tank 2 and being agitated by the air diffuser for supplying air for stirring, while the DO is 10 mg. Activated sludge treatment is performed in a state maintained at / L or more. Control of the dissolved oxygen concentration in the aeration tank 2 is controlled by the amount of oxygen supplied from the aeration tube 4, for example, the DO of the aeration tank 2 is measured with a dissolved oxygen meter installed in the aeration tank 2, and DO Is supplied to the aeration tank 2 so that the supply of oxygen is stopped when the DO falls below the preset reference value, and when the DO exceeds the preset reference value This can be done by controlling the oxygen. For example, the control method is not particularly limited. When the DO of the aeration tank 2 falls below 13 mg / L, the oxygen supply solenoid valve opens, and when it exceeds 17 mg / L, the oxygen supply solenoid valve is closed. There is a way. The stirring air may be intermittently operated from the viewpoint of suppressing the amount of oxygen used for aeration and reducing the running cost.

曝気槽2内に予め設定された量の被処理水が送液されると、濾過膜吸引用の送液手段を運転させ、曝気槽2内の量が予め設定された量を下回ると送液手段を停止させるように制御する。吸引され濾過膜4にて固液分離された液分は、処理水槽3に送液される。   When a predetermined amount of water to be treated is fed into the aeration tank 2, the liquid feeding means for filtering membrane suction is operated, and when the amount in the aeration tank 2 falls below the preset amount, the liquid feeding is performed. Control to stop the means. The liquid component sucked and separated into solid and liquid by the filtration membrane 4 is sent to the treated water tank 3.

実施形態1では、濾過膜4が曝気槽2に浸漬して配置された形態を例にとり説明したが、本発明はこれに限定されるものではなく、例えば、図2に示すように、濾過膜4が曝気槽2とは異なる処理槽(処理水槽3)内に浸漬して配置された形態であってもよいし、図3に示すように、濾過膜4が曝気槽2外に配置された形態であってもよい。   In the first embodiment, the embodiment in which the filtration membrane 4 is immersed in the aeration tank 2 has been described as an example. However, the present invention is not limited to this, and for example, as shown in FIG. 4 may be in the form of being immersed in a treatment tank (treatment water tank 3) different from the aeration tank 2, and the filtration membrane 4 is arranged outside the aeration tank 2 as shown in FIG. Form may be sufficient.

以下、本発明について実施例を用いて説明するが、本発明はこれに限定して解釈されない。   Hereinafter, although the present invention is explained using an example, the present invention is limited to this and is not interpreted.

(実施例1)
濾過膜が配置された曝気槽内(容積:10L)において、DOを10〜20mg/Lに維持しながら有機排水の活性汚泥処理を行った。処理は、高濃度酸素含有気体(酸素濃度:99%以上)を供給しながら、曝気槽内の温度を20〜25℃に設定して行った。曝気槽への有機排水の投入量は3L/日とし、濾過膜を通じた処理水の引抜量は3L/日とした。曝気槽内のDOは、曝気槽に配置した溶存酸素計(商品名:DO−31P、東亜ディーケーケー製)を用いて測定した。
Example 1
In the aeration tank (volume: 10 L) in which the filtration membrane was arranged, the activated sludge treatment of organic wastewater was performed while maintaining DO at 10 to 20 mg / L. The treatment was performed by setting the temperature in the aeration tank to 20 to 25 ° C. while supplying a high-concentration oxygen-containing gas (oxygen concentration: 99% or more). The input amount of organic wastewater into the aeration tank was 3 L / day, and the amount of treated water drawn through the filtration membrane was 3 L / day. The DO in the aeration tank was measured by using a dissolved oxygen meter (trade name: DO-31P, manufactured by Toa DKK Corporation) arranged in the aeration tank.

(比較例1)
曝気槽のDOを2mg/L程度とした以外は、実施例1と同様の条件で活性汚泥処理を行った。
(Comparative Example 1)
The activated sludge treatment was performed under the same conditions as in Example 1 except that the DO in the aeration tank was about 2 mg / L.

[濾過水量の測定]
実施例1及び比較例1にて活性汚泥処理を行った曝気槽から活性汚泥を採取し、採取した活性汚泥を用いて濾過水量を測定した。膜濾過処理は、MLSS濃度が5000mg/Lとした実施例1又は比較例1の活性汚泥50mlを、ひだ折にしたろ紙(JISP3801に規定される5種C)をセットした漏斗に一気に流し込み、濾液が落ち始めた時間から5分間で濾過された水の量を測定した。その結果、5分間で濾過された水の量は、実施例1の活性汚泥は35.5mlであったのに対し、比較例1の活性汚泥は21.5mlであった。つまり、DOを10mg/L以上に維持しながら活性汚泥処理を行うことにより、活性汚泥が改質され、濾過される水の量が向上された。
[Measurement of filtered water volume]
The activated sludge was collected from the aeration tank that had been subjected to the activated sludge treatment in Example 1 and Comparative Example 1, and the amount of filtered water was measured using the collected activated sludge. Membrane filtration is performed by pouring 50 ml of activated sludge of Example 1 or Comparative Example 1 with a MLSS concentration of 5000 mg / L into a funnel set with folded filter paper (type 5 C defined in JIS P3801). The amount of filtered water was measured in 5 minutes from the time when the water began to drop. As a result, the amount of water filtered in 5 minutes was 35.5 ml for the activated sludge of Example 1, while 21.5 ml for the activated sludge of Comparative Example 1. In other words, by performing the activated sludge treatment while maintaining DO at 10 mg / L or more, the activated sludge was reformed and the amount of filtered water was improved.

[活性汚泥粘性試験]
濾過水量の測定に用いた活性汚泥を使用して、活性汚泥粘性試験も行った。測定は、粘度測定機(東機産業製、商品名:TVB-10M)を用い、回転数:20rpm、ローター:M1を用いて行った。その結果、実施例1の活性汚泥の粘性は14.2mPasであったのに対し、比較例1の活性汚泥は18.0mPasであった。DOを10mg/L以上に維持しながら活性汚泥処理を行った実施例1の活性汚泥は、DOを2mg/L未満に維持しながら処理した比較例1の活性汚泥と比較して粘性が低いことが確認できた。
[Activated sludge viscosity test]
An activated sludge viscosity test was also conducted using the activated sludge used to measure the amount of filtered water. The measurement was performed using a viscometer (manufactured by Toki Sangyo Co., Ltd., trade name: TVB-10M) using a rotational speed of 20 rpm and a rotor of M1. As a result, the viscosity of the activated sludge of Example 1 was 14.2 mPas, whereas the activated sludge of Comparative Example 1 was 18.0 mPas. The activated sludge of Example 1, which was treated with activated sludge while maintaining DO at 10 mg / L or higher, had a lower viscosity than the activated sludge of Comparative Example 1, which was treated while maintaining DO at less than 2 mg / L. Was confirmed.

以上の結果より、DOを10mg/L以上に維持しながら活性汚泥処理を行うことにより、活性汚泥の粘性が低減され、その結果、濾過水量が向上されることが示唆された。   From the above results, it was suggested that the activated sludge treatment was carried out while maintaining the DO at 10 mg / L or more, whereby the viscosity of the activated sludge was reduced, and as a result, the amount of filtered water was improved.

Claims (9)

曝気槽内において溶存酸素(DO)を10mg/L以上に維持しながら、有機排水を活性汚泥処理すること、及び
前記活性汚泥処理した有機排水を膜濾過処理することを含む、膜分離活性汚泥法。
A membrane-separated activated sludge process comprising treating activated organic sludge with activated sludge while maintaining dissolved oxygen (DO) at 10 mg / L or more in an aeration tank, and subjecting the organic sludge treated with activated sludge to membrane filtration. .
前記曝気槽内のDOを検出し、検出した溶存酸素濃度を用いて曝気槽内のDOが10mg/L以上となるように自動的に制御することを含む、請求項1記載の活性汚泥法。 2. The activated sludge method according to claim 1, comprising detecting DO in the aeration tank and automatically controlling the DO in the aeration tank to be 10 mg / L or more using the detected dissolved oxygen concentration. 前記膜濾過処理が、浸漬型膜濾過処理、又は外圧型膜濾過処理である、請求項1又は2に記載の活性汚泥法。 The activated sludge method according to claim 1 or 2, wherein the membrane filtration treatment is a submerged membrane filtration treatment or an external pressure membrane filtration treatment. 活性汚泥処理した有機排水を固液分離槽に移送し、前記固液分離槽において前記膜濾過処理を行う、請求項1から3のいずれかに記載の活性汚泥法。 The activated sludge method according to any one of claims 1 to 3, wherein the organic wastewater treated with activated sludge is transferred to a solid-liquid separation tank, and the membrane filtration treatment is performed in the solid-liquid separation tank. 活性汚泥処理を行う前記曝気槽において前記膜濾過処理を行う、請求項1から3のいずれかに記載の活性汚泥法。 The activated sludge method according to any one of claims 1 to 3, wherein the membrane filtration treatment is performed in the aeration tank that performs the activated sludge treatment. 前記曝気槽に、高濃度酸素を供給することを含む、請求項1から5のいずれかに記載の活性汚泥法。 The activated sludge method according to claim 1, comprising supplying high-concentration oxygen to the aeration tank. 前記高濃度酸素の供給は、前記曝気槽に高濃度酸素含有気体若しくは高濃度酸素含有水を供給すること、又は、高濃度の酸素を含む活性汚泥を循環供給することにより行う、請求項6記載の活性汚泥法。 The high-concentration oxygen is supplied by supplying a high-concentration oxygen-containing gas or high-concentration oxygen-containing water to the aeration tank or by circulating and supplying activated sludge containing high-concentration oxygen. Activated sludge process. 前記培養槽に、酸素を含む微細気泡又は加圧気体を供給することを含む、請求項1から7のいずれかに記載の活性汚泥法。 The activated sludge method according to any one of claims 1 to 7, comprising supplying fine bubbles or pressurized gas containing oxygen to the culture tank. 活性汚泥処理された有機排水を膜濾過処理して固液分離するために活性汚泥を改質する方法であって、
曝気槽内でDOを10mg/L以上に維持しながら有機排水を活性汚泥処理することを含む、活性汚泥の改質方法。
A method of modifying activated sludge in order to perform solid filtration by subjecting organic wastewater treated with activated sludge to membrane filtration,
A method for modifying activated sludge, comprising treating organic wastewater with activated sludge while maintaining DO at 10 mg / L or more in an aeration tank.
JP2012124881A 2012-05-31 2012-05-31 Membrane separation activated sludge process and reforming method of activated sludge Pending JP2013248566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012124881A JP2013248566A (en) 2012-05-31 2012-05-31 Membrane separation activated sludge process and reforming method of activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124881A JP2013248566A (en) 2012-05-31 2012-05-31 Membrane separation activated sludge process and reforming method of activated sludge

Publications (1)

Publication Number Publication Date
JP2013248566A true JP2013248566A (en) 2013-12-12

Family

ID=49847788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124881A Pending JP2013248566A (en) 2012-05-31 2012-05-31 Membrane separation activated sludge process and reforming method of activated sludge

Country Status (1)

Country Link
JP (1) JP2013248566A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
JP2016120470A (en) * 2014-12-25 2016-07-07 アサヒ飲料株式会社 Activated sludge waste water treatment method and facility
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125968A (en) * 1975-04-24 1976-11-02 Ebara Infilco Co Ltd Treating method of organic waste water
JPS56161895A (en) * 1980-05-19 1981-12-12 Sumikin Coke Co Ltd Suppression of bulking in active sludge process
JPH01135594A (en) * 1987-11-20 1989-05-29 Ebara Infilco Co Ltd Treatment of organic waste water with active sludge
JPH03229694A (en) * 1990-02-06 1991-10-11 Kurita Water Ind Ltd Biological treatment of waste water
JPH0490895A (en) * 1990-08-01 1992-03-24 Kurita Water Ind Ltd Apparatus for treating organic waste water
JPH04171093A (en) * 1990-11-01 1992-06-18 Kaiyo Kagaku Gijutsu Center Waste liquid purifying device
JPH1199397A (en) * 1997-09-29 1999-04-13 Kuraray Co Ltd High-density culture method for aerobic bacteria, treatment of waste oil and fat and apparatus therefor
JP2004237202A (en) * 2003-02-05 2004-08-26 Hitachi Plant Eng & Constr Co Ltd Membrane separation type activated sludge treatment apparatus
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2005095799A (en) * 2003-09-25 2005-04-14 Hitachi Plant Eng & Constr Co Ltd Membrane activated sludge treatment apparatus
JP2011056410A (en) * 2009-09-10 2011-03-24 Panasonic Corp Method for treating organic wastewater and method for suppressing generation of excess sludge

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125968A (en) * 1975-04-24 1976-11-02 Ebara Infilco Co Ltd Treating method of organic waste water
JPS56161895A (en) * 1980-05-19 1981-12-12 Sumikin Coke Co Ltd Suppression of bulking in active sludge process
JPH01135594A (en) * 1987-11-20 1989-05-29 Ebara Infilco Co Ltd Treatment of organic waste water with active sludge
JPH03229694A (en) * 1990-02-06 1991-10-11 Kurita Water Ind Ltd Biological treatment of waste water
JPH0490895A (en) * 1990-08-01 1992-03-24 Kurita Water Ind Ltd Apparatus for treating organic waste water
JPH04171093A (en) * 1990-11-01 1992-06-18 Kaiyo Kagaku Gijutsu Center Waste liquid purifying device
JPH1199397A (en) * 1997-09-29 1999-04-13 Kuraray Co Ltd High-density culture method for aerobic bacteria, treatment of waste oil and fat and apparatus therefor
JP2004237202A (en) * 2003-02-05 2004-08-26 Hitachi Plant Eng & Constr Co Ltd Membrane separation type activated sludge treatment apparatus
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2005095799A (en) * 2003-09-25 2005-04-14 Hitachi Plant Eng & Constr Co Ltd Membrane activated sludge treatment apparatus
JP2011056410A (en) * 2009-09-10 2011-03-24 Panasonic Corp Method for treating organic wastewater and method for suppressing generation of excess sludge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
JP2016120470A (en) * 2014-12-25 2016-07-07 アサヒ飲料株式会社 Activated sludge waste water treatment method and facility
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Similar Documents

Publication Publication Date Title
Meabe et al. Performance of anaerobic membrane bioreactor for sewage sludge treatment: Mesophilic and thermophilic processes
Subtil et al. Comparison between a conventional membrane bioreactor (C-MBR) and a biofilm membrane bioreactor (BF-MBR) for domestic wastewater treatment
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
Li et al. Fouling control of submerged hollow fibre membrane bioreactor with transverse vibration
JP2014061487A (en) Water treatment method and water treatment system
MX2014010921A (en) Method for treating a waste stream using a bioreactor and a membrane filter.
JP6727056B2 (en) Wastewater treatment equipment and wastewater treatment method
US8968569B2 (en) Method for recycling wastewater
JP2009507625A (en) Wastewater purification method by adding oxidizer
JP2014057931A (en) Water production method
JP2014180629A (en) Water treatment method and system
CN105776726A (en) Treatment process of printing and dyeing wastewater in textile industry
JP5238897B1 (en) Waste water treatment method and waste water treatment equipment
CN205803101U (en) MBR based on ceramic membrane and MBBR compound sewage processing system
JP2013248566A (en) Membrane separation activated sludge process and reforming method of activated sludge
JP5782931B2 (en) Water treatment method and water treatment apparatus
JP2015173995A (en) Water treatment equipment and water treatment method
KR101485500B1 (en) Device and method by the membrane separator activated advanced oxidation process
JP5466864B2 (en) Water treatment apparatus and water treatment method
JP2007090287A (en) Apparatus and method for generating fresh water
JP2014193452A (en) Method of treating organic sludge
JP2008168219A (en) Membrane separation type activated sludge treatment apparatus
Ferrera et al. Pilot scale application of a rotating hollow fibre membrane for direct membrane filtration of domestic wastewater
JP2012210635A (en) Water treatment method and water treatment apparatus
JP6879869B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170105