JP2004237202A - Membrane separation type activated sludge treatment apparatus - Google Patents

Membrane separation type activated sludge treatment apparatus Download PDF

Info

Publication number
JP2004237202A
JP2004237202A JP2003028689A JP2003028689A JP2004237202A JP 2004237202 A JP2004237202 A JP 2004237202A JP 2003028689 A JP2003028689 A JP 2003028689A JP 2003028689 A JP2003028689 A JP 2003028689A JP 2004237202 A JP2004237202 A JP 2004237202A
Authority
JP
Japan
Prior art keywords
membrane separation
activated sludge
treated
water
separation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003028689A
Other languages
Japanese (ja)
Other versions
JP3807499B2 (en
Inventor
Kazuhiko Noto
一彦 能登
Kiyokazu Takemura
清和 武村
Naoki Okuma
那夫紀 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003028689A priority Critical patent/JP3807499B2/en
Publication of JP2004237202A publication Critical patent/JP2004237202A/en
Application granted granted Critical
Publication of JP3807499B2 publication Critical patent/JP3807499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently perform aerobic treatment with activated sludge without bringing about an oxygen deficiency while keeping the washing effect of the membrane surface of a membrane separation means. <P>SOLUTION: In the membrane separation type activated sludge treatment apparatus equipped with an aerobic tank 10 for biologically and aerobically treating water to be treated by activated sludge held in the tank, the membrane separation means 14 immersed in the aerobic tank 10, an air diffusing means 18 for diffusing air from the area under the membrane separation means 14 and a suction pump 24 for discharging treated water permeated through the membrane separation means 14, an air bubble pulverizing means 30, which finely pulverizes air bubbles diffused from the air diffusing means 18 to arrive at the upper region of the membrane separation means 14 by rotary blades 32, is provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は膜分離式活性汚泥処理装置に係り、特に活性汚泥を保持した好気槽内に膜分離手段を浸漬した膜分離式活性汚泥処理装置に関する。
【0002】
【従来の技術】
被処理水中の有機物や窒素、リンなどを高効率に除去する装置として膜分離式活性汚泥処理装置が用いられている。図4はこの種の膜分離式活性汚泥処理装置を模式的に示した側断面図である。好気槽1には被処理水流入管2から流入した被処理水が張り込まれている。好気槽1内には活性汚泥が予め高濃度に保持されるとともに、膜分離手段3が浸漬されている。膜分離手段3としては、両面に分離膜を張った方形の平膜を狭い間隔で横方向に多数枚、並列させた構造のものが一般に採用されている。膜分離手段3の下方には散気手段4が配設され、ブロワ5から供給された空気を膜分離手段3に向けて散気する。膜分離手段3には平膜を透過した処理水を装置外に排出する吸引ポンプ6が排出管7の途中に設けられている。
【0003】
上記の構成において、好気槽1内に流入した被処理水は活性汚泥によって生物学的に好気処理され、被処理水中の有機物や窒素、リンなどが除去される。膜分離手段3では吸引ポンプ6の吸引力によって膜分離が行われ、活性汚泥と処理水とが固液分離される。平膜を透過した処理水は排出管7を介して装置外に排出される。この結果、活性汚泥が好気槽1内に留まることになり、好気処理による増殖分と合わせて、好気槽1内では活性汚泥が高濃度に保持される。
【0004】
散気手段4からの散気には3つの目的がある。第1の目的は好気槽1内を好気性に維持することである。活性汚泥による生物学的な好気処理には酸素が消費されるので、散気によって酸素を補給して好気槽1内の被処理水中の溶存酸素を高く維持する。第2の目的は膜分離手段3の分離膜を洗浄することである。平膜の膜面には膜分離によって活性汚泥や種々の固形分が付着、堆積し、そのまま放置すると分離膜の透過性が次第に低下してくるので、膜面の洗浄を目的として散気が行われる。すなわち、膜分離手段3の下方から散気された空気泡は浮力によって上昇する。その上昇過程で平膜の膜面に対して剪断力を付与し、膜面に付着、堆積した固形分を剥離させる。第3の目的は好気槽1内に被処理水の循環流を形成することである。散気された空気泡の上昇力に伴って膜分離手段3内では被処理水の上向流が生じ、膜分離手段3の下方から被処理水が吸い込まれる。膜分離手段3の上方に押し出された被処理水は次に流路8を下向し、再び膜分離手段3の下方から吸い込まれる。この被処理水の循環過程で被処理水と活性汚泥とが十分に混合、接触し、活性汚泥による好気処理が活発に進行する。
【0005】
このように膜分離式活性汚泥処理装置は、好気槽1内で活性汚泥による好気処理と固液分離を同時進行させることができる。このため、従前の沈殿池を備えた活性汚泥処理装置に比べて沈殿池を省略し、装置のコンパクト化と高効率化を図ることができる。
【0006】
しかしながら、上記散気の3つの目的を同時に達成するためには難しい問題がある。第1の目的を達成するためには、散気する空気泡をなるべく微細化して単位体積当たりの気液接触面積を増加させる必要がある。しかしながら、空気泡を微細化すると空気泡の上昇力が低下し、膜分離手段3の膜面に対して十分な剪断力を付与することができない。このため、第2の目的である膜面の洗浄効果が低下する。また、第3の目的である循環流の形成も不十分となる。逆に第2、第3の目的を優先して散気する空気泡を粗大にすると被処理水に対する酸素の溶解効率が低下し、活性汚泥による好気処理の効率も酸素不足によって低下するという問題がある。このように、第1の目的と第2、第3の目的の間には散気する空気泡の大きさに関して二律背反の関係があり、散気のみによって3つの目的を同時に達成することはきわめて難しい。
【0007】
特許文献1には上記の従来技術の問題点を解決するために、反応槽の液面近傍に邪魔板を設ける構成が開示されている。この構成によれば、邪魔板に液中を上昇した空気泡を衝突させ、下面に沿って分散させることにより酸素溶解効率が向上する。また、邪魔板の下面に突起を設け空気泡を破壊することにより酸素溶解効率を向上させることが開示されている。
【0008】
【特許文献1】
特開平10−263582号公報
【0009】
【発明が解決しようとする課題】
特許文献1に記載された構成によれば、10%程度の酸素溶解効率の向上は認められるものの、より一層の酸素溶解効率の向上を図るためにはこのような静的な邪魔板では不十分である。特に好気槽内に保持する活性汚泥が10,000mg/L程度の高濃度である場合には、好気処理が速やかに進行するため、被処理水が好気槽内を循環する過程で酸素不足が生じ、活性汚泥による好気処理の効率も低下するという問題があった。
【0010】
本発明の目的は上記従来技術の欠点を改善し、膜面の洗浄効果を維持しつつ、活性汚泥による好気処理を酸素不足が生じることなく効率よく行うことができる膜分離式活性汚泥処理装置を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る膜分離式活性汚泥処理装置は、槽内に保持した活性汚泥によって被処理水を生物学的に好気処理する好気槽と、前記好気槽内に浸漬された膜分離手段と、前記膜分離手段の下方から空気を散気する散気手段と、前記膜分離手段で透過した処理水を排出する処理水排出手段とを備えた膜分離式活性汚泥処理装置において、前記散気手段から散気されて前記膜分離手段の上方域に到達した空気泡を回転羽根によって微細化する気泡微細化手段を設けたことを特徴とする。また、本発明は上記の構成において前記気泡微細化手段の稼動を前記好気槽内の被処理水の溶存酸素濃度に基づいて制御することを特徴とする。
【0012】
【作用】
本発明によれば、膜分離手段の上方域に到達した粗大な空気泡を回転羽根によって動的に微細化するようにしたので、当該上方域での空気泡の単位体積当たりの比表面積が著しく増加する。このため、当該上方域での酸素溶解効率が向上し、被処理水中の溶存酸素濃度を高く維持することができる。したがって、好気槽内に保持する活性汚泥を高濃度にした場合でも酸素不足が生じることがなく、膜面の洗浄効果を維持しつつ、活性汚泥による好気処理を効率よく行うことができる。
【0013】
【発明の実施の形態】
図1は本発明に係る膜分離式活性汚泥処理装置の第1実施形態を模式的に示した正断面図であり、図2は同じくその側断面図である。好気槽10には被処理水流入管12から流入した被処理水が張り込まれている。好気槽10内には活性汚泥が予め高濃度に保持されるとともに、膜分離手段14が浸漬されている。膜分離手段14は、両面に分離膜を張った方形の平膜16を狭いピッチで横方向に多数枚、並列させた構造である。隣り合う平膜16間の隙間は4〜10mmであり、この狭い隙間を被処理水が通過する過程で膜分離が行われる。
【0014】
膜分離手段14の直下位置には散気手段18が配設され、ブロワ20から供給された空気を膜分離手段14に向けて散気する。散気手段18は複数本の散気管19を所定のピッチで横方向に並列させた構造であり、各散気管19には多数の散気孔が穿設されている。この散気孔から比較的粗大な気泡径の空気が散気される。膜分離手段14には排出管22が接続しており、この排出管22の途中に設けられた吸引ポンプ24によって平膜16を透過した処理水が装置外に排出される。膜分離手段14の上方域には四方を傾斜板26によって囲われ、上部開口が狭められた集合部28が形成されている。この集合部28の上部開口には回転羽根32を備えた気泡微細化手段30が配置されている。また、好気槽10の側面と膜分離手段14の側面との間には、被処理水を循環させるための流路34が形成されている
【0015】
上記の構成において、好気槽10内に流入した被処理水は槽内に高濃度に保持した活性汚泥と混合し、活性汚泥によって生物学的に好気処理されて被処理水中の有機物や窒素、リンなどが除去される。膜分離手段14では散気手段18から散気された空気泡の上昇力に伴って被処理水の上向流が生じ、膜分離手段14の下方から活性汚泥と被処理水が混合状態で吸い込まれる。膜分離手段14では吸引ポンプ24の吸引力によって膜分離が行われ、平膜16を透過した処理水は排出管22を介して装置外に排出される。この結果、活性汚泥が好気槽10内に留まることになり、好気処理による増殖分と合わせて、好気槽10内では活性汚泥が高濃度に保持される。また、散気手段18からの散気によって補給された酸素が被処理水中に溶解して好気槽10内を好気性に維持する。被処理水中に溶解した溶存酸素は活性汚泥による生物学的な好気処理に利用され、消費される。この散気による酸素の補給と好気処理による酸素の消費がバランスして好気槽10内での被処理水中の溶存酸素が一定範囲内に維持される。
【0016】
従来技術の項で説明したように、散気手段18からの散気は膜分離手段14の膜面の洗浄をも目的としている。洗浄を効果的に行うためには、散気される空気泡の大きさが重要となる。このため、膜分離手段14の隣り合う平膜16間の隙間(通常は4〜10mm)に対して、散気される空気泡の直径が5〜8割となるように、各散気管19に穿設する散気孔の径を選定する。空気泡の直径が上記の範囲未満であると空気泡の上昇力が過小となり、平膜16の膜面に十分な剪断力を付与することができず、洗浄効果が低下する。また、被処理水の循環流の形成も不十分となる。逆に空気泡の直径が上記の範囲を越えると空気泡同士が合体してより一層大きくなった空気泡と膜面との摩擦抵抗が増大し、空気泡が平膜16間の隙間を円滑に上昇せず、運転の不安定を招く。このような運転の不安定は特に被処理水の循環流の円滑な形成を妨げるとともに、平膜16の膜面に過大な衝撃を与え膜の寿命を縮める。
【0017】
しかしながら、上述した散気時の空気泡の大きさは散気によって補給した酸素を被処理水に溶解させて、被処理水中の溶存酸素を高めるという目的には不適である。したがって、本実施形態では膜面の洗浄と被処理水の循環流の形成という役目を果たして膜分離手段14の上方域に到達した空気泡を気泡微細化手段30によって微細化する。すなわち、膜分離手段14の上方域に到達した空気泡は平膜16間の隙間を通過する過程で空気泡同士の合体が繰り返されて散気時よりもさらに粗大化し、酸素溶解効率が低い状態にある。この粗大化した空気泡は集合部28の傾斜板26によって上部開口に導かれる。上部開口には気泡微細化手段30の回転羽根32が配置されており、回転羽根32が回転することによって上部開口を通過する空気泡が動的に微細化される。このような回転羽根32はその回転数を変化させて、空気泡の微細化のレベルを調節できるので便利である。回転羽根32としては攪拌機能を持つもので十分であるが、軸流ポンプとしての機能を兼ねた構造にすれば被処理水の循環流を形成する上でも役立つので、より一層好ましい。
【0018】
回転羽根32によって微細化された空気泡は単位体積当たりの比表面積が著しく増加する。このため、酸素溶解効率が向上し、被処理水中の溶存酸素濃度を高く維持することができる。しかも微細化された空気泡は浮力が小さいので、被処理水から離脱して上方に散逸することが少ない。このため、被処理水との接触時間が増加して酸素溶解効率が向上する。なお、回転羽根32は空気泡を微細化する以外に、被処理水と混合している活性汚泥の塊をバラバラに解きほぐし、活性汚泥の活性を高める。
【0019】
膜分離手段14の上方域で溶存酸素濃度が高くなった被処理水は循環流に沿って流路34を下降し、再び膜分離手段14の下方から吸い込まれ循環する。活性汚泥による好気処理は被処理水の循環過程における全ての領域で継続して進行し、流路34を被処理水が下降する段階でも好気処理が進行する。この好気処理の進行にともなって被処理水中の溶存酸素が消費され、流路34の下流側ほど次第に被処理水の溶存酸素濃度が低下していく。しかしながら、本実施形態では上方域で被処理水の溶存酸素濃度が十分に高くされているので、流路34の途中で酸素不足が生じることはなく、活性汚泥による好気処理を安定して維持することができる。
【0020】
なお、好気槽10に流入する被処理水の有機物や窒素の負荷が小さい場合には、好気処理で消費される酸素もほぼ比例して少なくなる。このような場合には、散気手段18からの散気のみによって好気処理に必要な溶存酸素量を十分に賄うことができることが想定される。そこで、本実施形態では流路34の下流側に被処理水の溶存酸素濃度を検出するセンサ36が設けられている。センサ36の検出値はコントローラ38に送信され、コントローラ38ではセンサ36から送信された被処理水の溶存酸素濃度に基づいて気泡微細化手段30の稼動を制御する。すなわち、被処理水の溶存酸素濃度が設定値以上の時には気泡微細化手段30の稼動を停止し、設定値未満の時にのみ気泡微細化手段30を稼動させるように制御する。この際の設定値としては1〜2ppmとすることが好ましい。このような制御を行うことによって、気泡微細化手段30の無駄な稼動を排除することができ、省エネルギー化を図ることができる。
【0021】
上述のとおり、本実施形態に係る膜分離式活性汚泥処理装置によれば、散気手段18では比較的大きな空気泡を散気することによって膜分離手段14の膜面の洗浄と被処理水の循環流の形成を安定して行う。また、膜分離手段14の上方域に到達した粗大な空気泡を回転羽根32によって強制的に微細化するようにしたので、被処理水中の溶存酸素濃度を高く維持することができる。したがって、好気槽10内に保持する活性汚泥を高濃度にした場合でも酸素不足が生じることがなく、膜面の洗浄効果を維持しつつ、活性汚泥による好気処理を効率よく行うことができる。さらに、気泡微細化手段30の稼動を好気槽10内の被処理水の溶存酸素濃度に基づいて制御するようにしたので、被処理水の有機物や窒素の負荷が小さい場合に気泡微細化手段30の無駄な稼動を排除することができ、省エネルギー化を図ることができる。
【0022】
図3は本発明に係る膜分離式活性汚泥処理装置の第2実施形態を模式的に示した正断面図である。図中、図1と同一の符号を付した要素は図1の場合と同様の機能を有しており説明を省略する。本実施形態では、膜分離手段14の上方域に好気槽10を横断するように回転軸42が支持され、この回転軸42に複数本の気泡切断羽根44が設けられている。気泡微細化手段40はこの回転軸42と気泡切断羽根44とで構成された回転羽根を所定の回転数で回転させることによって空気泡を微細化する。図3において膜分離手段14が紙面に対して垂直方向に長く連続している場合には、この気泡微細化手段40を紙面に対して垂直方向に複数に並列して設置する。この第2実施形態に係る気泡微細化手段40によれば、空気泡を集合させる格別の構造を必要とせずに膜分離手段14の上方域に到達した空気泡のすべてを余すことなく微細化することができる。
【0023】
【発明の効果】
本発明によれば、膜分離手段の上方域に到達した粗大な空気泡を回転羽根によって強制的に微細化するようにしたので、当該上方域での空気泡の単位体積当たりの比表面積が増加する。このため、当該上方域での酸素溶解効率が向上し、被処理水中の溶存酸素濃度を高くすることができる。したがって、好気槽内に保持する活性汚泥を高濃度にした場合でも酸素不足が生じることがなく、膜分離手段の膜面の洗浄効果を維持しつつ、活性汚泥による好気処理を効率よく行うことができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を模式的に示した正断面図である。
【図2】本発明の第1実施形態を模式的に示した側断面図である。
【図3】本発明の第2実施形態を模式的に示した正断面図である。
【図4】従来技術に係る膜分離式活性汚泥処理装置を模式的に示した側断面図である。
【符号の説明】
10………好気槽、12………流入管、14………膜分離手段、16………平膜、18………散気手段、19………散気管、20………ブロワ、22………排出管、24………吸引ポンプ、26………傾斜板、30………気泡微細化手段、32………回転羽根、34………流路、36………センサ、38………コントローラ、40………気泡微細化手段、42………回転軸、44………気泡切断羽根。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a membrane separation type activated sludge treatment apparatus, and more particularly to a membrane separation type activated sludge treatment apparatus in which a membrane separation means is immersed in an aerobic tank holding activated sludge.
[0002]
[Prior art]
2. Description of the Related Art A membrane separation type activated sludge treatment device is used as a device for efficiently removing organic substances, nitrogen, phosphorus, and the like in water to be treated. FIG. 4 is a side sectional view schematically showing a membrane separation type activated sludge treatment apparatus of this type. The to-be-processed water which flowed in from the to-be-processed water inflow pipe 2 is stuck in the aerobic tank 1. In the aerobic tank 1, activated sludge is previously held at a high concentration, and the membrane separation means 3 is immersed. As the membrane separation means 3, a structure having a structure in which a large number of rectangular flat membranes each having a separation membrane stretched on both sides are arranged side by side at small intervals in the horizontal direction is generally used. A diffuser 4 is provided below the membrane separator 3, and diffuses air supplied from the blower 5 toward the membrane separator 3. The membrane separation means 3 is provided with a suction pump 6 for discharging treated water permeated through the flat membrane to the outside of the apparatus in the middle of a discharge pipe 7.
[0003]
In the above configuration, the water to be treated that has flowed into the aerobic tank 1 is biologically aerobicly treated by activated sludge, and organic substances, nitrogen, phosphorus, and the like in the water to be treated are removed. In the membrane separation means 3, the membrane is separated by the suction force of the suction pump 6, and the activated sludge and the treated water are separated into solid and liquid. The treated water that has passed through the flat membrane is discharged to the outside of the apparatus through a discharge pipe 7. As a result, the activated sludge stays in the aerobic tank 1, and the activated sludge is maintained at a high concentration in the aerobic tank 1 together with the multiplication by the aerobic treatment.
[0004]
The air diffuser 4 has three purposes. The first purpose is to keep the inside of the aerobic tank 1 aerobic. Since oxygen is consumed in the biological aerobic treatment by activated sludge, oxygen is supplemented by aeration to keep the dissolved oxygen in the water to be treated in the aerobic tank 1 high. The second purpose is to clean the separation membrane of the membrane separation means 3. Activated sludge and various solids adhere and accumulate on the membrane surface of the flat membrane due to membrane separation, and if left as it is, the permeability of the separation membrane will gradually decrease, so air is diffused for the purpose of cleaning the membrane surface. Is That is, the air bubbles diffused from below the membrane separation means 3 rise by buoyancy. During the ascent process, a shearing force is applied to the film surface of the flat film, and the solid matter adhered and deposited on the film surface is peeled off. The third object is to form a circulating flow of the water to be treated in the aerobic tank 1. The upward flow of the water to be treated occurs in the membrane separation means 3 with the rising force of the diffused air bubbles, and the water to be treated is sucked from below the membrane separation means 3. The to-be-processed water pushed out above the membrane separation means 3 then goes down the flow path 8 and is sucked again from below the membrane separation means 3. In the process of circulating the water to be treated, the water to be treated and the activated sludge are sufficiently mixed and contacted, and the aerobic treatment with the activated sludge actively proceeds.
[0005]
Thus, the membrane separation type activated sludge treatment apparatus can simultaneously perform the aerobic treatment with activated sludge and the solid-liquid separation in the aerobic tank 1. For this reason, compared with the conventional activated sludge treatment apparatus provided with a sedimentation basin, the sedimentation basin can be omitted, and the apparatus can be made compact and highly efficient.
[0006]
However, there are difficult problems in simultaneously achieving the three purposes of the aeration. In order to achieve the first object, it is necessary to increase the gas-liquid contact area per unit volume by minimizing the diffused air bubbles as much as possible. However, when the air bubbles are made finer, the rising force of the air bubbles decreases, and a sufficient shearing force cannot be applied to the membrane surface of the membrane separation means 3. Therefore, the effect of cleaning the film surface, which is the second object, is reduced. In addition, the formation of the circulation flow, which is the third object, becomes insufficient. Conversely, if the air bubbles diffused by giving priority to the second and third purposes are made coarse, the efficiency of dissolving oxygen in the water to be treated decreases, and the efficiency of aerobic treatment with activated sludge also decreases due to lack of oxygen. There is. Thus, there is a trade-off relationship between the first object and the second and third objects with respect to the size of the air bubbles to be diffused, and it is extremely difficult to simultaneously achieve the three objects only by air diffusion. .
[0007]
Patent Document 1 discloses a configuration in which a baffle plate is provided in the vicinity of a liquid surface of a reaction tank in order to solve the above-described problems of the related art. According to this configuration, the air bubbles that have risen in the liquid collide with the baffle plate and are dispersed along the lower surface, thereby improving the oxygen dissolving efficiency. It is also disclosed that a projection is provided on the lower surface of the baffle plate to break air bubbles, thereby improving the oxygen dissolving efficiency.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-263852
[Problems to be solved by the invention]
According to the configuration described in Patent Document 1, although an improvement in oxygen dissolving efficiency of about 10% is recognized, such a static baffle plate is insufficient for further improving oxygen dissolving efficiency. It is. In particular, when the activated sludge held in the aerobic tank has a high concentration of about 10,000 mg / L, the aerobic treatment proceeds promptly, so that the water to be treated circulates in the process of circulating in the aerobic tank. There was a problem that shortage occurred and the efficiency of aerobic treatment with activated sludge also decreased.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to improve the drawbacks of the above-mentioned prior art, and to perform aerobic treatment with activated sludge efficiently without causing oxygen deficiency while maintaining the cleaning effect on the membrane surface, and a membrane separation type activated sludge treatment apparatus. Is to provide.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a membrane separation type activated sludge treatment apparatus according to the present invention includes an aerobic tank for biologically and aerobicly treating water to be treated with activated sludge held in a tank; Membrane separation means immersed in a tank, air diffusion means for diffusing air from below the membrane separation means, and treated water discharge means for discharging treated water permeated by the membrane separation means The activated activated sludge treatment apparatus is characterized in that a bubble refining means is provided for refining air bubbles diffused from the air diffusing means and reaching the upper region of the membrane separation means by rotating blades. Further, the present invention is characterized in that, in the above configuration, the operation of the bubble miniaturization means is controlled based on the dissolved oxygen concentration of the water to be treated in the aerobic tank.
[0012]
[Action]
According to the present invention, the coarse air bubbles reaching the upper region of the membrane separation means are dynamically made finer by the rotating blades, so that the specific surface area per unit volume of the air bubbles in the upper region is remarkable. To increase. Therefore, the oxygen dissolving efficiency in the upper region is improved, and the concentration of dissolved oxygen in the water to be treated can be kept high. Therefore, even when the activated sludge held in the aerobic tank is made to have a high concentration, oxygen deficiency does not occur, and the aerobic treatment with the activated sludge can be efficiently performed while maintaining the effect of cleaning the membrane surface.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a front sectional view schematically showing a first embodiment of a membrane separation type activated sludge treatment apparatus according to the present invention, and FIG. 2 is a side sectional view thereof. The treated water flowing from the treated water inflow pipe 12 is inserted into the aerobic tank 10. In the aerobic tank 10, activated sludge is held at a high concentration in advance, and the membrane separation means 14 is immersed. The membrane separation means 14 has a structure in which a large number of rectangular flat membranes 16 having separation membranes stretched on both sides are arranged side by side in a horizontal direction at a narrow pitch. The gap between the adjacent flat membranes 16 is 4 to 10 mm, and membrane separation is performed while the water to be treated passes through the narrow gap.
[0014]
An air diffuser 18 is provided immediately below the membrane separator 14, and diffuses air supplied from the blower 20 toward the membrane separator 14. The air diffuser 18 has a structure in which a plurality of air diffusers 19 are arranged side by side at a predetermined pitch in the lateral direction, and each air diffuser 19 has a large number of air diffuser holes. Air having a relatively large bubble diameter is diffused from the air diffusion holes. A discharge pipe 22 is connected to the membrane separation means 14, and the treated water that has passed through the flat membrane 16 is discharged outside the apparatus by a suction pump 24 provided in the middle of the discharge pipe 22. In the upper region of the membrane separation means 14, there is formed a collecting part 28 which is surrounded on all sides by an inclined plate 26 and has a narrow upper opening. At the upper opening of the collecting section 28, a bubble miniaturizing means 30 having a rotating blade 32 is arranged. A flow path 34 for circulating the water to be treated is formed between the side surface of the aerobic tank 10 and the side surface of the membrane separation means 14.
In the above configuration, the water to be treated that has flowed into the aerobic tank 10 is mixed with the activated sludge maintained at a high concentration in the tank, and is biologically aerobic treated by the activated sludge, and the organic matter and nitrogen in the water to be treated are treated. , Phosphorus and the like are removed. In the membrane separation means 14, the upward flow of the water to be treated is caused by the rising force of the air bubbles diffused from the diffusion means 18, and the activated sludge and the water to be treated are sucked in a mixed state from below the membrane separation means 14. It is. In the membrane separation means 14, the membrane is separated by the suction force of the suction pump 24, and the treated water that has passed through the flat membrane 16 is discharged to the outside of the apparatus through the discharge pipe 22. As a result, the activated sludge stays in the aerobic tank 10, and the activated sludge is maintained at a high concentration in the aerobic tank 10 together with the multiplication by the aerobic treatment. Further, the oxygen supplied by the air diffusion from the air diffusion means 18 is dissolved in the water to be treated, and the inside of the aerobic tank 10 is kept aerobic. Dissolved oxygen dissolved in the water to be treated is used and consumed in biological aerobic treatment with activated sludge. The supply of oxygen by the aeration and the consumption of oxygen by the aerobic treatment are balanced so that the dissolved oxygen in the water to be treated in the aerobic tank 10 is maintained within a certain range.
[0016]
As described in the section of the prior art, the air diffusion from the air diffusion means 18 is also intended for cleaning the membrane surface of the membrane separation means 14. The size of the air bubbles to be diffused is important for effective cleaning. For this reason, each air diffuser pipe 19 is provided so that the diameter of the air bubbles to be diffused is 50 to 80% with respect to the gap (normally 4 to 10 mm) between the adjacent flat membranes 16 of the membrane separation means 14. Select the diameter of the aeration holes to be drilled. If the diameter of the air bubbles is less than the above range, the rising force of the air bubbles becomes too small, so that a sufficient shearing force cannot be applied to the film surface of the flat film 16, and the cleaning effect is reduced. In addition, the formation of a circulating flow of the water to be treated becomes insufficient. Conversely, when the diameter of the air bubbles exceeds the above range, the frictional resistance between the larger air bubbles and the membrane surface increases due to the coalescence of the air bubbles, and the air bubbles smoothly fill the gap between the flat membranes 16. It does not rise, leading to unstable driving. Such instability of the operation particularly hinders the smooth formation of the circulating flow of the water to be treated and exerts an excessive impact on the surface of the flat membrane 16 to shorten the life of the membrane.
[0017]
However, the size of the air bubbles during the aeration is not suitable for the purpose of dissolving the oxygen supplemented by the aeration into the water to be treated and increasing the dissolved oxygen in the water to be treated. Therefore, in the present embodiment, the air bubbles reaching the upper region of the membrane separation means 14 are reduced by the bubble reduction means 30 by playing the role of cleaning the membrane surface and forming a circulating flow of the water to be treated. That is, the air bubbles that have reached the upper region of the membrane separation means 14 repeat the coalescence of the air bubbles in the process of passing through the gap between the flat membranes 16 and become coarser than in the case of air diffusion, and the oxygen dissolving efficiency is low. It is in. The coarse air bubbles are guided to the upper opening by the inclined plate 26 of the collecting part 28. The rotating blades 32 of the bubble miniaturizing means 30 are arranged in the upper opening, and the air bubbles passing through the upper opening are dynamically reduced by rotating the rotating blades 32. Such a rotating blade 32 is convenient because the number of rotations thereof can be changed to adjust the level of fineness of the air bubbles. It is sufficient that the rotary blade 32 has a stirring function. However, it is more preferable to use a structure that also functions as an axial pump, because it is useful for forming a circulating flow of the water to be treated.
[0018]
The air bubbles refined by the rotating blades 32 have a significantly increased specific surface area per unit volume. Therefore, the oxygen dissolving efficiency is improved, and the concentration of dissolved oxygen in the water to be treated can be kept high. Moreover, since the microbubble air bubbles have a small buoyancy, they are less likely to separate from the water to be treated and dissipate upward. For this reason, the contact time with the water to be treated increases, and the oxygen dissolving efficiency improves. In addition to the air bubbles being finer, the rotating blades 32 disintegrate loosely the activated sludge mixed with the water to be treated and increase the activity of the activated sludge.
[0019]
The water to be treated whose dissolved oxygen concentration has increased in the upper region of the membrane separation means 14 descends along the flow path 34 along the circulating flow, and is again sucked in from below the membrane separation means 14 and circulated. The aerobic treatment with the activated sludge continuously proceeds in all regions in the process of circulating the water to be treated, and the aerobic treatment also proceeds at the stage where the water to be treated descends in the flow path 34. The dissolved oxygen in the water to be treated is consumed as the aerobic treatment proceeds, and the concentration of dissolved oxygen in the water to be treated gradually decreases toward the downstream side of the flow path 34. However, in this embodiment, the concentration of dissolved oxygen in the water to be treated is sufficiently high in the upper region, so that there is no shortage of oxygen in the middle of the flow path 34, and the aerobic treatment with activated sludge is stably maintained. can do.
[0020]
In addition, when the load of the organic matter and nitrogen flowing into the aerobic tank 10 is small, the amount of oxygen consumed in the aerobic treatment is also reduced almost in proportion. In such a case, it is assumed that the amount of dissolved oxygen necessary for the aerobic treatment can be sufficiently covered only by the air diffuser 18. Therefore, in this embodiment, a sensor 36 for detecting the dissolved oxygen concentration of the water to be treated is provided downstream of the flow path 34. The detection value of the sensor 36 is transmitted to the controller 38, and the controller 38 controls the operation of the bubble miniaturization means 30 based on the dissolved oxygen concentration of the water to be treated transmitted from the sensor 36. That is, when the concentration of dissolved oxygen in the water to be treated is equal to or higher than the set value, the operation of the bubble refining means 30 is stopped, and only when the dissolved oxygen concentration is less than the set value, the bubble refining means 30 is operated. At this time, the set value is preferably set to 1 to 2 ppm. By performing such control, useless operation of the bubble miniaturization means 30 can be eliminated, and energy can be saved.
[0021]
As described above, in the membrane separation type activated sludge treatment apparatus according to the present embodiment, the diffuser 18 diffuses relatively large air bubbles to clean the membrane surface of the membrane separator 14 and to treat the water to be treated. Stabilizes the formation of a circulating flow. Further, since the coarse air bubbles reaching the upper region of the membrane separation means 14 are forcibly miniaturized by the rotating blades 32, the dissolved oxygen concentration in the water to be treated can be kept high. Therefore, even when the activated sludge held in the aerobic tank 10 is made to have a high concentration, oxygen deficiency does not occur, and the aerobic treatment with the activated sludge can be efficiently performed while maintaining the cleaning effect on the membrane surface. . Furthermore, since the operation of the bubble refining means 30 is controlled based on the dissolved oxygen concentration of the water to be treated in the aerobic tank 10, the bubble refining means is controlled when the load of the organic matter or nitrogen of the water to be treated is small. 30 can be eliminated, and energy saving can be achieved.
[0022]
FIG. 3 is a front sectional view schematically showing a second embodiment of the membrane separation type activated sludge treatment apparatus according to the present invention. In the figure, elements denoted by the same reference numerals as those in FIG. 1 have the same functions as those in FIG. In the present embodiment, a rotating shaft 42 is supported in a region above the membrane separation means 14 so as to cross the aerobic tank 10, and a plurality of bubble cutting blades 44 are provided on the rotating shaft 42. The bubble refiner 40 refines the air bubbles by rotating the rotary blade composed of the rotating shaft 42 and the bubble cutting blade 44 at a predetermined number of revolutions. In FIG. 3, when the membrane separation means 14 is long and continuous in the direction perpendicular to the paper, a plurality of the bubble miniaturization means 40 are arranged in parallel in the direction perpendicular to the paper. According to the bubble refining means 40 according to the second embodiment, all the air bubbles reaching the upper region of the membrane separation means 14 are finely reduced without requiring a special structure for collecting the air bubbles. be able to.
[0023]
【The invention's effect】
According to the present invention, since the coarse air bubbles reaching the upper region of the membrane separation means are forcibly reduced by the rotating blades, the specific surface area per unit volume of the air bubbles in the upper region is increased. I do. Therefore, the oxygen dissolving efficiency in the upper region is improved, and the concentration of dissolved oxygen in the water to be treated can be increased. Therefore, even when the activated sludge held in the aerobic tank is made to have a high concentration, oxygen deficiency does not occur, and the aerobic treatment with the activated sludge is efficiently performed while maintaining the cleaning effect of the membrane surface of the membrane separation means. be able to.
[Brief description of the drawings]
FIG. 1 is a front sectional view schematically showing a first embodiment of the present invention.
FIG. 2 is a side sectional view schematically showing the first embodiment of the present invention.
FIG. 3 is a front sectional view schematically showing a second embodiment of the present invention.
FIG. 4 is a side sectional view schematically showing a membrane separation type activated sludge treatment apparatus according to a conventional technique.
[Explanation of symbols]
10 ... aerobic tank, 12 ... inflow pipe, 14 ... membrane separation means, 16 ... flat membrane, 18 ... diffuser means, 19 ... diffuser pipe, 20 ... blower , 22 ... discharge pipe, 24 ... suction pump, 26 ... inclined plate, 30 ... bubble miniaturization means, 32 ... rotating blades, 34 ... flow path, 36 ... sensor , 38... Controller, 40... Bubble miniaturization means, 42... Rotating shaft 44... Bubble cutting blades.

Claims (2)

槽内に保持した活性汚泥によって被処理水を生物学的に好気処理する好気槽と、前記好気槽内に浸漬された膜分離手段と、前記膜分離手段の下方から空気を散気する散気手段と、前記膜分離手段で透過した処理水を排出する処理水排出手段とを備えた膜分離式活性汚泥処理装置において、前記散気手段から散気されて前記膜分離手段の上方域に到達した空気泡を回転羽根によって微細化する気泡微細化手段を設けたことを特徴とする膜分離式活性汚泥処理装置。An aerobic tank for biologically aerobic treatment of the water to be treated with activated sludge held in the tank, a membrane separation means immersed in the aerobic tank, and air diffused from below the membrane separation means. In a membrane separation type activated sludge treatment apparatus provided with a diffuser means for performing treatment and a treated water discharge means for discharging treated water permeated by the membrane separation means. A membrane separation type activated sludge treatment apparatus characterized in that a bubble refining means is provided for refining air bubbles having reached a region by a rotating blade. 前記気泡微細化手段の稼動を前記好気槽内の被処理水の溶存酸素濃度に基づいて制御することを特徴とする請求項1に記載の膜分離式活性汚泥処理装置。The activated sludge treatment device according to claim 1, wherein the operation of the bubble refining means is controlled based on the dissolved oxygen concentration of the water to be treated in the aerobic tank.
JP2003028689A 2003-02-05 2003-02-05 Membrane separation activated sludge treatment equipment Expired - Fee Related JP3807499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028689A JP3807499B2 (en) 2003-02-05 2003-02-05 Membrane separation activated sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028689A JP3807499B2 (en) 2003-02-05 2003-02-05 Membrane separation activated sludge treatment equipment

Publications (2)

Publication Number Publication Date
JP2004237202A true JP2004237202A (en) 2004-08-26
JP3807499B2 JP3807499B2 (en) 2006-08-09

Family

ID=32956084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028689A Expired - Fee Related JP3807499B2 (en) 2003-02-05 2003-02-05 Membrane separation activated sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP3807499B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852208B1 (en) 2008-03-20 2008-08-13 글로벌 후소 주식회사 Multistage waste water treatment apparatus
JP2013248566A (en) * 2012-05-31 2013-12-12 Panasonic Corp Membrane separation activated sludge process and reforming method of activated sludge
WO2014157488A1 (en) * 2013-03-27 2014-10-02 株式会社クボタ Operation method for organic-waste-water treatment device, and organic-waste-water treatment device
JP2016047492A (en) * 2014-08-27 2016-04-07 Jfeエンジニアリング株式会社 Membrane separation active sludge treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101376040B1 (en) 2011-12-30 2014-03-19 주식회사 평화개발 Advanced wastewater treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852208B1 (en) 2008-03-20 2008-08-13 글로벌 후소 주식회사 Multistage waste water treatment apparatus
JP2013248566A (en) * 2012-05-31 2013-12-12 Panasonic Corp Membrane separation activated sludge process and reforming method of activated sludge
WO2014157488A1 (en) * 2013-03-27 2014-10-02 株式会社クボタ Operation method for organic-waste-water treatment device, and organic-waste-water treatment device
JP2014188442A (en) * 2013-03-27 2014-10-06 Kubota Corp Operation method of organic wastewater treatment apparatus and organic wastewater treatment apparatus
JP2016047492A (en) * 2014-08-27 2016-04-07 Jfeエンジニアリング株式会社 Membrane separation active sludge treatment apparatus

Also Published As

Publication number Publication date
JP3807499B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP2001212587A (en) Method and apparatus for diffusing air of membrane separation activated sludge method
JP2008246305A (en) Flotation machine and operation method of flotation machine
JP4588043B2 (en) Membrane separation method and apparatus
JP3807499B2 (en) Membrane separation activated sludge treatment equipment
JP2008119609A (en) Gas diffusion system and gas diffusion method
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
JP2003053371A (en) Aeration mixing apparatus
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2005218955A (en) Gas/liquid contactor
JP4374885B2 (en) Membrane separator
JP2006247498A (en) Membrane washing method and apparatus
JP2004322084A (en) Biological filtration system
JP4819841B2 (en) Membrane separator
JP2003205287A (en) Membrane separation type waste water treatment equipment
KR200172329Y1 (en) Apparatus for the aeration of waste water
JPH07108295A (en) Pressurized aeration treatment device for waste water
JP2003154204A (en) Oil separating apparatus
JP2004337787A (en) Membrane separation activated sludge treatment tank
JP2006320777A (en) Waste water treatment apparatus
JP2003024973A (en) Membrane separation type oxidation ditch
JP4055077B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP2523295B2 (en) Wastewater treatment device with side channel type fining tank
JP2005095799A (en) Membrane activated sludge treatment apparatus
JP3278544B2 (en) Activated sludge treatment equipment
JP2012045510A (en) Membrane separation activated sludge processing apparatus and membrane surface washing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees