JP2012045510A - Membrane separation activated sludge processing apparatus and membrane surface washing method of the same - Google Patents

Membrane separation activated sludge processing apparatus and membrane surface washing method of the same Download PDF

Info

Publication number
JP2012045510A
JP2012045510A JP2010191740A JP2010191740A JP2012045510A JP 2012045510 A JP2012045510 A JP 2012045510A JP 2010191740 A JP2010191740 A JP 2010191740A JP 2010191740 A JP2010191740 A JP 2010191740A JP 2012045510 A JP2012045510 A JP 2012045510A
Authority
JP
Japan
Prior art keywords
membrane separation
membrane
activated sludge
diffuser
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010191740A
Other languages
Japanese (ja)
Inventor
Hideaki Ando
秀明 安東
Atsushi Kitanaka
敦 北中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010191740A priority Critical patent/JP2012045510A/en
Publication of JP2012045510A publication Critical patent/JP2012045510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane separation activated sludge processing apparatus and a membrane surface washing method of the membrane separation activated sludge processing apparatus which does not require complicated operation management, makes such highly efficient membrane surface washing as to hardly cause membrane surface blocking possible and does not accompany air diffusion of excessive air amount.SOLUTION: The membrane separation activated sludge processing apparatus is characterized in that an immersion type membrane separation device is arranged in a reaction tank, an air diffuser is arranged on the lower side of the immersion type membrane separation device and a water jet device having a submerged pump disposed outside the range on the vertically lower side of the immersion type membrane separation device and on the lower part of the reactor tank as a power source, is disposed on the upper side or the lower side of the diffuser.

Description

本発明は、活性汚泥を含む微生物含有液を、膜を用いて固液分離する浸漬型膜分離装置に関する。具体的には、下水等の汚水を、活性汚泥処理した後に膜分離処理する、いわゆる膜分離活性汚泥法を用いた廃水処理に関するものである。   The present invention relates to a submerged membrane separation apparatus for solid-liquid separation of a microorganism-containing liquid containing activated sludge using a membrane. Specifically, the present invention relates to wastewater treatment using a so-called membrane separation activated sludge method, in which sewage such as sewage is subjected to membrane treatment after activated sludge treatment.

従来、有機性汚水を処理する方法として活性汚泥処理があり、膜分離装置を併用して槽内の活性汚泥濃度を高く維持する膜分離活性汚泥処理がある。一般的な膜分離活性汚泥法においては、反応槽内に浸漬型膜分離装置を設置し、浸漬型膜分離装置の下方に散気装置を配置し、散気装置から散気する空気によって酸素供給を行って活性汚泥処理を行うと共に、空気のエアリフト作用によって生成する上昇流を浸漬型膜分離装置の膜面に掃流として作用させ、膜面に付着するケーキを連続的に洗浄している。使用する浸漬型膜分離装置は、多数の平膜エレメントや、多数の中空糸膜エレメントからなるものが使用される。また、膜分離処理を行う際には、膜面洗浄効果の高い粗大気泡を発生させ、この粗大気泡によって発生する気液混合上昇流を膜表面に作用させて膜面洗浄することが行われている。   Conventionally, there is an activated sludge treatment as a method of treating organic sludge, and there is a membrane separation activated sludge treatment that maintains a high activated sludge concentration in a tank by using a membrane separator together. In a general membrane separation activated sludge method, an immersion membrane separation device is installed in the reaction tank, an aeration device is placed below the immersion membrane separation device, and oxygen is supplied by air diffused from the diffusion device. The activated sludge treatment is performed, and an upward flow generated by the air lift action of air is caused to act as a scavenging flow on the membrane surface of the submerged membrane separation device to continuously wash the cake adhering to the membrane surface. As the immersion type membrane separation apparatus to be used, an apparatus comprising a number of flat membrane elements and a number of hollow fiber membrane elements is used. Also, when performing membrane separation treatment, coarse bubbles having a high membrane surface cleaning effect are generated, and the membrane surface is cleaned by causing a gas-liquid mixed upward flow generated by the coarse bubbles to act on the membrane surface. Yes.

ここで、膜面に作用する気泡が大きいほど、膜面への堆積汚泥に対する剪断力が高くなるので、分離膜表面の洗浄効率を高めることができる。従って、分離膜の洗浄用には粗大気泡を用いることが必要と考えられている。しかし、膜面洗浄効果を優先した粗大気泡散気装置は、(i)曝気に伴う不規則な振動が大きく、膜自体が破損しやすいという欠点があった。また、(ii)酸素溶解効率が低く、活性汚泥による生物処理に必要な酸素供給能力が不足することがある。このため十分な酸素供給を行うためには、膜面洗浄に必要な風量以上の過大な量の空気を散気する必要があり、曝気動力の増大につながる。   Here, the greater the bubbles acting on the membrane surface, the higher the shearing force against the deposited sludge on the membrane surface, so that the cleaning efficiency of the separation membrane surface can be increased. Therefore, it is considered necessary to use coarse bubbles for cleaning the separation membrane. However, the coarse bubble diffusing device giving priority to the effect of cleaning the membrane surface has the disadvantage that (i) irregular vibration accompanying aeration is large and the membrane itself is easily damaged. In addition, (ii) oxygen dissolution efficiency is low, and oxygen supply capacity necessary for biological treatment with activated sludge may be insufficient. For this reason, in order to supply oxygen sufficiently, it is necessary to diffuse an excessive amount of air more than the amount of air necessary for cleaning the membrane surface, leading to an increase in aeration power.

そこで、(i)多量の曝気に起因した不規則な振動によって、膜面が損傷するのを防止しながら膜外表面の洗浄を行う手法として、浸漬型膜分離装置の下方に、散気装置を配置すると共に、膜エレメントに向けて被処理水を流動させる回転翼を設けた水処理装置が提案されている(特許文献1)。また、(ii)散気効率を高めるために、粗大気泡による分離膜表面の洗浄効率を維持しつつ、生物処理に必要な酸素供給のための散気量を極力少なくすることが検討され、微細気泡と粗大気泡とを共に発生させる散気方法が提案されている。例えば、浸漬型膜分離装置の下方に、粗大気泡散気装置と微細気泡散気装置との両方を設置して、粗大気泡と微細気泡を共に発生させる処理装置が提案されている(特許文献2参照)。   Therefore, (i) as a method for cleaning the outer surface of the membrane while preventing the membrane surface from being damaged by irregular vibrations caused by a large amount of aeration, an aeration device is provided below the submerged membrane separation device. There has been proposed a water treatment apparatus that is arranged and provided with a rotary blade that causes the water to be treated to flow toward the membrane element (Patent Document 1). In addition, (ii) in order to increase the efficiency of air diffusion, it has been studied to minimize the amount of air diffusion for supplying oxygen necessary for biological treatment while maintaining the cleaning efficiency of the separation membrane surface with coarse bubbles. An air diffusion method for generating both bubbles and coarse bubbles has been proposed. For example, a processing apparatus has been proposed in which both a coarse bubble diffuser and a fine bubble diffuser are installed below the submerged membrane separation device to generate both coarse bubbles and fine bubbles (Patent Document 2). reference).

特開平4−247288号公報JP-A-4-247288 特開2002−224685号公報Japanese Patent Laid-Open No. 2002-224665

しかしながら、上記した従来の構成において、(i)循環流発生手段として回転翼を用いる場合には、駆動装置の動力が大きくランニングコストが増大となる。また、回転翼の上方に散気装置を配置するので、散気装置と浸漬型膜分離装置の底部までの距離が短くなる。このため、散気装置から曝気する気泡流の分散が悪くなり、膜カートリッジの全面に均一な循環流を与えることが困難となる。一方、(ii)粗大気泡散気装置と微細気泡散気装置を併用するには、流入汚水に応じた適切な運転管理が必要であり、その運転管理は困難かつコスト高につながる。また、空気の適切な風量設定も難しく、設定風量次第では膜面洗浄効果の低下、及び総合的な空気消費動力の増大となる。   However, in the conventional configuration described above, (i) when a rotating blade is used as the circulating flow generating means, the power of the driving device is large and the running cost is increased. Further, since the air diffuser is disposed above the rotor blade, the distance between the air diffuser and the bottom of the submerged membrane separation device is shortened. For this reason, the dispersion of the bubble flow aerated from the air diffuser becomes worse, and it becomes difficult to provide a uniform circulating flow over the entire surface of the membrane cartridge. On the other hand, (ii) In order to use the coarse bubble diffuser and the fine bubble diffuser together, appropriate operation management according to the inflowing sewage is required, and the operation management is difficult and costly. Moreover, it is difficult to set an appropriate air volume of air, and depending on the set air volume, the effect of cleaning the membrane surface is reduced and the overall power consumption of air is increased.

本発明は上記した課題を解決するものであり、(i)について、ランニングコストを低減でき、かつ膜エレメントの全面に均一な循環流を与えることを可能とし、また、(ii)について、複雑な運転管理を必要とせず、過大な空気量の散気を伴わないような、省コストで高効率な膜面洗浄を行うことができる膜分離活性汚泥処理装置及びその膜面洗浄方法を提供することを目的とする。   The present invention solves the above-mentioned problems. With regard to (i), the running cost can be reduced, and a uniform circulating flow can be applied to the entire surface of the membrane element. To provide a membrane-separated activated sludge treatment apparatus that can perform highly efficient membrane surface cleaning at low cost and does not involve excessive air volume diffusion without requiring operation management, and a membrane surface cleaning method thereof. With the goal.

前記目的を達成するための本発明の膜分離活性汚泥処理装置及びその膜面洗浄方法は、以下の構成のいずれかからなる。   In order to achieve the above object, a membrane separation activated sludge treatment apparatus and a membrane surface cleaning method thereof according to the present invention have any of the following configurations.

(1)反応槽に浸漬型膜分離装置を配置し、浸漬型膜分離装置の下方に配置した散気装置の上方または下方に、浸漬型膜分離装置の鉛直下方の範囲外かつ反応槽下部に設置した水中ポンプを動力源とする水流装置を有することを特徴とする膜分離活性汚泥処理装置。
(2)前記散気装置が直径1mm以下の微細気泡を生成する微細気泡管を有することを特徴とする(1)に記載の膜分離活性汚泥処理装置。
(3)前記反応槽の底部から50mm以上150mm以下隔てた位置に前記水中ポンプを配置したことを特徴とする(1)または(2)に記載の膜分離活性汚泥処理装置。
(1) A submerged membrane separation device is arranged in the reaction tank, above or below the diffuser disposed below the submerged membrane separation device, outside the range below the submerged membrane separation device and below the reaction tank. A membrane separation activated sludge treatment apparatus characterized by having a water flow device that uses an installed submersible pump as a power source.
(2) The membrane separation activated sludge treatment apparatus according to (1), wherein the air diffuser has a fine bubble tube that generates fine bubbles having a diameter of 1 mm or less.
(3) The membrane separation activated sludge treatment apparatus according to (1) or (2), wherein the submersible pump is arranged at a position separated from the bottom of the reaction tank by 50 mm or more and 150 mm or less.

(4)反応槽に浸漬型膜分離装置を配置し、浸漬型膜分離装置の下方に配置した散気装置の上方または下方に、浸漬型膜分離装置の鉛直下方の範囲外かつ反応槽下部に設置した水中ポンプを動力源とする水流装置を有する膜分離活性汚泥処理装置における膜面洗浄方法であって、該散気装置から散気する気泡と該水流装置から生成する水流によるエアリフト作用によって生起する気液混相の上昇流を掃流として該浸漬型膜分離装置の膜面に作用させることを特徴とする膜分離活性汚泥処理装置における膜面洗浄方法。
(5)前記散気装置が直径1mm以下の微細気泡を生成する微細気泡管を有することを特徴とする(4)に記載の膜分離活性汚泥処理装置における膜面洗浄方法。
(4) A submerged membrane separation device is arranged in the reaction tank, above or below the diffuser arranged below the submerged membrane separation device, outside the range vertically below the submerged membrane separation device, and below the reaction tank. A membrane surface cleaning method in a membrane separation activated sludge treatment device having a water flow device using a submersible pump as a power source, which is caused by an air lift action caused by bubbles diffused from the air diffusion device and a water flow generated from the water flow device. A membrane surface cleaning method in a membrane separation activated sludge treatment apparatus, characterized in that an ascending flow of a gas-liquid mixed phase is applied as a sweep to the membrane surface of the submerged membrane separation apparatus.
(5) The membrane surface cleaning method for a membrane separation activated sludge treatment apparatus according to (4), wherein the air diffuser has a microbubble tube that generates microbubbles having a diameter of 1 mm or less.

本発明の膜分離活性汚泥処理方法における膜面洗浄方法によれば、水流装置から生成する水流により空気のエアリフト作用が助長されるため、必要最低限の溶存酸素濃度を確保し得る少量の散気においても十分な膜面洗浄効果を得ることができる。   According to the membrane surface cleaning method in the membrane separation activated sludge treatment method of the present invention, since the air lift action of air is promoted by the water flow generated from the water flow device, a small amount of diffused air that can ensure the minimum necessary dissolved oxygen concentration In this case, a sufficient film surface cleaning effect can be obtained.

また、水流装置から生成する水流は、反応槽下部に設置した水中ポンプを動力源とすることで、反応槽液面からのヘッド圧力を利用することができるため低動力で済む。   In addition, the water flow generated from the water flow device can use low power because the head pressure from the liquid level in the reaction tank can be used by using a submersible pump installed in the lower part of the reaction tank as a power source.

さらに、水中ポンプを浸漬型膜分離装置の鉛直下方の範囲外に設置することで、散気ケース内の散気装置及び水流装置で占めるスペースを、回転翼設置時に比べてコンパクトにすることができる。これより、散気装置と浸漬型膜分離装置の底部までの距離を確保することが可能となり、散気装置から曝気する気泡流の分散性が向上する。   Furthermore, by installing the submersible pump outside the vertically lower range of the submerged membrane separation device, the space occupied by the air diffuser and the water flow device in the air diffuser case can be made compact compared to when the rotor blades are installed. . Thereby, it becomes possible to ensure the distance from the diffuser to the bottom of the submerged membrane separator, and the dispersibility of the bubble flow aerated from the diffuser is improved.

本発明の実施の形態における汚水の処理装置を示す模式正面図である。It is a model front view which shows the processing apparatus of the sewage in embodiment of this invention. 本発明で実施の形態における汚水の処理装置を示す模式平面図である。It is a schematic plan view which shows the wastewater treatment apparatus in embodiment in this invention. 従来における汚水の処理装置を示す模式正面図である。(比較例1)It is a model front view which shows the processing apparatus in the past. (Comparative Example 1) 従来における別の汚水の処理装置を示す模式正面図である。(比較例2)It is a model front view which shows another conventional wastewater treatment apparatus. (Comparative Example 2) 従来におけるさらに別の汚水の処理装置を示す模式正面図である。(比較例3)It is a model front view which shows the further another wastewater processing apparatus in the past. (Comparative Example 3)

以下、本発明の実施の形態を図面に基づいて説明する。図1において、反応槽1には有機性汚水を供給する汚水供給系2が接続しており反応槽1に浸漬型膜分離装置3を水深下(500〜1500mm)L1に配置している。浸漬型膜分離装置3は、複数枚の平膜エレメント4をケース5の内部に鉛直方向に沿って配置し、かつ各平膜エレメント4を相互に所定間隔をあけて平行に配置したものであり、隣接する平膜エレメント4の間に、槽内の活性汚泥混合液をクロスフローで通液する流路を形成している。ケース5は平膜エレメント4を収納する上方の膜ケース6と下方の散気ケース7とに分割形成しており、散気ケース7は内部に散気装置8と水流装置9を上下二段に配置し、散気装置8と水流装置9より噴出する空気及び水流の全量が膜ケース6に入り込むように形成している。平膜エレメント4は、ABS樹脂製の濾板の両表面に濾過膜を配置接合し、濾板に形成した透過液流路を透過液導出管10に連通させている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a sewage supply system 2 for supplying organic sewage is connected to a reaction tank 1, and a submerged membrane separation device 3 is disposed in the reaction tank 1 at a depth of water (500 to 1500 mm) L1. The submerged membrane separation device 3 has a plurality of flat membrane elements 4 arranged in the case 5 along the vertical direction, and the flat membrane elements 4 are arranged in parallel at predetermined intervals. Between the adjacent flat membrane elements 4, a flow path is formed through which the activated sludge mixed liquid in the tank flows by cross flow. The case 5 is divided into an upper membrane case 6 that houses the flat membrane element 4 and a lower air diffuser case 7, and the air diffuser case 7 includes an air diffuser 8 and a water flow device 9 in two upper and lower stages. It arrange | positions and it forms so that the whole quantity of the air and water flow which eject from the diffuser 8 and the water flow apparatus 9 may enter into the membrane case 6. FIG. In the flat membrane element 4, filtration membranes are arranged and bonded to both surfaces of a filter plate made of ABS resin, and a permeate flow path formed on the filter plate is communicated with the permeate outlet tube 10.

水流装置9は反応槽1の底部から距離(0〜200mm)L4の位置に配置し、散気装置8は水流装置9から距離(50〜100mm)L3を隔てた上方に位置し、浸漬型膜分離装置3の下方に距離(50〜200mm)L2を隔てた位置に配置しており、散気装置8は粗大気泡または微細気泡を散気し、水流装置9は水流を生成する。散気装置8にはブロワ11を接続して所定空気量を調整し、水流装置9には浸漬型膜分離装置3の鉛直下方の範囲外、かつ反応槽1の下部に設置した水中ポンプ12を接続して所定水流量を調整する。これら所定の空気量及び水流量は、反応槽1内の活性汚泥処理に必要な最低限の酸素量を供給すると共に、浸漬型膜分離装置3の平膜エレメント4の膜面を洗浄するのに効果的なエアリフト作用を生起させるためのものであって、流入する対象汚水の性状及び流入量によって異なるものである。   The water flow device 9 is arranged at a distance (0 to 200 mm) L4 from the bottom of the reaction tank 1, and the air diffuser 8 is located above the water flow device 9 by a distance (50 to 100 mm) L3, so that the immersion membrane It arrange | positions in the position which separated the distance (50-200 mm) L2 below the separation apparatus 3, the diffuser 8 diffuses a coarse bubble or a fine bubble, and the water flow apparatus 9 produces | generates a water flow. A blower 11 is connected to the air diffuser 8 to adjust a predetermined amount of air, and the water flow device 9 is provided with a submersible pump 12 installed outside the range below the submerged membrane separator 3 and below the reaction tank 1. Connect to adjust the predetermined water flow rate. These predetermined air amount and water flow rate supply the minimum oxygen amount necessary for the activated sludge treatment in the reaction tank 1 and clean the membrane surface of the flat membrane element 4 of the submerged membrane separation device 3. This is for causing an effective air lift action, and differs depending on the properties and the amount of inflow of the target sewage.

ここで、図上では散気装置8の下方に水流装置9を配置しているが、意図する効果が得られ、また取り合い上問題無ければその位置関係は逆でもかまわない。また、散気装置8は反応槽1内の活性汚泥処理に必要な最低限の酸素量を供給すればよく、粗大気泡装置でもかまわないが、動力コストの観点から微細気泡散気装置がより好適に使用できる。なお、各装置間の配置距離L1〜L4については、特に限定されるものではなく好適に使用できる範囲を示す。   Here, in the figure, the water flow device 9 is disposed below the air diffuser 8, but the intended effect can be obtained, and the positional relationship may be reversed if there is no problem in the connection. The diffuser 8 only needs to supply a minimum amount of oxygen necessary for the activated sludge treatment in the reaction tank 1 and may be a coarse bubbler, but a fine bubble diffuser is more preferable from the viewpoint of power cost. Can be used for In addition, about arrangement | positioning distance L1-L4 between each apparatus, it does not specifically limit but shows the range which can be used conveniently.

散気装置8について、粗大気泡散気装置は、所定口径の大散気孔(口径2〜15mm)が多数形成されてなるものが使用でき、微細気泡散気装置は、微細気泡を発生させることができる散気面を備えた散気装置であれば特に限定されず、所定口径の小散気孔(口径0.5〜1mm)が多数形成されてなるもの、また中心管及び中心管を覆う伸縮により開閉する散気孔が多数形成された弾性シートからなるものなどが使用できる(例えば、FLEXAIR T−SERIES 散気孔2mm極細スリット/EDI)。ここで、本発明における粗大気泡とは直径が1mmより大きい気泡であり、微細気泡とは直径が1mm以下の気泡である。なお、微細気泡については、気泡直径が小さいほど活性汚泥中の溶存酸素効率を高くすることができるため、マイクロ及びナノレベル(例えば100nm〜100μm)の微細気泡であればより好ましく使用することができる。   Regarding the air diffuser 8, a coarse bubble diffuser having a large number of large air holes (2-15 mm in diameter) with a predetermined diameter can be used, and the fine bubble diffuser can generate fine bubbles. It is not particularly limited as long as it is an air diffuser having a diffuser surface that can be formed, and is formed by a large number of small air diffuser holes (diameter 0.5 to 1 mm) having a predetermined diameter, and by expansion and contraction covering the central tube and the central tube A material made of an elastic sheet having a large number of diffused holes to be opened and closed can be used (for example, FLEXAIR T-SERIES diffused holes 2 mm extra fine slit / EDI). Here, coarse bubbles in the present invention are bubbles having a diameter larger than 1 mm, and fine bubbles are bubbles having a diameter of 1 mm or less. In addition, about microbubble, since dissolved oxygen efficiency in activated sludge can be made high, so that a bubble diameter is small, if it is a microbubble of micro and nano level (for example, 100 nm-100 micrometers), it can use more preferably. .

水流装置9は、吐出方向に均一かつ汚泥詰まりが無い構造であればよく、例えば所定口径の吐出孔(口径8〜12mm)が多数形成されてなるもの、また吐出スリット(スリット幅4〜8mm、スリット長さ50〜300mm)を有するものが使用できる。   The water flow device 9 only needs to have a structure that is uniform in the discharge direction and has no clogging of sludge. Those having a slit length of 50 to 300 mm can be used.

ここで、水流装置9に接続した水中ポンプ12は、動力源として反応槽1液面からのヘッド圧力を利用できる下部に設置することが好ましい。ただし、底部では堆積した高粘性汚泥(ヘドロ状汚泥)が水中ポンプ12の吸込口を閉塞する可能性があるため、底部から所定距離(50〜150mm)L5に設置することがより好ましい。   Here, the submersible pump 12 connected to the water flow device 9 is preferably installed in the lower part where the head pressure from the liquid level of the reaction tank 1 can be used as a power source. However, since the highly viscous sludge (sludge-like sludge) accumulated at the bottom may block the suction port of the submersible pump 12, it is more preferable to install it at a predetermined distance (50 to 150 mm) L5 from the bottom.

また、散気ケース7内部の装置スペースをコンパクトにするため、水中ポンプ12は浸漬型膜分離装置3の外部に設置する。そして、その配置は、浸漬型膜分離装置3の内部に生起する上昇流と浸漬型膜分離装置3の周囲に生起する下降流からなる旋回流(循環流)を阻害しない位置に配置すべく、図2に示すH斜線部に水中ポンプ12を配置することが好ましく、その設置方法は、散気ケース7と一体形成もしくは反応槽1と併設など任意でかまわない。尚、水中ポンプ12は、反応槽1に流入する対象汚水の性状や流入量に応じて調整することが好ましく、CV調整型、インバータ制御型など任意に使用可能であるが、動力コストの観点からインバータ制御型が好適に使用できる。   Further, the submersible pump 12 is installed outside the submerged membrane separation device 3 in order to make the device space inside the diffuser case 7 compact. And the arrangement should be arranged at a position where the swirl flow (circulation flow) composed of the upward flow generated inside the submerged membrane separator 3 and the downward flow generated around the submerged membrane separator 3 is not hindered. It is preferable to arrange the submersible pump 12 in the H shaded portion shown in FIG. The submersible pump 12 is preferably adjusted according to the nature and amount of the target sewage flowing into the reaction tank 1, and can be arbitrarily used, such as a CV adjustment type and an inverter control type, but from the viewpoint of power cost. An inverter control type can be suitably used.

次に上記した構成における作用を説明する。ブロワ11、水中ポンプ12を駆動して所定量の空気(処理水量に対して15〜25倍)、水流(処理水量に対して10〜20倍)を供給し、浸漬型膜分離装置3の下方領域に、水流装置9から生成する水流Aによって水流ゾーンL3を形成し、散気装置8から散気する微細気泡Bと水流装置9の水流Aとによって曝気水流混合ゾーンL2を形成する。   Next, the operation of the above configuration will be described. The blower 11 and the submersible pump 12 are driven to supply a predetermined amount of air (15 to 25 times the amount of treated water) and a water flow (10 to 20 times the amount of treated water), and below the submerged membrane separation device 3 In the region, the water flow zone L3 is formed by the water flow A generated from the water flow device 9, and the aeration water mixing zone L2 is formed by the fine bubbles B diffused from the air diffusion device 8 and the water flow A of the water flow device 9.

曝気水流混合ゾーンL2では、微細気泡Aと水流Bが混合し、この微細気泡Aと水流Bのエアリフト作用によって生起する気液混相の上昇流が隣接する平膜エレメント4の間に流入し、活性汚泥混合液をクロスフローで浸漬型膜分離装置3に供給して固液分離し、上昇流が掃流として浸漬型膜分離装置3の膜面に作用する。このとき、水流Aが微細気泡Bにある一定の初速度を与えることで、従来の散気方法と比べて浸漬型膜分離装置3に流入する気液混相の上昇流速が格段に増す。このことにより、隣接する平膜エレメント4の間の流路に、高い速度エネルギーを持った微細気泡B、及び水流Aが流入し、効果的なエアリフト作用を生起すると共に、膜表面に付着したケークを微細気泡Bによる剪断作用及び衝突作用により高効率に平膜エレメント4の膜面を洗浄できる。   In the aeration water flow mixing zone L2, the fine bubbles A and the water flow B are mixed, and the upward flow of the gas-liquid mixed phase generated by the air lift action of the fine bubbles A and the water flow B flows between the adjacent flat membrane elements 4 and becomes active. The sludge mixed liquid is supplied to the submerged membrane separation device 3 by cross flow and solid-liquid separated, and the upward flow acts as a sweep on the membrane surface of the submerged membrane separation device 3. At this time, the flow velocity of the gas-liquid mixed phase flowing into the submerged membrane separation device 3 is remarkably increased by giving the water flow A a certain initial velocity in the fine bubbles B as compared with the conventional air diffusion method. As a result, the fine bubbles B having high velocity energy and the water flow A flow into the flow path between the adjacent flat membrane elements 4 to cause an effective air lift action and to adhere to the cake surface. The membrane surface of the flat membrane element 4 can be washed with high efficiency by the shearing action and collision action of the fine bubbles B.

また、微細気泡B及び水流Aの全量が膜ケース6に入り込むと共に、従来の散気方法に比べて上昇流速が格段に増すので、浸漬型膜分離装置3の内部に生起する上昇流と浸漬型膜分離装置3の周囲に生起する下降流とが明確に分離され、反応槽1の内部に旋回流が支障なく起こり、槽内の撹拌を円滑に行うことができる。さらに、水中ポンプ12を浸漬型膜分離装置3の鉛直下方の範囲外に設置することで、散気ケース7内部の装置スペースをコンパクトにすることが可能となる。これより、散気装置8と浸漬型膜分離装置3の底部までの距離を確保することが可能となり、散気装置から曝気する気泡流の分散性が向上する。その上、併用する散気装置8に局所的な散気詰まりが生じても、水流Aにより気泡を分散できるので、散気詰まりに起因するケークの膜面閉塞を少なくし長期安定運転が可能となる。   In addition, the entire amount of the fine bubbles B and the water flow A enter the membrane case 6 and the rising flow rate is remarkably increased as compared with the conventional air diffusion method. Therefore, the upward flow generated in the submerged membrane separation device 3 and the submerged type The downward flow generated around the membrane separation device 3 is clearly separated, and a swirl flow is generated in the reaction tank 1 without any trouble, so that the stirring in the tank can be performed smoothly. Further, by installing the submersible pump 12 outside the vertically lower range of the submerged membrane separation device 3, the device space inside the diffuser case 7 can be made compact. Thereby, it becomes possible to ensure the distance to the bottom part of the diffuser 8 and the submerged membrane separator 3, and the dispersibility of the bubble flow aerated from the diffuser improves. In addition, even if local diffused clogging occurs in the diffuser 8 used in combination, bubbles can be dispersed by the water flow A, so that the film surface blockage of the cake due to diffused clogging is reduced, and long-term stable operation is possible.

ところで、水流装置9から生成する水流は、反応槽1下部に設置した水中ポンプ12を動力源とすることで、反応槽1液面からのヘッド圧力を利用することができるため、回転翼はもちろん、従来の粗大気泡散気装置及び微細気泡散気装置に比べて低動力で済む。また、必要最低限の溶存酸素濃度を確保し得る少量の散気においても十分な膜面洗浄効果を得ることができるため、併用する散気装置8の動力を極端に低減することができる。このことにより、極小の曝気ブロワ動力と低動力な水流ポンプ12を併用駆動することで、総合的に動力コストを低減することができる。   By the way, the water flow generated from the water flow device 9 can utilize the head pressure from the liquid surface of the reaction tank 1 by using the submersible pump 12 installed in the lower part of the reaction tank 1 as a power source, so As compared with conventional coarse bubble diffusers and fine bubble diffusers, lower power is required. Further, since a sufficient film surface cleaning effect can be obtained even with a small amount of aeration that can ensure the necessary minimum dissolved oxygen concentration, the power of the aeration device 8 used in combination can be extremely reduced. Thus, the driving cost can be reduced comprehensively by driving the minimum aeration blower power and the low power water flow pump 12 together.

また、季節もしくは水温により、対象汚水を活性汚泥処理するのに必要な酸素量が変動しても、必要な溶存酸素濃度を確保し得るだけの最小限の空気量を満たすだけでよいため、酸素消費量の増える高水温時を基準に設定しても少量の散気で済む。したがって、酸素消費量の増える高水温時の空気量を一定に設定すれば、複雑な運転管理及び風量設定は必要としない。また、水中ポンプ12にインバータ制御を組み込むことで、水流量を反応槽1に流入する対象汚水の性状及び流入量に応じて調整することができ、膜面洗浄に必要な流量を適宜可変することで駆動動力をさらに低減することができる。   In addition, even if the amount of oxygen necessary to treat the target sewage with activated sludge varies depending on the season or water temperature, it is sufficient to satisfy the minimum amount of air that can ensure the required dissolved oxygen concentration. Even if it is set based on the high water temperature when consumption increases, a small amount of aeration is sufficient. Therefore, complicated operation management and air volume setting are not required if the air volume at a high water temperature at which oxygen consumption is increased is set constant. Moreover, by incorporating inverter control into the submersible pump 12, the water flow rate can be adjusted according to the nature and amount of inflow of the target sewage flowing into the reaction tank 1, and the flow rate required for membrane cleaning can be varied appropriately. Thus, the driving power can be further reduced.

以下、具体的な実施例と、これとの比較例を挙げて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to specific examples and comparative examples.

[実施例]
図1の汚水処理装置を用いて有機性排水の処理を行った。この排水処理装置は、反応槽1(容積3m)、及びこれと連通した嫌気槽(図示せず/容積3m)により構成されている。有機性排水として一般下水(BOD100〜300mg/L)を30m/day流入させ、連続的に膜分離活性汚泥処理を行った。浸漬型膜分離装置3には平膜エレメント4(PVDF製平膜、孔径0.1μm)が50枚隣接設置されており、透過液導出管10に連通した所定の吸引ポンプ(図示せず)により連続的に処理水を得ている。なお、反応槽1における生物濃度(MLSS)は約10000mg/Lで一定となるように、汚泥の引き抜きを適宜行った。
[Example]
The organic waste water was treated using the sewage treatment apparatus of FIG. This waste water treatment apparatus is composed of a reaction tank 1 (volume 3 m 3 ) and an anaerobic tank (not shown / volume 3 m 3 ) communicating with the reaction tank 1. General sewage (BOD 100-300 mg / L) was introduced as organic wastewater at 30 m 3 / day, and membrane separation activated sludge treatment was performed continuously. The submerged membrane separator 3 is provided with 50 flat membrane elements 4 (PVDF flat membrane, pore size 0.1 μm) adjacent to each other, and a predetermined suction pump (not shown) connected to the permeate outlet tube 10. The treated water is obtained continuously. In addition, the sludge was suitably extracted so that the biological concentration (MLSS) in the reaction tank 1 would be constant at about 10,000 mg / L.

膜面洗浄装置は、散気装置8(口径0.5mm孔が多数形成されてなる微細気泡管、気泡直径約0.5mm)、及びブロワ11(定格出力0.75kw、空気量450NL/min、30kPa)と、水流装置9(口径10mm孔が多数形成されてなる吐出管)、及び浸漬型膜分離装置3の外部かつ反応槽1の下部に設置した水中ポンプ12(定格出力0.75kw、吐出量300L/min、INV制御)から構成される。各装置間の配置距離について、反応槽1の底部から水流装置9までの距離L4を約200mm、水流装置9から散気装置8までの距離L3を約100mm、散気装置8から浸漬型膜分離装置3の下方までの距離L2を約200mmに設定した。試験は2009年10月から11月の2ヶ月間実施し、散気量を250NL/min、水流吐出量を200L/min(INV出力70%)一定として連続運転を行った。   The membrane surface cleaning device includes an air diffuser 8 (a fine bubble tube having a large number of holes of 0.5 mm diameter, a bubble diameter of about 0.5 mm), and a blower 11 (rated output 0.75 kw, air amount 450 NL / min, 30 kPa), a water flow device 9 (a discharge pipe having a large number of holes of 10 mm in diameter), and a submersible pump 12 (rated output 0.75 kW, discharge rate) installed outside the submerged membrane separation device 3 and below the reaction tank 1 300 L / min, INV control). As for the arrangement distance between each device, the distance L4 from the bottom of the reaction tank 1 to the water flow device 9 is about 200 mm, the distance L3 from the water flow device 9 to the air diffuser 8 is about 100 mm, and the diffuser membrane 8 is submerged by membrane separation. The distance L2 to the lower part of the apparatus 3 was set to about 200 mm. The test was carried out for two months from October 2009 to November 2009, and the continuous operation was performed with the amount of air diffused at 250 NL / min and the water discharge rate constant at 200 L / min (INV output 70%).

その結果、全平膜エレメント4の膜間差圧(単位:kPa)に大きな上昇は見られず、その差圧上昇速度は2ヶ月間で0.05kPa/day(フラックス0.7m/day)と長期安定運転が可能であった。また、各平膜エレメント4の膜表面にケークはほとんど見られず、水流Aによる微細気泡Bの分散効果が見られた。消費動力については、汚水処理装置全体での積算消費電力より算出したところ、2ヶ月間、総処理水量1800m(30m/day×60day)当たり、2286.5kwhであり、原単位当たりの電力使用量は1.27kwh/mであった。 As a result, no significant increase was observed in the transmembrane pressure difference (unit: kPa) of all flat membrane elements 4, and the differential pressure increase rate was 0.05 kPa / day (flux 0.7 m / day) over 2 months. Long-term stable operation was possible. Moreover, almost no cake was seen on the membrane surface of each flat membrane element 4, and the effect of dispersing fine bubbles B by the water flow A was seen. The power consumption was calculated from the integrated power consumption of the entire sewage treatment apparatus, and was 2286.5 kwh per total treated water volume of 1800 m 3 (30 m 3 / day × 60 day) for 2 months. The amount was 1.27 kwh / m 3 .

[比較例1]
図3の汚水処理装置を用いて有機性排水の処理を行った。汚水処理装置の構成、及び処理条件については実施例と同様とした。なお、実施例と運転期間(年度)は異なるが、汚水、汚泥の水温、及び性状はほぼ同じであった。また、平膜エレメント4は同性能のものを使用した。
[Comparative Example 1]
The organic wastewater was treated using the sewage treatment apparatus of FIG. The configuration of the sewage treatment apparatus and the treatment conditions were the same as in the example. In addition, although an Example and an operation period (year) differ, the water temperature and property of sewage and sludge were substantially the same. The flat membrane element 4 having the same performance was used.

膜面洗浄装置は、散気装置8(口径6mm孔が多数形成されてなる粗大気泡管、気泡直径約5mm)、及びブロワ11(定格出力1.5kw、空気量750NL/min、30kPa)から構成される。各装置間の配置距離について、反応槽1の底部から散気装置8までの距離L7を約300mm、散気装置8から浸漬型膜分離装置3の下方までの距離L6を約200mmに設定した。試験は2008年10月から11月の2ヶ月間実施し、散気量を600NL/min一定として連続運転を行った。   The membrane surface cleaning device is composed of a diffuser 8 (a coarse bubble tube having a large number of apertures of 6 mm, a bubble diameter of about 5 mm), and a blower 11 (rated output 1.5 kW, air amount 750 NL / min, 30 kPa). Is done. Regarding the arrangement distance between the devices, the distance L7 from the bottom of the reaction tank 1 to the diffuser 8 was set to about 300 mm, and the distance L6 from the diffuser 8 to the lower part of the submerged membrane separator 3 was set to about 200 mm. The test was conducted for two months from October 2008 to November 2008, and the continuous operation was performed with the amount of air diffused at 600 NL / min.

その結果、全平膜エレメント4の差圧上昇速度は2ヶ月間で0.30kPa/day(フラックス0.7m/day)と、実施例の時と比べると高い値となった。また、各平膜エレメント4の膜表面に局部的なケークが幾つか見られ、不均一な散気に起因する膜面閉塞が見られた。消費動力については、2ヶ月間、総処理水量1800m当たり、2662.3kwhであり、原単位当たりの電力使用量は1.48kwh/mであり、実施例の時と比べて高い値となった。 As a result, the differential pressure increase rate of all flat membrane elements 4 was 0.30 kPa / day (flux 0.7 m / day) in two months, which was a higher value than in the example. Moreover, some local cakes were seen on the membrane surface of each flat membrane element 4, and membrane surface blockage due to non-uniform air diffusion was seen. Consumption power is 2662.3 kwh per 1800 m 3 of total treated water for 2 months, and power consumption per basic unit is 1.48 kwh / m 3, which is a higher value than in the example. It was.

[比較例2]
図4の汚水処理装置を用いて有機性排水の処理を行った。汚水処理装置の構成、及び処理条件については実施例と同様とした。ただし、実施例と運転期間(年、月度)は異なり、汚泥性状が良好で好適に処理できる条件であった。また、平膜エレメント4は同性能のものを使用した。
[Comparative Example 2]
Organic wastewater was treated using the sewage treatment apparatus of FIG. The configuration of the sewage treatment apparatus and the treatment conditions were the same as in the example. However, the operation period (year, month) was different from the examples, and the sludge properties were good and the conditions were suitable. The flat membrane element 4 having the same performance was used.

膜面洗浄装置は、散気装置8(口径0.5mm孔が多数形成されてなる微細気泡管、気泡直径約0.5mm)、及びブロワ11(定格出力0.75kw、空気量450NL/min、30kPa)と、反応槽1の底部に設置した回転翼13(小型水中ミキサ、定格出力1.5kw、流量500L/min)から構成される。各装置間の配置距離について、反応槽1の底部から散気装置8までの距離L10を約450mm(回転翼13の上方から散気装置8までの距離L9を約100mm)、散気装置8から浸漬型膜分離装置3の下方までの距離L8を約50mmに設定した。試験は2008年8月から9月の2ヶ月間実施し、散気量を250NL/min、攪拌流量を500L/min一定として連続運転を行った。   The membrane surface cleaning device includes an air diffuser 8 (a fine bubble tube having a large number of holes of 0.5 mm diameter, a bubble diameter of about 0.5 mm), and a blower 11 (rated output 0.75 kw, air amount 450 NL / min, 30 kPa) and a rotating blade 13 (small underwater mixer, rated output 1.5 kW, flow rate 500 L / min) installed at the bottom of the reaction tank 1. About the arrangement distance between each apparatus, the distance L10 from the bottom part of the reaction tank 1 to the diffuser 8 is about 450 mm (the distance L9 from the upper part of the rotary blade 13 to the diffuser 8 is about 100 mm), and from the diffuser 8 The distance L8 to the lower part of the submerged membrane separator 3 was set to about 50 mm. The test was carried out for two months from August to September 2008, and the continuous operation was performed with the amount of air diffused at 250 NL / min and the stirring flow rate at 500 L / min.

その結果、全平膜エレメント4の差圧上昇速度は2ヶ月間で0.10kPa/day(フラックス0.7m/day)と安定運転可能であったが、好適な処理条件にも関わらず実施例の時と比べると高い値となった。また、各平膜エレメント4の膜表面に局部的なケークが幾つか見られ、不均一な散気に起因する膜面閉塞が見られた。消費動力については、2ヶ月間、総処理水量1800m当たり、3158.6kwhであり、原単位当たりの電力使用量は1.75kwh/mであり、実施例の時と比べて高い値となった。 As a result, the differential pressure increase rate of all flat membrane elements 4 was 0.10 kPa / day (flux 0.7 m / day) in 2 months, and stable operation was possible. It was a high value compared to the time of Moreover, some local cakes were seen on the membrane surface of each flat membrane element 4, and membrane surface blockage due to non-uniform air diffusion was seen. Consumption power is 3158.6 kwh per 1800 m 3 of total treated water for 2 months, and power consumption per unit is 1.75 kwh / m 3, which is a higher value than in the example. It was.

[比較例3]
図5の汚水処理装置を用いて有機性排水の処理を行った。汚水処理装置の構成、及び処理条件については実施例と同様とした。ただし、実施例と運転期間(月度)は異なり、汚泥性状が良好で好適に処理できる条件であった。また、平膜エレメント4は同性能のものを使用した。
[Comparative Example 3]
Organic wastewater was treated using the sewage treatment apparatus of FIG. The configuration of the sewage treatment apparatus and the treatment conditions were the same as in the example. However, the working period (monthly) was different from the examples, and the sludge properties were good and the conditions were suitable for treatment. The flat membrane element 4 having the same performance was used.

膜面洗浄装置は、散気装置8(口径0.5mm孔が多数形成されてなる微細気泡管、気泡直径約0.5mm)、及びブロワ11(定格出力0.75kw、空気量450NL/min、30kPa)と、水流装置9(口径10mm孔が多数形成されてなる吐出管)、及び浸漬型膜分離装置3の鉛直下方の範囲内かつ反応槽1の下部に設置した水中ポンプ12(定格出力0.75kw、吐出量300L/min、INV制御)から構成される。各装置間の配置距離について、反応槽1の底部から水流装置9までの距離L4を350mm、水流装置9から散気装置8までの距離L3を100mm、散気装置8から浸漬型膜分離装置3の下方までの距離L2を50mmに設定した。試験は2009年8月から9月の2ヶ月間実施し、散気量を250NL/min、水流吐出量を200L/min(INV出力70%)一定として連続運転を行った。   The membrane surface cleaning device includes an air diffuser 8 (a fine bubble tube having a large number of holes of 0.5 mm diameter, a bubble diameter of about 0.5 mm), and a blower 11 (rated output 0.75 kw, air amount 450 NL / min, 30 kPa), a water flow device 9 (a discharge pipe having a large number of holes of 10 mm in diameter), and a submersible pump 12 (rated output of 0) installed in the range vertically below the submerged membrane separation device 3 and below the reaction tank 1 .75 kw, discharge amount 300 L / min, INV control). Regarding the arrangement distance between the devices, the distance L4 from the bottom of the reaction tank 1 to the water flow device 9 is 350 mm, the distance L3 from the water flow device 9 to the air diffuser 8 is 100 mm, and the submerged membrane separation device 3 from the air diffuser 8 to the air diffuser 8. The distance L2 to the lower side of was set to 50 mm. The test was carried out for two months from August to September 2009, and the continuous operation was performed with the air diffusion rate being fixed at 250 NL / min and the water flow discharge amount being constant at 200 L / min (INV output 70%).

その結果、全平膜エレメント4の差圧上昇速度は2ヶ月間で0.10kPa/day(フラックス0.7m/day)と安定運転可能であったが、好適な処理条件にも関わらず実施例の時と比べると高い値となった。また、各平膜エレメント4の膜表面に局部的なケークが幾つか見られ、不均一な散気に起因する膜面閉塞が見られた。消費動力については、2ヶ月間、総処理水量1800m当たり、2306.4kwhであり、原単位当たりの電力使用量は1.28kwh/mであり、実施例の時とほぼ同等であった。 As a result, the differential pressure increase rate of all flat membrane elements 4 was 0.10 kPa / day (flux 0.7 m / day) in 2 months, and stable operation was possible. It was a high value compared to the time of. Moreover, some local cakes were seen on the membrane surface of each flat membrane element 4, and membrane surface blockage due to non-uniform air diffusion was seen. Consumption power was 2306.4 kwh per 1800 m 3 of total treated water for 2 months, and the power consumption per basic unit was 1.28 kwh / m 3 , which was almost the same as in the example.

Figure 2012045510
Figure 2012045510

表1に実施例と各比較例の結果を示すが、従来の粗大気泡管を単独使用した時(比較例1)、及び微細気泡散気装置8と回転翼13を併用した時(比較例2)に比べ、微細気泡散気装置8と水流装置9を併用した時(実施例)の方が、省コストで長期安定運転可能であった。また、微細気泡散気装置8と水流装置9を併用した場合について、水中ポンプを浸漬型膜分離装置3の鉛直下方の範囲内に設置した時(比較例3)に比べ、鉛直下方の範囲外に設置した時(実施例)の方が、散気の分散性が良くなり(ケーク付着がなくなり)、より長期安定運転可能であった。   Table 1 shows the results of Examples and Comparative Examples. When a conventional coarse bubble tube is used alone (Comparative Example 1), and when the fine bubble diffuser 8 and the rotary blade 13 are used together (Comparative Example 2). ), When the fine bubble diffusing device 8 and the water flow device 9 were used in combination (Example), long-term stable operation was possible at low cost. Further, in the case where the fine bubble diffusing device 8 and the water flow device 9 are used in combination, the submersible pump is out of the vertically lower range than when the submersible pump is installed in the vertically lower range of the submerged membrane separation device 3 (Comparative Example 3). When installed in (Example), the dispersibility of the aeration was improved (there was no cake adhesion), and stable operation was possible for a longer period.

本発明の膜分離活性汚泥処理装置及びその膜面洗浄方法は、有機性汚水を含有する下水処理等の分野において利用することができる。   The membrane-separated activated sludge treatment apparatus and the membrane surface cleaning method of the present invention can be used in fields such as sewage treatment containing organic sewage.

1:反応槽
2:汚水供給系
3:浸漬型膜分離装置
4:平膜エレメント
5:ケース
6:膜ケース
7:散気ケース
8:散気装置
9:水流装置
10:透過液導出管
11:ブロワ
12:水中ポンプ
13:回転翼
A:水流
B:微細気泡
L1:反応槽液面から膜ケースまでの距離
L2:散気装置から膜ケースまでの距離(図1、図5)
L3:水流装置から散気装置までの距離(図1、図5)
L4:反応槽底部から水中装置までの距離(図1、図5)
L5:反応槽底部から水中ポンプまでの距離
L6:散気装置から膜ケースまでの距離(図3)
L7:反応槽底部から散気装置までの距離(図3)
L8:散気装置から膜ケースまでの距離(図4)
L9:回転翼上方から散気装置までの距離(図4)
L10:反応槽底部から散気装置までの距離(図4)
1: Reaction tank 2: Sewage supply system 3: Submerged membrane separator 4: Flat membrane element 5: Case 6: Membrane case 7: Air diffuser case 8: Air diffuser 9: Water flow device 10: Permeate outlet tube 11: Blower 12: Submersible pump 13: Rotary blade A: Water flow B: Fine bubbles L1: Distance from reaction vessel liquid level to membrane case L2: Distance from diffuser to membrane case (FIGS. 1 and 5)
L3: Distance from the water flow device to the air diffuser (FIGS. 1 and 5)
L4: distance from the bottom of the reaction tank to the underwater device (FIGS. 1 and 5)
L5: distance from bottom of reaction tank to submersible pump L6: distance from diffuser to membrane case (Fig. 3)
L7: Distance from the bottom of the reaction tank to the diffuser (Fig. 3)
L8: Distance from the diffuser to the membrane case (Fig. 4)
L9: Distance from the top of the rotor blade to the diffuser (Fig. 4)
L10: Distance from the bottom of the reaction tank to the diffuser (FIG. 4)

Claims (5)

反応槽に浸漬型膜分離装置を配置し、浸漬型膜分離装置の下方に配置した散気装置の上方または下方に、浸漬型膜分離装置の鉛直下方の範囲外かつ反応槽下部に設置した水中ポンプを動力源とする水流装置を有することを特徴とする膜分離活性汚泥処理装置。 A submerged membrane separation device is placed in the reaction tank, and the water placed above or below the diffuser placed below the submerged membrane separation device and outside the vertical bottom of the submerged membrane separation device and below the reaction tank. A membrane separation activated sludge treatment apparatus comprising a water flow device using a pump as a power source. 前記散気装置が直径1mm以下の微細気泡を生成する微細気泡管を有することを特徴とする請求項1に記載の膜分離活性汚泥処理装置。 The membrane separation activated sludge treatment apparatus according to claim 1, wherein the air diffuser has a fine bubble tube that generates fine bubbles having a diameter of 1 mm or less. 前記反応槽の底部から50mm以上150mm以下隔てた位置に前記水中ポンプを配置したことを特徴とする請求項1または2に記載の膜分離活性汚泥処理装置。 3. The membrane separation activated sludge treatment apparatus according to claim 1, wherein the submersible pump is disposed at a position separated from the bottom of the reaction tank by 50 mm or more and 150 mm or less. 反応槽に浸漬型膜分離装置を配置し、浸漬型膜分離装置の下方に配置した散気装置の上方または下方に、浸漬型膜分離装置の鉛直下方の範囲外かつ反応槽下部に設置した水中ポンプを動力源とする水流装置を有する膜分離活性汚泥処理装置における膜面洗浄方法であって、該散気装置から散気する気泡と該水流装置から生成する水流によるエアリフト作用によって生起する気液混相の上昇流を掃流として該浸漬型膜分離装置の膜面に作用させることを特徴とする膜分離活性汚泥処理装置における膜面洗浄方法。 A submerged membrane separation device is placed in the reaction tank, and the water placed above or below the diffuser placed below the submerged membrane separation device and outside the vertical bottom of the submerged membrane separation device and below the reaction tank. A membrane surface cleaning method in a membrane separation activated sludge treatment apparatus having a water flow device using a pump as a power source, wherein the gas and liquid are generated by air lift action due to bubbles diffused from the air diffuser and water flow generated from the water flow device A membrane surface cleaning method in a membrane separation activated sludge treatment apparatus, wherein a rising phase of a mixed phase is used as a sweep flow to act on the membrane surface of the submerged membrane separation apparatus. 前記散気装置が直径1mm以下の微細気泡を生成する微細気泡管を有することを特徴とする請求項4に記載の膜分離活性汚泥処理装置における膜面洗浄方法。 5. The membrane surface cleaning method in a membrane separation activated sludge treatment apparatus according to claim 4, wherein the air diffuser has a fine bubble tube that generates fine bubbles having a diameter of 1 mm or less.
JP2010191740A 2010-08-30 2010-08-30 Membrane separation activated sludge processing apparatus and membrane surface washing method of the same Pending JP2012045510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191740A JP2012045510A (en) 2010-08-30 2010-08-30 Membrane separation activated sludge processing apparatus and membrane surface washing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191740A JP2012045510A (en) 2010-08-30 2010-08-30 Membrane separation activated sludge processing apparatus and membrane surface washing method of the same

Publications (1)

Publication Number Publication Date
JP2012045510A true JP2012045510A (en) 2012-03-08

Family

ID=45901024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191740A Pending JP2012045510A (en) 2010-08-30 2010-08-30 Membrane separation activated sludge processing apparatus and membrane surface washing method of the same

Country Status (1)

Country Link
JP (1) JP2012045510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Similar Documents

Publication Publication Date Title
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
CN102698607B (en) Membrane cleaning device applicable to submerged membrane bioreactor
JP2001212587A (en) Method and apparatus for diffusing air of membrane separation activated sludge method
US10392279B2 (en) Eductor-based membrane bioreactor
WO2012165121A1 (en) Air diffuser
JPH07155758A (en) Waste water treating device
JP5853342B2 (en) Solid-liquid separation module and solid-liquid separation method
JP2013017979A (en) Air diffuser
JP5823489B2 (en) Membrane separator
JP3867481B2 (en) Immersion flat membrane separator
JP2012045510A (en) Membrane separation activated sludge processing apparatus and membrane surface washing method of the same
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
WO2013002242A1 (en) Film separation activated sludge method film surface cleaning method
JPH04290590A (en) Membrane separator in septic tank
JP2012166142A (en) System for membrane separation activated sludge and method for membrane separation activated sludge
JP4374885B2 (en) Membrane separator
JP4819841B2 (en) Membrane separator
JPH11226572A (en) Immersion type membrane treatment system
JP3807499B2 (en) Membrane separation activated sludge treatment equipment
JP6194161B2 (en) Filtration and air lift combined device and water treatment system
JP2007268415A (en) Immersion type membrane separation apparatus and water producing method
CN112591878A (en) Energy-saving MBR (membrane bioreactor) membrane device and membrane filtration method
KR101662430B1 (en) Conduit type apparatus for treating wastewater
JP3278544B2 (en) Activated sludge treatment equipment
CN214936196U (en) Circular efficient air floatation equipment capable of automatically controlling operation