JP2006247498A - Membrane washing method and apparatus - Google Patents

Membrane washing method and apparatus Download PDF

Info

Publication number
JP2006247498A
JP2006247498A JP2005066422A JP2005066422A JP2006247498A JP 2006247498 A JP2006247498 A JP 2006247498A JP 2005066422 A JP2005066422 A JP 2005066422A JP 2005066422 A JP2005066422 A JP 2005066422A JP 2006247498 A JP2006247498 A JP 2006247498A
Authority
JP
Japan
Prior art keywords
flow
membrane separation
membrane
separation device
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066422A
Other languages
Japanese (ja)
Inventor
Taichi Kamisaka
太一 上坂
Kazuhiro Yamazaki
一博 山▲崎▼
Tatsuya Uejima
達也 上島
Kazuhisa Nishimori
一久 西森
Hidetoshi Masutani
英俊 桝谷
Shigeto Miuma
滋人 三馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2005066422A priority Critical patent/JP2006247498A/en
Publication of JP2006247498A publication Critical patent/JP2006247498A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane washing method and an apparatus which can perform a membrane surface washing using an upward flow by arbitrarily changing the stream of the upward flow while keeping a steady-state operation, thereby applying turbulent flow to the front face of the membrane without any control operation of an air diffuser, like change of aeration air volume. <P>SOLUTION: In dipped type membrane separation apparatuses 24 disposed in a treating tank 23 storing treating object liquid 22, the membrane surface is washed by the upward flow caused by bubble flow, circulation flow 29 is formed in the treating tank 23 around the apparatuses 24 by the upward flow flowing out of the apparatuses 24. The flow direction of the circulation flow 29 is periodically or irregularly changed by direction-change plates 32, 33 dipped in the treating object liquid, thereby the flow state of the upward flow in the inner passage of the dipped type membrane separation apparatuses 24 is repeatedly changed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は膜洗浄方法および装置に関し、下水、産業排水、生活排水等の水処理における膜分離処理の安定性を向上させる技術に係るものである。   The present invention relates to a membrane cleaning method and apparatus, and relates to a technique for improving the stability of membrane separation treatment in water treatment such as sewage, industrial wastewater, and domestic wastewater.

従来、膜分離活性汚泥法においては、例えば図13に示すように、処理対象の原水1を反応槽2と膜分離槽(反応槽を兼ねる)3とからなる系内に導入し、系内の活性汚泥を含む混合液を反応槽2と膜分離槽3とにわたって循環する間に生物処理し、膜分離槽3に浸漬した浸漬型膜分離装置4によって混合液を膜でろ過して固液分離し、膜透過液を処理水5として取り出している。また、凝集剤6を原水1、反応槽2、膜分離槽3の適宜の箇所に添加している。   Conventionally, in the membrane separation activated sludge method, for example, as shown in FIG. 13, raw water 1 to be treated is introduced into a system composed of a reaction tank 2 and a membrane separation tank 3 (also serving as a reaction tank). The mixed liquid containing activated sludge is biologically treated while circulating over the reaction tank 2 and the membrane separation tank 3, and the mixed liquid is filtered through a membrane by the submerged membrane separation device 4 immersed in the membrane separation tank 3, so that solid-liquid separation is performed. The membrane permeate is taken out as treated water 5. Further, the flocculant 6 is added to appropriate portions of the raw water 1, the reaction tank 2, and the membrane separation tank 3.

このような、固液を分離する手段に膜を用いる膜分離装置では、膜の表面の汚れを制御する手段が必要である。このため、上述の構成においては、浸漬型膜分離装置4の下部に配置した散気装置7から曝気空気を供給し、曝気空気の気泡流により生じる固気液混相の上昇流を膜面に沿ってクロスフローで流すことで膜面上に水流の乱れを生じさせており、ろ過によってコロイド状の物質が強く膜面に押し付けられることで膜の孔が閉塞する可能性を時間的確率において可能な限り軽減して膜面の汚れを抑制している。   In such a membrane separation apparatus that uses a membrane as a means for separating solid liquid, a means for controlling contamination on the surface of the membrane is required. For this reason, in the above-described configuration, aeration air is supplied from the diffuser 7 disposed at the lower part of the submerged membrane separation device 4, and the upward flow of the solid-gas / liquid mixed phase generated by the bubble flow of the aeration air is along the membrane surface. The flow of water is disturbed on the membrane surface by cross-flow, and the possibility that the pores of the membrane may be blocked due to the possibility that the colloidal substance is strongly pressed against the membrane surface by filtration is possible in terms of time probability. As much as possible, it suppresses dirt on the film surface.

上述した浸漬型膜分離装置4のように、上昇流の発生手段に気泡流を用いる場合には、上昇流が水、固形物、気泡流の固気液混相流となるので、微少時間で見ると、乱流によって流れが絶えず変化しており、効率的洗浄が可能である。このような、気泡流を用いることが実用性から一般的に行われており、水流発生手段としてポンプを用いることはエネルギーが過大であるために実用的ではない。   When the bubble flow is used as the upward flow generating means as in the above-described submerged membrane separation device 4, the upward flow becomes a solid-gas / liquid mixed phase flow of water, solid matter, and bubble flow. The flow is constantly changing due to turbulence, and efficient cleaning is possible. Such a bubble flow is generally used from the practical point of view, and it is not practical to use a pump as the water flow generating means because of excessive energy.

しかし、浸漬型膜分離装置4において平膜状のろ過膜を使用する場合に、膜面の汚れの堆積を防ぐために、膜の間隔を広げ、粗大気泡で大曝気量を与え、気泡流による上昇流に不規則な乱れを起こさせると、単位膜面積当たりの曝気量が過大となる。このように、膜面の汚れを抑制するのに十分な流れを生じさせるために必要なエネルギーは、一般にコロイドサイズ以上のものを分離する場合では、ろ過に要するエネルギーより多くを必要とする。   However, when a flat membrane filtration membrane is used in the submerged membrane separation device 4, in order to prevent the accumulation of dirt on the membrane surface, the gap between the membranes is widened, a large aeration amount is given by coarse bubbles, and the rise by bubble flow When irregular turbulence is caused in the flow, the amount of aeration per unit membrane area becomes excessive. As described above, the energy required to generate a flow sufficient to suppress the contamination of the membrane surface generally requires more energy than that required for filtration when separating a material having a colloidal size or larger.

気泡流を用いるものには、例えば特許文献1に記載するものがある。これは、膜面に付着するゲル層、ケーク層を散気装置から噴出する気泡で剥離するものであり、処理槽の液中に膜ユニットを浸漬し、膜ユニットの下方に散気孔が大きな粗大気泡の散気装置と、散気孔が小さい微細気泡の散気装置を設けている。   For example, Patent Document 1 discloses a method using a bubble flow. In this method, the gel layer and cake layer adhering to the membrane surface are peeled off by bubbles ejected from the diffuser, and the membrane unit is immersed in the liquid in the treatment tank, and the diffused pores are large and coarse below the membrane unit. A bubble diffusing device and a fine bubble diffusing device with small diffusing holes are provided.

そして、両散気装置を同時に連続的、或いは間欠的に作動させるか、微小気泡の散気装置のみ連続的に作動させて粗大気泡の散気装置は間欠的に作動させるか、又は両散気装置を共に間欠的に作動させるといった具合に両散気装置を運転し、粗大気泡と、微小気泡を膜ユニットの膜面に作用させる。   Then, both the diffusers are operated continuously or intermittently at the same time, or only the microbubble diffuser is operated continuously, and the coarse bubble diffuser is operated intermittently, or both diffusers are operated. Both diffusers are operated such that the devices are operated intermittently, and coarse bubbles and microbubbles act on the membrane surface of the membrane unit.

また、特許文献2に記載するものは、散気管用のブロアとは別のブロアによって噴出管を通して粗大気泡を噴出させ、この粗大気泡を膜モジュールに衝突させて膜面に付着する汚泥を除去するものである。
特許第3341427号公報 特開平11−314025号公報
Moreover, what is described in Patent Document 2 is to eject coarse bubbles through an ejection pipe by a blower different from the blower for the air diffuser, and to remove sludge adhering to the membrane surface by colliding the coarse bubbles with the membrane module. Is.
Japanese Patent No. 3341427 JP 11-314025 A

ところで、上記した気泡流を用いる浸漬型膜分離装置では、多量の曝気空気を供給しなければ洗浄に要する十分な乱流を膜面のあらゆる場所に生じさせることができず、曝気量が十分でない場合には、上昇流が流れるケーシングの内の端等において混合液の停滞した箇所が生じ、この傾向は曝気量が少ないほどに多くなる。   By the way, in the submerged membrane separation apparatus using the above-described bubble flow, sufficient turbulent flow required for cleaning cannot be generated everywhere on the membrane surface unless a large amount of aeration air is supplied, and the aeration amount is not sufficient. In some cases, there is a stagnant portion of the mixed liquid at the end of the casing through which the upward flow flows, and this tendency increases as the amount of aeration decreases.

上昇流の流れ状態を規定するものとして、浸漬型膜分離装置の形状、水槽形状、水槽内における浸漬型膜分離装置の配置位置、あるいは流れを邪魔する構成部材等がある。また、曝気に費やすエネルギーが小さい場合には停滞箇所が常に同じ位置となる。   There are a shape of the submerged membrane separation device, a shape of the water tank, a position of the submerged membrane separation device in the water tank, a constituent member that obstructs the flow, and the like to define the flow state of the upward flow. Further, when the energy spent for aeration is small, the stagnation point is always at the same position.

この様子を図14及び図15に示す。図14は浸漬型膜分離装置を1基で使用する場合における気泡流および混合液の流れを示すものである。この浸漬型膜分離装置10はケーシング11の内部に膜カートリッジ12を上下二段に配置したものであり、膜カートリッジ12は濾板の表裏に平膜状の濾過膜を配置してなり、上下方向に沿って平行に配置した隣接する膜カートリッジ12の間に所定間隙の流路を形成している。   This situation is shown in FIGS. FIG. 14 shows the flow of bubbles and the flow of the mixed liquid when the immersion type membrane separation apparatus is used alone. This submerged membrane separation apparatus 10 has a membrane cartridge 12 arranged in two upper and lower stages inside a casing 11, and the membrane cartridge 12 has flat membrane membranes arranged on the front and back of a filter plate, A channel having a predetermined gap is formed between adjacent membrane cartridges 12 arranged in parallel with each other.

散気装置(図示省略)から噴出する曝気空気の気泡流によってケーシング11の内部に上昇流が生じ、浸漬型膜分離装置10の周囲の混合液がケーシング11に下端開口から流入し、ケーシング11の内部を気泡流とともに固気液混相の上昇流となって流れ、ケーシング11の上端開口から流れ出る上昇流がケーシング11の上端開口の周囲の混合液を伴って流れ、槽内に循環流が生じる。浸漬型膜分離装置10を槽の中央に配置する場合に、循環流は浸漬型膜分離装置10の両側に対称に、かつ浸漬型膜分離装置10を中心として放射状に形成される。   An upward flow is generated in the casing 11 by the bubble flow of aeration air ejected from an air diffuser (not shown), and the liquid mixture around the submerged membrane separator 10 flows into the casing 11 from the lower end opening. It flows as an upward flow of a solid-gas-liquid mixed phase together with the bubble flow, the upward flow flowing out from the upper end opening of the casing 11 flows along with the mixed liquid around the upper end opening of the casing 11, and a circulating flow is generated in the tank. When the submerged membrane separator 10 is arranged in the center of the tank, the circulation flow is formed symmetrically on both sides of the submerged membrane separator 10 and radially about the submerged membrane separator 10.

このとき、ケーシング11の内部では上昇流が主としてケーシング11の中央付近を流れ、ケーシング11の内壁面の付近は上昇流の流れが乏しく、もしくは淀みが生じて、上昇流による膜面の洗浄効果が弱く、もしくは洗浄効果がない領域13となる。   At this time, the upward flow mainly flows near the center of the casing 11 inside the casing 11 and the flow of the upward flow is poor or stagnation occurs near the inner wall surface of the casing 11, and the cleaning effect of the film surface by the upward flow is obtained. The region 13 is weak or has no cleaning effect.

図15は複数基の浸漬型膜分離装置10を使用する場合における気泡流および混合液の流れを示すものである。この場合に、各浸漬型膜分離装置10から噴出する水流が互いに影響し合うために、槽内に形成される循環流は複数の浸漬型膜分離装置10の中央位置、つまり左右2基ずつの中間を境として対称に形成される。   FIG. 15 shows the flow of bubbles and mixed liquid when a plurality of submerged membrane separation devices 10 are used. In this case, since the water flow ejected from each submerged membrane separator 10 influences each other, the circulation flow formed in the tank is at the center position of the plurality of submerged membrane separators 10, that is, two left and right ones. It is formed symmetrically about the middle.

この槽内の循環流の影響を受けることで、各浸漬型膜分離装置10のケーシング11における上昇流の流れは直線的なものではなくなり、ケーシング11の一側に偏流し、他側が上昇流による膜面の洗浄効果が弱く、もしくは洗浄効果がない領域13となる。   By receiving the influence of the circulating flow in the tank, the flow of the upward flow in the casing 11 of each submerged membrane separation device 10 is not linear, and drifts to one side of the casing 11 and the other side is due to the upward flow. The region 13 has a weak cleaning effect on the film surface or no cleaning effect.

本発明は上記した課題を解決するものであり、曝気空気量の変更等の散気装置の制御操作を伴うことなく、定常運転状態を保ちつつ上昇流の流れを適宜に変更し、膜面の前面に乱流を作用させて上昇流による膜面洗浄を行うことができる膜洗浄方法および装置を提供することを目的とする。   The present invention solves the above-described problem, and without changing the aeration device control operation such as changing the amount of aerated air, appropriately changing the flow of the upflow while maintaining a steady operation state, An object of the present invention is to provide a film cleaning method and apparatus capable of performing film surface cleaning by upward flow by applying turbulent flow to the front surface.

上記課題を解決するために、本発明の膜洗浄方法は、処理対象液を貯留する処理槽内に配置した浸漬型膜分離装置において、気泡流に伴って生じる上昇流により膜面洗浄を行うとともに、浸漬型膜分離装置から流れ出る上昇流により浸漬型膜分離装置の周囲の槽内に循環流を形成し、処理対象液中に浸漬する変向手段により循環流の流れ方向を定期的に変向するか、もしくは不定期的に変向することによって、浸漬型膜分離装置内の流路における上昇流の流れ状態を繰り返し変化させるものである。   In order to solve the above-described problems, the membrane cleaning method of the present invention performs membrane surface cleaning by an upward flow generated along with a bubble flow in an immersion type membrane separation apparatus disposed in a processing tank storing a liquid to be processed. The circulating flow is formed in the tank around the submerged membrane separator by the upward flow flowing out from the submerged membrane separator, and the direction of the circulating flow is periodically changed by the diverting means immersed in the liquid to be treated. The flow state of the upward flow in the flow path in the submerged membrane separation apparatus is repeatedly changed by changing the direction or irregularly.

上記した構成において、例えば、浸漬型膜分離装置の流路の上部から流れ出る上昇流が主として浸漬型膜分離装置を境とする処理槽の両側へ流れ出る場合に、処理対象液は主として浸漬型膜分離装置の両側を下降流となって流れた後に、主として処理槽の両側から浸漬型膜分離装置の流路の下部へ流入し、循環流は浸漬型膜分離装置を中心として処理槽内を循環する形態となり、浸漬型膜分離装置内の流路において上昇流は主として流路中央付近で高速流となり、処理槽の両側に対応する部位、つまり流路壁面付近で低速流もしくは淀みを生じる。このため、浸漬型膜分離装置の流路において高速流によって膜面洗浄が有効に作用する領域と、低速流もしくは淀みによって膜洗浄能力が減少する領域が生じる。   In the above configuration, for example, when the upward flow that flows out from the upper part of the flow path of the submerged membrane separator flows out mainly on both sides of the treatment tank with the submerged membrane separator as the boundary, the liquid to be treated is mainly submerged membrane separation. After flowing as a downward flow on both sides of the apparatus, it mainly flows into the lower part of the flow path of the submerged membrane separator from both sides of the processing tank, and the circulating flow circulates in the processing tank around the submerged membrane separator. In the flow path in the submerged membrane separation apparatus, the upward flow mainly becomes a high-speed flow near the center of the flow path, and a low-speed flow or stagnation is generated at portions corresponding to both sides of the treatment tank, that is, near the flow path wall surface. For this reason, in the flow path of the submerged membrane separation apparatus, there are a region where the membrane surface cleaning is effectively applied by the high-speed flow and a region where the membrane cleaning ability is reduced by the low-speed flow or stagnation.

また、浸漬型膜分離装置の流路の上部から流れ出る上昇流が処理槽の一側へ偏って流れ出る場合に、処理対象液は主として浸漬型膜分離装置の一側を下降流となって流れた後に、主として処理槽の一側から浸漬型膜分離装置の流路の下部へ流入し、循環流は浸漬型膜分離装置の一側において処理槽内を循環する形態となり、浸漬型膜分離装置の流路内において上昇流は流路方向に対して処理槽の一側へ変向する流れとなる。このため、浸漬型膜分離装置の流路において、処理槽の一側に対応する箇所で高流速の流れとなり、処理槽の他側に対応する箇所で淀みが生じて当該部位の膜洗浄能力が減少する。   In addition, when the upward flow that flows out from the upper part of the flow path of the submerged membrane separator flows out to one side of the treatment tank, the liquid to be treated flows mainly as a downward flow through one side of the submerged membrane separator. Later, it mainly flows from one side of the treatment tank to the lower part of the flow path of the submerged membrane separator, and the circulation flow circulates in the treatment tank on one side of the submerged membrane separator. In the flow path, the upward flow is a flow that changes to one side of the processing tank with respect to the flow path direction. For this reason, in the flow path of the submerged membrane separation apparatus, the flow rate is high at a location corresponding to one side of the treatment tank, and stagnation occurs at a location corresponding to the other side of the treatment tank, so that the membrane cleaning ability of the relevant portion is increased. Decrease.

このため、処理対象液中に浸漬する変向手段により循環流の流れ方向を定期的(所定時間毎)に変向するか、もしくは不定期的(任意時間毎)に変向することにより、浸漬型膜分離装置の流路内における上昇流の流れ状態、すなわち流れ方向および強弱を繰り返し変化させて、時間の経過に伴って上昇流の流れにゆらぎを形成し、浸漬型膜分離装置内の流路に生じる淀みの発生箇所を適宜に遷移させるとともに、上昇流が高流速で流れる箇所を遷移させることで膜面の全体を洗浄する。   For this reason, it is immersed by changing the flow direction of the circulating flow periodically (every predetermined time) or by changing the direction irregularly (every arbitrary time) by the turning means immersed in the liquid to be treated. The flow state of the upward flow in the flow path of the mold membrane separation device, that is, the flow direction and strength is repeatedly changed to form fluctuations in the flow of the upward flow over time, and the flow in the submerged membrane separation device The entire surface of the membrane is washed by appropriately changing the place where the stagnation occurs in the road and changing the place where the upward flow flows at a high flow velocity.

本発明の膜洗浄装置は、処理対象液を貯留する槽内に浸漬型膜分離装置を配置し、浸漬型膜分離装置が気泡流に伴って生じる上昇流により膜面洗浄を行うとともに、浸漬型膜分離装置から流れ出る上昇流により浸漬型膜分離装置の周囲の槽内に循環流を形成する処理槽において、処理対象液中に浸漬する作動部により、循環流の流れ方向を定期的に変向するか、もしくは不定期的に変向する変向手段を設けたものである。   The membrane cleaning apparatus of the present invention has an immersion type membrane separation device disposed in a tank for storing a liquid to be treated, and the immersion type membrane separation device performs membrane surface cleaning by the upward flow generated along with the bubble flow, and the immersion type. In the processing tank that forms a circulating flow in the tank around the submerged membrane separation device by the upward flow flowing out from the membrane separation device, the flow direction of the circulating flow is periodically changed by the operating part immersed in the liquid to be processed. Or a turning means for turning at irregular intervals.

また、変向手段は、浸漬型膜分離装置を介した処理槽の両側位置に対向して配置する作動部をなし、処理対象液に浸漬する作動位置と処理対象液面に退避する非作動位置とにわたって移動自在に設ける複数の変向板と、定期的に、もしくは不定期的に、各変向板を交互に作動位置と非作動位置とにわたって駆動する駆動装置とを備えるものである。   Further, the diverting means has an operation part arranged opposite to the both side positions of the treatment tank through the submerged membrane separation device, and an operation position for immersing in the treatment target liquid and a non-operation position for retreating to the treatment target liquid surface. And a drive device that drives each of the direction change plates alternately between the operation position and the non-operation position periodically or irregularly.

上記した構成により、一方の変向板を循環流中に浸漬することによりその抵抗によって循環流は自ずと流れ易い方向へ流れ、循環流の流れが変化する。タイマー制御等により駆動装置が定期的(所定時間毎)に、もしくは不定期的(任意時間毎)に各変向板を交互に循環流中に浸漬することにより、循環流の流れ方向を変向する。このことにより、浸漬型膜分離装置の流路内における上昇流の流れ状態、すなわち流れ方向および強弱を繰り返し変化させて、時間の経過に伴って上昇流の流れにゆらぎを形成し、浸漬型膜分離装置の流路内に生じる淀みの発生箇所を適宜に遷移させるとともに、上昇流が高流速で流れる箇所を遷移させることで膜面の全体を洗浄する。   With the above-described configuration, by immersing one of the deflecting plates in the circulation flow, the circulation flow naturally flows in a direction easy to flow due to the resistance, and the flow of the circulation flow changes. The direction of the circulating flow is changed by immersing each turning plate alternately in the circulating flow periodically (every predetermined time) or irregularly (every arbitrary time) by the timer control. To do. As a result, the flow state of the upward flow in the flow path of the submerged membrane separation device, that is, the flow direction and strength are repeatedly changed to form fluctuations in the flow of the upward flow over time. The place where the stagnation generated in the flow path of the separation device is appropriately changed, and the whole membrane surface is washed by changing the place where the upward flow flows at a high flow rate.

また、変向手段は、処理対象液中に浸漬して処理槽上部に配置する作動部をなし、回転方向に応じて処理槽の一側もしくは他側へ処理対象液を誘導するローターと、ローターを回転駆動し、定期的に、もしくは不定期的に、ローターの回転方向を反転させる駆動装置とを備えるものである。   Further, the diverting means comprises an operating part that is immersed in the processing target liquid and disposed at the top of the processing tank, and a rotor for guiding the processing target liquid to one side or the other side of the processing tank according to the rotation direction, and a rotor And a drive device that reverses the rotation direction of the rotor periodically or irregularly.

上記した構成により、ローターはその回転により処理対象液を送り出し、ローターを境とする両側に流速差および圧力差を生じさせて処理対象液を誘導する。ローターによる誘導によって処理対象液に高流速、低圧力の側へ向かう流れが生じ、この流れが誘導流となって周囲の処理対象液を誘引し、例えば処理槽の一側から他側へ向かう循環流が生じる。   With the above-described configuration, the rotor sends out the liquid to be processed by its rotation, and induces the liquid to be processed by generating a flow velocity difference and a pressure difference on both sides of the rotor. A flow directed toward the high flow velocity and low pressure is generated in the liquid to be treated by induction by the rotor, and this flow becomes an induced flow to attract the surrounding liquid to be treated, for example, circulation from one side of the treatment tank to the other side. A flow is generated.

ローターは循環流の上向き流れ部、つまり浸漬型膜分離装置から流れ出た上昇流の流れ中に配置することでより有効な作用を果たすことができ、回転数を変化させることでローターを境とする両側に生じさせる圧力差を調整できる。   The rotor can be more effective by being placed in the upward flow part of the circulating flow, that is, in the upward flow that flows out of the submerged membrane separator, and the rotor is the boundary by changing the rotation speed. The pressure difference generated on both sides can be adjusted.

タイマー制御等により駆動装置が定期的(所定時間毎)に、もしくは不定期的(任意時間毎)にローターの回転方向を反転させることにより、循環流の流れ方向を変向する。このことにより、浸漬型膜分離装置の流路内における上昇流の流れ状態、すなわち流れ方向および強弱を繰り返し変化させて、時間の経過に伴って上昇流の流れにゆらぎを形成し、浸漬型膜分離装置内の流路に生じる淀みの発生箇所を適宜に移動させるとともに、上昇流が高流速で流れる箇所を遷移させることで膜面の全体を洗浄する。   The driving device changes the direction of the circulating flow by reversing the rotation direction of the rotor periodically (every predetermined time) or irregularly (every arbitrary time) by timer control or the like. As a result, the flow state of the upward flow in the flow path of the submerged membrane separation device, that is, the flow direction and strength are repeatedly changed to form fluctuations in the flow of the upward flow over time. The entire surface of the membrane is washed by appropriately moving the place where the stagnation generated in the flow path in the separation device is moved, and changing the place where the upward flow flows at a high flow rate.

以上のように本発明によれば、循環流の流れ方向を変向することで、曝気空気量の変更等の散気装置の制御操作を伴うことなく、定常運転状態を保ちつつ上昇流の流れ状態にゆらぎを形成して、膜面の前面に乱流を作用させて上昇流による膜面洗浄を行うことができる。   As described above, according to the present invention, by changing the flow direction of the circulating flow, the flow of the upward flow is maintained while maintaining the steady operation state without accompanying the control operation of the air diffuser such as changing the amount of aerated air. Fluctuation can be formed in the state, and turbulent flow can be applied to the front surface of the film surface to perform film surface cleaning by upward flow.

以下、本発明の実施の形態を図面に基づいて説明する。図1において、流入系21から処理対象液22が流入する処理槽23には、貯留した処理対象液22に浸漬して複数の浸漬型膜分離装置24を列状に配置している。浸漬型膜分離装置24は1基のみを配置することも可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a plurality of submerged membrane separation devices 24 are arranged in a row in a processing tank 23 into which a processing target liquid 22 flows from an inflow system 21 so as to be immersed in the stored processing target liquid 22. It is also possible to arrange only one immersion membrane separator 24.

浸漬型膜分離装置24は、ケーシング25の内部に複数の膜カートリッジ26を上下二段に配置したものであり、膜カートリッジ26は濾板の表裏に平膜状の濾過膜を配置してなり、上下方向に沿って平行に配置した隣接する膜カートリッジ26の間に所定間隙の流路を形成している。   The submerged membrane separation device 24 has a plurality of membrane cartridges 26 arranged in two upper and lower stages inside a casing 25. The membrane cartridge 26 has flat membrane-like filtration membranes arranged on the front and back of a filter plate. A channel having a predetermined gap is formed between adjacent membrane cartridges 26 arranged in parallel along the vertical direction.

各浸漬型膜分離装置24の下部にはブロア27に接続した散気装置28を配置しており、散気装置28から噴出する曝気空気の気泡流によってケーシング25の内部に固気液混相の上昇流が生じ、浸漬型膜分離装置24の周囲の混合液がケーシング25に下端開口から流入し、ケーシング25の内部を気泡流とともに固気液混相の上昇流となって流れる。この上昇流は混合液を膜カートリッジ26の膜面に沿ってクロスフローで供給するとともに膜面を洗浄し、ケーシング25の上端開口から流れ出て処理槽23の内部に循環流を29を形成する。   A diffuser 28 connected to the blower 27 is disposed below each submerged membrane separator 24, and the solid-gas / liquid mixed phase rises inside the casing 25 by the bubble flow of aerated air ejected from the diffuser 28. A flow is generated, and the liquid mixture around the submerged membrane separation device 24 flows into the casing 25 from the lower end opening, and flows inside the casing 25 as an upward flow of the solid-gas liquid phase together with the bubble flow. This upward flow supplies the mixed liquid in a cross flow along the membrane surface of the membrane cartridge 26, cleans the membrane surface, flows out from the upper end opening of the casing 25, and forms a circulating flow 29 inside the treatment tank 23.

各膜カートリッジ26は導水管30に連通し、吸引ポンプ31による吸引圧を駆動圧力として混合液をろ過して固液を分離し、膜透過液が導水管30を通して系外へ取り出される。   Each membrane cartridge 26 communicates with the water conduit 30, the mixed liquid is filtered using the suction pressure by the suction pump 31 as a driving pressure to separate the solid and liquid, and the membrane permeate is taken out of the system through the water conduit 30.

処理槽23には循環流29の流れ方向を変える変向手段を設けており、この変向手段を以下に説明する。複数の浸漬型膜分離装置24を介した処理槽23の両側位置には一対の変向板32、33を対向配置しており、各変向板32、33は変向手段の作動部をなし、単板のみならず複数枚ずつを配置することも可能である。   The treatment tank 23 is provided with turning means for changing the flow direction of the circulating flow 29, and this turning means will be described below. A pair of diverting plates 32 and 33 are arranged opposite to each other on both sides of the treatment tank 23 via a plurality of submerged membrane separation devices 24, and each diverting plate 32 and 33 constitutes an operating part of the diverting means. It is also possible to arrange not only a single plate but also a plurality of each.

各変向板32、33は処理対象液22に浸漬する作動位置と処理対象液22の液面に退避する非作動位置とにわたって移動自在に設けており、本実施の形態では、図2に示すように、作動位置において浸漬型膜分離装置24までの上下方向距離aが0.2〜0.7mであり、水平方向の距離bが0.1〜1.0mである。   Each of the deflecting plates 32 and 33 is provided so as to be movable between an operation position immersed in the processing target liquid 22 and a non-operation position retracted to the liquid surface of the processing target liquid 22, and in this embodiment, shown in FIG. Thus, the vertical distance a to the submerged membrane separator 24 at the operating position is 0.2 to 0.7 m, and the horizontal distance b is 0.1 to 1.0 m.

図3に示すように、各変向板32、33はそれぞれ駆動装置をなす水圧アクチュエータ34、35に接続しており、各水圧アクチュエータ34、35は電動バルブ36、37を介して導水管30に連通し、吸引ポンプ31の吐出圧を作動圧力とする。各変向板32、33の駆動力としては電気モータを使用することも可能であるが、吸引ポンプ31の有効利用を図れる点で優位である。   As shown in FIG. 3, the deflecting plates 32 and 33 are connected to hydraulic actuators 34 and 35 that constitute driving devices, respectively, and the hydraulic actuators 34 and 35 are connected to the water guide pipe 30 via electric valves 36 and 37. In communication, the discharge pressure of the suction pump 31 is the operating pressure. An electric motor can be used as the driving force for each of the deflecting plates 32 and 33, but it is advantageous in that the suction pump 31 can be effectively used.

水圧アクチュエータ34、35は水圧が作用する作動時に各変向板32、33をバネ等の付勢手段(図示省略)に抗して作動位置に押し込み、水圧を解除した状態において各変向板32、33は非作動位置に復帰する。各電動バルブ36、37は制御装置38に接続しており、制御装置38は定期的に所定時間サイクルで、もしくは不定期的にランダムな時間サイクルで、各電動バルブ36、37を操作して各水圧アクチュエータ34、35を駆動し、各変向板32、33を交互に作動位置と非作動位置とにわたって駆動する。   The water pressure actuators 34 and 35 push the respective deflecting plates 32 and 33 into the operating position against an urging means (not shown) such as a spring during operation in which the water pressure is applied, and each diverting plate 32 in a state where the water pressure is released. 33 return to the inoperative position. Each electric valve 36, 37 is connected to a control device 38. The control device 38 operates each electric valve 36, 37 periodically at a predetermined time cycle or irregularly at a random time cycle. The hydraulic actuators 34 and 35 are driven, and the deflecting plates 32 and 33 are alternately driven across the operating position and the non-operating position.

以下、上記した構成における作用を説明する。本装置の運転は、散気装置28による曝気を常に継続する状態で、タイマー制御等によって例えばポンプの15分間の運転とポンプの2分間の運転停止を繰り返す間欠ろ過運転を行う。   Hereinafter, the operation of the above-described configuration will be described. The operation of this apparatus is an intermittent filtration operation that repeats, for example, a 15-minute operation of the pump and a 2-minute operation stop of the pump by timer control or the like in a state where the aeration by the aeration device 28 is always continued.

この間欠ろ過運転を以下に詳しく説明する。
1.ポンプ運転時に何れか一方の、ここでは水圧アクチュエータ34に作動圧を与えて変向板32を作動位置に配置し、この状態でポンプ運転を15分間継続する。
2.散気装置28の曝気を継続する状態でポンプの運転を2分間停止する。
3.ポンプ運転を再開し、一方の水圧アクチュエータ34の作動圧を解除して変向板32を非作動位置に後退させるとともに、他方の水圧アクチュエータ35に作動圧を与えて変向板33を作動位置に配置し、この状態でポンプ運転を15分間継続する。
4.散気装置28の曝気を継続する状態でポンプの運転を2分間停止する。
以上の操作を繰り返す。変向板32、33を入れ替えるサイクル時間は、膜面に汚れが強固に付着するまでの時間を考慮して設定するものであるが、本実施の形態では運転停止時毎に行う。
This intermittent filtration operation will be described in detail below.
1. At the time of pump operation, either one, here, the hydraulic pressure actuator 34 is applied with an operating pressure to place the deflecting plate 32 at the operating position, and in this state, the pump operation is continued for 15 minutes.
2. The pump operation is stopped for 2 minutes while the aeration of the air diffuser 28 is continued.
3. The pump operation is resumed, the operating pressure of one of the hydraulic actuators 34 is released and the direction change plate 32 is retracted to the non-operation position, and the operation pressure is applied to the other hydraulic pressure actuator 35 to bring the direction change plate 33 to the operation position. Place and continue pumping for 15 minutes in this state.
4). The pump operation is stopped for 2 minutes while the aeration of the air diffuser 28 is continued.
Repeat the above operation. The cycle time for replacing the deflecting plates 32 and 33 is set in consideration of the time until dirt adheres firmly to the film surface, but in this embodiment, it is performed every time the operation is stopped.

ろ過運転では、浸漬型膜分離装置24において、散気装置28から散気する曝気空気の気泡流に伴って上昇流が生じ、上昇流によって膜カートリッジ26の膜面洗浄を行うとともに、浸漬型膜分離装置24から流れ出る上昇流により浸漬型膜分離装置24の周囲の槽内に循環流29を形成する。   In the filtration operation, in the submerged membrane separation device 24, an upward flow is generated along with the bubble flow of the aerated air diffused from the diffuser 28, and the membrane surface of the membrane cartridge 26 is washed by the upward flow, and the submerged membrane is also used. A circulating flow 29 is formed in the tank around the submerged membrane separation device 24 by the upward flow flowing out from the separation device 24.

ところで、例えば変向板32、33の両方を非作動位置に退避させた状態では、浸漬型膜分離装置24のケーシング25によって形成する流路の上部から流れ出る上昇流は、主として複数の浸漬型膜分離装置24の中間位置を境とする処理槽の両側へ流れ出る。浸漬型膜分離装置24が1基の場合は浸漬型膜分離装置24を境とする。   By the way, for example, in a state where both the deflecting plates 32 and 33 are retracted to the non-operating position, the upward flow flowing out from the upper part of the flow path formed by the casing 25 of the submerged membrane separator 24 is mainly composed of a plurality of submerged membranes. It flows out to both sides of the treatment tank with the intermediate position of the separation device 24 as a boundary. When there is one submerged membrane separator 24, the submerged membrane separator 24 is the boundary.

各浸漬型膜分離装置24から流れ出た処理対象液22は水流が互いに影響し合うために、主として両側端の浸漬型膜分離装置24の外側を下降流となって流れた後に、主として処理槽23の両側から浸漬型膜分離装置24のケーシング25によって形成する流路の下部へ流入する。   Since the liquids to be treated 22 flowing out from the respective submerged membrane separators 24 influence each other, the mainstream of the treatment tank 23 is mainly flown down the outside of the submerged membrane separators 24 at both ends. Flows into the lower part of the flow path formed by the casing 25 of the submerged membrane separator 24 from both sides.

このため、循環流29は複数の浸漬型膜分離装置24の中央位置、つまり左右2基ずつの中間を境として対称に形成されて処理槽23の内部を循環する形態となり、この槽内の循環流29の影響を受けることで、各浸漬型膜分離装置24のケーシング25における上昇流の流れは直線的なものではなくなり、ケーシング25の一側に偏流し、他側が上昇流による膜面の洗浄効果が弱く、もしくは洗浄効果がない領域となる。   For this reason, the circulation flow 29 is formed symmetrically around the center position of the plurality of submerged membrane separation devices 24, that is, between the left and right two units, and circulates inside the treatment tank 23. Due to the influence of the flow 29, the flow of the upward flow in the casing 25 of each submerged membrane separation device 24 is not linear, and drifts to one side of the casing 25, and the other side cleans the membrane surface by the upward flow. This is a region where the effect is weak or there is no cleaning effect.

また、図1に示すように、一方の変向板32を作動位置に浸漬する状態では、浸漬型膜分離装置24のケーシング25の流路の上部から流れ出る上昇流に対して変向板32が抵抗となることで、循環流29は自ずと流れ易い方向へ流れる。   Further, as shown in FIG. 1, in the state where one of the deflecting plates 32 is immersed in the operating position, the deflecting plate 32 is against the upward flow flowing out from the upper part of the flow path of the casing 25 of the submerged membrane separation device 24. By becoming a resistance, the circulating flow 29 flows in a direction that easily flows.

このため、浸漬型膜分離装置24のケーシング25の流路の上部から流れ出た上昇流が処理槽23の一側へ偏って流れ出ることで、処理対象液22は主として一側端の浸漬型膜分離装置24の一側を下降流となって流れた後に、主として処理槽23の一側から浸漬型膜分離装置24のケーシング25の流路の下部へ流入し、循環流29は複数の浸漬型膜分離装置24に対する処理槽23の一側において槽内を循環する形態となり、各浸漬型膜分離装置24のケーシング25の流路内において上昇流は流路方向に対して処理槽23の一側へ変向する流れとなる。このため、各浸漬型膜分離装置24のケーシング25の流路において、処理槽23の他側に対応する部位に淀み領域39が生じてこの部位の膜洗浄能力が減少する。   For this reason, the upward flow flowing out from the upper part of the flow path of the casing 25 of the submerged membrane separation device 24 is biased and flows out to one side of the processing tank 23, so that the liquid 22 to be treated is mainly submerged membrane separation at one side end. After flowing down on one side of the apparatus 24, it mainly flows from one side of the treatment tank 23 into the lower part of the flow path of the casing 25 of the submerged membrane separation apparatus 24, and the circulating flow 29 is a plurality of submerged membranes. The inside of the tank is circulated on one side of the treatment tank 23 with respect to the separation device 24, and the upward flow in the flow path of the casing 25 of each submerged membrane separation apparatus 24 is directed to one side of the treatment tank 23 with respect to the flow path direction. The flow will change. For this reason, in the flow path of the casing 25 of each submerged membrane separation device 24, a stagnation region 39 is generated at a site corresponding to the other side of the processing tank 23, and the membrane cleaning ability of this site is reduced.

このため、制御装置38は運転停止時毎に、つまり定期的に所定時間サイクルで各電動バルブ36、37を操作して各水圧アクチュエータ34、35を駆動し、各変向板32、33を交互に作動位置と非作動位置とにわたって駆動する。このとき、各変向板32、33は作動の都度毎に水圧アクチュエータ34、35の軸廻りの角度を変向させても良い。この変向板32、33の入れ替えは不定期的にランダムな時間サイクルで行うことも可能である。   For this reason, the control device 38 operates the electric valves 36 and 37 to drive the hydraulic actuators 34 and 35 every time when the operation is stopped, that is, periodically in a predetermined time cycle, and alternately turns the deflecting plates 32 and 33. To drive between the operating position and the non-operating position. At this time, each of the deflecting plates 32 and 33 may change the angle around the axis of the hydraulic actuators 34 and 35 for each operation. It is also possible to exchange the direction change plates 32 and 33 irregularly in a random time cycle.

一方の変向板32が非作動位置に退避し、他方の変向板33が作動位置に浸漬されることで、次のろ過運転時には循環流29の流れが反転し、各核浸漬型膜分離装置24のケーシング25の流路内において上昇流の流れ状態、すなわち流れ方向および強弱が変化し、上昇流は流路方向に対して処理槽23の他側へ変向する流れとなる。   When one of the deflecting plates 32 is retracted to the non-operating position and the other of the deflecting plates 33 is immersed in the operating position, the flow of the circulating flow 29 is reversed during the next filtration operation, and each nuclear immersion type membrane separation is performed. The flow state of the upward flow, that is, the flow direction and strength changes in the flow path of the casing 25 of the apparatus 24, and the upward flow changes to the other side of the processing tank 23 with respect to the flow path direction.

このため、各浸漬型膜分離装置24のケーシング25の流路おける淀み領域39が解消されてこの部位に高流速の流れが作用することで膜面洗浄能力が回復し、一方で処理槽23の一側には新たに淀み領域39が生じる。   For this reason, the stagnation region 39 in the flow path of the casing 25 of each submerged membrane separation device 24 is eliminated, and the high-flow-rate flow acts on this part to restore the membrane surface cleaning ability. A stagnation region 39 is newly generated on one side.

したがって、変向板32、33を交互に浸漬して循環流29の流れ方向を反転させることで、浸漬型膜分離装置24の流路内における上昇流の流れ状態、すなわち流れ方向および強弱を繰り返し変化させて、時間の経過に伴って上昇流の流れにゆらぎを形成し、浸漬型膜分離装置24のケーシング25の流路に生じる淀みの発生箇所を適宜に遷移させるとともに、上昇流が高流速で流れる箇所を遷移させることで膜面の全体を洗浄する。上述の作用において、処理槽内の主たる循環流29の流れ方向が反転するまでには時間を要するが、運転停止中では膜面の汚れの進行はなく、むしろ乱れが膜面洗浄に効果的に働く。   Accordingly, by alternately immersing the deflecting plates 32 and 33 and reversing the flow direction of the circulating flow 29, the flow state of the upward flow in the flow path of the submerged membrane separation device 24, that is, the flow direction and strength is repeated. As the time passes, fluctuations are formed in the flow of the upward flow, and the place where the stagnation occurs in the flow path of the casing 25 of the submerged membrane separation device 24 is appropriately transitioned, and the upward flow has a high flow velocity. The entire film surface is cleaned by changing the flow point of the film. In the above-described operation, it takes time until the flow direction of the main circulating flow 29 in the treatment tank is reversed. However, the dirt on the film surface does not progress during the operation stop, but rather the disturbance is effective for cleaning the film surface. work.

よって、従来よりも少ないエネルギーで効率良く膜面に高流速で強い水流を作用させることができ、汚れが付着したままでろ過不能となる無効な膜面積が減少し、従来において必要とされた単位膜面積当たりの曝気エネルギーを軽減することが可能となる。   Therefore, it is possible to apply a strong water flow at a high flow rate efficiently on the membrane surface with less energy than in the past, and the ineffective membrane area that cannot be filtered while dirt is attached is reduced. Aeration energy per membrane area can be reduced.

変向板32、33の形状および傾斜角度は、浸漬型膜分離装置24から流れ出る上昇流および循環流29の流れ状態に影響を与えるとともに、ケーシング25における上昇流のゆらぎにも影響を与えるので、その設定は上昇流のゆらぎにより膜カートリッジ26の膜面全体に定期的に高流速が作用するように行う。上昇流のゆらぎサイクル、つまり変向板32、33を入れ替えるサイクル時間は、膜面に汚れが強固に付着するまでの時間を考慮し、膜面の各部位において汚れが強固になる前に高速流が定期的に膜面の全ての部位に作用するように設定する。   Since the shape and the inclination angle of the deflecting plates 32 and 33 affect the flow state of the upward flow and the circulating flow 29 that flow out of the submerged membrane separation device 24, and also the fluctuation of the upward flow in the casing 25. The setting is performed so that a high flow rate periodically acts on the entire membrane surface of the membrane cartridge 26 due to fluctuations in the upward flow. The fluctuation cycle of the upward flow, that is, the cycle time for replacing the deflecting plates 32 and 33 takes into account the time until the dirt adheres firmly to the film surface, and the high-speed flow before each dirt on the film surface becomes strong. Is set to act periodically on all parts of the membrane surface.

図4〜図6は、本発明の他の実施の形態を示すものであり、先の実施の形態と同様の作用を行う構成要素には同符号を付して説明を省略する。
この構成において、変向手段は、作動部をなすローター41とローター41を駆動する駆動部をなすモータ42およびモータ42の駆動を制御する制御装置38からなる。制御装置38はモータ42の回転数および回転方向を制御し、定期的に、もしくは不定期的に、ローター41の回転方向を反転させる。
4 to 6 show other embodiments of the present invention, and the same reference numerals are given to components that perform the same operations as those of the previous embodiment, and description thereof will be omitted.
In this configuration, the diverting means includes a rotor 41 that constitutes an operating part, a motor 42 that constitutes a driving part that drives the rotor 41, and a control device 38 that controls driving of the motor 42. The control device 38 controls the rotation speed and rotation direction of the motor 42, and reverses the rotation direction of the rotor 41 regularly or irregularly.

ローター41は軸部43と軸部43に螺旋状に設ける複数のパドル部44からなる。ローター41は小型のものであれば浸漬型膜分離装置24もしくは配管等に装着しても良く、大型のものは処理槽23に設置しても良い。   The rotor 41 includes a shaft portion 43 and a plurality of paddle portions 44 provided spirally on the shaft portion 43. If the rotor 41 is small, it may be attached to the submerged membrane separation device 24 or piping, and the large one may be installed in the treatment tank 23.

図4では模式的にローター41が処理対象液22の液面付近に一部を浸漬する状態を示しているが、実際にはローター41は水没しているほうがその効果が高い。
また、ローター41は浸漬型膜分離装置24の上方で上昇流に対応する処理槽23の上部の複数個所に設けており、本実施の形態では、図8に示すように、浸漬型膜分離装置24までの上下方向距離cが0.3〜0.7mであり、水平方向の距離dが0.0〜0.5mである。ローター41は浸漬型膜分離装置24の下方に配置することも可能である。
FIG. 4 schematically shows a state in which the rotor 41 is partially immersed in the vicinity of the liquid surface of the processing target liquid 22, but in reality, the effect is higher when the rotor 41 is submerged.
Further, the rotor 41 is provided at a plurality of locations above the treatment tank 23 corresponding to the upward flow above the submerged membrane separation device 24. In this embodiment, as shown in FIG. The vertical distance c up to 24 is 0.3 to 0.7 m, and the horizontal distance d is 0.0 to 0.5 m. The rotor 41 can also be disposed below the submerged membrane separation device 24.

さらに、図12に示すように、処理槽23の容量に応じて浸漬型膜分離装置24の基数は多くなるが、ローター41は浸漬型膜分離装置24の2基当たりに1台を設ける構成でも良く、あるいはローター41を大型化して台数を減らしても良い。   Furthermore, as shown in FIG. 12, the number of submerged membrane separators 24 increases according to the capacity of the processing tank 23, but the rotor 41 may be provided with one unit per two submerged membrane separators 24. Alternatively, the number of the rotors 41 may be reduced by increasing the size of the rotor 41.

上記した構成において、ろ過運転時には吸引ポンプ31およびブロア27を駆動し、モータ42により各ローター41を一方向へ回転させる。浸漬型膜分離装置24では、散気装置28から散気する曝気空気の気泡流に伴って上昇流を生じさせ、上昇流によって膜カートリッジ26の膜面洗浄を行うとともに、浸漬型膜分離装置24から流れ出る上昇流により浸漬型膜分離装置24の周囲の槽内に循環流29を形成する。   In the above-described configuration, the suction pump 31 and the blower 27 are driven during the filtration operation, and each rotor 41 is rotated in one direction by the motor 42. In the submerged membrane separation device 24, an upward flow is generated along with the bubble flow of aerated air diffused from the air diffuser 28, and the membrane surface of the membrane cartridge 26 is cleaned by the upward flow, and the submerged membrane separation device 24. A circulating flow 29 is formed in the tank around the submerged membrane separation device 24 by the upward flow flowing out of the submerged membrane separator 24.

このとき、図7に示すように、モータ42により回転する各ローター41はパドル部44の回転により処理対象液22を回転方向へ送り出し、ローター41を境とする一側に流速の早い高速域を形成し、他側に流速の遅い低速域を形成し、両側間に流速差および圧力差を生じさせて処理対象液22を誘導する。このローター41による誘導によって処理対象液22に高流速、低圧力の側へ向かう流が生じ、この流れが誘導流となって周囲の処理対象液22を誘引し、例えば処理槽23の一側から他側へ向かう循環流29が生じる。   At this time, as shown in FIG. 7, each rotor 41 rotated by the motor 42 sends out the liquid 22 to be processed in the rotation direction by the rotation of the paddle portion 44, and a high speed region with a high flow velocity is set on one side of the rotor 41 as a boundary. Then, a low speed region with a low flow velocity is formed on the other side, and a flow velocity difference and a pressure difference are generated between both sides to induce the processing target liquid 22. Due to the induction by the rotor 41, a flow toward the high flow velocity and low pressure side is generated in the processing target liquid 22, and this flow becomes an induced flow to attract the surrounding processing target liquid 22, and for example, from one side of the processing tank 23 A circulating flow 29 toward the other side is generated.

制御装置28は、タイマー制御等により定期的(所定時間毎)に、もしくは不定期的(ランダムな時間毎)にモータ42によるローター41の回転方向を反転させる。本実施の形態では連続したろ過運転中においてローター41の回転方向を反転させるが、先の実施の形態と同様に、間欠ろ過運転の運転停止中にローター41の回転方向を反転させることも可能である。   The control device 28 reverses the rotation direction of the rotor 41 by the motor 42 periodically (every predetermined time) or irregularly (every random time) by timer control or the like. In this embodiment, the rotation direction of the rotor 41 is reversed during continuous filtration operation, but it is also possible to reverse the rotation direction of the rotor 41 while the intermittent filtration operation is stopped, as in the previous embodiment. is there.

ローター41の回転方向が反転すると、ローター41を境とする両側の高速域と低速域が入れ替わり、循環流29の流れ方向が反転する。したがって、ローター41に回転エネルギーを与えるだけで循環流29を制御でき、曝気動力と比べて小さな動力で流れの向きを変えることができる。   When the rotation direction of the rotor 41 is reversed, the high speed region and the low speed region on both sides of the rotor 41 are interchanged, and the flow direction of the circulating flow 29 is reversed. Therefore, the circulating flow 29 can be controlled only by giving rotational energy to the rotor 41, and the direction of the flow can be changed with a smaller power than the aeration power.

このことにより、浸漬型膜分離装置24のケーシング25の流路内における上昇流の流れ状態、すなわち流れ方向および強弱を繰り返し変化させて、時間の経過に伴って上昇流の流れにゆらぎを形成し、浸漬型膜分離装置24の流路に生じる淀みの発生箇所を適宜に遷移させるとともに、上昇流が高流速で流れる箇所を遷移させることで膜面の全体を洗浄する。   As a result, the flow state of the upward flow in the flow path of the casing 25 of the submerged membrane separation device 24, that is, the flow direction and strength are repeatedly changed to form fluctuations in the flow of the upward flow over time. In addition, the entire portion of the membrane surface is washed by appropriately changing the place where the stagnation occurs in the flow path of the submerged membrane separation device 24 and changing the place where the upward flow flows at a high flow rate.

ローター41は循環流29の上向き流れ部、つまり浸漬型膜分離装置24から流れ出た上昇流の流れ中に配置することでより有効な作用を果たすことができる。また、ローター41の作用には水深影響があるので、水深に応じてローター41の回転数を変えることで、ローター41を境とする両側に生じさせる圧力差を調整して循環流29の流れ状態を調整し、淀み箇所の発生を無くす。また、ローター41の回転数の調整は他の要因、例えば処理槽23の形状等による淀み箇所の発生に対処するうえでも有効である。   The rotor 41 can perform a more effective action by being arranged in the upward flow portion of the circulating flow 29, that is, in the upward flow flowing out of the submerged membrane separation device 24. Further, since the action of the rotor 41 has an influence on the water depth, the flow state of the circulating flow 29 is adjusted by adjusting the pressure difference generated on both sides of the rotor 41 by changing the rotation speed of the rotor 41 according to the water depth. To eliminate the occurrence of stagnation. Further, the adjustment of the rotational speed of the rotor 41 is also effective in dealing with the occurrence of stagnation due to other factors, such as the shape of the processing tank 23.

図9はローター41による循環流の制御を行わないでろ過運転を行った場合の膜の汚れを示すものであり、散気装置28により供給する曝気空気量が処理対象液22の単位量当たりに20mである状態を曝気空気量100%(20m3−air/m3−水)として、フラックスを一定に維持してろ過運転を継続するために必要な吸引圧力の経日変化を示している。 FIG. 9 shows the contamination of the membrane when the filtration operation is performed without controlling the circulating flow by the rotor 41. The amount of aerated air supplied by the air diffuser 28 per unit amount of the processing target liquid 22 is shown. It shows the daily change of the suction pressure necessary for maintaining the flux constant and continuing the filtration operation, assuming that the state of 20 m 3 is the aeration air amount 100% (20 m 3 -air / m 3 -water).

図9においてグラフ線(中)aは、図11に示す構成において処理槽23の中央付近の箇所(1)おける浸漬型膜分離装置24の膜面の汚れ状態(吸引圧力)を示し、グラフ線(端)bは、図11に示す構成において処理槽23の水槽壁面に近い箇所(2)、(3)、(4)における浸漬型膜分離装置24の膜面の汚れ状態(吸引圧力)を示している。   In FIG. 9, the graph line (middle) a indicates the state of dirt (suction pressure) on the membrane surface of the submerged membrane separator 24 at the location (1) near the center of the treatment tank 23 in the configuration shown in FIG. (End) b is the state (suction pressure) of the membrane surface of the submerged membrane separator 24 in the locations (2), (3), and (4) close to the water tank wall surface of the treatment tank 23 in the configuration shown in FIG. Show.

図9に明示するように、一定期間を経過すると、処理槽23の中央付近の箇所(1)および水槽壁面に近い箇所(2)、(3)、(4)の双方において、膜面の汚れの進行とともに吸引圧力が上昇し、特に水槽壁面に近い箇所(2)、(3)、(4)において顕著となる。   As clearly shown in FIG. 9, after a certain period of time, the film surface becomes dirty at both the location (1) near the center of the treatment tank 23 and the locations (2), (3), and (4) near the water tank wall. The suction pressure rises with the progress of, and is particularly noticeable at locations (2), (3), and (4) close to the water tank wall surface.

図10はローター41による循環流の制御を伴うろ過運転を行った場合の膜の汚れを示すものであり、曝気空気量90%として、フラックスを一定に維持してろ過運転を継続するために必要な吸引圧力の経日変化を示している。   FIG. 10 shows the contamination of the membrane when the filtration operation with the circulation flow control by the rotor 41 is performed, and is necessary for maintaining the flux constant and continuing the filtration operation with the aeration air amount being 90%. This shows the daily changes in suction pressure.

図10より明らかなように、ろ過運転を継続しても、処理槽23の中央付近の箇所(1)および水槽壁面に近い箇所(2)、(3)、(4)の双方において、吸引圧力は上昇せず、膜面の汚れが進行しない状態を維持できる。   As is clear from FIG. 10, even if the filtration operation is continued, the suction pressure at both the location (1) near the center of the treatment tank 23 and the locations (2), (3), and (4) near the water tank wall surface. Does not rise, and can maintain a state in which dirt on the film surface does not progress.

本発明の実施の形態における膜洗浄装置を示す模式図The schematic diagram which shows the film | membrane washing | cleaning apparatus in embodiment of this invention 同実施の形態における変向板の配置位置を示す要部拡大図The principal part enlarged view which shows the arrangement position of the direction change board in the embodiment 同実施の形態における変向板の駆動機構を示す模式図Schematic diagram showing the drive mechanism of the deflection plate in the same embodiment 本発明の他の実施の形態における膜洗浄装置を示す模式図The schematic diagram which shows the film | membrane washing | cleaning apparatus in other embodiment of this invention. 同実施の形態における膜洗浄装置を示す平面図The top view which shows the film | membrane washing | cleaning apparatus in the embodiment 同実施の形態におけるローターを示す斜視図The perspective view which shows the rotor in the same embodiment 同実施の形態におけるローターの作用を示す模式図Schematic showing the action of the rotor in the same embodiment 同実施の形態におけるローターの配置位置を示す要部拡大図The principal part enlarged view which shows the arrangement position of the rotor in the embodiment 比較試験におけるローターを伴わないろ過運転の経日変化を示すグラフ図The graph which shows the daily change of the filtration operation without a rotor in a comparative test 比較試験における本発明のローターを伴うろ過運転の経日変化を示すグラフ図The graph which shows the daily change of the filtration driving | operation with the rotor of this invention in a comparative test. 比較試験におけるローターを伴わないろ過運転での汚れ発生箇所を示す模式図Schematic diagram showing the location of contamination in a filtration operation without a rotor in a comparative test 本発明の他の実施の形態における膜洗浄装置を示す模式図The schematic diagram which shows the film | membrane washing | cleaning apparatus in other embodiment of this invention. 従来の膜分離活性汚泥法を示す模式図Schematic diagram showing the conventional membrane separation activated sludge method 従来の構成での浸漬型膜分離装置における流れ状態を示す模式図Schematic diagram showing the flow state in a submerged membrane separator with a conventional configuration 従来の他の構成での浸漬型膜分離装置における流れ状態を示す模式図Schematic diagram showing the flow state in the submerged membrane separation device in another conventional configuration

符号の説明Explanation of symbols

21 流入系
22 処理対象液
23 処理槽
24 浸漬型膜分離装置
25 ケーシング
26 膜カートリッジ
27 ブロア
28 散気装置
29 循環流
30 導水管
31 吸引ポンプ
32、33 変向板
34、35 水圧アクチュエータ
36、37 電動バルブ
38 制御装置
39 淀み領域
41 ローター
42 モータ
43 軸部
44 パドル部
DESCRIPTION OF SYMBOLS 21 Inflow system 22 Processing object liquid 23 Processing tank 24 Immersion type membrane separator 25 Casing 26 Membrane cartridge 27 Blower 28 Air diffuser 29 Circulation flow 30 Water guide pipe 31 Suction pump 32, 33 Diverting plate 34, 35 Hydraulic actuator 36, 37 Electric valve 38 Control device 39 Stuffing area 41 Rotor 42 Motor 43 Shaft part 44 Paddle part

Claims (4)

処理対象液を貯留する処理槽内に配置した浸漬型膜分離装置において、気泡流に伴って生じる上昇流により膜面洗浄を行うとともに、浸漬型膜分離装置から流れ出る上昇流により浸漬型膜分離装置の周囲の槽内に循環流を形成し、処理対象液中に浸漬する変向手段により循環流の流れ方向を定期的に変向するか、もしくは不定期的に変向することによって、浸漬型膜分離装置内の流路における上昇流の流れ状態を繰り返し変化させることを特徴とする膜洗浄方法。 In the submerged membrane separation device disposed in the treatment tank for storing the liquid to be treated, the membrane surface is cleaned by the upward flow generated along with the bubble flow, and the submerged membrane separation device is generated by the upward flow flowing out of the submerged membrane separation device. By forming a circulating flow in the tank around the tank and periodically changing the flow direction of the circulating flow by the turning means immersed in the liquid to be treated, or by changing the flow direction irregularly, the immersion type A membrane cleaning method characterized by repeatedly changing the flow state of an upward flow in a flow path in a membrane separation apparatus. 処理対象液を貯留する槽内に浸漬型膜分離装置を配置し、浸漬型膜分離装置が気泡流に伴って生じる上昇流により膜面洗浄を行うとともに、浸漬型膜分離装置から流れ出る上昇流により浸漬型膜分離装置の周囲の槽内に循環流を形成する処理槽において、処理対象液中に浸漬する作動部により、循環流の流れ方向を定期的に変向するか、もしくは不定期的に変向する変向手段を設けたことを特徴とする膜洗浄装置。 An immersion membrane separation device is placed in a tank for storing the liquid to be treated, and the immersion membrane separation device performs membrane surface cleaning by the upward flow generated along with the bubble flow, and the upward flow that flows out of the immersion membrane separation device. In the treatment tank that forms a circulation flow in the tank around the submerged membrane separation device, the flow direction of the circulation flow is changed periodically or irregularly by the operation part immersed in the liquid to be treated. A film cleaning apparatus provided with a turning means for turning. 変向手段は、浸漬型膜分離装置を介した処理槽の両側位置に対向して配置する作動部をなし、処理対象液に浸漬する作動位置と処理対象液面に退避する非作動位置とにわたって移動自在に設ける複数の変向板と、定期的に、もしくは不定期的に、各変向板を交互に作動位置と非作動位置とにわたって駆動する駆動装置とを備えることを特徴とする請求項2に記載の膜洗浄装置。 The diverting means has an operation part arranged opposite to both side positions of the treatment tank through the submerged membrane separation device, and extends over an operation position where the treatment target liquid is immersed and a non-operation position where the treatment target liquid is retracted. A plurality of direction change plates provided movably, and a drive device for driving each direction change plate alternately between an operating position and a non-operating position periodically or irregularly. 2. The membrane cleaning apparatus according to 2. 変向手段は、処理対象液中に浸漬して処理槽上部に配置する作動部をなし、回転方向に応じて処理槽の一側もしくは他側へ処理対象液を誘導するローターと、ローターを回転駆動し、定期的に、もしくは不定期的に、ローターの回転方向を反転させる駆動装置とを備えることを特徴とする請求項2に記載の膜洗浄装置。 The diverting means has an operating part that is immersed in the processing target liquid and arranged at the top of the processing tank, and rotates the rotor for guiding the processing target liquid to one side or the other side of the processing tank according to the rotation direction. The film cleaning apparatus according to claim 2, further comprising a driving device that drives and reverses the rotation direction of the rotor periodically or irregularly.
JP2005066422A 2005-03-10 2005-03-10 Membrane washing method and apparatus Pending JP2006247498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066422A JP2006247498A (en) 2005-03-10 2005-03-10 Membrane washing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066422A JP2006247498A (en) 2005-03-10 2005-03-10 Membrane washing method and apparatus

Publications (1)

Publication Number Publication Date
JP2006247498A true JP2006247498A (en) 2006-09-21

Family

ID=37088532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066422A Pending JP2006247498A (en) 2005-03-10 2005-03-10 Membrane washing method and apparatus

Country Status (1)

Country Link
JP (1) JP2006247498A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463035A (en) * 2010-11-02 2012-05-23 赛普特环保技术(厦门)有限公司 Coiled membrane separating technology and equipment with forward feeding and reversed washing processes
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
CN107596921A (en) * 2017-10-16 2018-01-19 施尽忠 Using the membrane module cleaning device of universal adjustment
WO2024014289A1 (en) * 2022-07-11 2024-01-18 栗田工業株式会社 Control method for ro system, and control program for water treatment system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463035A (en) * 2010-11-02 2012-05-23 赛普特环保技术(厦门)有限公司 Coiled membrane separating technology and equipment with forward feeding and reversed washing processes
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN107596921A (en) * 2017-10-16 2018-01-19 施尽忠 Using the membrane module cleaning device of universal adjustment
WO2024014289A1 (en) * 2022-07-11 2024-01-18 栗田工業株式会社 Control method for ro system, and control program for water treatment system

Similar Documents

Publication Publication Date Title
CN102481521B (en) Membrane cleaning with pulsed gas slugs and global aeration
US10828607B2 (en) Aerator device, filter system including an aerator device, and method of aerating a filter using an aerator device
CN108473341B (en) Method for purifying a liquid
JP4361432B2 (en) Water treatment equipment
JP2006247498A (en) Membrane washing method and apparatus
JP4588043B2 (en) Membrane separation method and apparatus
JP2007326019A (en) Water treatment method and water treatment device
JP2006205119A (en) Method for using immersion type membrane separation apparatus and immersion type membrane separation apparatus
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2005052773A (en) Waste water treatment equipment
JP2007061705A (en) Septic tank
KR101594197B1 (en) Filtering device having a cleaning function
JP4374885B2 (en) Membrane separator
JP4819841B2 (en) Membrane separator
KR101689151B1 (en) Apparatus for treating wastewater and bidirectional filter thereof
JP2011189308A (en) Active-sludge treatment apparatus and operation method thereof
JP2004337787A (en) Membrane separation activated sludge treatment tank
JP2001334130A (en) Membrane separation unit having flow rate regulating function
JP2005152777A (en) Filtration tank
JP5712453B2 (en) Wastewater treatment equipment
RU162750U1 (en) WATER AND WASTE WATER TREATMENT PLANT
KR101119640B1 (en) Micro bubble filtering apparatus
JP2008142603A (en) Sewage treatment device
JP2006281019A (en) Water purifying equipment
KR101662430B1 (en) Conduit type apparatus for treating wastewater