JP2012210635A - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP2012210635A
JP2012210635A JP2012178085A JP2012178085A JP2012210635A JP 2012210635 A JP2012210635 A JP 2012210635A JP 2012178085 A JP2012178085 A JP 2012178085A JP 2012178085 A JP2012178085 A JP 2012178085A JP 2012210635 A JP2012210635 A JP 2012210635A
Authority
JP
Japan
Prior art keywords
biological treatment
activated sludge
treatment tank
flocculant
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012178085A
Other languages
Japanese (ja)
Other versions
JP5772759B2 (en
Inventor
Atsushi Kitanaka
敦 北中
Shigehisa Hanada
茂久 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012178085A priority Critical patent/JP5772759B2/en
Publication of JP2012210635A publication Critical patent/JP2012210635A/en
Application granted granted Critical
Publication of JP5772759B2 publication Critical patent/JP5772759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which when a flocculant is used to improve the flux of a membrane separation, the adsorption of the flocculant and a membrane is controlled to minimum, and the flux in an MBR apparatus is more efficiently improved, in the membrane separation activated sludge process in which an organic sewage is subjected to an activated sludge process in a biological treatment tank, and an activated sludge mixed liquid is subjected to a solid-liquid separation by an immersion type membrane separator that is set up to be immersed in the biological treatment tank.SOLUTION: The water treatment method is characterized as follows. In the membrane separation activated sludge process, an organic sewage is subjected to an activated sludge process in a biological treatment tank 3, and an activated sludge mixed liquid is subjected to a solid-liquid separation by an immersion type membrane separator 4 which is set up to be immersed in the biological treatment tank 3; a flocculant 13 and a portion of an activated sludge in the biological treatment tank 3 are mixed beforehand while preventing the organic sewage from contacting with the flocculant 13, then a composition after the mixing is supplied into the immersion type membrane separator 4 in the biological treatment tank 3.

Description

本発明は、有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法において、膜分離の流束を改善するために凝集剤を使用する際の、凝集剤の使用方法および装置に関する。   The present invention is a membrane separation activated sludge method in which organic sludge is treated with activated sludge in a biological treatment tank, and the activated sludge mixed liquid is solid-liquid separated by an immersion type membrane separation apparatus immersed in the biological treatment tank. The present invention relates to a method and apparatus for using a flocculant when the flocculant is used to improve the flux.

膜分離活性汚泥法(MBR)は、下水などの有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する処理方法のことであり、処理水質が安定していることや、活性汚泥濃度を高められることから、広く普及しつつある。   Membrane separation activated sludge process (MBR) is a process in which organic sludge such as sewage is treated with activated sludge in a biological treatment tank, and the activated sludge mixed liquid is solid-liquid separated with an immersion type membrane separator installed in the biological treatment tank. It is a method, and since the treated water quality is stable and the activated sludge concentration can be increased, it is becoming widespread.

一方で分離膜を使用する関係上、膜の目詰まりという問題がある。すなわち、長期間にわたりろ過を続けるため、少しずつ膜面上および膜内部に汚れ成分が堆積し膜間差圧が上昇する。その他、冬場の低温期や原水水質が変動した場合において、一時的に処理水質中成分の分解がおこなわれなかったり、微生物の細胞外代謝物(EPS)の量が増加したり、分散性の微生物が増加したりなどするため、分離膜のろ過阻害成分が、残ったままとなり膜間差圧が増加する。   On the other hand, there is a problem of clogging of the membrane due to the use of the separation membrane. That is, since filtration is continued for a long period of time, dirt components are gradually deposited on the membrane surface and inside the membrane, and the transmembrane pressure rises. In addition, during the cold season of winter and when the raw water quality changes, the components in the treated water are not temporarily decomposed, the amount of microbial extracellular metabolites (EPS) increases, or dispersible microorganisms. As a result, the separation inhibiting component of the separation membrane remains and the transmembrane pressure increases.

これらの目詰まりを解消する方法としては、通常、分離膜を次亜塩素酸塩水溶液などの薬品により洗浄を実施するが、特に冬期や原水水質変動により膜の目詰まりがおこった場合には、活性汚泥自体の性状に問題があるため、洗浄作業を頻繁に行うことが必要となる。   As a method for resolving these cloggings, the separation membrane is usually washed with chemicals such as hypochlorite aqueous solution, but especially when the clogging of the membrane occurs due to fluctuations in the raw water quality in the winter season, Since there is a problem with the properties of the activated sludge itself, it is necessary to frequently perform cleaning operations.

このようなMBR装置における分離膜の膜目詰まりを改善する方法として、原水に粉末活性炭等の吸着剤を添加し、ろ過性阻害成分を吸着除去する方法が知られている(特許文献1)。しかしながら、活性炭と膜が直接接触することから、膜の表面に擦過傷ができてしまい、膜の寿命が短くなってしまうなどの問題がある。   As a method for improving the clogging of the separation membrane in such an MBR apparatus, there is known a method in which an adsorbent such as powdered activated carbon is added to raw water to adsorb and remove filterability-inhibiting components (Patent Document 1). However, since the activated carbon and the membrane are in direct contact with each other, there is a problem that the surface of the membrane is scratched and the life of the membrane is shortened.

その他、MBR装置に、効果的な量の1またはそれ以上のカチオン性ポリマー、両性ポリマー、または双性イオン性ポリマー、もしくは、それを組み合わせたポリマーを添加する、MBR装置における流束改善方法が知られている(特許文献2)。凝集剤による流束改善は、冬場の低温期や原水水質が変動した場合において、一時的に処理水質中成分の分解がおこなわれなかったり、微生物の細胞外代謝物(EPS)の量が増加したり、分散性の微生物が増加した場合に、これら膜阻害成分を凝集し、膜ろ過をしやすくできるため、効果的な対応法のひとつである。しかしながら、濃度の高い凝集剤をそのまま、膜分離槽に投入すると、活性汚泥と未反応の凝集剤がろ過膜に吸着してしまい、逆に膜を目詰まりさせてしまう可能性があった。   Other known methods for improving flux in MBR devices include adding an effective amount of one or more cationic polymers, amphoteric polymers, zwitterionic polymers, or a combination thereof to the MBR device. (Patent Document 2). The flux improvement by the flocculant is that the components in the treated water are not temporarily decomposed or the amount of microbial extracellular metabolites (EPS) increases in the cold season of winter and when the raw water quality changes. When the number of dispersible microorganisms increases, these membrane-inhibiting components can be aggregated to facilitate membrane filtration, which is an effective countermeasure. However, if a high-concentration flocculant is put into a membrane separation tank as it is, activated sludge and unreacted flocculant may be adsorbed on the filtration membrane, and conversely, the membrane may be clogged.

特開平10―309567号公報JP-A-10-309567 特開2006−334587号公報JP 2006-334487 A

そこで、本発明は、有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法において、膜分離の流束を改善するために凝集剤を使用するに際し、凝集剤と膜の吸着を最小限に抑制し、より効率的にMBR装置における流束を改善する方法を提供する。   Therefore, the present invention provides a membrane separation activated sludge method in which organic sludge is treated with activated sludge in a biological treatment tank, and the activated sludge mixed liquid is solid-liquid separated by a submerged membrane separation apparatus immersed in the biological treatment tank. In using a flocculant to improve the separation flux, a method is provided that minimizes flocculant and membrane adsorption and more efficiently improves the flux in an MBR apparatus.

かかる目的を達成するために、本発明は、次のとおり特定される。
(1)有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法において、前記有機性汚水が凝集剤と接触しないようにしながら、あらかじめ凝集剤と生物処理槽内の活性汚泥の一部とを十分に混合させた後に、混合後の組成物を生物処理槽内の浸漬型膜分離装置に供することを特徴とする水処理方法。
(2)凝集剤が、カチオン系凝集剤であることを特徴とする(1)に記載の水処理方法。
(3)浸漬型膜分離装置で使用される膜の材質がポリフッ化ビニリデンもしくはポリエチレンであることを特徴とする、(1)または(2)に記載の水処理方法。
(4)凝集剤と生物処理槽内の活性汚泥の一部、および/または、原水である有機性汚水とを混合する時間が10分以上であることを特徴とする(1)〜(3)のいずれかに記載の水処理方法。
(5)水処理運転時の生物処理槽内での活性汚泥濃度が2,000mg/L以上25,000mg/L以下であることを特徴とする(1)〜(4)のいずれかに記載の水処理方法。
(6)有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する水処理装置において、前記有機性汚水が凝集剤と接触しないようにしながら、あらかじめ凝集剤と生物処理槽内の汚泥の一部とを混合するための凝集混合槽を具備することを特徴とする水処理装置。
To achieve the above object, the present onset bright are identified as follows.
(1) In the membrane separation activated sludge method in which organic sludge is treated with activated sludge in a biological treatment tank, and the activated sludge mixed solution is solid-liquid separated with a submerged membrane separation device installed in the biological treatment tank, the organic wastewater There while not in contact with the coagulant, after thoroughly mixed and part of the activated sludge in advance coagulant and biological treatment tank, the composition after mixing the submerged membrane separator in the biological treatment tank A water treatment method characterized by providing.
(2) The water treatment method according to (1), wherein the flocculant is a cationic flocculant.
(3) The water treatment method according to (1) or (2), characterized in that the material of the membrane used in the submerged membrane separator is polyvinylidene fluoride or polyethylene.
(4) The mixing time of the flocculant and a part of the activated sludge in the biological treatment tank and / or the organic wastewater as the raw water is 10 minutes or more (1) to (3) The water treatment method in any one of.
(5) The water treatment according to any one of (1) to (4), wherein the activated sludge concentration in the biological treatment tank during the water treatment operation is 2,000 mg / L or more and 25,000 mg / L or less. Method.
(6) Organic sludge is treated in an activated sludge in a biological treatment tank, and the organic sludge is agglomerated in a water treatment apparatus for solid-liquid separation of the activated sludge mixed liquid using an immersion membrane separator installed in the biological treatment tank. while not in contact with the agent, water treatment apparatus characterized by comprising a flocculation mixing tank for mixing the part of the sludge pre-coagulant and biological treatment tank.

有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法において、膜分離の流束を改善するために凝集剤を使用する際に、凝集剤と膜の吸着を最小限に抑制し、より効率的にMBR装置内の流束を改善する方法を提供することができる。   Improved membrane separation flux in the membrane-separated activated sludge method, in which organic sludge is treated with activated sludge in a biological treatment tank and the activated sludge mixed liquid is separated into solid and liquid using a submerged membrane separator installed in the biological treatment tank. Therefore, when the flocculant is used, the adsorption of the flocculant and the membrane can be suppressed to the minimum, and a method for improving the flux in the MBR apparatus more efficiently can be provided.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 実施例における条件1を示す図である。It is a figure which shows the conditions 1 in an Example. 実施例における条件2を示す図である。It is a figure which shows the conditions 2 in an Example. 実施例における条件3を示す図である。It is a figure which shows the conditions 3 in an Example. 実施例の検討結果を示す図である。It is a figure which shows the examination result of an Example.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1において、被処理液である原水1は、原水ポンプ2により生物処理槽3に供給される。生物処理槽3には浸漬型膜分離装置4が浸漬されており、下部からは浸漬型膜分離装置の洗浄および生物処理のための空気が、空気供給装置5から散気装置6を介して、供給される。膜透過水は、吸引ポンプ7により膜処理水9として取り出される。また、活性汚泥処理に伴い発生する、余剰汚泥10は余剰汚泥ポンプ8により引き抜かれ、生物処理槽3内のMLSS濃度は、2,000〜25,000mg/L程度に一定に保たれることが好ましい。この濃度範囲が、凝集剤の添加効果の最も高い濃度であるからである。ここでMLSSとは、活性汚泥浮遊物質のことをいい、試料中の浮遊物質濃度をmg/Lで表したものであり、生物処理槽3の管理指標として用いられる。測定方法としては、遠心分離法およびガラス繊維ろ紙法が使用される(日本下水道協会 下水試験方法(1997年)、P269〜271)。   In FIG. 1, raw water 1 that is a liquid to be treated is supplied to a biological treatment tank 3 by a raw water pump 2. A submerged membrane separation device 4 is immersed in the biological treatment tank 3, and air for cleaning the submerged membrane separation device and biological treatment is supplied from the lower portion through the air supply device 5 from the air supply device 5. Supplied. The membrane permeated water is taken out as membrane treated water 9 by the suction pump 7. Moreover, it is preferable that the excess sludge 10 generated with the activated sludge treatment is extracted by the excess sludge pump 8, and the MLSS concentration in the biological treatment tank 3 is kept constant at about 2,000 to 25,000 mg / L. This is because this concentration range has the highest concentration effect of the flocculant. Here, MLSS refers to activated sludge suspended matter, which represents the suspended matter concentration in the sample in mg / L, and is used as a management index of the biological treatment tank 3. As a measuring method, a centrifugal separation method and a glass fiber filter method are used (Japan Sewerage Association Sewerage Test Method (1997), P269-271).

ここで、本発明においては、生物処理槽3内の活性汚泥の一部が引き抜かれ被凝集汚泥11として、凝集混合槽12で混合される。凝集混合槽12では凝集剤13が添加され、攪拌機14により十分に攪拌される。攪拌後の凝集汚泥15は生物処理槽3にもどされる。生物処理槽3内では、エアにより曝気が行われるため凝集汚泥15はさらに汚泥により希釈され、十分に混合が行われる。   Here, in the present invention, a part of the activated sludge in the biological treatment tank 3 is extracted and mixed in the coagulation mixing tank 12 as the aggregated sludge 11. In the agglomeration mixing tank 12, a flocculant 13 is added and sufficiently stirred by the stirrer 14. Aggregated sludge 15 after stirring is returned to the biological treatment tank 3. In the biological treatment tank 3, since aeration is performed by air, the coagulated sludge 15 is further diluted with sludge and sufficiently mixed.

原水1は、都市下水や工場廃水などの膜分離活性汚泥法で処理される被処理水のことである。原水ポンプ2とは、原水1を生物処理槽3に送液することができるポンプであれば特に制限されるものではなく、渦巻ポンプ、ディフューザーポンプ、渦巻斜流ポンプ、斜流ポンプ、ピストンポンプ、プランジャポンプ、ダイアフラムポンプ、歯車ポンプ、スクリューポンプ、ベーンポンプ、カスケードポンプ、ジェットポンプなどを用いることができる。生物反応槽3とは、生物処理するための活性汚泥を貯めておくのと同時に、浸漬型膜分離装置4を浸漬するための槽で、コンクリート製、樹脂製、金属製など、使用に差し支えの無い構造であれば特に限定されるものではない。   The raw water 1 is treated water that is treated by a membrane separation activated sludge method such as municipal sewage or factory wastewater. The raw water pump 2 is not particularly limited as long as the raw water 1 can be fed to the biological treatment tank 3, and is a centrifugal pump, a diffuser pump, a spiral mixed flow pump, a mixed flow pump, a piston pump, Plunger pumps, diaphragm pumps, gear pumps, screw pumps, vane pumps, cascade pumps, jet pumps, and the like can be used. The biological reaction tank 3 is a tank for immersing the submerged membrane separation device 4 at the same time as storing activated sludge for biological treatment. It can be used for concrete, resin, metal, etc. There is no particular limitation as long as there is no structure.

浸漬型膜分離装置4とは、固液分離膜が配設されている装置であり、その分離膜としては、中空糸膜タイプ、平膜タイプのものがある。ろ過膜(分離膜)の取り扱い性や物理的耐久性を向上させるためには、例えば、フレームの両面にろ過水流路材を挟んで平膜を接着した構造の平膜エレメントを備えていることが望ましい。平膜エレメントの構造は上記に限定されるものではない。膜材質としては有機材料の他、セラミックスなど無機材料があげられるが、特に、本発明の利用によりろ過流速改善の効果が期待できるPVDF(ポリフッ化ビニリデン)やPE(ポリエチレン)の有機材料からなる膜の使用が好ましい。凝集剤の初期吸着が無機膜よりも有機膜であるPVDFやPEに、よりおこりやすいからである。   The submerged membrane separation device 4 is a device in which a solid-liquid separation membrane is disposed, and the separation membrane includes a hollow fiber membrane type and a flat membrane type. In order to improve the handleability and physical durability of the filtration membrane (separation membrane), for example, a flat membrane element having a structure in which a flat membrane is adhered to both sides of the frame with a filtrate channel material sandwiched between them is provided. desirable. The structure of the flat membrane element is not limited to the above. Examples of the membrane material include organic materials and inorganic materials such as ceramics. In particular, a membrane made of an organic material such as PVDF (polyvinylidene fluoride) or PE (polyethylene) can be expected to improve the filtration flow rate by using the present invention. Is preferred. This is because the initial adsorption of the flocculant is more likely to occur on PVDF and PE that are organic films than on inorganic films.

空気供給装置5とは、圧縮空気を送風する装置のことであり、一般にはブロア、コンプレッサ等が用いられる。送風された空気は散気装置6から槽内に気泡として送出され、この気泡により、膜分離装置の分離膜面洗浄が行なわれるとともに、生物処理(好気処理)に必要な酸素が液中に供給される。散気装置6としては、膜面上を洗浄するための気泡を発生させることができる散気管であれば特に限定されるものではないが、塩ビやステンレス配管に、1mm〜9mmの空気吐出孔を開けた散気管が通常使用される。その他、多孔性のゴム、セラミックス、メンブレンを用いた散気管なども使用することができる。   The air supply device 5 is a device that blows compressed air, and generally a blower, a compressor, or the like is used. The blown air is sent out as bubbles from the diffuser 6 into the tank, and the bubbles clean the separation membrane surface of the membrane separator, and oxygen necessary for biological treatment (aerobic treatment) in the liquid. Supplied. The air diffuser 6 is not particularly limited as long as the air diffuser can generate bubbles for cleaning the membrane surface, but air discharge holes of 1 mm to 9 mm are provided in PVC or stainless steel pipes. An open air diffuser is usually used. In addition, a porous rubber, ceramics, a diffuser tube using a membrane, and the like can also be used.

吸引ポンプ7とは、浸漬型膜分離装置4による膜ろ過固液分離に必要な吸引力を与えるために、膜処理水9を吸引するポンプであり、特に形状を制限されるものではないが、通常は減圧状態から300kPa以下で運転されるポンプが使用される。また、吸引ポンプの代わりに、自然水頭差を駆動力として膜ろ過を行うことも可能である。余剰汚泥ポンプ8とは、活性汚泥での処理に伴い発生する余剰汚泥10を生物反応槽3から引き抜くためのポンプであり、粘性の高い活性汚泥を引き抜くことができるポンプであれば特に限定されるものではない。   The suction pump 7 is a pump that sucks the membrane-treated water 9 in order to give a suction force necessary for membrane filtration solid-liquid separation by the submerged membrane separation device 4, and the shape is not particularly limited. Normally, a pump that is operated at a pressure of 300 kPa or less from a reduced pressure state is used. Further, instead of the suction pump, it is also possible to perform membrane filtration using the natural water head difference as a driving force. The surplus sludge pump 8 is a pump for extracting the surplus sludge 10 generated by the treatment with activated sludge from the biological reaction tank 3, and is particularly limited as long as it is a pump capable of extracting the activated sludge having high viscosity. It is not a thing.

被凝集汚泥11は、生物反応槽3から引き抜かれる。引き抜かれる量は、凝集剤13の添加濃度や生物反応槽3の大きさなどから決定されるが、通常は生物処理槽3内の汚泥の10%〜90%程度である。凝集剤13を添加する方法としては、被凝集汚泥11の一部を引き抜いた後、凝集剤13を添加し攪拌、その後生物処理槽3に全量を戻す方法(回分法)、連続的に被凝集汚泥11を引き抜き、連続的に生物処理槽3に戻す方法(連続法)、どちらをとってもよい。   The aggregated sludge 11 is extracted from the biological reaction tank 3. The amount to be withdrawn is determined from the addition concentration of the flocculant 13, the size of the biological reaction tank 3, and the like, but is usually about 10% to 90% of the sludge in the biological treatment tank 3. As a method of adding the flocculant 13, a method (batch method) in which a part of the aggregated sludge 11 is extracted, the flocculant 13 is added and stirred, and then the whole amount is returned to the biological treatment tank 3 (batch method), Either the method of extracting the sludge 11 and continuously returning it to the biological treatment tank 3 (continuous method) may be used.

凝集剤13には無機系のPAC(ポリ塩化アルミニウム)や有機系の各種高分子凝集剤を用いることができるが、活性汚泥性状や使用している浸漬型膜分離装置4に使用されている膜素材との相性などから適当なものを選択し使用すればよい。なお活性汚泥自身が負に帯電していることから、カチオン系の凝集剤を使用すればろ過改善効果が期待できる場合が多い。凝集剤13の添加濃度は、ジャーテスト等により決定されるが、添加濃度が低すぎると凝集効果が低くなり、添加濃度が高すぎると未反応の凝集剤13が残存し、それらの成分が膜素材に吸着してしまい、逆に膜を目詰まりさせてしまう問題があるため、添加濃度の決定は十分な事前検討が必要である。カチオン系凝集剤は一般に広く市販されているものであるが、ジメチルアミン系やポリアクリルアミド系などがあげられる。   As the flocculant 13, inorganic PAC (polyaluminum chloride) and various organic polymer flocculants can be used. The activated sludge properties and the membrane used in the submerged membrane separator 4 used are used. Appropriate ones may be selected from the compatibility with the material. In addition, since activated sludge itself is negatively charged, if a cationic flocculant is used, a filtration improvement effect can be expected in many cases. The addition concentration of the flocculant 13 is determined by a jar test or the like. If the addition concentration is too low, the agglomeration effect becomes low. If the addition concentration is too high, the unreacted flocculant 13 remains, and these components are formed into a film. Adsorption to the material and conversely clogging the membrane, there is a problem that the concentration of addition needs to be determined in advance. Cationic flocculants are generally commercially available, and examples include dimethylamine and polyacrylamide.

攪拌機14は、凝集剤13と被凝集汚泥11を十分に混合させるためのものであり、プロペラタイプのもの、浸漬型のもの曝気式のものなどが使用できる。攪拌時間は通常、5分程度から1日程度であり、十分に混合を行い、未反応の凝集剤13をできるだけ低くすることが重要である。その観点から、混合に要する時間は10分以上であることが望ましい。凝集反応後の活性汚泥は、凝集汚泥15として生物処理槽3に戻される The stirrer 14 is for sufficiently mixing the flocculant 13 and the aggregated sludge 11, and a propeller type, an immersion type, aeration type, or the like can be used. The stirring time is usually about 5 minutes to about 1 day, and it is important to sufficiently mix and make the unreacted flocculant 13 as low as possible. From this point of view, the time required for mixing is desirably 10 minutes or more. The activated sludge after the flocculation reaction is returned to the biological treatment tank 3 as the flocculated sludge 15 .

お、本実施形態では1つの生物処理槽内に浸漬型膜分離装置を浸漬する、一般的な膜分離活性汚泥プロセスについて述べているが、本発明は都市下水の処理にしばしば利用される循環式硝化脱窒法型の膜分離活性汚泥法や、生物処理と膜分離をわける膜分離活性汚泥法など、あらゆるタイプの膜分離活性汚泥法に適用できる。 Contact name, immersing the submerged membrane separator in a single biological treatment tank in the present embodiment, although described general membrane separation activated sludge process, the present invention is often used in urban sewage treatment circulation It can be applied to all types of membrane separation activated sludge methods, such as a membrane separation activated sludge method of the type nitrification denitrification method and a membrane separation activated sludge method that separates biological treatment and membrane separation.

本発明で重要なことは、添加した凝集剤をあらかじめ活性汚泥と十分に別槽内で攪拌することにより、未反応の凝集剤が浸漬型膜分離装置に直接流入することを防ぐことである。これにより、凝集剤添加により活性汚泥の性状のみを改善させ、結果として効果的に膜分離の流束を改善することが可能となる。 It present invention importantly, by stirring was added flocculant preactivated sludge and in a separate tank to ten minutes, by preventing the coagulant unreacted flows directly to the immersion type membrane separation apparatus is there. Thereby, only the property of activated sludge can be improved by adding a flocculant, and as a result, the flux of membrane separation can be effectively improved.

以下では、本発明について、実施例を用いてさらに具体的に説明する。なお、本発明は実施例に記載の態様に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the aspect as described in an Example.

本実施例では、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法において、膜分離の流束を改善するために凝集剤を使用するに際し、以下の3条件で比較検討を行った。なお、原水としては、農業集落廃水を用い、浸漬型膜分離装置はPVDF平膜モジュール(東レ社製)を、流束改善のための高分子凝集剤としては膜分離活性汚泥法用の汚泥改質剤MPE-50(ナルコ社製カチオン系凝集剤)を使用した。条件の詳細については表-1に示す。   In this embodiment, a flocculant is used to improve the membrane separation flux in the membrane separation activated sludge method in which the activated sludge mixed liquid is solid-liquid separated by a submerged membrane separation apparatus immersed in the biological treatment tank. At that time, a comparative study was performed under the following three conditions. The raw water is agricultural village wastewater, the submerged membrane separator is a PVDF flat membrane module (manufactured by Toray Industries, Inc.), and the polymer flocculant for flux improvement is sludge modification for membrane separation activated sludge process. The material MPE-50 (cationic flocculant manufactured by Nalco) was used. Details of the conditions are shown in Table-1.

Figure 2012210635
Figure 2012210635

(条件1)凝集剤を使用せずにろ過運転を行う
(条件2)凝集剤を生物処理槽へ直接添加しろ過運転を行う
(条件3)生物反応槽の一部を引き抜き、凝集槽で凝集させたのち生物処理槽へ返送しろ過運転を行う(本発明の方法)
条件1は、図2に示す通り、凝集剤を使用しない、いわゆる通常の膜分離活性汚泥法での運転である。農業集落廃水である原水1は、原水ポンプ2で生物処理槽3に供給される。生物処理槽3では6時間かけて活性汚泥処理がなされ、その後、浸漬型膜分離装置4でろ過される。ろ過は0.64m/dayでの一定速度で行い、ろ過側の圧力計16により、常時圧力が監視されている。
(Condition 1) Perform filtration without using a flocculant (Condition 2) Add flocculant directly to the biological treatment tank and perform filtration.
(Condition 3) A part of the biological reaction tank is pulled out and aggregated in the coagulation tank, and then returned to the biological treatment tank for filtration operation (method of the present invention).
Condition 1 is an operation in a so-called normal membrane separation activated sludge method without using a flocculant as shown in FIG. Raw water 1 that is agricultural settlement wastewater is supplied to a biological treatment tank 3 by a raw water pump 2. In the biological treatment tank 3, the activated sludge treatment is performed for 6 hours, and then filtered by the submerged membrane separation device 4. Filtration is performed at a constant speed of 0.64 m / day, and the pressure is constantly monitored by the pressure gauge 16 on the filtration side.

条件2は、図3に示す通り、条件1に付して、凝集剤13を生物処理槽3へ直接添加しろ過運転を行う例である。添加は、凝集剤原液の状態で、2.0重量%の濃度(生物処理槽内のMLSS単位あたり)となるように添加した。   Condition 2 is an example in which the flocculant 13 is directly added to the biological treatment tank 3 and the filtration operation is performed as shown in FIG. The addition was performed so that the concentration was 2.0% by weight (per MLSS unit in the biological treatment tank) in the state of the flocculant stock solution.

条件3は、図4に示す通り、条件1に付して、生物処理槽3の汚泥4.5m3のうち1m3を引き抜き、凝集混合槽12にて凝集剤13と十分に混合する例である。凝集剤濃度は条件2と同様に生物処理槽3内のMLSS単位あたり2.0重量%の濃度となるようにして添加した。攪拌速度は150rpmで30分攪拌後、40rpmで1時間30分緩速攪拌を行った。その後凝集汚泥15を生物処理槽3に戻し、30分の曝気を行いその後、ろ過運転を開始した。 Condition 3 is an example in which 1 m 3 is extracted from 4.5 m 3 of sludge in the biological treatment tank 3 and sufficiently mixed with the flocculant 13 in the flocculation mixing tank 12 as shown in FIG. . The flocculant concentration was added so as to be 2.0% by weight per MLSS unit in the biological treatment tank 3 as in Condition 2. The stirring rate was 150 rpm for 30 minutes, followed by slow stirring at 40 rpm for 1 hour 30 minutes. Thereafter, the coagulated sludge 15 was returned to the biological treatment tank 3, aerated for 30 minutes, and then the filtration operation was started.

図5には、(条件1),(条件2)、(条件3)における運転の状況を示す。縦軸には膜間差圧(TMP)、縦軸には時間を示す。一般にTMP値は目詰まりの度合いを示すもので、この値が増加すると目詰まりが進行していることを示し、ある一定以上の値(例えば東レ製浸漬膜モジュールでは20kPa)になると薬品洗浄等が必要となる。   FIG. 5 shows the operation status in (Condition 1), (Condition 2), and (Condition 3). The vertical axis represents transmembrane pressure (TMP), and the vertical axis represents time. Generally, the TMP value indicates the degree of clogging. When this value increases, it indicates that clogging is progressing. When the value exceeds a certain value (for example, 20 kPa for the Toray immersion membrane module), chemical cleaning, etc. Necessary.

結果についてみてみると、条件1の運転ではTMP値が運転日数の経過とともに徐々に上昇し、目詰まりが進行しているのが分かる。条件2では、TMP値が凝集剤添加直後から急上昇し、3日間の運転で差圧上限の20kPaに達してしまった。これは凝集剤であるMPE-50が膜面に初期吸着したためにおこったと考えられる。一方、条件3では十分な攪拌混合時間を設けることにより、凝集剤添加による効果がみられた。膜への初期吸着がおこることなく、凝集剤添加により活性汚泥が改質され、膜間差圧の上昇が抑制されたと考えられる。   Looking at the results, it can be seen that in the operation under Condition 1, the TMP value gradually increases with the passage of the operation days, and clogging progresses. Under condition 2, the TMP value rose rapidly immediately after the addition of the flocculant, and reached the upper limit of 20 kPa in the differential pressure after 3 days of operation. This is probably because MPE-50, a flocculant, was initially adsorbed on the membrane surface. On the other hand, in condition 3, the effect of adding the flocculant was observed by providing a sufficient stirring and mixing time. It is considered that the activated sludge was modified by the addition of the flocculant without the initial adsorption to the membrane, and the increase in the transmembrane pressure difference was suppressed.

このように本発明を実施することにより、凝集剤の効果を最大限に発揮することが可能となり、浸漬型膜ろ過装置を高いフラックスでより頻度の少ない薬品洗浄で運転することが可能となる。   By carrying out the present invention as described above, the effect of the flocculant can be maximized, and the submerged membrane filtration apparatus can be operated with high flux and less frequent chemical cleaning.

本発明は、有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法において、膜分離の流束を改善するために凝集剤を使用するに際し、凝集剤と膜の吸着を最小限に抑制し、より効率的にMBR装置における流束を改善する方法を提供することができる。   The present invention is a membrane separation activated sludge method in which organic sludge is treated with activated sludge in a biological treatment tank, and the activated sludge mixed liquid is solid-liquid separated by an immersion type membrane separation apparatus immersed in the biological treatment tank. When using a flocculant to improve the flux, it is possible to provide a method for improving the flux in the MBR apparatus more efficiently by minimizing the adsorption of the flocculant and the membrane.

1:原水
2:原水ポンプ
3:生物処理槽
4:浸漬型膜分離装置
5:空気供給装置
6:散気装置
7:吸引ポンプ
8:余剰汚泥ポンプ
9:膜処理水
10:余剰汚泥
11:被凝集汚泥
12:凝集混合槽
13:凝集剤
14:攪拌機
15:凝集汚泥
16:圧力計
1: Raw water 2: Raw water pump 3: Biological treatment tank 4: Submerged membrane separator 5: Air supply device 6: Air diffuser 7: Suction pump 8: Surplus sludge pump 9: Membrane treated water 10: Surplus sludge 11: Covered Aggregated sludge 12: Agglomerated mixing tank 13: Aggregating agent 14: Stirrer 15: Aggregated sludge 16: Pressure gauge

Claims (6)

有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法において、前記有機性汚水が凝集剤と接触しないようにしながら、あらかじめ凝集剤と生物処理槽内の活性汚泥の一部とを十分に混合させた後に、混合後の組成物を生物処理槽内の浸漬型膜分離装置に供することを特徴とする水処理方法。 In the membrane separation activated sludge method in which organic sludge is treated with activated sludge in a biological treatment tank and the activated sludge mixed solution is solid-liquid separated with a submerged membrane separation apparatus installed in the biological treatment tank, the organic waste water is a flocculant. while not in contact with, the after well mixed and part of the activated sludge in advance coagulant and biological treatment tank, subjecting the composition after mixing the submerged membrane separator in the biological treatment tank A water treatment method characterized. 凝集剤が、カチオン系凝集剤であることを特徴とする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the flocculant is a cationic flocculant. 浸漬型膜分離装置で使用される膜の材質がポリフッ化ビニリデンもしくはポリエチレンであることを特徴とする、請求項1または2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein the material of the membrane used in the submerged membrane separator is polyvinylidene fluoride or polyethylene. 凝集剤と生物処理槽内の活性汚泥の一部、および/または、原水である有機性汚水とを混合する時間が10分以上であることを特徴とする請求項1〜3のいずれかに記載の水処理方法。   The time which mixes a flocculant and a part of activated sludge in a biological treatment tank, and / or the organic waste water which is raw | natural water is 10 minutes or more, It is any one of Claims 1-3 characterized by the above-mentioned. Water treatment method. 水処理運転時の生物処理槽内での活性汚泥濃度が2,000mg/L以上25,000mg/L以下であることを特徴とする請求項1〜4のいずれかに記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein the activated sludge concentration in the biological treatment tank during the water treatment operation is 2,000 mg / L or more and 25,000 mg / L or less. 有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する水処理装置において、前記有機性汚水が凝集剤と接触しないようにしながら、あらかじめ凝集剤と生物処理槽内の汚泥の一部とを混合するための凝集混合槽を具備することを特徴とする水処理装置。 In a water treatment apparatus that treats organic sludge in activated biological sludge in a biological treatment tank and separates the activated sludge mixed liquid in a solid-liquid separation with a submerged membrane separator installed in the biological treatment tank, the organic waste water contacts the flocculant. while lest the water treatment apparatus characterized by comprising a flocculation mixing tank for mixing the part of the sludge pre-coagulant and biological treatment tank.
JP2012178085A 2012-08-10 2012-08-10 Water treatment method and water treatment apparatus Active JP5772759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178085A JP5772759B2 (en) 2012-08-10 2012-08-10 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178085A JP5772759B2 (en) 2012-08-10 2012-08-10 Water treatment method and water treatment apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008300534A Division JP2010125366A (en) 2008-11-26 2008-11-26 Water treating method and water treating apparatus

Publications (2)

Publication Number Publication Date
JP2012210635A true JP2012210635A (en) 2012-11-01
JP5772759B2 JP5772759B2 (en) 2015-09-02

Family

ID=47265057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178085A Active JP5772759B2 (en) 2012-08-10 2012-08-10 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5772759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011505A (en) * 2012-12-11 2013-04-03 南昌大学 Photocatalytic internal recycle integrated MBR (Membrane Biological Reactor) reactor
CN105347621A (en) * 2015-11-14 2016-02-24 常州大学 Novel MBR membrane bioreactor sewage treatment device
CN110510824A (en) * 2019-09-10 2019-11-29 武汉轻工大学 A kind of sewage disposal device and sewage water treatment method based on coagulation reinforced film biological reaction pool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207345A (en) * 1998-01-28 1999-08-03 Sumitomo Heavy Ind Ltd Waste water treatment
JP2000189977A (en) * 1998-12-28 2000-07-11 Sanyo Electric Co Ltd Sewage treating device
JP2002001333A (en) * 2000-06-22 2002-01-08 Mitsubishi Rayon Co Ltd Method for treating organic waste water
JP2003260486A (en) * 2002-03-11 2003-09-16 Nippon Steel Corp Sewage treatment method
JP2006095507A (en) * 2004-03-26 2006-04-13 Sumitomo Chemical Co Ltd Wastewater treatment method
JP2006223921A (en) * 2005-02-15 2006-08-31 Toray Ind Inc Water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207345A (en) * 1998-01-28 1999-08-03 Sumitomo Heavy Ind Ltd Waste water treatment
JP2000189977A (en) * 1998-12-28 2000-07-11 Sanyo Electric Co Ltd Sewage treating device
JP2002001333A (en) * 2000-06-22 2002-01-08 Mitsubishi Rayon Co Ltd Method for treating organic waste water
JP2003260486A (en) * 2002-03-11 2003-09-16 Nippon Steel Corp Sewage treatment method
JP2006095507A (en) * 2004-03-26 2006-04-13 Sumitomo Chemical Co Ltd Wastewater treatment method
JP2006223921A (en) * 2005-02-15 2006-08-31 Toray Ind Inc Water treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011505A (en) * 2012-12-11 2013-04-03 南昌大学 Photocatalytic internal recycle integrated MBR (Membrane Biological Reactor) reactor
CN103011505B (en) * 2012-12-11 2013-11-06 南昌大学 Photocatalytic internal recycle integrated MBR (Membrane Biological Reactor) reactor
CN105347621A (en) * 2015-11-14 2016-02-24 常州大学 Novel MBR membrane bioreactor sewage treatment device
CN110510824A (en) * 2019-09-10 2019-11-29 武汉轻工大学 A kind of sewage disposal device and sewage water treatment method based on coagulation reinforced film biological reaction pool
CN110510824B (en) * 2019-09-10 2024-05-31 武汉轻工大学 Sewage treatment equipment and sewage treatment method based on coagulation reinforced membrane biological reaction tank

Also Published As

Publication number Publication date
JP5772759B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
TWI513502B (en) Immersion membrane components of the drug cleaning method
WO2015026269A1 (en) Installation for biological treatment of wastewater
JP2014057931A (en) Water production method
CN101495414B (en) Method of reutilizing wastewater
JP2010247120A (en) Operation method of immersion type membrane separator
JP4770726B2 (en) Method for determining operating conditions of membrane filtration device, membrane filtration device using the same
JP5772759B2 (en) Water treatment method and water treatment apparatus
JP2006015236A (en) Apparatus and method for preparing regenerated water
JP5163760B2 (en) Reclaimed water production apparatus and method
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
Odize et al. Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers
CN101516790B (en) Method of wastewater disposal
JPWO2007097269A1 (en) Wastewater treatment method
JP2010125366A (en) Water treating method and water treating apparatus
JP2009297611A (en) Hydrogen peroxide-containing organic water treatment method and apparatus
JP6662558B2 (en) Water treatment method and water treatment device
JP2016117064A (en) Sewage treatment device and sewage treatment method using it
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP2009189943A (en) Water treatment method and apparatus
JP2013046891A (en) Outside-tank installation type membrane separation activated sludge method and activated sludge treatment apparatus
JP5466864B2 (en) Water treatment apparatus and water treatment method
JP2016034618A (en) Activated sludge process system
JP2007090300A (en) Method for treating organic waste water
JP2014193452A (en) Method of treating organic sludge
JP2013248566A (en) Membrane separation activated sludge process and reforming method of activated sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5772759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151