JP2007090300A - Method for treating organic waste water - Google Patents

Method for treating organic waste water Download PDF

Info

Publication number
JP2007090300A
JP2007090300A JP2005286307A JP2005286307A JP2007090300A JP 2007090300 A JP2007090300 A JP 2007090300A JP 2005286307 A JP2005286307 A JP 2005286307A JP 2005286307 A JP2005286307 A JP 2005286307A JP 2007090300 A JP2007090300 A JP 2007090300A
Authority
JP
Japan
Prior art keywords
sludge
activated sludge
flocculant
tank
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005286307A
Other languages
Japanese (ja)
Inventor
Tsuguhito Itou
世人 伊藤
Toshio Otake
要生 大竹
Hiroo Takahata
寛生 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005286307A priority Critical patent/JP2007090300A/en
Publication of JP2007090300A publication Critical patent/JP2007090300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating an organic substance-containing liquid by a membrane separation activated sludge method without increasing the amount of generated excess sludge, capable of preventing troubles such as poor membrane permeability, foaming, the generation of scum, an increase in viscosity or the like for a long time and continuously, and stable; and a treatment apparatus. <P>SOLUTION: In the treatment of organic waste water by the membrane separation activated sludge method including operation A loading activated sludge with a flocculant and operation B for making a micro animal act on the activated sludge, the method for treating the organic waste water comprises implementing at least one time of the operation B during from before 3 days to after 7 days of the period of implementation of the operation A. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、食品工場などから排出される産業廃水や生活排水など、水に対して溶解性を示す有機物を含有する液体を、膜分離活性汚泥法により処理するにあたって、好適に採用することができる有機性廃水の処理方法に関する。   INDUSTRIAL APPLICABILITY The present invention can be suitably employed in treating a liquid containing organic substances that are soluble in water, such as industrial wastewater and domestic wastewater discharged from food factories, etc., by the membrane separation activated sludge method. The present invention relates to a method for treating organic wastewater.

一般に、有機性廃水は曝気槽と沈殿槽とで構成される活性汚泥法により処理されてきた。この方式は、比較的安価に廃水を処理可能であるが、重力沈降方式という固液分離上の制約から処理槽内に活性汚泥を高濃度に保持できず、一般に処理スペースが広くなるという課題があった。また、廃水中の有機物の一部は、処理される際に汚泥の増殖に利用されるため、産業廃棄物として処分に困窮している余剰汚泥の発生が余儀なくされるという問題があった。   In general, organic wastewater has been treated by an activated sludge method comprising an aeration tank and a sedimentation tank. Although this method can treat wastewater at a relatively low cost, the activated sludge cannot be maintained at a high concentration in the treatment tank due to the restrictions on solid-liquid separation called the gravity sedimentation method, and there is a problem that the treatment space is generally widened. there were. Moreover, since a part of the organic matter in the wastewater is used for the growth of sludge when it is treated, there is a problem that excessive sludge that is difficult to dispose as industrial waste is inevitably generated.

近年、固液分離を精密ろ過膜または限外ろ過膜を用いて行う膜分離活性汚泥法が普及し始めている。本方式では、処理槽内に活性汚泥を高濃度に保持でき、また、沈殿槽も不要となるため、処理スペースのコンパクト化が可能であり、処理水質も改善するなどのメリットがある。また、廃水負荷に対して微生物を多く保持することで、汚泥の内生呼吸、自己酸化が促進され、余剰汚泥発生量も活性汚泥法に比べて減少するという利点を有する。しかしながら、膜分離活性汚泥法においても、膜透水性不良や発泡、スカムの発生、粘性増加などを伴うトラブルが発生することが挙げられ、課題として残っていた。   In recent years, a membrane separation activated sludge method, in which solid-liquid separation is performed using a microfiltration membrane or an ultrafiltration membrane, has begun to spread. In this method, the activated sludge can be kept at a high concentration in the treatment tank, and a sedimentation tank is not required, so that the treatment space can be made compact and the treatment water quality can be improved. Moreover, by holding many microorganisms against the wastewater load, endogenous sludge respiration and auto-oxidation are promoted, and the amount of excess sludge generation is reduced compared to the activated sludge method. However, even in the membrane separation activated sludge method, problems with membrane permeability failure, foaming, generation of scum, increase in viscosity, and the like have been raised and remained as problems.

上記課題の解決に向けていくつかの手法が考案されている。   Several methods have been devised to solve the above problems.

特許文献1には、凝集剤を添加する方法が示されている。これら文献に記載の方法では、膜透水性の改善や消泡、粘性低減においては、短期的には顕著な効果を有するが、凝集剤を長期間、繰り返し使用した場合、効力が低下する場合があった。また、凝集剤の添加量は少なくなく、かつ、添加される凝集剤が実質的にほとんど槽内に保持・蓄積されるため、凝集剤の添加は汚泥発生量の増大につながる。また、凝集剤の効力が低下した状態で凝集剤の添加を繰り返した場合、槽内の汚泥に占める凝集剤の割合が次第に増し生物活性が低下する結果、処理を維持するのに余剰汚泥の排出量を逆に増やす必要が生じ、膜分離活性汚泥法が本来有する低余剰汚泥発生の利点を損なう場合があった。   Patent Document 1 discloses a method of adding a flocculant. The methods described in these documents have a remarkable effect in the short term in improving membrane water permeability, defoaming, and reducing viscosity, but if the flocculant is used repeatedly over a long period of time, the efficacy may decrease. there were. In addition, the amount of the flocculant added is not small, and the added flocculant is substantially retained and accumulated in the tank, so that the addition of the flocculant leads to an increase in the amount of sludge generated. In addition, when the addition of the flocculant is repeated while the effectiveness of the flocculant is reduced, the proportion of the flocculant in the sludge in the tank gradually increases and the biological activity decreases, so that excess sludge is discharged to maintain the treatment. On the contrary, it is necessary to increase the amount, and the advantage of the generation of the low excess sludge inherent in the membrane separation activated sludge method may be impaired.

また、膜分離活性汚泥法におけるろ過性を改善する目的で微小動物を適用した方法は見あたらないが、関連する情報として、特許文献2には、微小動物を用いた通常の活性汚泥法における余剰汚泥削減の方法が示されている。これら微小動物を用いた方法は、環境適合性や運転コスト面で利点を有すると考えられるが、微小動物による捕食の効率や持続性などの点に課題を有していた。また、場合によっては、健全なフロックが微小動物により捕食される結果、フロックが細分化され汚泥のろ過性が悪化する、処理水質が悪化する、などの事態に至る場合があるという課題を有していた。   Moreover, although the method which applied the micro animal for the purpose of improving the filterability in a membrane separation activated sludge method is not found, as related information, patent document 2 has the surplus sludge in the normal activated sludge method using a micro animal. The method of reduction is shown. These methods using micro-animals are considered to have advantages in terms of environmental compatibility and operation costs, but have problems in terms of predation efficiency and sustainability by micro-animals. Moreover, depending on the case, as a result of healthy flocs being preyed by micro-animals, there is a problem that flocs may be subdivided and sludge filterability may deteriorate, and the quality of treated water may deteriorate. It was.

以上の通り、従来技術には、膜分離活性汚泥法において、その利点である低余剰汚泥発生の効果を損なうことなく、長期に渡りトラブルが発生するリスクを低減することが可能な技術は皆無であったと言える。
特開平8−332483号公報 特開平11−10198号公報
As described above, there is no technology in the prior art that can reduce the risk of trouble over the long term without impairing the effect of low excess sludge generation, which is an advantage of the membrane separation activated sludge method. It can be said that there was.
JP-A-8-332483 Japanese Patent Laid-Open No. 11-10198

本発明は、従来技術における上記問題点を受けてなされたものであって、その目的は、余剰汚泥発生量を増やすことなく、膜透水性不良や発泡、スカムの発生、粘性増加などのトラブルを長期間、持続的に回避可能な、安定な、膜分離活性汚泥法による有機物含有液の処理方法および処理装置を提供することにある。   The present invention was made in response to the above-mentioned problems in the prior art, and its purpose is to prevent troubles such as poor membrane permeability, foaming, scum generation, and viscosity increase without increasing the amount of excess sludge generation. It is an object of the present invention to provide a stable method and apparatus for treating an organic substance-containing liquid by a membrane separation activated sludge method that can be avoided continuously for a long period of time.

上記課題を解決するため、本発明は以下の構成を有する。   In order to solve the above problems, the present invention has the following configuration.

(1)活性汚泥に凝集剤を添加する操作Aと、活性汚泥に微小動物を作用させる操作Bとを含む膜分離活性汚泥法による有機性廃水の処理において、操作Bを、操作Aの実施時期の3日以前から7日後までの間に少なくとも1回実施することを特徴とする有機性廃水の処理方法。   (1) In the treatment of organic wastewater by the membrane separation activated sludge method including the operation A for adding the flocculant to the activated sludge and the operation B for causing the micro animals to act on the activated sludge, A method for treating organic wastewater, which is carried out at least once between before 3 days and after 7 days.

(2)微小動物が、非ろ過捕食性主体の微小動物群で構成されることを特徴とする(1)記載の有機性廃水の処理方法。   (2) The method for treating organic wastewater according to (1), wherein the minute animals are composed of a group of minute animals mainly composed of non-filtered predators.

(3)BOD汚泥負荷が0.15kg−BOD/kg−VSS/day未満の条件であることを特徴とする、(1)または(2)に記載の有機性廃水の処理方法。   (3) The organic wastewater treatment method according to (1) or (2), wherein the BOD sludge load is a condition of less than 0.15 kg-BOD / kg-VSS / day.

(4)凝集剤が生分解性を有することを特徴とする、(1)〜(3)記載の有機性廃水の処理方法。   (4) The method for treating organic wastewater according to any one of (1) to (3), wherein the flocculant has biodegradability.

本発明によれば、膜分離活性汚泥法において、余剰汚泥発生量を増やすことなく、膜透水性不良や発泡、スカムの発生、粘性増加などのトラブルを長期間、持続的に回避可能な、安定な処理が可能になる。   According to the present invention, in the membrane separation activated sludge method, troubles such as membrane permeability failure, foaming, scum generation and viscosity increase can be avoided continuously for a long time without increasing the amount of excess sludge generation. Processing becomes possible.

活性汚泥中に存在する分散性細菌や、微小化したフロック、溶解性微生物代謝産物(SMP)、フロックから剥離した細胞外ポリマー(EPS)等の物質が、膜透水性不良や発泡などの運転不安定性において、中心的な役割を果たす汚泥成分であり、これらの物質の濃度が増したとき、トラブルが発生するリスクが増すのであるが、本発明によれば、これらの物質をフロックに凝集させ、汚泥性状を悪化させる原因となる成分が高密度化された部分を優先的に微小動物に捕食させることにより、膜分離活性汚泥法において運転上悪影響を及ぼす汚泥成分を優先的に槽内から除去することが可能となり、運転トラブル発生リスクを効果的に減らすことができ、運転の安定性が大幅に向上する。   Dispersible bacteria present in activated sludge, micronized floc, soluble microbial metabolite (SMP), extracellular polymer (EPS) peeled off floc, and other factors such as poor membrane permeability and foaming In qualitative, it is a sludge component that plays a central role, and when the concentration of these substances increases, the risk of trouble occurring increases, but according to the present invention, these substances are aggregated into flocs, Preferentially removes sludge components that adversely affect operation in the membrane-separated activated sludge process from the tank by preferentially preying the micro-animals on the portion where the components that cause sludge properties to deteriorate are densified. This makes it possible to effectively reduce the risk of driving trouble and greatly improve driving stability.

また、凝集剤を添加しても、運転上悪影響を及ぼす汚泥成分と一緒に微小動物によって分解されるため、余剰汚泥発生量の増加にはつながらず、また、添加した凝集剤が分解されることは、凝集剤の蓄積による汚泥の不活性化(これは、処理機能維持の観点からは余剰汚泥発生量の増大につながる)や凝集剤の効力低下という問題を回避できるという利点も有する。   In addition, even if a flocculant is added, it is decomposed by micro animals together with sludge components that adversely affect operation, so it does not increase the amount of excess sludge generated, and the added flocculant is decomposed. Has the advantage of avoiding problems such as inactivation of sludge due to the accumulation of the flocculant (which leads to an increase in the amount of excess sludge generated from the viewpoint of maintaining the treatment function) and a decrease in the effectiveness of the flocculant.

さらに、凝集剤を添加した後に微小動物を加えることで、硝化菌などの増殖が遅いが有用な菌は運転上悪影響を及ぼす汚泥成分と凝集剤の層により微小動物の捕食から保護され、処理水質は損なわれないという利点も有する。また、凝集剤を添加した後に微小動物を加えることにより、分散性細菌や微小フロック、SMP、剥離したEPSがフロックに凝集され、酸素溶解性が増し微小動物の成育に好適な環境を準備した上で、該環境下に微小動物を作用させることができるようになり、微小動物利用の観点からも効率が向上する。   In addition, by adding micro animals after adding flocculants, nitrifying bacteria and other slow-growing but useful bacteria are protected from predation of micro animals by a layer of sludge components and flocculants that adversely affect operation, and treated water quality Has the advantage that it is not impaired. In addition, by adding micro animals after adding the flocculant, dispersible bacteria, micro flocs, SMP, and exfoliated EPS are aggregated into the flocs, so that oxygen solubility is increased and a suitable environment for the growth of micro animals is prepared. Thus, a minute animal can be allowed to act in the environment, and the efficiency is improved from the viewpoint of utilization of the minute animal.

このように、本発明は有機性廃水の処理における運転安定性を根本から高めるものであるため、汚泥滞留時間をより長くして汚泥負荷をより下げる、といった特殊な運転をする場合にもより安定に行え、膜分離活性汚泥法が元来有する余剰汚泥発生抑制機能をいっそう強化することが可能となり、余剰汚泥発生量を一層低減させることが可能になる。   In this way, the present invention fundamentally improves the operational stability in the treatment of organic wastewater, so it is more stable even when performing special operations such as longer sludge residence time and lower sludge load. Therefore, it is possible to further strengthen the function of suppressing the generation of excess sludge originally possessed by the membrane separation activated sludge method, and to further reduce the amount of generation of excess sludge.

なお、水に対する溶解性の程度によらず、糖含有廃水においてトラブルが発生するリスクが高いため、本発明は、とりわけ糖含有廃水へ適用に効果的である。   Note that the present invention is particularly effective for application to sugar-containing wastewater because there is a high risk of trouble occurring in sugar-containing wastewater regardless of the degree of solubility in water.

以下、本発明を詳細かつ具体的に説明する。   Hereinafter, the present invention will be described in detail and specifically.

本発明においては、廃水などの有機性廃水が、例えば、図1に示す処理装置にて処理され、最終的に得られる清澄液中に含まれている溶解性有機物(水に対して溶解性を示す有機物)は、河川等にそのまま放流することができる程度にまで分解処理される。ここで、本発明の処理方法により処理される有機性廃水としては産業廃水や生活排水が挙げられ、食品工場などから排出される産業廃水に対してより好適に用いることができる。また、多糖を主成分とする有機性廃水に対してさらに好適に用いることができる。   In the present invention, organic wastewater such as wastewater is treated with, for example, the treatment apparatus shown in FIG. 1, and soluble organic substances (dissolved in water) contained in the finally obtained clarified liquid. The organic matter shown) is decomposed to such an extent that it can be discharged into a river or the like as it is. Here, the organic wastewater treated by the treatment method of the present invention includes industrial wastewater and domestic wastewater, and can be more suitably used for industrial wastewater discharged from food factories and the like. Moreover, it can use more suitably with respect to the organic waste water which has a polysaccharide as a main component.

図1に示す処理装置は、微生物を含有する活性汚泥を収容した生物反応槽1と、その生物反応槽1に原液を供給する原液供給ポンプ4と、生物処理された処理液を固液分離する膜分離装置2と、固液分離の際に分離液を吸引する吸引ポンプ3と、微小動物保管槽8と、微小動物供給ポンプ10と、凝集剤保管槽7と凝集剤供給ポンプ11とを備えている。膜分離装置2は、生物反応槽1内の処理液に浸漬されており、その膜分離装置2の下方には、酸素を供給し、好気処理を進行させるとともに、膜面の洗浄を行うブロワー6に接続された曝気装置5が設けられている。また、生物反応槽1の下方には、余剰汚泥を引き抜く汚泥引き抜きポンプ9が設置されている。膜分離装置2が固液分離用の専用の槽として、別の生物処理槽、例えば、嫌気槽、無酸素槽、微細気泡発生装置を備えた好気処理槽などと独立に設けられていても良い。   The processing apparatus shown in FIG. 1 performs solid-liquid separation on a biological reaction tank 1 containing activated sludge containing microorganisms, a raw liquid supply pump 4 that supplies the raw liquid to the biological reaction tank 1, and a biologically processed processing liquid. A membrane separation device 2, a suction pump 3 that sucks a separation liquid during solid-liquid separation, a micro animal storage tank 8, a micro animal supply pump 10, a coagulant storage tank 7, and a coagulant supply pump 11 are provided. ing. The membrane separation device 2 is immersed in a treatment liquid in the biological reaction tank 1, and oxygen is supplied below the membrane separation device 2 to advance the aerobic treatment and to perform the cleaning of the membrane surface. An aeration device 5 connected to 6 is provided. In addition, a sludge extraction pump 9 that extracts excess sludge is installed below the biological reaction tank 1. Even if the membrane separation device 2 is provided as a dedicated tank for solid-liquid separation separately from another biological treatment tank, for example, an anaerobic tank, an anaerobic tank, an aerobic treatment tank equipped with a fine bubble generator, and the like. good.

生物反応槽1には、微生物を含有する活性汚泥が収容されており、この微生物が、有機物の分解菌、さらには当該有機物の分解菌が微生物の分解菌として作用し、生物処理を行う。従って、生物反応槽1は、汚泥が部分的に偏在することがないように、内表面に角がないものや凹凸がないものが好ましい。この結果、生物反応槽1内では処理液の温度やpHが均一になる。   The biological reaction tank 1 contains activated sludge containing microorganisms, and these microorganisms act as organic matter-degrading bacteria, and further, the organic matter-degrading bacteria act as microorganism-degrading bacteria to perform biological treatment. Therefore, it is preferable that the biological reaction tank 1 has no corners or irregularities on the inner surface so that sludge is not partially unevenly distributed. As a result, the temperature and pH of the treatment liquid become uniform in the biological reaction tank 1.

また、活性汚泥に含有される微生物は、細菌類、酵母およびカビを含む真菌類など、溶解性有機物などの分解に寄与するもので、土壌、堆肥、汚泥など、自然界から集積培養及び馴養によって取得される。またこの馴養液から分解に関与する主要な微生物群を単離して用いることも可能である。   Microorganisms contained in activated sludge contribute to the degradation of soluble organic matter such as bacteria, yeasts and fungi including fungi. Acquired from nature, such as soil, compost, and sludge, by accumulating culture and acclimatization Is done. It is also possible to isolate and use the main microbial group involved in the degradation from this conditioned solution.

生物反応槽1には、その他、微生物の生育に必要な成分が収容されていなければならない。そのため、例えば窒素、リン、カリウム、ナトリウム、マグネシウムその他の金属塩を、原液中に既に含まれている場合を除き、生物反応槽に添加する。   The biological reaction tank 1 must contain other components necessary for the growth of microorganisms. Therefore, for example, nitrogen, phosphorus, potassium, sodium, magnesium and other metal salts are added to the bioreactor, except when already contained in the stock solution.

そして、生物反応槽1に設けられている膜分離装置2としては、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などを用いて形成されたモジュールを用いることができる。経済性の観点からは、ろ過速度が高くコンパクト化が可能で、メンテナンスが容易である精密ろ過膜、限外ろ過膜を用いたモジュールが好ましい。膜の形状は平膜、中空糸膜等のものが用いられる。モジュールの形態も特に限定されないが、本実施態様においては省スペース化のため浸漬型の膜モジュールを使用している。なお、浸漬型の場合は、曝気装置や撹拌装置との組合せ、配置により、ファウリング物質がうまく除去できるような形状であることが好ましい。さらに、膜分離装置2におけるろ過方法としては、クロスフロー方式や全量ろ過方式があるが、クロスフロー方式を採用すれば膜面の汚れを取りながらろ過できる。   As the membrane separation device 2 provided in the biological reaction tank 1, a module formed using a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, or the like can be used. From the economical point of view, a module using a microfiltration membrane or an ultrafiltration membrane that has a high filtration rate and can be made compact and is easy to maintain is preferable. The membrane may be a flat membrane, a hollow fiber membrane or the like. The form of the module is not particularly limited, but in this embodiment, an immersion type membrane module is used for space saving. In the case of the immersion type, the shape is preferably such that the fouling substance can be successfully removed by combination and arrangement with an aeration apparatus or a stirring apparatus. Furthermore, as a filtration method in the membrane separation device 2, there are a cross flow method and a total amount filtration method. If the cross flow method is employed, filtration can be performed while removing the membrane surface.

微小動物を作用させる手段とは、微小動物の培養槽と該培養槽中の培養液を曝気槽に添加する装置、微小動物の保存槽と該保存槽中の液を曝気槽に添加する装置、担体などを浸漬し微小動物を優占化した槽と、該担体などを浸漬し微小動物を優占化した槽に含まれる液と他の生物処理槽に含まれる液を循環させるのに必要なポンプ、配管等で構成される装置などを例示することができる。また、微小動物の作用を強化する目的から、微小動物の生育補助剤を添加しても良い。なお、ここで言う微小動物の作用の強化とは、その他の微小動物の添加、微小動物処理槽と他生物処理槽との間の汚泥の循環液流量の増加、微小動物に好適な運転環境への変更、微小動物生育の足場となる担体の投入などを指す。   Means for causing a micro animal to act include a culture tank for a micro animal and a device for adding the culture solution in the culture tank to the aeration tank, a storage tank for the micro animal and a device for adding the liquid in the storage tank to the aeration tank, Necessary to circulate the liquid contained in the tank that soaked the carrier and the like to dominate the micro animal, the liquid contained in the tank that soaked the carrier etc. and made the micro animal dominant. Examples of the apparatus include pumps and piping. In addition, for the purpose of enhancing the action of the minute animal, a growth aid for the minute animal may be added. In addition, the enhancement of the action of the microanimal here means the addition of other microanimals, an increase in the circulating fluid flow rate of sludge between the microanimal treatment tank and the other organism treatment tank, and a suitable operating environment for the microanimal. Changes, and the introduction of a carrier that serves as a scaffold for the growth of small animals.

凝集剤の添加位置は、特に限定されるものではないが、分散性細菌や、微小フロック、SMP、剥離したEPSの濃度が最も高く、かつ添加した凝集剤が汚泥液と良く混ざる地点が効果的であり、曝気槽が適しているが、廃水供給用の配管や脱窒槽など、最終的に凝集剤が活性汚泥と混ざることに結びつく場所に添加しても良い。   The position of adding the flocculant is not particularly limited, but it is effective to have the highest concentration of dispersible bacteria, micro flocs, SMP, peeled EPS, and the added flocculant is well mixed with the sludge liquid. Although an aeration tank is suitable, it may be added to a place where the flocculant is finally mixed with activated sludge, such as a pipe for supplying wastewater or a denitrification tank.

本発明で使用する凝集剤は、分散性細菌や微小化したフロック、SMP、剥離したEPSなどをフロックに適度な強度で凝集させる力を有するものであれば、カチオン系、ノニオン系、アニオン系の高分子凝集剤が適宜使用可能であるが、薬剤の添加量あたりの効果が最も高いという点でカチオン性の高分子凝集剤が最も適している。また、微小動物による汚泥性状を悪化させる原因となる成分の捕食機能への親和性や環境影響を考慮すると、生分解性を有するものが適している。なお、ここで言う生分解性とは、自然界に存在する微生物によって、水と二酸化炭素を主体とする成分にまで分解可能であるという性質を意味する。   The flocculant used in the present invention may be cationic, nonionic, or anionic, as long as it has the ability to aggregate dispersible bacteria, micronized floc, SMP, peeled EPS, etc. to floc with an appropriate strength. A polymer flocculant can be used as appropriate, but a cationic polymer flocculant is most suitable in that it has the highest effect per added amount of the drug. In addition, in view of the affinity of the components that cause the sludge properties of the micro-animals to deteriorate and the environmental influences, those having biodegradability are suitable. In addition, the biodegradability said here means the property that it can be decomposed | disassembled to the component which has water and a carbon dioxide as a main component with the microorganisms which exist in nature.

凝集剤の使用量は、被処理汚泥の性状にもよるが、汚泥のMLSS濃度に対して、0.1〜5%となる量が好ましい。凝集剤の量が少なすぎると、凝集力が不十分で効果が発揮されない。他方、凝集剤を過剰量添加した場合、凝集力に変化はない、あるいは、却って悪化する場合があり、また、コストが高くつくので好ましくない。凝集剤の最適添加量は、簡単なジャーテストで汚泥液に凝集剤を量を変えて一連に添加し、ろ紙を用いたろ過性や、添加後液の沈降または遠心上清の全有機炭素(TOC)濃度やCOD濃度など元に判断し、それぞれ、50mlの汚泥を5分間ろ過した時のろ過液量が15ml以上となるのに必要な添加量、沈降または遠心上清の全有機炭素濃度やCOD濃度が最低となるのに必要な添加量、と同程度の割合で添加すればよい。   The amount of the flocculant used depends on the properties of the sludge to be treated, but is preferably 0.1 to 5% with respect to the MLSS concentration of the sludge. If the amount of the flocculant is too small, the cohesive force is insufficient and the effect is not exhibited. On the other hand, when an excessive amount of the flocculant is added, there is no change in the cohesive force, or there is a case where the coagulant is deteriorated. The optimum amount of flocculant is determined by adding a series of flocculants to sludge liquid in a simple jar test, filterability using filter paper, sedimentation of the liquid after addition, or total organic carbon in the centrifugal supernatant ( TOC) concentration, COD concentration, etc., and the amount of addition required for the amount of filtrate to be 15 ml or more when 50 ml of sludge is filtered for 5 minutes, the total organic carbon concentration of sedimentation or centrifugation supernatant, What is necessary is just to add in the ratio equivalent to the addition amount required for COD density | concentration becoming the minimum.

凝集剤添加のタイミングは、膜の差圧や粘性、汚泥濃度の上昇、発泡の観測、上清TOC濃度の測定結果を元に添加してもよいし、監視項目に基づかないで定期的な間隔で添加しても良い。   The timing of adding the flocculant may be added based on the measurement results of the differential pressure and viscosity of the membrane, the increase in sludge concentration, the observation of foaming, and the supernatant TOC concentration, or at regular intervals without depending on the monitoring items. May be added.

微小動物とは、鞭毛虫や繊毛虫、肉質虫などの原生動物や、袋形動物や環形動物などを含む微小後生動物であり、体長10mm以下の生物を指す。   The microanimal is a protozoan such as a flagellate, a ciliate, or a fleshworm, or a minute metazoan including a bag-shaped animal or an annelid, and refers to an organism having a body length of 10 mm or less.

本発明で用いる微小動物は、汚泥性状悪化原因成分の捕食機能に優れるものであれば特に限定しないが、非ろ過捕食性主体の後生動物が好適である。ここで、ろ過捕食性とは、細胞の口付近に付着している繊毛の運動により細胞の口の周囲に水流を起こし、その水流に随伴される細菌を体内に取り込みろ過することで細菌を食する性質を指し、非ろ過捕食性とはこれと異なり、かじるように細菌を捕食する性質を指し、例えば、袋形動物、軟体動物、環形動物、緩歩動物などを例示することができる。特に、効果が高い微小動物としては、線虫などを例示することができる。また、後生動物とは多細胞で構成される動物であることを意味し、主体とは非ろ過捕食性の動物がろ過捕食性の動物より数多く存在することを意味し、微小動物群とは微小動物の種類が1種類以上であることを意味する。   The microanimal used in the present invention is not particularly limited as long as it is excellent in the predatory function of the sludge property deterioration causative component, but a metazoan that is mainly non-filtered and predatory is suitable. Here, the filter predatory property means that water flows around the cell's mouth due to the movement of cilia adhering to the vicinity of the cell's mouth, and the bacteria accompanying the water flow are taken into the body and filtered to eat the bacteria. Different from non-filtering predatory properties, it refers to the property of preying on bacteria so as to bite, and examples thereof include bag-shaped animals, mollusks, annelids, and slow-walking animals. In particular, nematodes and the like can be exemplified as the minute animals having high effects. Metazoans means animals composed of multiple cells, the main means that there are more non-filtered and predatory animals than filtered and predatory animals, It means that there are one or more kinds of animals.

活性汚泥に凝集剤を添加する操作Aと、活性汚泥に微小動物を作用させる操作Bとの実施のタイミングについては、操作Aの実施時期の3日以前から7日後までの間に、操作Bを少なくとも1回行うことが必要である。3日以上前だと、微小動物添加によりろ過性悪化などがかえって生じる可能性がある。また、凝集剤添加後、7日以上経過すると、凝集力が低下し効率的でなくなる可能性がある。より好ましくは、操作Aの実施時期の1日以前から3日後までの間に、操作Bを少なくとも1回行うことである。   Regarding the timing of the operation A for adding the flocculant to the activated sludge and the operation B for causing the micro animal to act on the activated sludge, the operation B is performed between 3 days before and 7 days after the operation A. It is necessary to carry out at least once. If it is more than 3 days ago, filterability may deteriorate due to the addition of small animals. In addition, if 7 days or more have elapsed after the addition of the flocculant, the agglomeration force may be reduced and may not be efficient. More preferably, the operation B is performed at least once during the period from the first day to the third day after the operation A.

本発明を適用すれば、本発明は有機性廃水の処理における運転安定性を根本から高めることができるため、汚泥滞留時間をより長くして汚泥負荷をより下げる、といった特殊な運転をする場合にもより安定に行え、膜分離活性汚泥法が元来有する余剰汚泥発生抑制機能をいっそう強化することが可能となり、余剰汚泥発生量を一層低減させることが可能になる。このような効果を狙うときは、BOD汚泥負荷が0.15kg−BOD/kg−VSS/day未満の条件で、本発明を適用するとよい。なお、BOD汚泥負荷とは、廃水処理の供給されるBODの流入量を、すべての廃水処理の槽内に存在する汚泥量で割ったものである。   If the present invention is applied, the present invention can fundamentally improve the operation stability in the treatment of organic wastewater, so when performing a special operation such as increasing the sludge residence time and lowering the sludge load. Therefore, it is possible to further enhance the surplus sludge generation suppressing function originally possessed by the membrane separation activated sludge method, and to further reduce the amount of surplus sludge generation. When aiming at such an effect, the present invention is preferably applied under the condition that the BOD sludge load is less than 0.15 kg-BOD / kg-VSS / day. The BOD sludge load is obtained by dividing the inflow amount of BOD supplied for wastewater treatment by the amount of sludge existing in all wastewater treatment tanks.

以下、本発明を、実施例を用いてさらに詳細に説明する。なお、本発明は以下に実施例に限定されるものではない。なお、評価は以下の方法に基づいて行った。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to an Example below. The evaluation was performed based on the following method.

[ろ紙ろ過性の評価]
ろ紙ろ過性は、汚泥液50mlを孔径0.1ミクロンのろ紙で5分ろ過した時の液量を測定し、評価した。液量が15ml以上の汚泥は、ろ過性が良好と判断される。
[Evaluation of filter paper filterability]
The filter paper filterability was evaluated by measuring the amount of liquid when 50 ml of sludge liquid was filtered with a filter paper having a pore size of 0.1 micron for 5 minutes. Sludge having a liquid volume of 15 ml or more is judged to have good filterability.

[MLSS濃度の測定]
MLSS濃度は、汚泥試料1mlを分取し、下水道試験法に記載の遠心分離法により測定した。
(実施例1)
30Lの膜分離活性汚泥装置を用いてBOD濃度1,000ppmの食品工場模擬廃水を水滞留時間1日の条件で処理したところ、MLSS濃度が13g/Lを超えた時点で汚泥のろ過性状が悪化し、差圧が急激に上昇しはじめた。この時点の汚泥液50mlを0.1ミクロンのろ紙で5分ろ過した時の液量は約3mlであった。
[Measurement of MLSS concentration]
The MLSS concentration was measured by centrifuging as described in the Sewerage Test Method after collecting 1 ml of sludge sample.
(Example 1)
When a 30L membrane-separated activated sludge apparatus was used to treat a food factory simulated wastewater with a BOD concentration of 1,000 ppm under conditions of a water retention time of 1 day, the sludge filtration properties deteriorated when the MLSS concentration exceeded 13 g / L. The differential pressure began to rise rapidly. When 50 ml of sludge liquid at this time was filtered with 0.1 micron filter paper for 5 minutes, the liquid volume was about 3 ml.

このときの汚泥を700mlの小型MBR4つに分注し、1槽には生分解性凝集剤(株式会社共和テクノス社製 フローナックN)を0.2g/Lの濃度で添加(B槽)、1槽には線虫が優占化した微小動物培養液(実体顕微鏡で活性汚泥より単離し、大腸菌で培養した液)を添加(C槽)、1槽には生分解性凝集剤(株式会社共和テクノス社製 フローナックN)を0.2g/Lの濃度で添加し、3時間後に線虫が優占化した微小動物培養液(実体顕微鏡で活性汚泥より単離し、大腸菌で培養した液)を添加した(D槽)。何も添加しない1槽(A槽)と併せて、4系列を運転したところ、ろ紙ろ過性は、汚泥濃度、表1に示す通りとなった。   The sludge at this time was dispensed into four 700 ml small MBRs, and biodegradable flocculant (Flowac N, manufactured by Kyowa Technos Co., Ltd.) was added to one tank at a concentration of 0.2 g / L (B tank). In 1 tank, nematode-dominated microanimal culture solution (isolated from activated sludge with a stereomicroscope and cultured in E. coli) was added (C tank). Kyowa Technos Co., Ltd. Flownack N) was added at a concentration of 0.2 g / L, and a nematode dominant solution after 3 hours (liquid isolated from activated sludge with a stereomicroscope and cultured in Escherichia coli) Was added (D tank). When 4 series were operated in combination with 1 tank (A tank) to which nothing was added, the filter paper filterability was as shown in Table 1, sludge concentration.

Figure 2007090300
Figure 2007090300

本発明の有機性廃水の処理方法に用いられる処理装置の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the processing apparatus used for the processing method of the organic wastewater of this invention.

符号の説明Explanation of symbols

1 生物反応槽
2 膜分離装置
3 吸引ポンプ
4 原液供給ポンプ
5 曝気装置
6 ブロワー
7 凝集剤保管槽
8 微小動物保管槽
9 汚泥引き抜きポンプ
10 微小動物供給ポンプ
11 凝集剤供給ポンプ
DESCRIPTION OF SYMBOLS 1 Biological reaction tank 2 Membrane separation apparatus 3 Suction pump 4 Stock solution supply pump 5 Aeration apparatus 6 Blower 7 Coagulant storage tank 8 Micro animal storage tank 9 Sludge extraction pump 10 Micro animal supply pump 11 Coagulant supply pump 11

Claims (4)

活性汚泥に凝集剤を添加する操作Aと、活性汚泥に微小動物を作用させる操作Bとを含む膜分離活性汚泥法による有機性廃水の処理において、操作Bを、操作Aの実施時期の3日以前から7日後までの間に少なくとも1回実施することを特徴とする有機性廃水の処理方法。 In the treatment of organic wastewater by the membrane-separated activated sludge method including operation A for adding a flocculant to activated sludge and operation B for causing microanimals to act on activated sludge, operation B is performed on the 3rd day of operation A. A method for treating organic wastewater, which is carried out at least once between before and after 7 days. 微小動物が、非ろ過捕食性主体の微小動物群で構成されることを特徴とする請求項1記載の有機性廃水の処理方法。 2. The method for treating organic wastewater according to claim 1, wherein the micro animals are composed of a group of micro animals mainly composed of non-filtered predators. BOD汚泥負荷が0.15kg−BOD/kg−VSS/day未満の条件であることを特徴とする、請求項1または2に記載の有機性廃水の処理方法。 The organic wastewater treatment method according to claim 1 or 2, wherein the BOD sludge load is a condition of less than 0.15 kg-BOD / kg-VSS / day. 凝集剤が生分解性を有することを特徴とする、請求項1〜3記載の有機性廃水の処理方法。 The method for treating organic wastewater according to claim 1, wherein the flocculant has biodegradability.
JP2005286307A 2005-09-30 2005-09-30 Method for treating organic waste water Pending JP2007090300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286307A JP2007090300A (en) 2005-09-30 2005-09-30 Method for treating organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286307A JP2007090300A (en) 2005-09-30 2005-09-30 Method for treating organic waste water

Publications (1)

Publication Number Publication Date
JP2007090300A true JP2007090300A (en) 2007-04-12

Family

ID=37976587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286307A Pending JP2007090300A (en) 2005-09-30 2005-09-30 Method for treating organic waste water

Country Status (1)

Country Link
JP (1) JP2007090300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168199A (en) * 2007-01-11 2008-07-24 Hitachi Ltd Membrane separation activated sludge apparatus and its operation method
JP2011520594A (en) * 2008-05-02 2011-07-21 ナルコ カンパニー Method for preparing a mixture containing nonionic polysaccharides and / or nonionic organic molecules
JP2015163388A (en) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 Method and system for wastewater treatment
JP2017000999A (en) * 2015-06-15 2017-01-05 三菱レイヨン株式会社 Dewatering method of sludge using detection of extracellular polysaccharides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168199A (en) * 2007-01-11 2008-07-24 Hitachi Ltd Membrane separation activated sludge apparatus and its operation method
JP2011520594A (en) * 2008-05-02 2011-07-21 ナルコ カンパニー Method for preparing a mixture containing nonionic polysaccharides and / or nonionic organic molecules
JP2015163388A (en) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 Method and system for wastewater treatment
JP2017000999A (en) * 2015-06-15 2017-01-05 三菱レイヨン株式会社 Dewatering method of sludge using detection of extracellular polysaccharides

Similar Documents

Publication Publication Date Title
Erkan et al. Membrane bioreactors for wastewater treatment
Deng et al. Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor
JP5358886B2 (en) Biological treatment method of water containing organic matter
Mohammed et al. Evaluation of using membrane bioreactor for treating municipal wastewater at different operating conditions
SK58393A3 (en) Membrane bioreactor system for treating synthetic metal-working fluids and oil-based products
Holan et al. Membrane performance and fouling behavior of membrane bioreactors installed in marine recirculating aquaculture systems
JP2014180629A (en) Water treatment method and system
Fathali et al. Investigation on nitrogen removal performance of an enhanced post-anoxic membrane bioreactor using disintegrated sludge as a carbon source: An experimental study
JP2007090300A (en) Method for treating organic waste water
TW201343567A (en) Oscillating bed support, and method and device for biologically treating organic wastewater using the oscillating bed support
TWI361796B (en)
JP5586749B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP5854489B2 (en) Microbial flora activator, anti-filamentous fungus agent containing the microbiota activator as an active ingredient, and method for treating wastewater containing fats and oils using the microbiota activator
Pulefou et al. Application of submerged membrane bioreactor for aquaculture effluent reuse
CN104609639B (en) Wastewater treatment apparatus and wastewater treatment method
JP2009297611A (en) Hydrogen peroxide-containing organic water treatment method and apparatus
JP2010110718A (en) Method and apparatus for treating organic drainage
JP5466864B2 (en) Water treatment apparatus and water treatment method
JP2016123920A (en) Wastewater treatment apparatus and method
CN203545786U (en) Ammonia-nitrogen containing wastewater treatment equipment
JP2010125366A (en) Water treating method and water treating apparatus
WO2015002121A1 (en) Process for purification treatment of wastewater and apparatus for purification treatment of wastewater
JP4850015B2 (en) Outside-tank membrane separation activated sludge method
RU2644904C1 (en) Method of biological purification of wastewater from nitrogen phosphoric and organic compounds
JP2008238042A (en) Method for reducing amount of organic sludge