JP2010194445A - Plant operation controller - Google Patents

Plant operation controller Download PDF

Info

Publication number
JP2010194445A
JP2010194445A JP2009041636A JP2009041636A JP2010194445A JP 2010194445 A JP2010194445 A JP 2010194445A JP 2009041636 A JP2009041636 A JP 2009041636A JP 2009041636 A JP2009041636 A JP 2009041636A JP 2010194445 A JP2010194445 A JP 2010194445A
Authority
JP
Japan
Prior art keywords
plant
constraint condition
water quality
error
linear model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041636A
Other languages
Japanese (ja)
Other versions
JP5210920B2 (en
Inventor
Ichiro Yamanoi
一郎 山野井
Takeshi Takemoto
剛 武本
Koji Kageyama
晃治 陰山
Ichiro Enbutsu
伊智朗 圓佛
Hideyuki Tadokoro
秀之 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009041636A priority Critical patent/JP5210920B2/en
Publication of JP2010194445A publication Critical patent/JP2010194445A/en
Application granted granted Critical
Publication of JP5210920B2 publication Critical patent/JP5210920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plant operation controller for calculating the quantity of operation control input at a short control cycle. <P>SOLUTION: The plant operation controller includes a constraint condition setting means of estimating a current plant state amount from the inflow amount, history of inflow water quality, and history of the quantity of operation control input by using a nonlinear model simulating a process of a plant, and then linearizing the nonlinear model in the vicinity of the estimated state amount to set an input constraint condition, an output constraint condition, and a minimization constraint condition, a quantity-of-operation-control-input calculating means of calculating the quantity of operation control input of operation instruments by using a linear model based on the inflow amount of inflow water, inflow water quality, and the constraint conditions, and a linear model verification means of making a linear model by a plant state estimating means and a linear model making means when a linear error, which is an error between treated water quality calculated by the linear model and measured treated water quality, exceeds a allowable linear error. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、線形モデルを用いて、特に下水処理場の処理水質や温室効果ガス排出量を制御するプラント運転制御装置に関する。   The present invention relates to a plant operation control device that uses a linear model to control, in particular, the quality of treated water and greenhouse gas emissions at a sewage treatment plant.

下水処理プロセスでは、環境保全の立場から、従来の有機物除去に加えて、窒素,リン等の複数の水質基準を満たす運転が求められてきた。このような運転を実現するため、下水処理プロセスを数理的なモデルで表し、制御に用いるといった試みがなされている。   In the sewage treatment process, from the standpoint of environmental conservation, in addition to conventional organic matter removal, operation that satisfies a plurality of water quality standards such as nitrogen and phosphorus has been required. In order to realize such operation, attempts have been made to represent the sewage treatment process with a mathematical model and use it for control.

下水処理プロセスのモデルとして、例えば[特許文献1]に記載のように、複数の生物反応槽と最終沈殿池を対象に、非線形の水理モデルと生物反応モデルで構成したものがある。生物反応モデルとしては、微生物の増殖,自己分解,脱窒,硝化などのプロセスによる微生物,汚濁物質,窒素,リンなどの成分の濃度変動を表しており、一般的な例として、1995年に国際水環境協会(IWAQ)が発表した[非特許文献1]が挙げられる。   As a model of a sewage treatment process, for example, as described in [Patent Document 1], there is a model constituted by a nonlinear hydraulic model and a biological reaction model for a plurality of biological reaction tanks and final sedimentation basins. The biological reaction model represents fluctuations in the concentration of microorganisms, pollutants, nitrogen, phosphorus, and other components due to processes such as microbial growth, autolysis, denitrification, and nitrification. [Non-Patent Document 1] published by the Water Environment Association (IWAQ).

この下水処理プロセスのモデルを用い、プラント流入量である流入水の流量と水質、運転操作量であるブロワや循環ポンプの流量を入力することで、プラント状態量である各槽の水質や、プラント出力量である処理水の水質が算出される。   Using this sewage treatment process model, the flow rate and quality of the influent water, which is the inflow of the plant, and the flow rate of the blower and circulation pump, which are the operation volume, are input to the water quality of each tank, which is the plant state quantity, The quality of treated water, which is the output amount, is calculated.

数理的なモデルを制御に適用する場合、非線形モデルでは計算負荷が大きくなるため、線形化した線形モデルを用いることが一般的である。線形モデルは、非線形モデルをある状態量、例えば、計算に用いる各槽での水質値の近傍でTaylor展開し、一次の偏微分係数を要素としてもつ行列で近似的に表したものである。線形化に用いた状態量近傍では、非線形モデルを良く近似する。   When a mathematical model is applied to control, the nonlinear model increases the computational load, and thus a linearized linear model is generally used. The linear model is an approximate representation of a nonlinear model in a state quantity, for example, a Taylor expansion in the vicinity of the water quality value in each tank used for calculation, and a matrix having primary partial differential coefficients as elements. In the vicinity of the state quantity used for linearization, the nonlinear model is approximated well.

線形モデルを用いる制御手法の一つに、[非特許文献2]に記載のように、モデル予測制御がある。これは、制御対象であるプロセスの線形モデルを用いてプロセスの未来を予測し、その予測結果に基づいてブロワやポンプなどの運転操作量を決定する手法である。制約条件のもとで最適制御が可能といった特徴があり、水質基準を満たしつつ、例えばコストや温室効果ガス排出量を最小化する運転操作量を決定する制御が可能である。   One of the control methods using a linear model is model predictive control as described in [Non-Patent Document 2]. This is a method of predicting the future of a process using a linear model of a process to be controlled and determining the operation amount of a blower, a pump, or the like based on the prediction result. There is a feature that optimum control is possible under constraint conditions, and it is possible to perform control for determining an operation amount that minimizes costs and greenhouse gas emissions, for example, while satisfying water quality standards.

[特許文献2]では、下水処理プロセスを表す非線形モデルを線形近似して線形モデルを作成し、この線形モデルをモデル予測制御に適用している。   In [Patent Document 2], a nonlinear model representing a sewage treatment process is linearly approximated to create a linear model, and this linear model is applied to model predictive control.

モデル予測制御の制御精度を向上させるためには、線形モデルの取扱いが重要となる。下水処理プラントの状態量が、線形モデルの作成時の状態量の近傍であれば、高精度の制御が可能であるが、両者が乖離するに従い、制御精度が低下する。この対策として、[特許文献2]では、制御周期(観測周期)毎に、非線形モデルの計算により実下水処理プラントの状態量を推定し、その状態量で線形モデルを再び作成し、線形モデルをモデル予測制御に適用する。これにより、制御精度の維持を図っている。   In order to improve the control accuracy of model predictive control, it is important to handle a linear model. If the state quantity of the sewage treatment plant is close to the state quantity at the time of creating the linear model, high-precision control is possible, but the control accuracy decreases as the two deviate from each other. As a countermeasure against this, in [Patent Document 2], for each control cycle (observation cycle), the state quantity of the actual sewage treatment plant is estimated by calculation of a nonlinear model, and a linear model is created again with the state quantity. Applies to model predictive control. As a result, control accuracy is maintained.

特開2001−137881号公報Japanese Patent Laid-Open No. 2001-137881 特開2002−373002号公報JP 2002-373002 A

「活性汚泥モデルNo.2」(IWAQ:IWAQ Scientific and Technical Report No.3, Activated Sludge Model No.2,1995)"Activated sludge model No. 2" (IWAQ: IWAQ Scientific and Technical Report No. 3, Activated Sludge Model No. 2, 1995) J. M. Maciejowski著,足立修一,管野政明訳,モデル予測制御 制約のもとでの最適制御,東京電機大学出版局(2005)J. M. Maciejowski, Shuichi Adachi, Masaaki Kanno, Model Predictive Control Optimal control under constraints, Tokyo Denki University Press (2005)

上述した通り、[特許文献2]に記載の方法では、(1)非線形モデルでの演算で状態量推定、(2)推定した状態量近傍で線形モデル作成、(3)作成した線形モデルをモデル予測制御に適用し、プラントの最適運転操作量を導出、(4)導出した運転操作量を下水処理プラントへ入力するという、プロセス(1)〜(4)を一周期として下水処理プラントを制御する。しかし、プロセス(1),(2)は計算負荷が大きいため、制御の一周期が長くなり、制御の精度が低下するといった課題があった。   As described above, in the method described in [Patent Document 2], (1) state quantity estimation by calculation using a nonlinear model, (2) linear model creation near the estimated state quantity, and (3) the created linear model is modeled. Applying to the predictive control, deriving the optimum operation amount of the plant, (4) controlling the sewage treatment plant with the processes (1) to (4) as one cycle of inputting the derived operation amount to the sewage treatment plant. . However, since the processes (1) and (2) have a large calculation load, there is a problem that one cycle of control becomes long and the accuracy of the control decreases.

本発明の目的は、短い制御周期で運転操作量を算出するプラント制御装置を提供することにある。   An object of the present invention is to provide a plant control device that calculates an operation amount in a short control cycle.

上記目的を達成するために、本発明は、プラントのプロセスを模擬した非線形モデルにより、流入水の流入量及び流入水質の履歴及び運転機器の運転操作量の履歴から現在のプラント状態量を推定するプラント状態量推定手段と、プラント状態量推定手段により推定された状態量近傍で前記非線形モデルを線形化する線形モデル作成手段と、運転機器の運転操作量の制約条件である入力制約条件、処理水質の制約条件である出力制約条件及び運転操作量を変数とする目的関数を最小化する最小化制約条件とを設定する制約条件設定手段と、流入量算出手段で算出された流入水の流入量及び流入水質、制約条件設定手段により設定された制約条件に基づいて線形モデルを用いて運転機器の運転操作量を算出する運転操作量算出手段と、線形モデルにより算出された処理水質と、流出量算出手段で算出された処理水質との誤差である線形誤差が、予め設定した線形許容誤差を超過した場合は、プラント状態量推定手段及び線形モデル作成手段により線形モデルを作成する線形モデル検証手段とを備えたものである。   In order to achieve the above object, the present invention estimates a current plant state quantity from an inflow of inflow water, a history of inflow water quality, and a history of operation amount of operation equipment by a non-linear model simulating a plant process. A plant state quantity estimating means, a linear model creating means for linearizing the nonlinear model in the vicinity of the state quantity estimated by the plant state quantity estimating means, an input constraint condition that is a constraint condition of the operation amount of the operating equipment, and treated water quality The constraint condition setting means for setting the output constraint condition and the minimization constraint condition for minimizing the objective function with the operation amount as a variable, the inflow amount of the influent water calculated by the inflow amount calculation means, and Driving operation amount calculation means for calculating the driving operation amount of the driving equipment using the linear model based on the inflow water quality and the restriction conditions set by the restriction condition setting means; and a linear model When the linear error that is the error between the treated water quality calculated by the above and the treated water quality calculated by the outflow amount calculating means exceeds a preset linear tolerance, the plant state quantity estimating means and the linear model creating means And linear model verification means for creating a linear model.

また、プラントのプロセスを模擬した非線形モデルを線形化する線形モデル作成手段と、運転機器の運転操作量の制約条件である入力制約条件、処理水質の制約条件である出力制約条件及び運転操作量を変数とする目的関数を最小化する最小化制約条件とを設定する制約条件設定手段と、流入量算出手段で算出された流入水の流入量及び流入水質、制約条件設定手段により設定された制約条件に基づいて線形モデルを用いて運転機器の運転操作量を算出する運転操作量算出手段と、線形モデルにより算出された処理水質と、制約条件設定手段で設定された出力条件の上限値との誤差である制御誤差が、予め設定した制御許容誤差を超過した場合は、出力条件の上限値をそれよりも小さい第二の出力条件に変更する第二出力条件算出手段とを備えたものである。   In addition, a linear model creation means for linearizing a nonlinear model simulating a plant process, an input constraint condition that is a constraint condition of an operation amount of an operating device, an output constraint condition that is a constraint condition of treated water, and an operation operation amount Restriction condition setting means for setting a minimization restriction condition for minimizing the objective function as a variable, inflow amount and quality of inflow water calculated by the inflow amount calculation means, and restriction conditions set by the restriction condition setting means An error between the driving operation amount calculation means for calculating the driving operation amount of the driving equipment using the linear model, the treated water quality calculated by the linear model, and the upper limit value of the output condition set by the constraint condition setting means And a second output condition calculation means for changing the upper limit value of the output condition to a second output condition smaller than that when the control error exceeds a preset control allowable error. Those were.

また、線形モデルにより算出された処理水質と、制約条件設定手段で設定された出力条件の上限値との誤差である制御誤差が、予め設定した制御許容誤差を超過した場合は、運転機器の運転操作量を修正する第二運転条件算出手段とを備えたものである。   If the control error, which is the error between the treated water quality calculated by the linear model and the upper limit value of the output condition set by the constraint condition setting means, exceeds the preset control tolerance, And a second operating condition calculating means for correcting the operation amount.

本発明によれば、例えば温室効果ガス排出量と複数の処理水水質を最適化するために、ブロワ,循環ポンプ,返送ポンプなどの複数の運転操作量を精度良く決定できる。   According to the present invention, for example, in order to optimize greenhouse gas emissions and a plurality of treated water qualities, it is possible to accurately determine a plurality of operation amounts such as a blower, a circulation pump, and a return pump.

本発明の実施例1である下水処理プラントの構成図。The block diagram of the sewage treatment plant which is Example 1 of this invention. 本実施例のプラント運転制御装置のフローチャートを示す図。The figure which shows the flowchart of the plant operation control apparatus of a present Example. 本実施例のプラント運転制御装置の実測値と線形モデルの計算結果のグラフを表示する画面例を示す図。The figure which shows the example of a screen which displays the graph of the measured value of the plant operation control apparatus of a present Example, and the calculation result of a linear model. 本実施例のプラント運転制御装置の線形誤差と線形許容誤差のグラフを表示する画面例を示す図。The figure which shows the example of a screen which displays the graph of the linear error and linear allowable error of the plant operation control apparatus of a present Example. 本実施例の制御頻度を説明する図。The figure explaining the control frequency of a present Example. 本発明の実施例2である下水処理プラントの構成図。The block diagram of the sewage treatment plant which is Example 2 of this invention. 本実施例のプラント運転制御装置のフローチャートを示す図。The figure which shows the flowchart of the plant operation control apparatus of a present Example. 本実施例のプラント運転制御装置の制御誤差が許容誤差を超過した場合の画面例を示す図。The figure which shows the example of a screen when the control error of the plant operation control apparatus of a present Example exceeds an allowable error. 本実施例のプラント運転制御装置の制御誤差と制御許容誤差のグラフを表示する画面例を示す図。The figure which shows the example of a screen which displays the graph of the control error and control allowable error of the plant operation control apparatus of a present Example. 本実施例のプラント運転制御装置の処理水水質の実測値と出力制約条件の上限値のグラフを表示する画面例を示す図。The figure which shows the example of a screen which displays the graph of the measured value of the treated water quality of the plant operation control apparatus of a present Example, and the upper limit of an output constraint condition. 本実施例のプラント運転制御装置の出力制約条件の上限値と処理水水質と運転操作量の変動を表す図。The figure showing the fluctuation | variation of the upper limit of the output constraint conditions of the plant operation control apparatus of a present Example, the quality of treated water, and the amount of operation. 本発明の実施例3である下水処理プラントの構成図。The block diagram of the sewage treatment plant which is Example 3 of this invention. 本実施例のプラント運転制御装置のフローチャートを示す図。The figure which shows the flowchart of the plant operation control apparatus of a present Example. 本実施例のプラント運転制御装置の処理水水質と運転操作量の変動を表す図。The figure showing the fluctuation | variation of the treated water quality of the plant operation control apparatus of a present Example, and the operation amount of operation.

本発明の各実施例を図面により説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の実施例1を図1から図5を用いて説明する。図1は、実施例1のプラント運転制御装置を具備した下水処理プラントの構成図である。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a sewage treatment plant including the plant operation control device according to the first embodiment.

下水処理プラント1に流入する流入水2は、下水処理プラント1で処理され、処理水3となり流出する。下水処理プラント1は、少なくとも生物反応槽と最終沈殿池とで構成され、生物反応槽で曝気するためのブロワや、最終沈殿池で沈降した汚泥を生物反応槽へ返送する返送ポンプなどを備え、設定された運転操作量で運転される。   The influent water 2 flowing into the sewage treatment plant 1 is treated by the sewage treatment plant 1 and flows out as treated water 3. The sewage treatment plant 1 includes at least a biological reaction tank and a final sedimentation basin, and includes a blower for aeration in the biological reaction tank, a return pump that returns sludge settled in the final sedimentation basin to the biological reaction tank, It is operated with the set operation amount.

本実施例のプラント運転制御装置は、この運転操作量を最適制御するために、プラント流入量算出手段10と、プラント流出量算出手段11と、運転操作量計測手段12と、プラント状態量推定手段21と、線形モデル作成手段22と、最適運転操作量算出手段23と、制約条件設定手段24と、線形モデル検証手段30と、出力手段40で構成される。   In order to optimally control this operation amount, the plant operation control apparatus of the present embodiment has a plant inflow amount calculation means 10, a plant outflow amount calculation means 11, an operation amount measurement means 12, and a plant state quantity estimation means. 21, a linear model creation unit 22, an optimum driving operation amount calculation unit 23, a constraint condition setting unit 24, a linear model verification unit 30, and an output unit 40.

このように構成されたプラント運転制御装置は、図2に示すフローチャートに従って、次のように動作する。図2は、制御開始からある時間が経過した後の一制御周期における処理を示す。   The plant operation control apparatus configured as described above operates as follows according to the flowchart shown in FIG. FIG. 2 shows processing in one control cycle after a certain time has elapsed from the start of control.

ステップS1で、流入水2の流入水水量と、全窒素濃度,全リン濃度などの流入水水質を、プラント流入量算出手段10により算出する。処理水3の処理水水質をプラント流出量算出手段11により算出する。   In step S <b> 1, the influent water quality of the influent water 2 and the influent water quality such as the total nitrogen concentration and the total phosphorus concentration are calculated by the plant inflow amount calculating means 10. The treated water quality of the treated water 3 is calculated by the plant outflow amount calculating means 11.

流入水水質,流出水水質のいずれも制御に用いるため、リアルタイムで算出することが望まれる。算出方法として、制御に必要な水質をオンライン計測装置で直接的に計測しても良く、オンライン計測装置で計測した水質から、制御に必要な水質を間接的に推定しても良い。   Since both influent water quality and effluent water quality are used for control, it is desirable to calculate in real time. As a calculation method, the water quality required for control may be directly measured by an online measuring device, or the water quality required for control may be indirectly estimated from the water quality measured by the online measuring device.

ステップS2で、制約条件設定手段24で設定した制約条件である入力制約条件と出力制約条件を読み込む。   In step S2, input constraint conditions and output constraint conditions, which are constraint conditions set by the constraint condition setting means 24, are read.

入力制約条件は、運転操作量の制約条件で、ブロワ送風量の上限値と下限値などである。出力制約条件は、例えば、生物化学的酸素要求量(BOD)20mg/L,全窒素30mg/L,全リン3mg/Lなどの処理水水質の上限値や、下水処理場全体の温室効果ガス排出量の最小化などである。   The input constraint condition is a constraint condition of the driving operation amount, such as an upper limit value and a lower limit value of the blower air flow rate. Output constraints include, for example, biochemical oxygen demand (BOD) 20 mg / L, total nitrogen 30 mg / L, total phosphorus 3 mg / L, upper limit values of treated water quality, and greenhouse gas emissions from the entire sewage treatment plant For example, minimizing the amount.

ステップS3で、下水処理場におけるブロワ送風量や返送ポンプ流量などの運転機器の運転操作量を計測する。   In step S3, the operation amount of the operation equipment such as the blower air flow rate and the return pump flow rate in the sewage treatment plant is measured.

ステップS4で、一制御周期前の制御に用いた線形モデルを読み込む。   In step S4, the linear model used for the control before one control cycle is read.

ステップS5で、線形モデル検証手段30により、ステップS4で読み込んだ線形モデルとステップS1で算出した流入水流量,流入水水質の実測値に基づいて、線形モデルによる処理水水質の値を算出する。次に、算出された処理水質の値と、処理水水質の実測値を比較する。   In step S5, the value of the treated water quality by the linear model is calculated by the linear model verification means 30 based on the linear model read in step S4 and the measured values of the influent water flow rate and the influent water quality calculated in step S1. Next, the calculated treated water quality value is compared with the measured treated water quality value.

その際、線形モデル作成時の両者の処理水水質の値を一致させ、その後の誤差を線形誤差として測定する。また、線形モデルには入力に対する出力の時間遅れが存在することから、線形モデルへの入力データには比較時点より過去のデータもあわせて用いる。その期間は、例えば、下水処理場の水理学的滞留時間よりも長く取る。   At that time, the values of the treated water quality at the time of creating the linear model are matched, and the subsequent error is measured as a linear error. In addition, since there is a time delay of output with respect to the input in the linear model, the past data from the comparison time is also used for the input data to the linear model. For example, the period is longer than the hydraulic residence time of the sewage treatment plant.

時刻Tの線形誤差Δylは、例えば、数1で定義される。 The linear error Δy 1 at time T is defined by, for example, Equation 1 .

Figure 2010194445
Figure 2010194445

ここで、時刻tにおける処理水水質の実測値をyp、線形モデルによる処理水水質をyl、τは積分時間、K1,K2,K3は0または正の定数である。Δyl,yp,ylは水質の項目数の次数を持つベクトル量である。数1はPID制御における操作量の変化と同じ形式である。なお、線形誤差Δylに、数1の右辺の時間平均値を用いても良い。 Here, the measured value of the treated water quality at time t is y p , the treated water quality by the linear model is y l , τ is the integration time, and K 1 , K 2 , K 3 are 0 or a positive constant. Δy l , y p , y l are vector quantities having the order of the number of water quality items. Equation 1 has the same format as the change in the operation amount in the PID control. The time average value on the right side of Equation 1 may be used as the linear error Δy l .

比較した結果、線形誤差Δylが予め設定した線形許容誤差Elを超過した場合、線形モデルが実現象を正しく再現していないと判断して、ステップS5−1に進む。線形誤差Δylが線形許容誤差El以下の場合は、ステップS6に進む。 As a result of the comparison, if the linearity error [Delta] y l exceeds the linear tolerances E l which is set in advance, it is determined that the linear model does not reproduce the actual phenomena correctly, the process proceeds to step S5-1. If the linear error Δy 1 is less than or equal to the linear tolerance E 1 , the process proceeds to step S6.

線形許容誤差Elは水質の項目数の次数を持つベクトル量でも良い。この場合、例えば、線形誤差Δylと線形許容誤差Elを水質項目の成分毎に比較して、一つまたは複数の成分で線形誤差Δylが線形許容誤差Elより大きくなると、線形誤差Δylが線形許容誤差Elを超過したと判断する。 The linear tolerance E 1 may be a vector quantity having the order of the number of water quality items. In this case, for example, when the linear error Δy 1 and the linear allowable error E 1 are compared for each component of the water quality item, and the linear error Δy 1 becomes larger than the linear allowable error E 1 for one or more components, the linear error Δy It is determined that l has exceeded the linear tolerance E 1 .

線形許容誤差Elはスカラー量でも良い。この場合、線形誤差Δylの各水質項目の成分量とそれに対応する重み係数から作成したスカラー量と、線形許容誤差Elを比較する。作成したスカラー量が線形許容誤差Elより大きくなる場合、線形誤差Δylが線形許容誤差Elを超過したと判断する。 The linear tolerance E 1 may be a scalar quantity. In this case, comparing the scalar quantity created from the weight coefficient and the corresponding components of the water quality of the linearity error [Delta] y l, the linear tolerances E l. If the scalar quantity created is greater than the linear tolerances E l, linearity error [Delta] y l is determined that exceeds the linear tolerances E l.

ステップS5−1で、制御対象である下水処理プロセスを模擬した非線形モデルを読み込む。   In step S5-1, a non-linear model simulating a sewage treatment process as a control target is read.

ステップS5−2で、一制御周期以前の流入水水量と流入水水質の履歴を読み込み、ステップS5−3で、一制御周期以前の運転操作量の履歴を読み込む。   In step S5-2, a history of inflow water quantity and inflow water quality before one control cycle is read, and a history of operation amount before one control period is read in step S5-3.

ステップS5−4では、プラント状態量推定手段21により、ステップS5−1で読み込んだ非線形モデルに、ステップS1とステップS5−2で取得した流入水流量,流入水水質の履歴と、ステップS3,ステップS5−3で取得した運転操作量の履歴を入力し、下水処理プラント1の現在の状態量を推定する。   In step S5-4, the plant state quantity estimating means 21 adds the inflow water flow rate and inflow water quality history acquired in step S1 and step S5-2 to the nonlinear model read in step S5-1, and step S3, step S5-4. The history of the operation amount acquired in S5-3 is input, and the current state amount of the sewage treatment plant 1 is estimated.

ステップS5−5で、線形モデル作成手段22で、ステップS5−1で読み込んだ非線形モデルを、ステップS5−4で算出した状態量近傍で線形化し、線形モデルを作成する。   In step S5-5, the linear model creation means 22 linearizes the nonlinear model read in step S5-1 near the state quantity calculated in step S5-4 to create a linear model.

ステップS6で、最適運転操作量算出手段23により、ステップS1で算出した流入水流量と流入水水質,処理水水質に基づいて、ステップS2で読み込んだ制約条件を満足するために最適な運転操作量である運転操作量、例えばブロワ送風量や返送ポンプ流量などを、線形モデルを用いたモデル予測制御により算出する。算出される運転操作量を表すベクトルをuとし、数2で表す。   In step S6, the optimum operation amount for satisfying the constraint condition read in step S2 based on the inflow water flow rate, the influent water quality, and the treated water quality calculated in step S1 by the optimum operation amount calculation means 23. Is calculated by model predictive control using a linear model, for example, the blower air flow rate and the return pump flow rate. A vector representing the calculated driving operation amount is represented by u and expressed by Equation 2.

Figure 2010194445
Figure 2010194445

ここで、流入流量と流入水水質を表すベクトルをx、実測した処理水水質を表すベクトルをypとし、線形モデルを用いた予測制御を関数Fで表している。この関数Fの制約条件は数3,数4,数5で示す通りとなる。 Here, the vector representing the inflow flow rate and the influent water quality is x, the vector representing the measured treated water quality is y p, and the predictive control using the linear model is represented by the function F. The constraint conditions of the function F are as shown in Equation 3, Equation 4, and Equation 5.

Figure 2010194445
Figure 2010194445

Figure 2010194445
Figure 2010194445

Figure 2010194445
Figure 2010194445

ここで、各変数の添字のminとmaxは、下限値と上限値を表す。   Here, the subscripts min and max of each variable represent a lower limit value and an upper limit value.

数3は、入力制約条件、数4は、出力制約条件、数5は、最小制約条件である。数5は、温室効果ガス排出量を最小化する制約条件であり、関数Vは、運転操作量のベクトルuと、下水処理プロセスで排出される複数の温室効果ガスを表すベクトルであるygを変数とした評価関数である。なお、数5の最小化対象は、処理場全体のコストでもよい。 Equation 3 is an input constraint, Equation 4 is an output constraint, and Equation 5 is a minimum constraint. Equation 5 is a constraint condition for minimizing greenhouse gas emissions, and the function V is a vector u for operation amount and y g which is a vector representing a plurality of greenhouse gases emitted in the sewage treatment process. This is a variable evaluation function. Note that the minimization target of Equation 5 may be the cost of the entire processing plant.

ステップS5で、線形誤差Δylが線形許容誤差Elより大きいと判断された場合、算出に用いる線形モデルはステップS5−5で作成されたものである。線形誤差Δylが線形許容誤差El以下と判断された場合は、ステップS4で読み込んだ線形モデルを用いる。 In step S5, if the linearity error [Delta] y l is determined to linear tolerances E l greater than the linear model used in the calculation are those created in step S5-5. If it is determined that the linear error Δy 1 is equal to or smaller than the linear allowable error E 1 , the linear model read in step S4 is used.

ステップS7では、ステップS6で算出した運転操作量を、ブロワや返送ポンプなどの運転機器に入力し、下水処理場の運転を制御する。   In step S7, the operation amount calculated in step S6 is input to an operating device such as a blower or a return pump to control the operation of the sewage treatment plant.

ステップS8で、ステップS1で算出した処理水水質の実測値と、ステップS5で算出した線形モデルによる処理水水質の時間履歴を、出力手段40で同じグラフ上に表示する。図3は、この表示例を示す図である。この他に、ステップS5で算出した線形誤差Δylと線形許容誤差Elの時間履歴を同じグラフ上に表示しても良い。図4は、この表示例を示す図である。表示する出力手段40はモニタなどでも良い。 In step S8, the measured value of the treated water quality calculated in step S1 and the time history of the treated water quality based on the linear model calculated in step S5 are displayed on the same graph by the output means 40. FIG. 3 shows an example of this display. In addition, the time history of the linear error Δy 1 and the linear allowable error E 1 calculated in step S5 may be displayed on the same graph. FIG. 4 is a diagram showing an example of this display. The output means 40 for displaying may be a monitor.

以上のように、ステップS5での線形モデルの検証結果に基づいて、計算負荷が大きいステップS5−4での状態量推定とステップS5−5の線形モデル作成の演算頻度を減らすことができるので、制御周期毎に演算する従来方式場合と比較して、一定期間内の制御頻度を増加でき、制御精度を向上できる。   As described above, based on the verification result of the linear model in step S5, it is possible to reduce the calculation frequency of the state quantity estimation in step S5-4 and the linear model creation in step S5-5, which have a large calculation load. Compared with the case of the conventional method that calculates every control cycle, the control frequency within a certain period can be increased, and the control accuracy can be improved.

図5を用いて制御頻度の増加したことによる効果を説明する。図5に示すプロセス(1)〜(5)は、図2に示すフローチャートのステップと対応しているが、S1〜S4およびS8は短時間で処理されるので、省略している。   The effect of the increased control frequency will be described with reference to FIG. Processes (1) to (5) shown in FIG. 5 correspond to the steps in the flowchart shown in FIG. 2, but S1 to S4 and S8 are omitted because they are processed in a short time.

(a)従来方法では、(1)非線形モデルで状態量を推定し、(2)線形モデルを作成し、(3)最適運転操作量を導出し、(4)プラントへ運転操作量を入力するという、プロセス(1)〜(4)を繰り返す。すなわち、図2でのステップS4から、毎回ステップS5−1に移行する処理となる。(1)及び(2)は、他のプロセスと比較して演算時間が長い。図5に示す例では、制御周期毎に(1)〜(4)を繰り返して、ラントの制御を2回実施している場合を示している。   (A) In the conventional method, (1) a state quantity is estimated by a non-linear model, (2) a linear model is created, (3) an optimum operation amount is derived, and (4) an operation amount is input to the plant. The processes (1) to (4) are repeated. That is, the process moves from step S4 in FIG. 2 to step S5-1 each time. In (1) and (2), the computation time is longer than in other processes. In the example shown in FIG. 5, (1) to (4) are repeated every control cycle, and the runt control is performed twice.

これに対して、(b)本実施例の方法では、プロセス(5)で線形モデルを検証し、線形誤差が線形許容誤差より小さい場合は、新しく線形モデルを作成しないで、プロセス(3)の最適運転操作量を導出し、プロセス(4)のプラントへ運転操作量を入力する。   On the other hand, in the method of this embodiment (b), the linear model is verified in the process (5), and if the linear error is smaller than the linear tolerance, a new linear model is not created and the process (3) The optimum operation amount is derived, and the operation amount is input to the plant of process (4).

プロセス(5)での線形誤差が線形許容誤差より大きい場合として、例えば、下水処理プラントに流入する下水の水質が大きく変動する大雨時に各処理槽の状態量(水質)が変動する場合が挙げられる。非定常時の現象であり、頻度は少ない。したがって、定常時は、本実施例の方法ではプロセス(5)→(3)→(4)で一周期となり、従来方法のプロセス(1)→(2)→(3)→(4)と比較して、制御頻度を増加でき、制御精度を向上できる。   As a case where the linear error in the process (5) is larger than the linear tolerance, for example, the state quantity (water quality) of each treatment tank fluctuates during heavy rain when the quality of sewage flowing into the sewage treatment plant varies greatly. . This is an unsteady phenomenon and is rare. Therefore, in the steady state, in the method of this embodiment, the process (5) → (3) → (4) is one cycle, which is compared with the conventional method (1) → (2) → (3) → (4). Thus, the control frequency can be increased and the control accuracy can be improved.

本発明の実施例2を図6から図11を用いて説明する。図6は、実施例2のプラント運転制御装置を具備した下水処理プラントの構成図である。実施例1の線形モデル検証手段30の代わりに、最適運転操作量算出手段23に第二出力制約条件算出手段25を設けている。   A second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a configuration diagram of a sewage treatment plant including the plant operation control device according to the second embodiment. Instead of the linear model verification unit 30 of the first embodiment, the optimum output operation amount calculation unit 23 is provided with a second output constraint condition calculation unit 25.

このように構成されたプラント運転制御装置は、図7に示すフローチャートに従って、次のように動作する。図7も、制御開始からある時間が経過した後の一制御周期における処理を示す。   The plant operation control apparatus configured as described above operates as follows according to the flowchart shown in FIG. FIG. 7 also shows processing in one control cycle after a certain time has elapsed from the start of control.

ステップS1〜ステップS4の処理は、実施例1と同様である。ステップS5で、最適運転操作量算出手段23により、ステップS1で算出した処理水水質とステップS2で読み込んだ出力制約条件の上限値に基づいて制御モデルの妥当性を検証する。   The processing in steps S1 to S4 is the same as that in the first embodiment. In step S5, the optimal operation amount calculation means 23 verifies the validity of the control model based on the treated water quality calculated in step S1 and the upper limit value of the output constraint read in step S2.

処理水水質と出力制約条件の誤差である制御誤差Δycは、処理水質をyp、出力制約条件の上限値をypmaxとして、例えば、数6で表す。 The control error Δy c, which is an error between the treated water quality and the output constraint condition, is expressed by, for example, Equation 6, where the treated water quality is y p and the upper limit value of the output constraint condition is y pmax .

Figure 2010194445
Figure 2010194445

ここでK1,K2,K3は0または正の定数である。数6は、PID制御における操作量の変化と同じ形式である。なお、制御誤差Δycに、数6の右辺の時間平均値を用いても良い。 Here, K 1 , K 2 , and K 3 are 0 or a positive constant. Equation 6 has the same format as the change in the operation amount in the PID control. The time average value on the right side of Equation 6 may be used for the control error Δy c .

比較した結果、制御誤差Δycが予め設定した制御許容誤差Ecを超過した場合は、制御モデルが妥当でないと判断して、ステップS5−1に進む。制御許容誤差Ec以下の場合は、ステップS6に進む。 If the control error Δy c exceeds the preset control allowable error E c as a result of the comparison, it is determined that the control model is not valid, and the process proceeds to step S5-1. If it is equal to or smaller than the control allowable error Ec, the process proceeds to step S6.

制御許容誤差Ecは、水質の項目数の次数を持つベクトル量でも良い。この場合、例えば、制御誤差Δycと制御許容誤差Ecを水質項目の成分毎に比較して、一つまたは複数の成分で制御誤差Δycが制御許容誤差Ecより大きくなると、制御誤差Δycが制御許容誤差Ecを超過したと判断する。 The control allowable error E c may be a vector quantity having the order of the number of water quality items. In this case, for example, when the control error Δy c and the control allowable error E c are compared for each component of the water quality item, and the control error Δy c becomes larger than the control allowable error E c for one or a plurality of components, the control error Δy It is determined that c exceeds the control allowable error E c .

制御許容誤差Ecは、スカラー量でも良い。この場合、制御誤差Δycの各水質項目の成分量とそれに対応する重み係数から作成したスカラー量と、制御許容誤差Ecを比較する。作成したスカラー量が制御許容誤差Ecより大きくなる場合、制御誤差Δycが制御許容誤差Ecを超過したと判断する。 The control allowable error E c may be a scalar quantity. In this case, the control allowable error E c is compared with the scalar amount created from the component amount of each water quality item of the control error Δy c and the corresponding weight coefficient. If the scalar quantity created is greater than the control tolerance E c, it is determined that the control error [Delta] y c exceeds the control tolerances E c.

ステップS5−1で、出力手段40であるモニタの画面上などに制御誤差が制御許容誤差を超過した旨を表示する。図8にこの例を示す。この例では超過した場合の処理をサブモードと呼称している。サブモードは制御精度が低下している状態である。図8に示す例では、画面の右上にサブモードと表示することで、下水処理プラントの運転員に注意を促す。なお、音声で超過した旨を伝達しても良い。   In step S5-1, the fact that the control error exceeds the control allowable error is displayed on the screen of the monitor which is the output means 40. FIG. 8 shows an example of this. In this example, the process when exceeding is called a sub-mode. The sub mode is a state in which the control accuracy is lowered. In the example shown in FIG. 8, the sub-mode is displayed on the upper right of the screen to alert the operator of the sewage treatment plant. In addition, you may convey that it exceeded with the audio | voice.

ステップS5−2で、第二出力制約条件算出手段25により、第二出力制約条件yp *を算出する。第二出力制約条件は出力制約条件と同様に処理水水質の上限値y* pmaxを持つ。ステップS5で誤差があると判断した場合、y* pmaxは、出力制約条件の上限値ypmaxよりも小さくなる。出力制約条件と第二出力制約条件の上限値の差分ypmax−y* pmaxは、例えば、ステップS5での制御誤差Δycの定数倍としても良い。 In step S5-2, the second output constraint condition calculating unit 25 calculates a second output constraint y p *. The second output constraint condition has the upper limit y * pmax of the treated water quality in the same manner as the output constraint condition. If it is determined that there is an error in step S5, y * pmax is smaller than the upper limit value y pmax output constraints. The difference y pmax −y * pmax between the upper limit value of the output constraint condition and the second output constraint condition may be, for example, a constant multiple of the control error Δy c in step S5.

ステップS6では、最適運転操作量算出手段23により、ステップS1で算出した流入水流量と流入水水質,処理水水質と、ステップS4で読み込んだ線形モデルに基づいて、制約条件を満足する最適な運転操作量、すなわちブロワ送風量や返送ポンプ流量などを、モデル予測制御により算出する。   In step S6, the optimum operation manipulated variable calculation means 23 performs the optimum operation satisfying the constraints based on the influent water flow rate, the influent water quality, the treated water quality calculated in step S1, and the linear model read in step S4. An operation amount, that is, a blower air flow rate, a return pump flow rate, and the like are calculated by model predictive control.

出力制約条件の上限値に、ステップS5−2の処理を実施した場合は、第二出力制約条件の上限値y* pmaxを用いる。すなわち、算出に用いる式は、実施例1で示した数2,数3,数5と、数4の出力制約条件の上限値ypmaxを第二出力制約条件y* pmaxと置き換えた数7となる。 When the process of step S5-2 is performed on the upper limit value of the output constraint condition, the upper limit value y * pmax of the second output constraint condition is used. That is, the equation used for the calculation is the number 2, the number 3, and the number 5 shown in the first embodiment, and the number 7 obtained by replacing the upper limit value y pmax of the output constraint condition of the formula 4 with the second output constraint condition y * pmax. Become.

Figure 2010194445
Figure 2010194445

ステップS5−2の処理を実施しなかった場合は、実施例1と同様に数2〜数5を用いる。   When step S5-2 is not performed, Equations 2 to 5 are used as in the first embodiment.

ステップS7では、ステップS6で算出した運転操作量を、プラントに設置したブロワや返送ポンプなどの運転機器に入力し、下水処理場の運転を制御する。   In step S7, the operation amount calculated in step S6 is input to an operating device such as a blower or a return pump installed in the plant to control the operation of the sewage treatment plant.

ステップS8では、ステップS5で算出した制御誤差と制御許容誤差の時間履歴を、出力手段40で同じグラフ上に表示する。図9はこの例を示している。   In step S8, the time history of the control error and the control allowable error calculated in step S5 is displayed on the same graph by the output means 40. FIG. 9 shows this example.

この他に、ステップS1で算出した処理水水質の実測値と、ステップS6の最適運転操作量の算出に用いた出力制約条件の上限値を同じグラフ上に表示する。図10はこの例を示している。この例では、制御途中で、全窒素濃度に関する制御誤差が制御許容誤差を超過したため、出力制約条件の上限値として、それよりも小さい第二出力制約条件の上限値を用いている。表示する出力手段40はモニタなどでも良い。   In addition, the measured value of the treated water quality calculated in step S1 and the upper limit value of the output constraint condition used for calculating the optimum operation amount in step S6 are displayed on the same graph. FIG. 10 shows this example. In this example, since the control error related to the total nitrogen concentration exceeds the control allowable error during the control, the upper limit value of the second output constraint condition smaller than that is used as the upper limit value of the output constraint condition. The output means 40 for displaying may be a monitor.

出力制約条件に基づいて算出した運転操作量で、出力制約条件を満たせない場合は、非線形モデルが実現象を精度良く再現していないことが一因と考えられる。実施例2の方法では、この場合においても、出力制約条件を満たす最適な運転操作量で下水処理場の運転を制御できる。   If the output constraint condition cannot be satisfied with the driving operation amount calculated based on the output constraint condition, it is considered that the non-linear model does not accurately reproduce the actual phenomenon. In the method of the second embodiment, even in this case, the operation of the sewage treatment plant can be controlled with the optimum operation amount that satisfies the output constraint condition.

図11に、ステップS5−2の処理を実施した場合の出力制約条件の上限値と処理水水質と、運転操作量の変動の例を示す。ここでは、処理水水質を全窒素濃度とし、運転操作量をブロワ送風量とした。   FIG. 11 shows an example of fluctuations in the upper limit value of the output constraint condition, the treated water quality, and the operation amount when the process of step S5-2 is performed. Here, the quality of the treated water was the total nitrogen concentration, and the operation amount was the blower blast amount.

誤差があると判断される以前は、全窒素濃度を出力制約条件の上限値以下とするため、最適運転操作量算出手段23で算出された運転操作量で運転を実施した。しかし、全窒素濃度は制約条件の上限値を下回らず、ステップS5で両者には誤差があると判定された。その結果、最適運転操作量算出手段23では、ステップS5−2で算出された第二出力制約条件の上限値に基づいた計算が実施され、ブロワ送風量は向上し、全窒素濃度は減少した。結果として、本来の出力制約条件の上限値を下回った。   Before it was determined that there was an error, the operation was performed with the operation amount calculated by the optimum operation amount calculation means 23 in order to keep the total nitrogen concentration below the upper limit value of the output restriction condition. However, the total nitrogen concentration did not fall below the upper limit value of the constraint conditions, and it was determined that there was an error in both in step S5. As a result, in the optimum driving operation amount calculation means 23, the calculation based on the upper limit value of the second output restriction condition calculated in Step S5-2 was performed, the blower blowing amount was improved, and the total nitrogen concentration was reduced. As a result, it was below the upper limit of the original output constraint.

以上のように、本実施例2では、線形誤差が線形許容誤差より大きくなる場合においても、計算時間を要する線形モデル作成の処理を行わなくてもよく、適切な制御を実現できる。したがって、制御毎に線形モデルを作成する従来方法と比較して、制御頻度を増加でき、制御精度を向上できる。   As described above, in the second embodiment, even when the linear error is larger than the linear allowable error, it is not necessary to perform the process of creating a linear model that requires calculation time, and appropriate control can be realized. Therefore, compared with the conventional method of creating a linear model for each control, the control frequency can be increased and the control accuracy can be improved.

なお、本実施例に、実施例1で示した線形モデル検証手段30を追加して、実施例1と同様に線形モデルを適時更新しても良い。   In addition, the linear model verification means 30 shown in the first embodiment may be added to the present embodiment, and the linear model may be updated in a timely manner as in the first embodiment.

本発明の実施例3を図12から図14を用いて説明する。図12は、実施例3のプラント運転制御装置を具備した下水処理プラントの構成図である。本実施例では、実施例2の第二出力制約条件算出手段25の代わりに、第二運転操作条件算出手段26を設け、出力手段40を取り除いている。   A third embodiment of the present invention will be described with reference to FIGS. FIG. 12 is a configuration diagram of a sewage treatment plant including the plant operation control device according to the third embodiment. In this embodiment, instead of the second output constraint condition calculating means 25 of the second embodiment, a second driving operation condition calculating means 26 is provided, and the output means 40 is removed.

このように構成されたプラント運転制御装置は、図13に示すフローチャートに従って、次のように動作する。図13も、制御開始からある時間が経過した後の一制御周期における処理を示す。   The plant operation control apparatus configured as described above operates as follows according to the flowchart shown in FIG. FIG. 13 also shows processing in one control cycle after a certain time has elapsed from the start of control.

ステップS1〜ステップS5までは、実施例2の処理と同様である。   Steps S1 to S5 are the same as those in the second embodiment.

ステップS5−1で、第二運転操作条件算出手段26で、第二運転操作条件を算出する。第二運転操作条件の算出には、まず、ステップS5で誤差が生じた処理水水質をその入力制約条件まで改善するために必要な運転機器の組み合わせを選定する。次に、誤差の量に応じて、運転機器の運転操作量を修正するための修正関数fを求める。運転機器jの運転操作量ujに関する修正関数fjは、例えば数8で表される。 In step S5-1, the second driving operation condition calculation unit 26 calculates the second driving operation condition. For the calculation of the second operating condition, first, a combination of operating equipment necessary for improving the quality of the treated water in which an error has occurred in step S5 to the input constraint condition is selected. Next, a correction function f for correcting the driving operation amount of the driving equipment is obtained according to the amount of error. The correction function f j related to the driving operation amount u j of the driving device j is expressed by, for example, Formula 8.

Figure 2010194445
Figure 2010194445

ここで、aj,bjは誤差の量に応じて決定される変数である。 Here, a j and b j are variables determined according to the amount of error.

ステップS6で、最適運転操作量算出手段23で、ステップS1で算出した流入水流量と流入水水質,処理水水質と、ステップS4で読み込んだ線形モデルに基づいて、制約条件を満足する最適な運転操作量、すなわちブロワ送風量や返送ポンプ流量などを、モデル予測制御により算出する。ステップS5−1を実施した場合は実施例1で示した数2〜数4に加えて、数9の最小制約条件を用いる。   In step S6, the optimum operation manipulated variable calculation means 23 performs the optimum operation that satisfies the constraint conditions based on the influent water flow rate, the influent water quality, the treated water quality calculated in step S1, and the linear model read in step S4. An operation amount, that is, a blower air flow rate, a return pump flow rate, and the like are calculated by model predictive control. When step S5-1 is performed, the minimum constraint condition of Formula 9 is used in addition to Formulas 2 to 4 shown in the first embodiment.

Figure 2010194445
Figure 2010194445

数9は、一例として、運転機器jの運転操作量を修正関数により修正する場合を表している。最小制約条件における運転操作量には修正関数fjを用いるが、数2により算出される運転操作量は、ujとなる。ステップS5−1を実施しない場合は、実施例1と同様に数2〜数5を用いる。 Equation 9 represents a case where the driving operation amount of the driving device j is corrected by a correction function as an example. Although the correction function f j is used for the driving operation amount under the minimum constraint condition, the driving operation amount calculated by Equation 2 is u j . When step S5-1 is not performed, Equations 2 to 5 are used as in the first embodiment.

ステップS7で、ステップS6で算出した運転操作量を、プラントに設置したブロワや返送ポンプなどの運転機器に入力し、下水処理場の運転を制御する。   In step S7, the operation amount calculated in step S6 is input to an operating device such as a blower or a return pump installed in the plant to control the operation of the sewage treatment plant.

ステップS5−1を実施した場合、入力する運転操作量を、ステップS6で算出した運転操作量ujに第二運転操作条件の修正関数fjを適用した、修正された運転操作量とする。 When step S5-1 is performed, the driving operation amount to be input is a corrected driving operation amount obtained by applying the correction function f j of the second driving operation condition to the driving operation amount u j calculated in step S6.

出力制約条件に基づいて算出した運転操作量で、出力制約条件を満たせない場合は、非線形モデルが実現象を精度良く再現していないことが原因の一つとして考えられる。実施例3の方法では、この場合においても、出力制約条件を満たす最適な運転操作量で下水処理場の運転を制御できる。   If the output constraint condition cannot be satisfied with the driving operation amount calculated based on the output constraint condition, it is considered that one of the causes is that the nonlinear model does not accurately reproduce the actual phenomenon. In the method of the third embodiment, even in this case, the operation of the sewage treatment plant can be controlled with the optimum operation amount that satisfies the output constraint condition.

図14に、ステップS5−1の処理を実施した場合の処理水水質と、運転操作量の変動の例を示す。この例では、処理水水質をBOD濃度とし、運転操作量をブロワ送風量とした。誤差があると判断される以前は、BOD濃度を出力制約条件の上限値以下とするため、最適運転操作量算出手段23で算出された運転操作量で運転を実施した。しかし、BOD濃度は制約条件の上限値を下回らず、ステップS5で両者には誤差があると判定された。   In FIG. 14, the example of the fluctuation | variation of the treated water quality at the time of implementing the process of step S5-1, and the driving | operation operation amount is shown. In this example, the quality of the treated water was set as the BOD concentration, and the operation amount was set as the blower blast amount. Before it was determined that there was an error, driving was performed with the driving operation amount calculated by the optimum driving operation amount calculation means 23 in order to set the BOD concentration below the upper limit value of the output constraint condition. However, the BOD concentration did not fall below the upper limit value of the constraint conditions, and it was determined in step S5 that there was an error in both.

ステップS5−1では、BOD濃度を低減するため、ブロワ送風量の増加する運転方法を選定し、誤差の大きさに基づいた一定値をブロワ送風量に加える修正関数を作成した。その結果、ブロワ送風量は一定量増加し、処理水のBOD濃度は改善された。再び誤差はないと判断され、ブロワ送風量の修正は解除された。   In step S5-1, in order to reduce the BOD concentration, an operation method for increasing the blower air flow rate was selected, and a correction function for adding a constant value based on the magnitude of the error to the blower air flow rate was created. As a result, the blower blowing amount increased by a certain amount, and the BOD concentration of the treated water was improved. It was judged that there was no error again, and the correction of the blower air volume was released.

本実施例の方法では、最適運転操作量算出手段23で算出した運転操作量を修正するだけでなく、最小化に関する目的関数も同時に修正する。これにより、モデル予測制御による最適演算結果を反映した運転操作量をプラントに設置された運転機器に入力することができる。   In the method of this embodiment, not only the driving operation amount calculated by the optimum driving operation amount calculating means 23 is corrected, but also the objective function related to minimization is corrected at the same time. Thereby, the operation amount reflecting the optimum calculation result by the model predictive control can be input to the operating equipment installed in the plant.

なお、本実施例に、実施例2で追加した出力手段40を加え、実施例2と同様に制御誤差が制御許容誤差を超過した旨を画面に表示,音声で伝達しても良い。   Note that the output means 40 added in the second embodiment may be added to the present embodiment, and the fact that the control error exceeds the control allowable error may be displayed on the screen and transmitted by voice as in the second embodiment.

なお、本実施例に、実施例2で追加した第二出力制約条件算出手段25を加え、実施例2と同様に、制御誤差Δycに基づき第二出力制約条件を算出し、出力制約条件を可変としても良い。 Note that the second output constraint condition calculating means 25 added in the second embodiment is added to the present embodiment, and the second output constraint condition is calculated based on the control error Δy c as in the second embodiment, and the output constraint condition is set. It may be variable.

以上のように、本実施例の方法では、線形誤差が線形許容誤差より大きくなる場合においても、計算時間を要する線形モデル作成の処理を行わなくてもよく、適切な制御を実現できる。したがって、制御毎に線形モデルを作成する従来方法と比較して、制御頻度を増加でき、制御精度を向上できる。   As described above, in the method of the present embodiment, even when the linear error is larger than the linear allowable error, it is not necessary to perform the process of creating a linear model that requires calculation time, and appropriate control can be realized. Therefore, compared with the conventional method of creating a linear model for each control, the control frequency can be increased and the control accuracy can be improved.

なお、本実施例に、実施例1で示した線形モデル検証手段30を追加して、実施例1と同様に線形モデルを適時更新しても良い。   In addition, the linear model verification means 30 shown in the first embodiment may be added to the present embodiment, and the linear model may be updated in a timely manner as in the first embodiment.

1 下水処理プラント
2 流入水
3 処理水
10 プラント流入量算出手段
11 プラント流出量算出手段
12 運転操作量計測手段
21 プラント状態量推定手段
22 線形モデル作成手段
23 最適運転操作量算出手段
24 制約条件設定手段
25 第二出力制約条件算出手段
30 線形モデル検証手段
40 出力手段
DESCRIPTION OF SYMBOLS 1 Sewage treatment plant 2 Influent water 3 Treated water 10 Plant inflow amount calculation means 11 Plant outflow amount calculation means 12 Operation amount measurement means 21 Plant state quantity estimation means 22 Linear model creation means 23 Optimal operation amount calculation means 24 Restriction condition setting Means 25 Second output constraint condition calculation means 30 Linear model verification means 40 Output means

Claims (12)

計測値からプラントの流入水の流入量及び流入水質を算出する流入量算出手段と、計測値から前記プラントの処理水の処理水質を算出する流出量算出手段と、前記プラントのプロセスを模擬した非線形モデルにより、前記流入水の流入量及び流入水質の履歴及び運転機器の運転操作量の履歴から現在のプラント状態量を推定するプラント状態量推定手段と、該プラント状態量推定手段により推定された状態量近傍で前記非線形モデルを線形化する線形モデル作成手段と、前記運転機器の運転操作量の制約条件である入力制約条件、前記処理水質の制約条件である出力制約条件及び前記運転操作量を変数とする目的関数を最小化する最小化制約条件とを設定する制約条件設定手段と、前記流入量算出手段で算出された流入水の流入量及び流入水質、前記制約条件設定手段により設定された制約条件に基づいて前記線形モデル作成手段により作成された線形モデルを用いて前記運転機器の運転操作量を算出する運転操作量算出手段と、前記線形モデルにより算出された処理水質と、前記流出量算出手段で算出された処理水質との誤差である線形誤差が、予め設定した線形許容誤差を超過した場合は、前記プラント状態量推定手段及び線形モデル作成手段により線形モデルを作成する線形モデル検証手段とを備えたプラント運転制御装置。   An inflow amount calculating means for calculating an inflow amount and an influent water quality of the plant inflow water from the measured values, an outflow amount calculating means for calculating the treated water quality of the treated water from the measured values, and a nonlinear that simulates the process of the plant According to the model, a state estimated by the plant state quantity estimating means for estimating the current plant state quantity from the history of the inflow quantity of the influent water, the history of the influent water quality, and the history of the operation quantity of the operating equipment, and the state estimated by the plant state quantity estimation means A linear model creating means for linearizing the nonlinear model in the vicinity of the quantity; an input constraint condition that is a constraint condition of the operation quantity of the operating equipment; an output constraint condition that is a constraint condition of the treated water quality; and the operation manipulated variable A restriction condition setting means for setting a minimization restriction condition for minimizing the objective function, and an inflow amount and an inflow water amount calculated by the inflow amount calculation means. Driving amount calculation means for calculating the driving operation amount of the driving equipment using the linear model created by the linear model creation means based on the constraint condition set by the constraint condition setting means, and the linear model When a linear error that is an error between the calculated treated water quality and the treated water quality calculated by the outflow amount calculating means exceeds a preset linear allowable error, the plant state quantity estimating means and the linear model creating means A plant operation control device comprising linear model verification means for creating a linear model by 計測値からプラントの流入水の流入量及び流入水質を算出する流入量算出手段と、計測値から前記プラントの処理水の処理水質を算出する流出量算出手段と、前記プラントのプロセスを模擬した非線形モデルを線形化する線形モデル作成手段と、前記運転機器の運転操作量の制約条件である入力制約条件、前記処理水質の制約条件である出力制約条件及び前記運転操作量を変数とする目的関数を最小化する最小化制約条件とを設定する制約条件設定手段と、前記流入量算出手段で算出された流入水の流入量及び流入水質、前記制約条件設定手段により設定された制約条件に基づいて前記線形モデル作成手段により作成された線形モデルを用いて前記運転機器の運転操作量を算出する運転操作量算出手段と、前記線形モデルにより算出された処理水質と、前記制約条件設定手段で設定された出力条件の上限値との誤差である制御誤差が、予め設定した制御許容誤差を超過した場合は、前記出力条件の上限値をそれよりも小さい第二の出力条件に変更する第二出力条件算出手段とを備えたプラント運転制御装置。   An inflow amount calculating means for calculating an inflow amount and an influent water quality of the plant inflow water from the measured values, an outflow amount calculating means for calculating the treated water quality of the treated water from the measured values, and a nonlinear that simulates the process of the plant A linear model creating means for linearizing the model, an input constraint condition that is a constraint condition of the operation amount of the operating device, an output constraint condition that is a constraint condition of the treated water quality, and an objective function having the operation operation variable as variables Based on the constraint condition setting means for setting the minimization constraint condition to be minimized, the inflow amount and quality of the influent water calculated by the inflow amount calculation means, and the constraint conditions set by the constraint condition setting means Driving operation amount calculation means for calculating the driving operation amount of the driving equipment using the linear model created by the linear model creation means, and processing calculated by the linear model. When a control error, which is an error between the water quality and the upper limit value of the output condition set by the constraint condition setting means, exceeds a preset control allowable error, the upper limit value of the output condition is set smaller than that. The plant operation control apparatus provided with the 2nd output condition calculation means changed to 2nd output conditions. 計測値からプラントの流入水の流入量及び流入水質を算出する流入量算出手段と、計測値から前記プラントの処理水の処理水質を算出する流出量算出手段と、前記プラントのプロセスを模擬した非線形モデルを線形化する線形モデル作成手段と、前記運転機器の運転操作量の制約条件である入力制約条件、前記処理水質の制約条件である出力制約条件及び前記運転操作量を変数とする目的関数を最小化する最小化制約条件とを設定する制約条件設定手段と、前記流入量算出手段で算出された流入水の流入量及び流入水質、前記制約条件設定手段により設定された制約条件に基づいて前記線形モデル作成手段により作成された線形モデルを用いて前記運転機器の運転操作量を算出する運転操作量算出手段と、前記線形モデルにより算出された処理水質と、前記制約条件設定手段で設定された出力条件の上限値との誤差である制御誤差が、予め設定した制御許容誤差を超過した場合は、前記運転機器の運転操作量を修正する第二運転条件算出手段とを備えたプラント運転制御装置。   An inflow amount calculating means for calculating an inflow amount and an influent water quality of the plant inflow water from the measured values, an outflow amount calculating means for calculating the treated water quality of the treated water from the measured values, and a nonlinear that simulates the process of the plant A linear model creating means for linearizing the model, an input constraint condition that is a constraint condition of the operation amount of the operating device, an output constraint condition that is a constraint condition of the treated water quality, and an objective function having the operation operation variable as variables Based on the constraint condition setting means for setting the minimization constraint condition to be minimized, the inflow amount and quality of the influent water calculated by the inflow amount calculation means, and the constraint conditions set by the constraint condition setting means Driving operation amount calculation means for calculating the driving operation amount of the driving equipment using the linear model created by the linear model creation means, and processing calculated by the linear model. When the control error, which is an error between the water quality and the upper limit value of the output condition set by the constraint condition setting means, exceeds a preset control allowable error, the second operation amount of the driving device is corrected. A plant operation control device comprising operation condition calculation means. 前記線形モデルにより算出された処理水質と、前記制約条件設定手段で設定された出力条件の上限値との誤差である制御誤差が、予め設定した制御許容誤差を超過した場合は、前記出力条件の上限値をそれよりも小さい第二の出力条件に変更する第二出力条件算出手段とを備えた請求項1又は3に記載のプラント運転制御装置。   If the control error, which is the error between the treated water quality calculated by the linear model and the upper limit value of the output condition set by the constraint condition setting means, exceeds a preset control tolerance, the output condition The plant operation control device according to claim 1 or 3, further comprising second output condition calculation means for changing the upper limit value to a second output condition smaller than the upper limit value. 前記線形モデル作成手段は、前記プラントのプロセスを模擬した非線形モデルにより、前記流入水の流入量及び流入水質の履歴及び運転機器の運転操作量の履歴から現在のプラント状態量を推定するプラント状態量推定手段と、該プラント状態量推定手段により推定された状態量近傍で前記非線形モデルを線形化するものである請求項2又は3に記載のプラント運転制御装置。   The linear model creation means uses a nonlinear model that simulates the process of the plant to estimate a current plant state quantity from the history of the inflow quantity of the influent water, the history of the influent water quality, and the history of the operation quantity of the operating equipment. The plant operation control apparatus according to claim 2 or 3, wherein the nonlinear model is linearized in the vicinity of the state quantity estimated by the estimation means and the plant state quantity estimation means. 前記出力制約条件と前記処理水との誤差である制御誤差が、予め設定した制御許容誤差を超過した場合、前記運転操作量を変数とする修正関数を算出する第二運転操作量条件算出手段を具備し、前記最適運転操作量算出手段は、前記目的関数の変数である前記運転操作量の代替えとして前記修正関数を用いる請求項1又は2に記載のプラント運転制御装置。   A second driving operation amount condition calculating means for calculating a correction function using the driving operation amount as a variable when a control error that is an error between the output constraint condition and the treated water exceeds a preset control allowable error; The plant operation control device according to claim 1, wherein the optimum operation amount calculation unit uses the correction function as a substitute for the operation amount that is a variable of the objective function. 前記線形モデルで算出された処理水質と前記流出量算出手段で算出された処理水質の時間履歴を画面にグラフとして表示する出力手段を備えた請求項1から3のいずれかに記載のプラント運転制御装置。   The plant operation control according to any one of claims 1 to 3, further comprising output means for displaying a time history of the treated water quality calculated by the linear model and the treated water quality calculated by the outflow amount calculating means as a graph on a screen. apparatus. 前記線形誤差と前記線形許容誤差の時間履歴を画面にグラフとして表示する出力手段を備えた請求項1から3のいずれかに記載のプラント運転制御装置。   The plant operation control apparatus according to any one of claims 1 to 3, further comprising output means for displaying a time history of the linear error and the linear allowable error as a graph on a screen. 前記制御誤差が前記制御許容誤差を超過した旨を表示する出力手段を備えた請求項1から3のいずれかに記載のプラント運転制御装置。   The plant operation control apparatus according to any one of claims 1 to 3, further comprising output means for displaying that the control error exceeds the control allowable error. 前記制御誤差が前記制御許容誤差を超過した旨を音声で伝達する出力手段を備えた請求項1から3のいずれかに記載のプラント運転制御装置。   The plant operation control apparatus according to any one of claims 1 to 3, further comprising output means for transmitting by voice that the control error exceeds the control allowable error. 前記出力制限条件と前記流出量算出手段で算出された処理水質の時間履歴を画面にグラフとして表示する出力手段を備えた請求項1から3のいずれかに記載のプラント運転制御装置。   The plant operation control apparatus according to any one of claims 1 to 3, further comprising an output unit that displays a time history of the treated water quality calculated by the output restriction condition and the outflow amount calculating unit as a graph on a screen. 前記最小制約条件として、少なくとも温室効果ガス排出量の最小化を備えた請求項1から11のいずれかに記載のプラント運転制御装置。   The plant operation control apparatus according to any one of claims 1 to 11, comprising at least minimizing greenhouse gas emissions as the minimum constraint condition.
JP2009041636A 2009-02-25 2009-02-25 Plant operation control device Active JP5210920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041636A JP5210920B2 (en) 2009-02-25 2009-02-25 Plant operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041636A JP5210920B2 (en) 2009-02-25 2009-02-25 Plant operation control device

Publications (2)

Publication Number Publication Date
JP2010194445A true JP2010194445A (en) 2010-09-09
JP5210920B2 JP5210920B2 (en) 2013-06-12

Family

ID=42819743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041636A Active JP5210920B2 (en) 2009-02-25 2009-02-25 Plant operation control device

Country Status (1)

Country Link
JP (1) JP5210920B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106198A (en) * 2010-11-18 2012-06-07 Toshiba Corp Biological wastewater treatment apparatus
CN102502896A (en) * 2011-10-26 2012-06-20 同济大学 Method for optimizing water utilization system for titanium dioxide produced by sulfuric acid method
JP2012245422A (en) * 2011-05-25 2012-12-13 Hitachi Ltd Water treatment process control device
WO2013136503A1 (en) * 2012-03-16 2013-09-19 株式会社日立製作所 System for operating water treatment plant and method for planning amount of water supply
JP2016215086A (en) * 2015-05-14 2016-12-22 株式会社東芝 Water supply apparatus and water supply control method
JP2019029010A (en) * 2017-07-31 2019-02-21 本田技研工業株式会社 Controller
JP2019125021A (en) * 2018-01-12 2019-07-25 株式会社豊田中央研究所 Information processing device, information processing method, computer program, control device of internal combustion engine
JP2021142477A (en) * 2020-03-12 2021-09-24 株式会社東芝 Monitoring control system
JP7392896B1 (en) 2023-08-14 2023-12-06 富士電機株式会社 Control device, control method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246235A (en) * 1999-02-26 2000-09-12 Toshiba Corp Apparatus for controlling quality of treated water
JP2002373002A (en) * 2001-06-14 2002-12-26 Toshiba Corp Device and method for process simulater application and control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246235A (en) * 1999-02-26 2000-09-12 Toshiba Corp Apparatus for controlling quality of treated water
JP2002373002A (en) * 2001-06-14 2002-12-26 Toshiba Corp Device and method for process simulater application and control

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106198A (en) * 2010-11-18 2012-06-07 Toshiba Corp Biological wastewater treatment apparatus
JP2012245422A (en) * 2011-05-25 2012-12-13 Hitachi Ltd Water treatment process control device
CN102502896A (en) * 2011-10-26 2012-06-20 同济大学 Method for optimizing water utilization system for titanium dioxide produced by sulfuric acid method
WO2013136503A1 (en) * 2012-03-16 2013-09-19 株式会社日立製作所 System for operating water treatment plant and method for planning amount of water supply
JP2016215086A (en) * 2015-05-14 2016-12-22 株式会社東芝 Water supply apparatus and water supply control method
JP2019029010A (en) * 2017-07-31 2019-02-21 本田技研工業株式会社 Controller
JP7162814B2 (en) 2017-07-31 2022-10-31 本田技研工業株式会社 Control device
JP2019125021A (en) * 2018-01-12 2019-07-25 株式会社豊田中央研究所 Information processing device, information processing method, computer program, control device of internal combustion engine
JP2021142477A (en) * 2020-03-12 2021-09-24 株式会社東芝 Monitoring control system
JP7392896B1 (en) 2023-08-14 2023-12-06 富士電機株式会社 Control device, control method, and program

Also Published As

Publication number Publication date
JP5210920B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5210920B2 (en) Plant operation control device
Holenda et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control
US6688532B2 (en) Controller, temperature controller and heat processor using same
US20100312416A1 (en) Method for controlling the temperature of a glow plug
US20070191971A1 (en) Predictive regulatory controller
JP4492473B2 (en) Flocculant injection control device and method
De Pauw et al. Practical aspects of sensitivity function approximation for dynamic models
JP6655975B2 (en) Aeration control device and aeration control method
JP4557912B2 (en) Process control system
JP2004171531A (en) Plant-wide optimum process control apparatus
JP2002045882A (en) Water quality controller for sewage treatment plant
Samsudin et al. Improvement of activated sludge process using enhanced nonlinear PI controller
JP2007105644A (en) Operation controller and operation support device of membrane filtration apparatus
CN113419432B (en) Sewage treatment system accurate dosing method based on dynamic matrix control algorithm
JP3460211B2 (en) Sewage treatment control device
JP2015051389A (en) Water treatment controller
JP6726954B2 (en) Sewage treatment control device
CN113721468A (en) Self-healing control method and system for additive fault of sewage treatment system actuator
Holenda Development of modelling, control and optimization tools for the activated sludge process
JP2012245422A (en) Water treatment process control device
JPH09146610A (en) Multivariable nonlinear process controller
JP7170949B1 (en) Aeration amount control device and aeration amount control method
Aschemann et al. Interval analysis and nonlinear control of wastewater plants with parameter uncertainty
Chistiakova et al. Input-output stability design of an ammonium based aeration controller for wastewater treatment
Monteiro et al. An optimal control problem applied to a wastewater treatment plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5210920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3