JP4492473B2 - Flocculant injection control device and method - Google Patents

Flocculant injection control device and method Download PDF

Info

Publication number
JP4492473B2
JP4492473B2 JP2005216647A JP2005216647A JP4492473B2 JP 4492473 B2 JP4492473 B2 JP 4492473B2 JP 2005216647 A JP2005216647 A JP 2005216647A JP 2005216647 A JP2005216647 A JP 2005216647A JP 4492473 B2 JP4492473 B2 JP 4492473B2
Authority
JP
Japan
Prior art keywords
turbidity
flocculant
injection rate
flocculant injection
coagulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005216647A
Other languages
Japanese (ja)
Other versions
JP2007029851A (en
Inventor
昭二 渡辺
伊智朗 圓佛
鉄郎 芳賀
晃治 陰山
剛 武本
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005216647A priority Critical patent/JP4492473B2/en
Priority to CNB2006101080757A priority patent/CN100427175C/en
Publication of JP2007029851A publication Critical patent/JP2007029851A/en
Application granted granted Critical
Publication of JP4492473B2 publication Critical patent/JP4492473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

本発明は、取水原水の濁質に対応して凝集剤を適正に注入し、安定した水質の浄水を得る浄水プラントの運転管理に関するものである。   The present invention relates to operation management of a water purification plant that appropriately injects a flocculant in response to the turbidity of raw water to obtain stable purified water.

特許文献1には、原水濁度が頻繁に変動する場合に凝集剤注入率を最適な値に制御するため(〔0010〕)、流動電位Dの偏差により重み係数を求め、フィードフォワード制御器とフィードバック制御器の凝集剤注入率の出力値に対して補正するように構成している(〔0049〕)。また、凝集剤注入率と流動電位の関係を濁度で分類して特性曲線を保持する様にし(〔0046〕〕、凝集剤注入率は、係数や定数を用いて指数関数として決定している(〔0079〕)。   In Patent Document 1, in order to control the flocculant injection rate to an optimum value when the raw water turbidity frequently changes ([0010]), a weighting coefficient is obtained from the deviation of the streaming potential D, and a feedforward controller and It is configured to correct the output value of the flocculant injection rate of the feedback controller ([0049]). Further, the relationship between the coagulant injection rate and the flow potential is classified by turbidity so as to maintain a characteristic curve ([0046]), and the coagulant injection rate is determined as an exponential function using coefficients and constants. ([0079]).

特開2003−284904号公報JP 2003-284904 A

上記特許文献1では、凝集剤注入率を指数式で決定した後、重み係数で補正している。この凝集剤注入率を自動算出する際に、凝集沈殿処理の全ての影響要因を考慮していない。   In Patent Document 1, the coagulant injection rate is determined by an exponential equation and then corrected by a weighting factor. When automatically calculating the coagulant injection rate, all the influence factors of the coagulation sedimentation treatment are not considered.

本発明は、上記従来技術の問題に対処したもので、その目的とするところは、凝集沈殿処理の全ての影響要因を包含した係数である濁度除去係数で凝集剤注入率を決定でき、安定した良質の凝集沈殿処理水を提供できる凝集剤注入制御を提供することにある。   The present invention addresses the above-mentioned problems of the prior art, and the object of the present invention is to determine the coagulant injection rate with the turbidity removal coefficient, which is a coefficient including all influential factors of the coagulation sedimentation treatment, and is stable. Another object of the present invention is to provide a flocculant injection control capable of providing high quality coagulated sediment treated water.

本発明者らは河川表流水の濁質を用いて低濁度から一万度の超高濁度までの凝集沈殿実験を鋭意実施した。詳細は後述するが本実験結果から、凝集沈殿処理水の濁度が良好となる範囲では凝集沈殿処理水濁度を原水の濁度とそのときの凝集剤注入率とに相関し、同形の指数式で表現できる知見を得て、本発明に至った。   The present inventors diligently conducted a coagulation sedimentation experiment from a low turbidity to an ultrahigh turbidity of 10,000 degrees using the turbidity of river surface water. Although details will be described later, from the results of this experiment, in the range where the turbidity of the coagulated sediment treated water is good, the turbidity of the coagulated sediment treated water is correlated with the turbidity of the raw water and the injection rate of the coagulant at that time. Obtaining knowledge that can be expressed by the formula, the present invention has been achieved.

この知見に基づいて、本発明は、凝集沈殿処理水の濁度と、この凝集沈殿処理水が凝集剤を注入される過程の原水濁度と、その過程における凝集剤注入率との関係を指数式あるいは対数式で表し、その指数係数値を濁度除去係数とし、この濁度除去係数に基づいて必要な凝集剤注入率を演算し、凝集剤注入量を制御する構成とする。   Based on this knowledge, the present invention provides an index of the relationship between the turbidity of the coagulated sediment treated water, the raw water turbidity of the process in which the coagulated sediment treated water is injected with the coagulant, and the coagulant injection rate in the process. The index coefficient value is used as a turbidity removal coefficient, and a necessary flocculant injection rate is calculated based on the turbidity removal coefficient to control the flocculant injection amount.

濁度除去係数は凝集沈殿処理の全ての影響要因を包含しており、簡便で適正に凝集剤注入率を決定でき、安定した良質の凝集沈殿処理水を提供できる効果がある。   The turbidity removal coefficient includes all influencing factors of the coagulation sedimentation treatment, and has an effect of being able to determine the coagulant injection rate simply and appropriately and providing stable and high quality coagulation sedimentation water.

低濁度から超高濁度まで凝集剤を適正に注入できる浄水プロセスの運転管理を提供する目的を、本発明者らの実験的知見で得た濁度除去係数に基づいて凝集剤注入量を求めることで実現した。以下、実施形態を図面に基づいて説明する。   The purpose of providing operation management of the water purification process that can inject the flocculant appropriately from low turbidity to ultra-high turbidity, the amount of flocculant injected based on the turbidity removal coefficient obtained by our experimental findings Realized by seeking. Hereinafter, embodiments will be described with reference to the drawings.

本発明の第1実施例を図1に示す。   A first embodiment of the present invention is shown in FIG.

本発明の第1実施例を図1に示す。図1において、浄水プロセスは薬品混和池2,フロック形成池3,沈殿池4を主構成設備としている。濁質を含有した原水1は薬品混和池2で凝集剤注入設備8から凝集剤9が注入される。7は凝集剤貯槽である。凝集剤にはアルミニウム系や鉄系などの無機系や高分子系が用いられる。薬品混和池2では攪拌機201により凝集剤が原水に均質に混合され、濁質と凝集剤が結合してフロックの核となるマイクロフロックを形成する。マイクロフロックは、フロック形成池3で攪拌機201より緩速で運転される攪拌機301によって成長し、粗大なフロックとなる。粗大となったフロックは沈殿池4で沈降し、濁質が除去された上澄み液(凝集沈殿処理水)5は後段で所定の処理(ろ過や殺菌)を受けた後、浄水として配水される。沈殿池4で沈降分離したフロックは排泥液とて系外に排出される。   A first embodiment of the present invention is shown in FIG. In FIG. 1, the water purification process has a chemical mixing pond 2, a flock formation pond 3, and a settling basin 4 as main components. The raw water 1 containing turbidity is injected with the flocculant 9 from the flocculant injection facility 8 in the chemical mixing pond 2. 7 is a flocculant storage tank. As the aggregating agent, inorganic or high molecular materials such as aluminum and iron are used. In the chemical mixing pond 2, the flocculant is uniformly mixed with the raw water by the stirrer 201, and the suspended matter and the flocculant are combined to form a micro floc that becomes the core of the floc. The micro floc grows by the stirrer 301 operated at a slower speed than the stirrer 201 in the floc formation pond 3 and becomes a coarse floc. The coarse floc settles in the sedimentation basin 4, and the supernatant liquid (coagulated sediment treated water) 5 from which the turbidity has been removed is subjected to predetermined treatment (filtration and sterilization) in the subsequent stage and then distributed as purified water. The floc settled and separated in the settling basin 4 is discharged out of the system as a sludge.

このような浄水場での浄水プロセスにおいて、凝集剤の注入を制御する凝集剤注入制御装置10は、凝集剤注入量演算器33,制御器34,凝集剤注入率演算器36を有する。凝集剤注入制御装置10は、実施例2で後述する様に濁度除去係数演算器32を有さず、濁度除去係数を用いることができれば良い。説明を簡便とするため、濁度除去係数演算器32を有する例で説明する。凝集剤注入率演算器36は濁度除去係数k1を用いて、凝集剤注入率を演算する手段である。その用い方は複数の実施例が挙げられ、濁度除去係数
k1を用いて、直接に凝集剤注入率を求める実施例を実施例1に記載し、濁度除去係数
k1を用いずに他の演算式を用いて凝集剤基本注入率を求めておいて、濁度除去係数k1を用いて、この凝集剤基本注入率を補正して凝集剤注入率を求める実施例を実施例5に記載する。実施例1,2,5の様に濁度除去係数のさまざまな使用方法がある。
In such a water purification process at the water purification plant, the coagulant injection control device 10 that controls the injection of the coagulant has a coagulant injection amount calculator 33, a controller 34, and a coagulant injection rate calculator 36. The flocculant injection control device 10 does not have the turbidity removal coefficient calculator 32 as described later in the second embodiment, and it is only necessary to use the turbidity removal coefficient. In order to simplify the description, an example having the turbidity removal coefficient calculator 32 will be described. The coagulant injection rate calculator 36 is a means for calculating the coagulant injection rate using the turbidity removal coefficient k1. There are several examples of its use, and an example in which the coagulant injection rate is directly obtained using the turbidity removal coefficient k1 is described in Example 1, and other examples are used without using the turbidity removal coefficient k1. Example 5 in which the flocculant basic injection rate is calculated using an arithmetic expression and the flocculant injection rate is corrected by correcting the flocculant basic injection rate using the turbidity removal coefficient k1 is described in Example 5. . There are various methods of using the turbidity removal coefficient as in Examples 1, 2, and 5.

濁度計22で計測された原水1中の濁度Tは濁度除去係数演算器32に入力,記憶される。濁度除去係数演算器32には濁度計22Bで計測された凝集沈殿処理水5の濁度tと、凝集剤注入率演算器36に記憶されている凝集剤注入率Cが入力される。濁度除去係数演算器32では、現在の凝集沈殿処理水5の濁度taと、この凝集沈殿池処理水が凝集剤9を注入される時点の原水濁度Taと、その時の凝集剤注入率Caに基づいて(1)式の指数式、あるいは(1)式を変形した(2)式の対数式で濁度除去係数k1を演算する。凝集剤が注入された時点から現在の濁度taを測定した時間までの時間をτとする。Taは現在の濁度taを測定した時間からτだけ遡った時点の原水濁度のデータを入力する。
Caは現在の濁度taを測定した時間からτだけ遡った時点の凝集剤注入率Cのデータを入力する。
The turbidity T in the raw water 1 measured by the turbidimeter 22 is input and stored in the turbidity removal coefficient calculator 32. The turbidity removal coefficient calculator 32 receives the turbidity t of the coagulated sediment treated water 5 measured by the turbidimeter 22B and the coagulant injection rate C stored in the coagulant injection rate calculator 36. In the turbidity removal coefficient calculator 32, the turbidity ta of the current coagulation sedimentation treated water 5, the raw water turbidity Ta when the coagulation agent 9 is injected into the coagulation sedimentation basin water, and the coagulant injection rate at that time Based on Ca, the turbidity removal coefficient k1 is calculated by an exponential expression of the expression (1) or a logarithmic expression of the expression (2) obtained by modifying the expression (1). Let τ be the time from when the flocculant is injected to the time when the current turbidity ta is measured. Ta inputs the raw water turbidity data at a time point that is τ later than the time when the current turbidity ta is measured.
For Ca, the data of the flocculant injection rate C at the time point that goes back by τ from the time when the current turbidity ta is measured is input.

ta=Ta・e-k1・Ca (1)
k1=−(ln(ta/Ta))/Ca (2)
図2は本発明者らの実験結果で、初期濁度と凝集剤注入量を変化させ、沈殿上澄液の濁度を測定したものである。一般に、浄水プロセスでは凝集沈殿処理水5の濁度目標値を
10度以下に設定される。図2から、濁度が10度以下になると、上澄液濁度tと凝集剤注入率Cの関係は初期濁度Tを切片とする直線、すなわち(1)式と同形の指数式t=
T・e-k・C で表わせることがわかった。この関係は初期濁度が違っても同形式で表すことができた。ところで、凝集剤注入率に対する濁度低下度合である傾きは初期濁度の影響を受けて変化する。このことは、例えば凝集沈殿処理水5の濁度が10度で、目標値の1度に補正しようとする場合、それぞれの凝集沈殿特性で変化させる必要があることを意味する。傾きは指数式の指数部係数kで、濁度除去係数と呼称する。濁度除去係数kは凝集剤が注入された後のフロック形成や沈殿過程で、原水濁度と凝集剤量以外の要因の影響を網羅した係数である。言い換えれば、濁度除去係数kに基づいて凝集剤注入率やその補正率を求めれば、原水濁度と凝集剤以外の要因も考慮した凝集剤注入管理ができる。
ta = Ta · e -k1 · Ca (1)
k1 =-(ln (ta / Ta)) / Ca (2)
FIG. 2 shows the experimental results of the present inventors, in which the initial turbidity and the flocculant injection amount are changed, and the turbidity of the precipitate supernatant is measured. Generally, in the water purification process, the turbidity target value of the coagulated sediment treated water 5 is set to 10 degrees or less. From FIG. 2, when the turbidity becomes 10 degrees or less, the relationship between the supernatant turbidity t and the flocculant injection rate C is a straight line with the initial turbidity T as an intercept, that is, an exponential expression t =
It was found that T · e −k · C can be expressed. This relationship could be expressed in the same form even if the initial turbidity was different. By the way, the slope, which is the degree of turbidity reduction with respect to the flocculant injection rate, changes under the influence of the initial turbidity. This means that, for example, when the turbidity of the coagulation sedimentation treated water 5 is 10 degrees and correction is made to the target value of 1 degree, it is necessary to change the coagulation sedimentation characteristics. The slope is an exponential coefficient k in the exponential formula and is called a turbidity removal coefficient. The turbidity removal coefficient k is a coefficient that covers the influence of factors other than the raw water turbidity and the amount of the flocculant in the floc formation and precipitation process after the flocculant is injected. In other words, if the flocculant injection rate and the correction rate thereof are obtained based on the turbidity removal coefficient k, the flocculant injection management considering factors other than the raw water turbidity and the flocculant can be performed.

凝集剤注入率演算器36は濁度除去係数演算器32からの濁度除去係数k1と、現在の原水濁度Tiと、予め設定した凝集沈殿池処理水の濁度目標値tmとを(2)式の変形式である(3)式の対数式に代入して、濁度目標値tmを維持するに必要な凝集剤注入率
Cmを演算する。
The flocculant injection rate calculator 36 calculates the turbidity removal coefficient k1 from the turbidity removal coefficient calculator 32, the current raw water turbidity Ti, and the preset turbidity target value tm of the coagulation sedimentation basin treatment water (2). Substituting it into the logarithmic expression of the expression (3), which is a modified expression of the expression), calculates the coagulant injection rate Cm necessary to maintain the turbidity target value tm.

Cm=−(ln(tm/Ti))/k1 (3)
(3)式は濁度除去係数k1で原水濁度Tiを目標値tmにする凝集剤注入率Cmを演算したが、凝集沈殿池処理水濁度taと目標値tmで補正することもできる。補正率
ΔCmは処理水濁度taを目標値tmとするので、(3)式のTiをtaとすることで求まる。
Cm =-(ln (tm / Ti)) / k1 (3)
In the equation (3), the flocculant injection rate Cm for setting the raw water turbidity Ti to the target value tm is calculated with the turbidity removal coefficient k1, but it can also be corrected by the coagulation sedimentation basin treatment water turbidity ta and the target value tm. Since the treated water turbidity ta is set to the target value tm, the correction rate ΔCm is obtained by setting Ti in equation (3) to ta.

ΔCm=−(ln(tm/ta))/k1 (4)
これらの操作概念を図3に示す。凝集剤注入率は目標値以上の処理水濁度taであれば増加させ、目標値以下の処理水濁度tbであれば減少させる方向に操作される。
ΔCm = − (ln (tm / ta)) / k1 (4)
These operational concepts are shown in FIG. The flocculant injection rate is manipulated in the direction of increasing if the treated water turbidity ta is equal to or higher than the target value and decreasing if the treated water turbidity tb is equal to or lower than the target value.

凝集剤注入量演算器33は凝集剤注入率演算器36からの凝集剤注入率Cmと流量計
21からの原水流量Qを乗算して凝集剤注入量Qcを演算する。制御器34は演算した凝集剤注入量Qcと流量計24から出力される凝集剤注入操作量Qc′の偏差に基づいて凝集剤注入設備8を調節する。凝集剤注入設備8は弁、あるいは流量可変型ポンプである。
The coagulant injection amount calculator 33 calculates the coagulant injection amount Qc by multiplying the coagulant injection rate Cm from the coagulant injection rate calculator 36 by the raw water flow rate Q from the flowmeter 21. The controller 34 adjusts the flocculant injection facility 8 based on the deviation between the calculated flocculant injection amount Qc and the flocculant injection operation amount Qc ′ output from the flowmeter 24. The flocculant injection equipment 8 is a valve or a variable flow rate pump.

この様に、ある時点の凝集沈殿池の処理水の濁度、ある時点より所定時刻遡った時点の原水の濁度、及びある時点より所定時刻遡った時点の凝集剤の凝集剤注入率の関係を指数式あるいは対数式で表した浄水プロセスの濁度除去係数を用いて凝集剤注入率を演算し、この濁度除去係数を用いて凝集剤注入率を演算することで、凝集沈殿処理の全ての影響要因を包含して、簡便で適正に凝集剤注入率を決定することができる。   In this way, the relationship between the turbidity of the treated water in the coagulation sedimentation basin at a certain point in time, the turbidity of the raw water at a certain point in time from a certain point in time, and the flocculant injection rate of the flocculant at a certain point in time from a certain point in time. By calculating the coagulant injection rate using the turbidity removal coefficient of the water purification process expressed as an exponential expression or logarithmic expression, and calculating the coagulant injection rate using this turbidity removal coefficient, Thus, the coagulant injection rate can be determined easily and appropriately.

本発明の第2実施例を図4に示す。(3)式に(2)式を代入すれば、濁度除去係数演算器32を設置せずに濁度除去係数k1を考慮した(5)式に基づいて凝集剤注入率Cmを直接演算できる。凝集剤注入率演算器36には過去の凝集剤注入率や濁度値の記憶機能を持たせ、(5)式で濁度目標値tmを維持するに必要な凝集剤注入率Cmを演算する。   A second embodiment of the present invention is shown in FIG. If the equation (2) is substituted into the equation (3), the coagulant injection rate Cm can be directly calculated based on the equation (5) considering the turbidity removal coefficient k1 without installing the turbidity removal coefficient calculator 32. . The coagulant injection rate calculator 36 has a function of storing the past coagulant injection rate and turbidity value, and calculates the coagulant injection rate Cm necessary to maintain the turbidity target value tm by the equation (5). .

Cm=Ca(ln(tm/Ti))/(ln(ta/Ta)) (5)
凝集剤注入量演算器33以降は実施例2と同様である。(5)式の様に濁度除去係数を凝集剤注入率の演算に組み入れて用いても実施例1と同様に、凝集沈殿処理の影響要因を包含して、簡便で適正に凝集剤注入率を決定することができる。
Cm = Ca (ln (tm / Ti)) / (ln (ta / Ta)) (5)
The processing after the coagulant injection amount calculator 33 is the same as that of the second embodiment. Even if the turbidity removal coefficient is incorporated in the calculation of the flocculant injection rate as shown in the equation (5), as in the case of Example 1, it includes the influence factors of the coagulation sedimentation treatment and is simple and appropriate. Can be determined.

本発明の第3実施例を図5に示す。50は回分式凝集沈殿装置で原水1の一部1Bが導入される。図6に回分式凝集沈殿装置50の構成例を示す。503は凝集沈殿工程で、所定容積の容器J1に弁V1,V2の操作で所定量vの導水原水1Bが入れられる。攪拌器M1を稼動させた状態で弁V3の操作で所定量の凝集剤9Bを注入する。注入後、攪拌器M1は規定の回転数と時間を経て停止させる。停止後2、所定時間経過後に弁V4を開にし、濁度計22Cで沈殿上澄液の濁度t2を計測する。濁度計22Cでは、原水1Bが導水されている凝集剤注入前の濁度t1も計測している。また、凝集剤注入量qを流量計
24Bで計測する。沈殿上澄液の濁度t2が計測された後、弁V5を操作して容器J1の内部液を排出し、上記操作を繰返して凝集沈殿特性を定期的に実施する。これらの操作はタイミング調整回路501の操作指令によってシーケンス回路502が実行する。
A third embodiment of the present invention is shown in FIG. 50 is a batch type coagulating sedimentation apparatus in which a part 1B of the raw water 1 is introduced. FIG. 6 shows a configuration example of the batch type coagulation sedimentation apparatus 50. Reference numeral 503 denotes a coagulation sedimentation step, in which a predetermined amount v of the feed water 1B is put into the container J1 having a predetermined volume by operating the valves V1 and V2. A predetermined amount of the flocculant 9B is injected by operating the valve V3 while the stirrer M1 is in operation. After the injection, the stirrer M1 is stopped after a predetermined number of rotations and time. After the stop, the valve V4 is opened after a lapse of a predetermined time, and the turbidity t2 of the sediment supernatant is measured with the turbidimeter 22C. The turbidity meter 22C also measures the turbidity t1 before injecting the flocculant into which the raw water 1B is introduced. Further, the flocculant injection amount q is measured by the flow meter 24B. After the turbidity t2 of the sediment supernatant is measured, the valve V5 is operated to discharge the internal liquid in the container J1, and the above operation is repeated to periodically implement the coagulation sedimentation characteristics. These operations are executed by the sequence circuit 502 in response to an operation command from the timing adjustment circuit 501.

濁度計22Cと流量計24Bの計測値はデータベース504に記憶される。記憶されたデータはタイミング調整回路501によって濁度除去係数演算器505に入力され、(6)式により濁度除去係数k2を演算する。凝集剤注入率Cはq/vで求める。   The measured values of the turbidimeter 22C and the flow meter 24B are stored in the database 504. The stored data is input to the turbidity removal coefficient calculator 505 by the timing adjustment circuit 501, and the turbidity removal coefficient k2 is calculated by equation (6). The coagulant injection rate C is determined by q / v.

k2=−(ln(t2/t1))/C (6)
凝集剤注入率演算器36には濁度除去係数演算器505からの濁度除去係数k2と、濁度計22からの現在の原水濁度Tiが入力され、予め設定した凝集沈殿池処理水の濁度目標値tmにより(7)式で、濁度目標値tmを維持するに必要な凝集剤注入率Cmを演算する。
k2 =-(ln (t2 / t1)) / C (6)
The flocculant injection rate calculator 36 receives the turbidity removal coefficient k2 from the turbidity removal coefficient calculator 505 and the current raw water turbidity Ti from the turbidimeter 22, and sets the coagulation sedimentation basin water set in advance. Based on the turbidity target value tm, the coagulant injection rate Cm necessary to maintain the turbidity target value tm is calculated by the equation (7).

Cm=−(ln(tm/Ti))/k2 (7)
凝集剤注入量演算器33以降は実施例1と同様である。
Cm =-(ln (tm / Ti)) / k2 (7)
The processing after the coagulant injection amount calculator 33 is the same as that of the first embodiment.

回分式凝集沈殿装置50の濁度除去係数演算器505は、凝集剤注入制御装置10の構成とすることもできる。その他の、タイミング調整回路501,シーケンス回路502,データベース504も凝集剤注入制御装置10の構成とすることもできる。   The turbidity removal coefficient calculator 505 of the batch type coagulating sedimentation apparatus 50 can be configured as the coagulant injection control apparatus 10. Other timing adjustment circuit 501, sequence circuit 502, and database 504 can also be configured as the coagulant injection control apparatus 10.

この実施例のように、原水の一部を所定容積の容器に導水し、凝集剤の注入,撹拌,静置する回分式凝集沈殿装置の凝集剤注入前の濁度と、所定時間静置後の沈殿上澄み液の濁度と、この上澄み液濁度が得られる過程の凝集剤注入率との関係を指数式あるいは対数式で表される回分式凝集沈殿の濁度除去係数を演算する回分式濁度除去係数演算手段を設け、
凝集剤注入率演算手段で、回分式凝集沈殿の濁度除去係数と、ある時点の原水の濁度、及び処理水の濁度の予め設定した目標値で構成する演算式に基づいて凝集剤注入率を演算することで、現在の原水の水質や濁質状態に対応した凝集剤注入を実施でき、時間遅れを防止できる。
As in this example, a portion of raw water is introduced into a container of a predetermined volume, and the turbidity before injection of the flocculant in the batch type coagulation sedimentation apparatus in which the flocculant is injected, stirred and allowed to stand, and after standing for a predetermined time. A batch formula that calculates the turbidity removal coefficient of batch-type coagulation sedimentation expressed as an exponential expression or logarithmic expression of the relationship between the turbidity of the sediment supernatant and the flocculating agent injection rate in the process of obtaining this supernatant turbidity Provide turbidity removal coefficient calculation means,
The flocculant injection rate calculation means is used to calculate the turbidity removal coefficient of batch-type coagulation sedimentation, the turbidity removal rate of raw water at a certain point in time, and the calculation formula composed of preset target values of the turbidity of treated water. By calculating the rate, the flocculant injection corresponding to the current raw water quality and turbidity can be carried out, and time delay can be prevented.

本発明の第4実施例を図7に示す。図7は第3実施例の構成に、凝集沈殿処理水5の濁度taで凝集剤注入率を補正する一例である。凝集剤注入率演算器36では、(7)式に加えて、(2)式と(4)式の演算を実行し、補正率ΔCmを求める。凝集剤注入量演算器33には(7)式のCmと(4)式のΔCmを加算した注入率Cm*が出力される。凝集剤注入量演算器33以降は実施例1と同様である。   A fourth embodiment of the present invention is shown in FIG. FIG. 7 shows an example of correcting the flocculant injection rate with the turbidity ta of the coagulation sedimentation treated water 5 in the configuration of the third embodiment. In addition to the equation (7), the coagulant injection rate calculator 36 calculates the equations (2) and (4) to obtain the correction rate ΔCm. The coagulant injection amount calculator 33 outputs an injection rate Cm * obtained by adding Cm in Expression (7) and ΔCm in Expression (4). The processing after the coagulant injection amount calculator 33 is the same as that of the first embodiment.

この補正により、浄水プロセスの撹拌混合状態や反応及び滞留時間など、回分式凝集沈殿装置と異なる要因の影響も考慮して適正な凝集剤注入管理を実施できる。   With this correction, appropriate coagulant injection management can be performed in consideration of the influence of factors different from the batch type coagulation sedimentation apparatus, such as the stirring and mixing state of the water purification process, the reaction, and the residence time.

本発明の第5実施例を図8に示す。凝集剤注入制御装置10は、凝集剤注入量演算器
33,制御器34,凝集剤注入率演算器36の他、基本注入率演算器37,注入率補正演算器38を有する。基本注入率演算器37は、原水1の水質に対応した凝集剤注入率演算式が入力されている。凝集沈殿の影響要因となる代表的な水質には濁度Ti,アルカリ度AL,pH,水温Thなどがある。これらを水質計22,25,26,27で計測して基本注入率演算器37に入力される。基本注入率演算器37にはこれらの水質に対応した、例えば(8)式の注入モデル式が予め入力し、基本となる凝集剤注入率Cmを演算する。a,b,c,dは定数である。
A fifth embodiment of the present invention is shown in FIG. The coagulant injection control apparatus 10 includes a basic injection rate calculator 37 and an injection rate correction calculator 38 in addition to the coagulant injection amount calculator 33, the controller 34, and the coagulant injection rate calculator 36. The basic injection rate calculator 37 receives a flocculant injection rate calculation formula corresponding to the quality of the raw water 1. Typical water qualities that are factors affecting the coagulation sedimentation include turbidity Ti, alkalinity AL, pH, water temperature Th, and the like. These are measured by the water quality meters 22, 25, 26 and 27 and input to the basic injection rate calculator 37. The basic injection rate calculator 37 is preliminarily inputted with, for example, an injection model equation (8) corresponding to these water qualities, and calculates a basic coagulant injection rate Cm. a, b, c, and d are constants.

Cm=a・Ti+b・AL+c・pH+d・Th (8)
注入率補正演算器38は、原水濁度Tiと凝集沈殿池処理水濁度ta、及び凝集剤注入率演算器36からの所定時間前の操作された凝集剤注入率Cm′が入力され、(2)式で濁度除去係数k1を演算する。さらに、(4)式で補正率ΔCmを求める。凝集剤注入率演算器36は基本凝集剤注入率Cmと補正率ΔCmを加算して操作すべき凝集剤注入率
Cm*を求め、凝集剤注入量演算器33に出力する。凝集剤注入量演算器33以降は実施例1と同様である。補正率ΔCmを、実施例4の回分式の濁度除去係数k2を用いて求めることもできる。
Cm = a.Ti + b.AL + c.pH + d.Th (8)
The injection rate correction calculator 38 receives the raw water turbidity Ti, the coagulation sedimentation basin treatment water turbidity ta, and the coagulant injection rate Cm ′ operated for a predetermined time from the coagulant injection rate calculator 36 ( 2) Calculate the turbidity removal coefficient k1 by the equation. Further, the correction rate ΔCm is obtained by the equation (4). The coagulant injection rate calculator 36 adds the basic coagulant injection rate Cm and the correction rate ΔCm to obtain the coagulant injection rate Cm * to be operated and outputs it to the coagulant injection amount calculator 33. The processing after the coagulant injection amount calculator 33 is the same as that of the first embodiment. The correction factor ΔCm can also be obtained using the batch-type turbidity removal coefficient k2 of the fourth embodiment.

この実施例のように、凝集沈殿の影響要因となる代表的な水質で凝集剤注入率を演算し、この注入率で凝集剤をフィードフォワード制御する際に、演算した注入率に対して濁度除去係数に基づく補正を加えることで、代表的な水質として演算された凝集剤注入率で考慮外の水質,濁質性状やプロセス由来の影響要因も反映した凝集剤注入管理ができる。   As in this example, when the flocculant injection rate is calculated with a representative water quality that is an influence factor of the coagulation sedimentation, and when feedforward control of the flocculant is performed at this injection rate, the turbidity with respect to the calculated injection rate By adding a correction based on the removal coefficient, flocculant injection management that reflects unintended water quality, turbidity properties, and process-derived influence factors at the flocculant injection rate calculated as a representative water quality can be performed.

凝集剤注入率の試算例を図9を用いて以下説明する。凝集剤注入率の試算手順としては、原水濁度を設定し(図9(A))、処理水濁度を設定し(図9(B))、後述する指数関数による凝集剤注入率の演算式で試算(図9(C))、前述した実施例の除去係数Kを算出
(図9(D)),図9(D)の除去係数を用いて前述した実施例の凝集剤注入率Cmを算出(図9(C))、前述した実施例のΔCmを算出(図9(C))である。図9(A)〜(D)の横軸は時間(h)を表す。
A trial calculation example of the coagulant injection rate will be described below with reference to FIG. As a trial calculation procedure of the flocculant injection rate, the raw water turbidity is set (FIG. 9 (A)), the treated water turbidity is set (FIG. 9 (B)), and the calculation of the flocculant injection rate by the exponential function described later is performed. Trial calculation using the equation (FIG. 9C), calculating the removal coefficient K of the above-described embodiment (FIG. 9D), and using the removal coefficient of FIG. 9D, the coagulant injection rate Cm of the above-described embodiment. Is calculated (FIG. 9C), and ΔCm of the above-described embodiment is calculated (FIG. 9C). 9A to 9D represents the time (h).

図9(A)は原水濁度の日変動で5度から30度の範囲で変化させた。   FIG. 9A shows the daily fluctuation of the raw water turbidity, which was changed in the range of 5 to 30 degrees.

図9(B)は凝集沈澱処理水の濁度で、滞留時間の遅れを伴って原水の変化に連動し、0.5度から1.5度(平均1度)の範囲で変化する設定条件とした。試算の対比対象とする公知の注入率演算式は、原水濁度Tiに依存した次式とした。   Fig. 9 (B) shows the turbidity of the coagulated sediment treated water, which is linked to the change in the raw water with a delay in the residence time, and changes in the range of 0.5 to 1.5 degrees (average 1 degree). It was. The well-known injection rate calculation formula to be compared with the trial calculation is the following formula depending on the raw water turbidity Ti.

C=a・Tin+b(a,b:定数、n:指数定数)
定数a=2,b=3,n=0.5の条件で、注入率Cを試算した結果を図9(C)に示す。原水濁度Ti以外は全て定数であるため、注入率Cは濁度Tiと同期する。
C = a · Ti n + b (a, b: constant, n: exponential constant)
FIG. 9C shows the result of trial calculation of the injection rate C under the conditions of constants a = 2, b = 3, and n = 0.5. Since all except the raw water turbidity Ti are constants, the injection rate C is synchronized with the turbidity Ti.

滞留時間(3h)を考慮した原水濁度と凝集沈澱処理水濁度、及び注入率Cを用いて、濁度除去係数kを求めた結果を図9(D)に示す。この試算は、図9(A)の原水濁度に対して図9(C)の注入率Cで凝集剤を注入し、図9(B)の凝集沈澱処理水濁度となると仮定した。濁度除去係数kは変動することが分る。   FIG. 9D shows the result of obtaining the turbidity removal coefficient k using the raw water turbidity taking account of the residence time (3h), the coagulation precipitation water turbidity, and the injection rate C. In this trial calculation, it was assumed that the flocculant was injected at the injection rate C of FIG. 9C with respect to the raw water turbidity of FIG. It can be seen that the turbidity removal coefficient k varies.

本発明の注入率Cmをこの濁度除去係数kを用いて試算した。また、処理水濁度目標値tmを1として、補正率ΔCmを求め、補正注入率Cm+ΔCmを試算した。これらの
CmとCm+ΔCmの結果も図9(C)に併記した。3種類の注入率の平均値は大差がないが、濁度除去係数kを用いると注入率の変化が大きく、処理水濁度、すなわち、凝集性に及ぼす種々の要因を反映した注入率が設定されている。
The injection rate Cm of the present invention was estimated using this turbidity removal coefficient k. Further, the treated water turbidity target value tm was set to 1, the correction rate ΔCm was obtained, and the corrected injection rate Cm + ΔCm was estimated. The results of Cm and Cm + ΔCm are also shown in FIG. The average of the three types of injection rates is not very different, but if the turbidity removal coefficient k is used, the change in the injection rate is large, and the injection rate reflecting the various factors affecting the turbidity of the treated water, that is, the cohesiveness, is set. Has been.

この他、従来原水の濁質変化に対応した凝集剤注入方式が種々提案されている。例えば、原水の濁度、さらには原水濁度に加えて原水のアルカリ度やpH,水温などのフロック形成要因を考慮して作成した凝集剤注入式に基づいて操作する方式がある。この方式はフィードフォワードで原水水質の変動に対処できるが、濁質の性状を普遍的なものとして取り扱っており、適正な注入率を継続的に維持することが困難である。特に、降雨時などの性状変化に対応できない。   In addition, various flocculant injection methods corresponding to changes in turbidity of raw water have been proposed. For example, there is a method of operating based on a flocculation agent injection method created in consideration of turbidity of raw water, and also flocculation factors such as alkalinity, pH, and water temperature of raw water in addition to raw water turbidity. Although this method can deal with fluctuations in raw water quality with feedforward, it treats the nature of turbidity as a universal one, and it is difficult to maintain an appropriate injection rate continuously. In particular, it cannot cope with changes in properties such as during rainfall.

また、他の従来例として、晴天時などの低濁度(〜数十度)と降雨時などの高濁度(数十度〜数百度)で異なる注入式を用意して操作する方式がある。この方式も特定の注入式における濁度範囲では濁質の性状を普遍的なものとして取り扱っており、適正な注入率を継続的に維持することが困難である。特に、境界となる濁度付近で不連続な注入率となるために適正な凝集沈殿が損なわれる。   As another conventional example, there is a method in which different injection types are prepared and operated for low turbidity (up to several tens of degrees) such as in fine weather and high turbidity (several tens to several hundred degrees) during rainy days. . This method also treats the nature of turbidity as universal in the turbidity range of a specific injection type, and it is difficult to continuously maintain an appropriate injection rate. In particular, since the injection rate is discontinuous in the vicinity of the turbidity at the boundary, proper coagulation sedimentation is impaired.

また、他の従来例として、濁質性状の変化によるフロック形成状態や凝集沈殿特性の相違を反映させるため、濁度など原水水質のフロック形成要因を考慮した注入式の凝集剤注入率演算値を、凝集沈殿処理水の濁度や、凝集剤注入後のフロック形状特徴量を計測し、その目標値との偏差で注入率を補正するフィードバック付加方式がある。補正方法は、
PID制御や偏差量に一定の係数を乗じて比例させるなどがある。しかし、河川表流水などの水質は種々雑多な物質があり、フロック形成や凝集沈殿特性に影響する。注入式に考慮していない多くの物質も凝集沈殿処理水の濁度に影響しており、単にPID制御や偏差量比率補正は原水水質や濁質性状を真に反映したものでなく、常時適正な凝集剤注入管理を維持できない。
In addition, as another conventional example, in order to reflect the difference in floc formation state and coagulation sedimentation characteristics due to changes in turbid properties, an injection type coagulant injection rate calculation value considering the floc formation factors of raw water quality such as turbidity is calculated. There is a feedback addition method in which the turbidity of coagulated sediment treated water and the floc shape feature amount after injecting the coagulant are measured, and the injection rate is corrected by deviation from the target value. The correction method is
PID control and deviation amount are multiplied by a certain coefficient to make them proportional. However, there are various kinds of water quality such as river surface water, which affects floc formation and coagulation sedimentation characteristics. Many substances that are not considered in the injection type also affect the turbidity of coagulated sediment treated water. PID control and deviation ratio correction do not truly reflect the quality of raw water and turbidity, but are always appropriate. Can not maintain the correct flocculant injection control.

また、他の従来例として、超高濁度(数百度〜数千度)原水に対応して、浄水場への原水給送ラインに凝集剤を事前に注入し、場内での注入対象水の濁度を所定範囲に減少させる2段注入方式も提案されているが、濁質性状に対する考慮がなく、適正な注入率を継続的に維持することが困難である。   In addition, as another conventional example, in response to ultra high turbidity (several hundred to several thousand degrees) raw water, a flocculant is pre-injected into the raw water supply line to the water purification plant, and water to be injected in the field A two-stage injection method for reducing the turbidity to a predetermined range has also been proposed, but there is no consideration of the turbidity properties, and it is difficult to continuously maintain an appropriate injection rate.

また、他の従来例として、原水と凝集沈殿処理水の濁質粒径と個数を微粒子カウンタで計測して凝集剤を操作する方式や、原水の濁度と導電率及び凝集剤注入直後の流動電流を計測して凝集剤を操作する方式がある。しかし、微粒子カウンタや流動電流計は濁質粒子が密になるほど測定誤差が大となり、高濁度や超高濁度液に適用できない。また、これらの計測器は測定対象液を狭隘な検出部に導水する必要が有り、配管系の閉塞や検出部への濁質付着が発生し、計測精度の低下やメンテナンス面で大きな問題がある。   In addition, as other conventional examples, the turbid particle size and number of raw water and coagulation sedimentation treatment water are measured with a fine particle counter and the coagulant is operated, and the turbidity and conductivity of raw water and the flow immediately after the coagulant injection There is a method of operating the flocculant by measuring the current. However, fine particle counters and flow ammeters are not applicable to high turbidity or ultra-high turbidity liquids because the measurement error increases as the turbid particles become denser. In addition, these measuring instruments need to guide the liquid to be measured to a narrow detection section, which causes blockage of the piping system and adhesion of turbidity to the detection section, resulting in major problems in terms of measurement accuracy degradation and maintenance. .

これら従来例に比較して、上記実施例は、凝集沈殿処理の全ての影響要因を包含した係数である濁度除去係数で凝集剤注入率を決定でき、安定した良質の凝集沈殿処理水を提供できる凝集剤注入制御を提供できる。   Compared to these conventional examples, the above example can determine the coagulant injection rate with the turbidity removal coefficient, which is a coefficient that includes all the influence factors of the coagulation sedimentation treatment, and provides stable and high quality coagulation sedimentation treatment water. Possible flocculant injection control.

なお、上記実施例の凝集剤注入制御装置は、CPU,メモリ,入出力部等を有するコンピュータにより構成され上述した演算処理を行うためのプログラムがCPUにより実行される。   Note that the flocculant injection control apparatus of the above embodiment is configured by a computer having a CPU, a memory, an input / output unit, and the like, and a program for performing the above-described arithmetic processing is executed by the CPU.

また、上記実施例では種々の演算器にデータ記憶機能を持たせたが、計測値及び演算値を別途記憶保存するデータベースを設置し、必要に応じて演算器に出力する構成にしてもよい。   In the above embodiment, various arithmetic units have a data storage function. However, a database for separately storing measured values and arithmetic values may be installed and output to the arithmetic units as necessary.

また、濁度や凝集剤注入率はポイント計測値及び演算値の意味合いで説明したが、所定時間の移動平均値を使用してもよい。   Moreover, although the turbidity and the flocculant injection rate have been described in terms of the point measurement value and the calculation value, a moving average value for a predetermined time may be used.

本発明は凝集剤混和池,フロック形成池及び沈殿池から構成される一般的な浄水プロセスに加えて工業用水を製造するプロセス,沈殿池の後段に砂ろ過や膜利用のろ過設備を有する浄水プロセス、さらにその後段にオゾン処理などの高度処理設備を付加した浄水プロセスにも適用できる。   The present invention is a process for producing industrial water in addition to a general water purification process composed of a flocculant admixing basin, a flock formation pond and a sedimentation basin, and a water purification process having sand filtration and membrane-based filtration equipment in the subsequent stage of the sedimentation basin. Furthermore, it can be applied to a water purification process in which advanced treatment equipment such as ozone treatment is added to the subsequent stage.

本発明の第1実施例を説明する構成図である。It is a block diagram explaining 1st Example of this invention. 本発明の第1実施例における濁度と凝集剤注入率の関係を説明する図である。It is a figure explaining the relationship between the turbidity and the flocculant injection rate in 1st Example of this invention. 本発明の第1実施例で補足説明する濁度と凝集剤注入率の関係を示す図である。It is a figure which shows the relationship between the turbidity and the coagulant injection rate which are supplementarily demonstrated in 1st Example of this invention. 本発明の第2実施例を説明する構成図である。It is a block diagram explaining 2nd Example of this invention. 本発明の第3実施例を説明する構成図である。It is a block diagram explaining 3rd Example of this invention. 本発明の第3実施例における回分式凝集沈殿装置部を説明する構成図である。It is a block diagram explaining the batch type coagulation sedimentation apparatus part in 3rd Example of this invention. 本発明の第4実施例を説明する構成図である。It is a block diagram explaining 4th Example of this invention. 本発明の第5実施例を説明する構成図である。It is a block diagram explaining 5th Example of this invention. 本発明の第6実施例を説明する凝集剤注入率の試算例である。It is a trial calculation example of the flocculant injection rate explaining the 6th example of the present invention.

符号の説明Explanation of symbols

1,1B…原水、2…薬品混和池、3…フロック形成池、4…沈殿池、5…凝集沈殿処理水、6…排泥液、7…凝集剤貯槽、8…凝集剤注入設備、9,9B…凝集剤、10…凝集剤注入制御装置、21,24,24B…流量計、22,22B,22C…濁度計、25,26,27…水質計、32,505…濁度除去係数演算器、33…凝集剤注入量演算器、34…制御器、36…凝集剤注入率演算器、37…基本注入率演算器、50…回分式凝集沈殿装置。


DESCRIPTION OF SYMBOLS 1,1B ... Raw water, 2 ... Chemical mixing pond, 3 ... Flock formation pond, 4 ... Sedimentation basin, 5 ... Coagulation sedimentation water, 6 ... Waste mud liquid, 7 ... Coagulant storage tank, 8 ... Coagulant injection equipment, 9 , 9B ... flocculant, 10 ... flocculant injection control device, 21, 24, 24B ... flow meter, 22, 22B, 22C ... turbidity meter, 25, 26, 27 ... water quality meter, 32, 505 ... turbidity removal coefficient Calculation unit, 33 ... flocculant injection amount calculation unit, 34 ... controller, 36 ... flocculant injection rate calculation unit, 37 ... basic injection rate calculation unit, 50 ... batch type coagulation sedimentation apparatus.


Claims (10)

凝集剤を注入して原水の濁質を凝集沈殿池で凝集沈殿させる浄水プロセスのため、前記凝集剤の注入制御を行う凝集剤注入制御装置において、
ある時点の前記凝集沈殿池の処理水の濁度、前記ある時点より所定時刻遡った時点の前記原水の濁度、及び前記ある時点より所定時刻遡った時点の前記凝集剤の凝集剤注入率の関係を指数式あるいは対数式で表した浄水プロセスの濁度除去係数を用いて凝集剤注入率を演算する凝集剤注入率演算手段と、
前記凝集剤注入率演算手段で演算された凝集剤注入率と前記ある時点の原水の流量を乗算して凝集剤注入量を演算する凝集剤注入量演算手段と、
前記凝集剤注入量に基づいて凝集剤注入設備を制御する制御手段と、
を有することを特徴とする凝集剤注入制御装置。
In the flocculant injection control device that performs the injection control of the flocculant for the water purification process of injecting the flocculant and coagulating and sedimenting the turbidity of the raw water in the coagulation sedimentation basin,
The turbidity of the treated water in the coagulation sedimentation basin at a certain point in time, the turbidity of the raw water at a point that is earlier than the certain point in time, and the flocculating agent injection rate of the flocculant at the point that is a certain point later than the certain point in time A flocculant injection rate calculating means for calculating the flocculant injection rate using the turbidity removal coefficient of the water purification process in which the relationship is represented by an exponential expression or logarithmic expression;
A flocculant injection amount calculating means for calculating the flocculant injection amount by multiplying the flocculant injection rate calculated by the flocculant injection rate calculating means and the flow rate of the raw water at a certain time;
Control means for controlling the flocculant injection facility based on the flocculant injection amount;
A flocculant injection control device comprising:
請求項1に記載の凝集剤注入制御装置において、
前記凝集剤注入率演算手段は、前記浄水プロセスの濁度除去係数を用いて凝集剤注入率を演算する際に、前記浄水プロセスの濁度除去係数、前記ある時点の前記原水の濁度、及び前記処理水の濁度の予め設定した目標値を有する演算式に基づいて凝集剤注入率を演算することを特徴とする凝集剤注入制御装置。
In the flocculant injection control device according to claim 1,
When the flocculant injection rate calculating means calculates the flocculant injection rate using the turbidity removal coefficient of the water purification process, the turbidity removal coefficient of the water purification process, the turbidity of the raw water at a certain point in time, and A flocculant injection control apparatus that calculates the flocculant injection rate based on an arithmetic expression having a preset target value of the turbidity of the treated water.
請求項1に記載の凝集剤注入制御装置において、
前記原水の一部を所定容積の容器に導水し、凝集剤の注入,撹拌,静置する回分式凝集沈殿装置の凝集剤注入前の濁度と、所定時間静置後の沈殿上澄み液の濁度と、この上澄み液濁度が得られる過程の凝集剤注入率との関係を指数式あるいは対数式で表される回分式凝集沈殿の濁度除去係数を演算する回分式濁度除去係数演算手段を有し、
前記凝集剤注入率演算手段は、前記回分式凝集沈殿の濁度除去係数と、前記ある時点の原水の濁度、及び前記処理水の濁度の予め設定した目標値で構成する演算式に基づいて凝集剤注入率を演算することを特徴とする凝集剤注入制御装置。
In the flocculant injection control device according to claim 1,
A portion of the raw water is introduced into a container of a predetermined volume, and the turbidity before injection of the flocculant in the batch type coagulation settling apparatus in which the flocculant is injected, stirred and left standing, and the turbidity of the precipitate supernatant after standing for a predetermined time. A batch-type turbidity removal coefficient calculation means for calculating the turbidity removal coefficient of batch-type coagulation sedimentation expressed by an exponential expression or logarithmic expression in relation to the degree of turbidity and the coagulant injection rate in the process of obtaining this supernatant liquid turbidity Have
The flocculant injection rate calculating means is based on an arithmetic expression configured with a preset target value of the turbidity removal coefficient of the batch-type coagulation sedimentation, the turbidity of the raw water at a certain time, and the turbidity of the treated water. And calculating a coagulant injection rate.
請求項3に記載の凝集剤注入制御装置において、
前記凝集剤注入率演算手段は、前記浄水プロセスの濁度除去係数、前記ある時点の前記凝集沈殿池の処理水の濁度、及び前記予め設定した目標値で構成する演算式に基づいて、前記目標値に維持する凝集剤注入率の補正値を演算し、前記凝集剤注入率の補正値で前記回分式凝集沈殿の濁度除去係数を含めて演算した凝集剤注入率を補正して凝集剤注入率を演算することを特徴とする凝集剤注入制御装置。
In the flocculant injection control device according to claim 3,
The flocculant injection rate calculating means is based on an arithmetic expression comprising the turbidity removal coefficient of the water purification process, the turbidity of treated water in the coagulation sedimentation basin at a certain time, and the preset target value. The correction value of the flocculant injection rate to be maintained at the target value is calculated, and the flocculant injection rate calculated by including the turbidity removal coefficient of the batch type coagulation sedimentation is corrected by the correction value of the flocculant injection rate. A flocculant injection control device characterized by calculating an injection rate.
請求項1に記載の凝集剤注入制御装置において、
凝集剤を注入して原水の濁質を凝集沈殿池で凝集沈殿させる浄水プロセスのため、原水の濁度を考慮して予め設定した凝集剤注入式に基づいて凝集剤基本注入率を演算する凝集剤基本注入率演算手段を有し、
前記凝集剤注入率演算手段は、前記濁度除去係数、前記ある時点の前記凝集沈殿池の処理水の濁度、及び前記処理水の濁度の予め設定した目標値で構成する演算式に基づいて、前記目標値に維持する凝集剤注入率の補正値を演算し、前記補正値で前記凝集剤基本注入率を補正して凝集剤注入率を演算することを特徴とする凝集剤注入制御装置。
In the flocculant injection control device according to claim 1,
For the water purification process in which the flocculant is injected and the turbidity of the raw water is coagulated and settled in the coagulation sedimentation basin, the basic coagulant injection rate is calculated based on the pre-set flocculant injection formula taking into account the turbidity of the raw water Agent basic injection rate calculation means,
The flocculant injection rate calculating means is based on an arithmetic expression configured with a preset target value of the turbidity removal coefficient, the turbidity of the treated water in the coagulation sedimentation basin at a certain time, and the turbidity of the treated water. A coagulant injection control device, wherein a coagulant injection rate correction value maintained at the target value is calculated, and the coagulant injection rate is calculated by correcting the coagulant basic injection rate with the correction value. .
凝集剤を注入して原水の濁質を凝集沈殿池で凝集沈殿させる浄水プロセスの凝集剤注入制御方法において、
ある時点の前記凝集沈殿池の処理水の濁度、前記ある時点より所定時刻遡った時点の前記原水の濁度、及び前記ある時点より所定時刻遡った時点の前記凝集剤の凝集剤注入率の関係を指数式あるいは対数式で表した浄水プロセスの濁度除去係数を用いて凝集剤注入率を演算し、
前記演算された凝集剤注入率と前記ある時点の原水の流量を乗算して凝集剤注入量を演算し、
前記凝集剤注入量に基づいて凝集剤注入設備を制御することを特徴とする凝集剤注入制御方法。
In the flocculant injection control method of the water purification process in which the flocculant is injected and the turbidity of raw water is agglomerated and settled in the coagulation sedimentation basin,
The turbidity of the treated water in the coagulation sedimentation basin at a certain point in time, the turbidity of the raw water at a point that is earlier than the certain point in time, and the flocculating agent injection rate of the flocculant at the point that is a certain point later than the certain point in time Calculate the coagulant injection rate using the turbidity removal coefficient of the water purification process, which expresses the relationship as an exponential expression or logarithmic expression,
Multiplying the calculated flocculant injection rate and the raw water flow rate at a certain point in time to calculate the flocculant injection amount,
A flocculant injection control method, wherein the flocculant injection equipment is controlled based on the flocculant injection amount.
請求項6に記載の凝集剤注入制御方法において、
前記浄水プロセスの濁度除去係数を用いて凝集剤注入率を演算する場合に、前記浄水プロセスの濁度除去係数、前記ある時点の前記原水の濁度、及び前記処理水の濁度の予め設定した目標値を有する演算式に基づいて凝集剤注入率を演算することを特徴とする凝集剤注入制御方法。
In the flocculant injection control method according to claim 6,
When calculating the coagulant injection rate using the turbidity removal coefficient of the water purification process, the turbidity removal coefficient of the water purification process, the turbidity of the raw water at a certain point in time, and the turbidity of the treated water are preset. A flocculant injection control method, wherein the flocculant injection rate is calculated based on an arithmetic expression having a target value.
請求項6に記載の凝集剤注入制御方法において、
前記原水の一部を所定容積の容器に導水し、凝集剤の注入,撹拌,静置する回分式凝集沈殿装置の凝集剤注入前の濁度と、所定時間静置後の沈殿上澄み液の濁度と、この上澄み液濁度が得られる過程の凝集剤注入率との関係を指数式あるいは対数式で表される回分式凝集沈殿の濁度除去係数を演算し、
前記凝集剤注入率を演算する場合に、前記回分式凝集沈殿の濁度除去係数と、前記ある時点の原水の濁度、及び前記処理水の濁度の予め設定した目標値で構成する演算式に基づいて凝集剤注入率を演算することを特徴とする凝集剤注入制御方法。
In the flocculant injection control method according to claim 6,
A portion of the raw water is introduced into a container of a predetermined volume, and the turbidity before injection of the flocculant in the batch type coagulation settling apparatus in which the flocculant is injected, stirred and left standing, and the turbidity of the precipitate supernatant after standing for a predetermined time. The turbidity removal coefficient of batch-type coagulation sedimentation expressed by an exponential expression or logarithmic expression, and the relationship between the degree and the coagulant injection rate in the process of obtaining this supernatant liquid turbidity,
When calculating the flocculating agent injection rate, the turbidity removal coefficient of the batch-type coagulation sedimentation, the turbidity of the raw water at a certain point in time, and an arithmetic expression configured with preset target values of the turbidity of the treated water The flocculant injection control method is characterized in that the flocculant injection rate is calculated based on the above.
請求項8に記載の凝集剤注入制御方法において、
前記凝集剤注入率を演算する場合に、前記浄水プロセスの濁度除去係数、前記ある時点の前記凝集沈殿池の処理水の濁度、及び前記予め設定した目標値で構成する演算式に基づいて、前記目標値に維持する凝集剤注入率の補正値を演算し、前記凝集剤注入率の補正値で前記回分式凝集沈殿の濁度除去係数を含めて演算した凝集剤注入率を補正して凝集剤注入率を演算することを特徴とする凝集剤注入制御方法。
The flocculant injection control method according to claim 8,
When calculating the flocculating agent injection rate, based on the calculation formula configured with the turbidity removal coefficient of the water purification process, the turbidity of the treated water in the flocculation sedimentation basin at the certain time, and the preset target value Calculating the correction value of the flocculant injection rate to be maintained at the target value, and correcting the calculated flocculant injection rate including the turbidity removal coefficient of the batch type coagulation sedimentation with the correction value of the flocculant injection rate A flocculant injection control method characterized by calculating a flocculant injection rate.
請求項6に記載の凝集剤注入制御方法において、
凝集剤を注入して原水の濁質を凝集沈殿池で凝集沈殿させる浄水プロセスのため、原水の濁度を考慮して予め設定した凝集剤注入式に基づいて凝集剤基本注入率を演算し、
前記凝集剤注入率を演算する場合は、前記濁度除去係数、前記ある時点の前記凝集沈殿池の処理水の濁度、及び前記処理水の濁度の予め設定した目標値で構成する演算式に基づいて、前記目標値に維持する凝集剤注入率の補正値を演算し、前記補正値で前記凝集剤基本注入率を補正して凝集剤注入率を演算することを特徴とする凝集剤注入制御方法。
In the flocculant injection control method according to claim 6,
For the water purification process of injecting the flocculant and coagulating sedimentation of the raw water turbidity in the coagulation sedimentation basin, calculating the basic coagulant injection rate based on the preset flocculant injection formula taking into account the turbidity of the raw water,
When calculating the flocculating agent injection rate, the turbidity removal coefficient, the turbidity of the treated water in the coagulation sedimentation basin at a certain point in time, and an arithmetic expression composed of preset target values of the turbidity of the treated water A coagulant injection rate is calculated by calculating a correction value of the coagulant injection rate to be maintained at the target value, and correcting the coagulant basic injection rate with the correction value to calculate the coagulant injection rate Control method.
JP2005216647A 2005-07-27 2005-07-27 Flocculant injection control device and method Expired - Fee Related JP4492473B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005216647A JP4492473B2 (en) 2005-07-27 2005-07-27 Flocculant injection control device and method
CNB2006101080757A CN100427175C (en) 2005-07-27 2006-07-27 Device and method for controlling infusion of flocculating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216647A JP4492473B2 (en) 2005-07-27 2005-07-27 Flocculant injection control device and method

Publications (2)

Publication Number Publication Date
JP2007029851A JP2007029851A (en) 2007-02-08
JP4492473B2 true JP4492473B2 (en) 2010-06-30

Family

ID=37698864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216647A Expired - Fee Related JP4492473B2 (en) 2005-07-27 2005-07-27 Flocculant injection control device and method

Country Status (2)

Country Link
JP (1) JP4492473B2 (en)
CN (1) CN100427175C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098287A (en) * 2005-10-05 2007-04-19 Hitachi Ltd Method for controlling operation of water purifying process
JP5145311B2 (en) * 2009-11-10 2013-02-13 株式会社日立製作所 Water purification chemical injection control system
JP5571424B2 (en) * 2010-03-26 2014-08-13 メタウォーター株式会社 Method and apparatus for controlling the injection rate of flocculant in real time
JP5636263B2 (en) * 2010-11-10 2014-12-03 株式会社日立製作所 Flocculant injection control system
JP5949673B2 (en) * 2013-06-10 2016-07-13 Jfeスチール株式会社 Cyan-containing waste liquid treatment method and cyan-containing waste liquid treatment apparatus
JP6158048B2 (en) * 2013-11-12 2017-07-05 株式会社東芝 Water treatment system, water treatment method, water treatment control device, and water treatment control program
JP6599704B2 (en) * 2015-09-17 2019-10-30 株式会社東芝 Flocculant injection rate determination method and flocculant injection rate determination device
JP6424916B2 (en) * 2016-05-09 2018-11-21 Jfeスチール株式会社 Flocculant injection amount control method in coagulation sedimentation processing
JP7021461B2 (en) * 2017-05-16 2022-02-17 王子ホールディングス株式会社 Water treatment method, water treatment equipment and control method of addition of cake layer forming substance to raw water
KR101979767B1 (en) * 2017-05-31 2019-05-17 한국건설기술연구원 High-rate sedimentation-flotation system and operation method using the same
CN107697996A (en) * 2017-10-11 2018-02-16 浙江大学宁波理工学院 Control with changed scale control method during sewage agglomeration process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137707A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Flocculant injection control device
JPH0483504A (en) * 1990-07-27 1992-03-17 Hitachi Ltd Flocculant injection controlling apparatus
JPH06304414A (en) * 1993-04-26 1994-11-01 Michimasa Oguri Control device for cohesive sedimentation process in water purifying plant
JPH08309109A (en) * 1995-05-15 1996-11-26 Hitachi Ltd Controlling device for pouring chemical in water purification plant
JP2001327806A (en) * 2000-05-19 2001-11-27 Nishihara Environ Sanit Res Corp Automatic injection device of flocculant for water cleaning
JP2002159805A (en) * 2000-11-24 2002-06-04 Yokogawa Electric Corp Flocculant injection control method of water purification plant
JP2002205076A (en) * 2001-01-15 2002-07-23 Toshiba Corp Flocculating agent injection control system
JP2003200175A (en) * 2002-01-08 2003-07-15 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2003284904A (en) * 2002-03-27 2003-10-07 Toshiba Corp Control device for injection of flocculant of water purification plant
JP2004223357A (en) * 2003-01-21 2004-08-12 Toshiba Corp Flocculant injecting/controlling apparatus
JP2005193203A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976871A (en) * 1989-10-17 1990-12-11 Nalco Chemical Company Method of monitoring flocculant effectiveness
JP2693014B2 (en) * 1990-04-27 1997-12-17 株式会社東芝 Coagulant injection controller for water purification plants
US5531905A (en) * 1994-12-02 1996-07-02 Dober Chemical Corporation System and method to control laundry waste water treatment
CN1041079C (en) * 1995-03-22 1998-12-09 王大志 Optimization control of coagulant charging quantity for water purification technology
JPH08299706A (en) * 1995-05-09 1996-11-19 Fujita Corp Turbid water treatment system
JPH10202013A (en) * 1997-01-22 1998-08-04 Fuji Electric Co Ltd Method for controlling water purifying and flocculating treatment
WO1999002239A1 (en) * 1997-07-08 1999-01-21 Molten Metal Technology, Inc. Method and apparatus for treating water
CN1378111A (en) * 2002-05-09 2002-11-06 浙江大学 Intelligent control method and device for adding chemical in running water production
CN1260142C (en) * 2004-01-17 2006-06-21 哈尔滨工业大学 Intelligent flocculation chemical dosing system
CN1257110C (en) * 2004-09-24 2006-05-24 哈尔滨工业大学 Flocculating dispensing compound control method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137707A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Flocculant injection control device
JPH0483504A (en) * 1990-07-27 1992-03-17 Hitachi Ltd Flocculant injection controlling apparatus
JPH06304414A (en) * 1993-04-26 1994-11-01 Michimasa Oguri Control device for cohesive sedimentation process in water purifying plant
JPH08309109A (en) * 1995-05-15 1996-11-26 Hitachi Ltd Controlling device for pouring chemical in water purification plant
JP2001327806A (en) * 2000-05-19 2001-11-27 Nishihara Environ Sanit Res Corp Automatic injection device of flocculant for water cleaning
JP2002159805A (en) * 2000-11-24 2002-06-04 Yokogawa Electric Corp Flocculant injection control method of water purification plant
JP2002205076A (en) * 2001-01-15 2002-07-23 Toshiba Corp Flocculating agent injection control system
JP2003200175A (en) * 2002-01-08 2003-07-15 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2003284904A (en) * 2002-03-27 2003-10-07 Toshiba Corp Control device for injection of flocculant of water purification plant
JP2004223357A (en) * 2003-01-21 2004-08-12 Toshiba Corp Flocculant injecting/controlling apparatus
JP2005193203A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system

Also Published As

Publication number Publication date
JP2007029851A (en) 2007-02-08
CN1907533A (en) 2007-02-07
CN100427175C (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4492473B2 (en) Flocculant injection control device and method
US20180037471A1 (en) Wastewater treatment system
JP5208061B2 (en) Flocculant injection control system
JP2008161809A (en) Coagulant injection control system
JP4230787B2 (en) Flocculant injection control device
US11866348B2 (en) System, apparatus, and method for treating wastewater in real time
KR101645540B1 (en) Method for feeding coagulant for water-purification and apparatus for water-purification using the same
JP5420467B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP4784241B2 (en) Flocculant injection method and apparatus for water purification process
JPH0483504A (en) Flocculant injection controlling apparatus
US20230257283A1 (en) Process, system, and computer readable storage medium for determining optimal coagulant dosage
JP2007098287A (en) Method for controlling operation of water purifying process
JP4071519B2 (en) Flocculant injection control device for water purification plant
JP2007222814A (en) Flocculant injection volume control method and control controller
JP4780946B2 (en) Water treatment process operation support device, program and recording medium
JP3522650B2 (en) Automatic coagulant injection device for water purification
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
WO2022009481A1 (en) Apparatus and method for controlling injection of coagulant in water treatment plant
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JP6466213B2 (en) Chlorine injection rate setting method, chlorine injection rate setting device, and chlorine injection rate setting system
JP5571424B2 (en) Method and apparatus for controlling the injection rate of flocculant in real time
JP3460211B2 (en) Sewage treatment control device
JPS63200807A (en) Injection controller for flocculant
JP2023097172A (en) Teaching data selection device, prediction model construction device, and teaching data selection method
JP2022166617A (en) Flocculant injection control method and flocculant injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R151 Written notification of patent or utility model registration

Ref document number: 4492473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees