TW557584B - Electro-optic structure and process for fabricating same - Google Patents

Electro-optic structure and process for fabricating same Download PDF

Info

Publication number
TW557584B
TW557584B TW090123359A TW90123359A TW557584B TW 557584 B TW557584 B TW 557584B TW 090123359 A TW090123359 A TW 090123359A TW 90123359 A TW90123359 A TW 90123359A TW 557584 B TW557584 B TW 557584B
Authority
TW
Taiwan
Prior art keywords
layer
forming
single crystal
scope
substrate
Prior art date
Application number
TW090123359A
Other languages
English (en)
Inventor
Jamal Ramdani
Lyndee Hilt
Ravindranath Droopad
William Jay Ooms
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW557584B publication Critical patent/TW557584B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0338Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect structurally associated with a photoconductive layer or having photo-refractive properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Glass Compositions (AREA)
  • Electric Cable Installation (AREA)

Description

557584 A7 B7 五、發明説明(1 ) 本案曾於2000年9月26日在美國以專利申請案號09/669602 提出申請 發明之領域 本發明係概括關於電光學結構及裝置,以及關於其一種 製造方法,尤指一種改進之電光學結構及一種將電光學結 構與矽裝置及電路單片式整合之方法。 發明之背景 通常,通訊系統將資訊自一地點傳輸至另一地點。資訊 常由電磁載波予以載送,其頻率可自幾百萬赫(MHz)至數百 兆赫(THz)不等。一般而言,光學通訊系統使用在電磁頻譜 可見或近紅外線區域之高載波頻率(例如100 THz)。 波導管用以控制波諸如光波及其他電磁波之方向。在最 簡單形式,一波導管包括一心層,至少部份被一折射率低 於心層者之包覆層所包圍。波行進通過心層,反射離開包 覆層。如果包覆層具有折射率高於心層,波將會僅只被吸 收至包覆層中,並且將不行進通過心層。 I尼酸魏鋇(strontium barium niobate,簡稱SBN)為強力光 折射材料,並且在最近幾年,由於其在電光學,全息儲存 體,空間光調變器,熱電檢測器,表面聲波裝置及束引導 之可能應用,而甚受人們注意。SBN波導管示與積體光學 系統及其他微型化裝置之高度相容性。 因為可利用廉價,高品質單晶矽基板,絕大多數半導體 個別裝置及積體電路,係至少部份自矽製成。 SBN之有用特性與半導體電路之組合也合乎需要。如果可 O:\73\73834-920808 DOC\ 4 - 4 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 557584 A7 B7 五、發明説明(2 ) 在矽基板製成SBN波導膜,這將有助於在積體光學裝置與 微電子裝置間之間隙跨接。如果可在一大塊晶圓諸如矽晶 圓實現高品質單晶材料之波導膜,便可達成一種利用矽及 波導材料之最佳特性之積體裝置結構。另外,該組合可導 致新型電光學及微電子裝置,改進現有之裝置,及降低其 製造成本。 人們曾作各種嘗試,將SBN膜整合在大塊基板。例如, SBN膜在MgO (氧化鎂)基板之組合,由於MgO之較低折射 率導致0.5之折射率差異,而示某種益處。然而,供整合目 的,矽基板遠較為合乎需要。 X L Guo等人所作之另一嘗試,’’Pulsed Laser Deposition of SrxBai_xNb2〇6/MgO Bilayered Films on Si Wafer in Waveguide Form,’’J.Phys.D ·· Appl. Phys. 29,1996 年, 1632-35頁,闡示一種在p-型矽晶圓製造SBN/MgO雙層膜之 方法。雙層膜示SBN膜之一種多晶增長及MgO緩衝層之高 度紋理結構增長。然而,如X L Guo等人所承認,所產生之 多晶結構不如單晶結構合乎需要,並因此將要另外致力改 進SBN膜之結晶性。 因之,需要一種具有高品質單晶特徵之電光學結構。特 別是,需要一種與矽基電路單片式整合之電光學結構,其 中該結構為高品質單晶材料。 附圖之簡要說明 在附圖中意在作為實例而非限制例示本發明,其中相同 參考圖號指示相似元件,以及在附圖中: O:\73\73834-920808 DOC\ 4 - 5 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂 線 557584 A7 B7 五、發明説明(3 ) 圖1 ’ 3及5在剖面略示根據本發明各種不同實施例之波導 管結構; 圖2以曲線例示最大可獲得膜厚度與主晶及增長結晶上層 間之晶格失配間之關係;以及 圖4及6在剖面略示根據本發明各種不同實施例之波導管 結構之頂視圖。 精於此項技藝者將會察知,元件在圖中予以例示為供簡 單明晰’並且不一定依比例繪製。例如,在圖中有些元件 之尺寸可能相對於其他元件加大,以有助於改進瞭解本發 明之實施例。 附圖之詳細說明 圖1在剖面略示一根據本發明實施例之波導管結構2〇之一 部份。結構20包括一單晶基板22,一包含一種單晶材料之 容納緩衝層24,一單晶材料之底包覆層26,一單晶材料之 心層28,及一單晶材料之頂包覆層3〇。在此一方面,,,單晶,, 一詞將具有在半導體業界所常使用之意義。該詞將指一種 單曰曰或5際為一種單晶之材料,並將包括具有相對少數缺 Ρθ之材料堵如^見於矽或鍺或矽及鍺混合物之基板,以 及常見於半導體業界之此等材料之蟲晶層之錯位及類似缺 陷。 根據本1明之#貫施例,結構也包括一位於基板22 與谷納、、爱衝層24間之非晶質中間層32。非晶質中間層有助 於減輕在容納緩衝層之應變,並因此,有助於高結晶品質 容納緩衝層之增長。 O:\73\73834-920808 DOC\ 4 X 297公釐) -6 - 557584 五、發明説明(4 :::發明之實施例,基板22為一單晶半導體晶圓,較 為大直控。晶®可為-種來自„表之IV類組之材料, =且較佳為-種來自IVA類組之材m组半導體材料之 只例包括梦,冑,混合切及錯,混合切及碳,混合之 矽,錯及碳,及類似材料。基板22較佳為一切或錯之晶 ® ’並且最佳為-如在半導體業界所使用,具有直徑約 200-300毫米之高品質單晶矽晶圓。 谷、’内、、爰衝層24較佳為一種就其與下面基板及與覆蓋化合 物半導體材料之結晶相容性所選擇之單晶氧化物材料。例 如,材料可為一種具有晶格結構實際與基板及與隨後施加 之包覆層材料匹配之氧化物。適合容納緩衝層之材料包括 金屬氧化物諸如鹼土金屬鈦酸鹽,並且一般可包括至少二 不同金屬元素。在有些特定應用,金屬氧化物可包括三或 更多不同金屬元素。 包覆層及層26,28及30之心層材料,可依需要選擇供特 足波導管結構。要獲得總或至少實際總内部反射,心層28 係以一種具有折射率不同於用以形成頂及底包覆層3〇及26 之材料之材料形成。更特別是,心層2 8之折射率大於頂及 底包覆層30及26之折射率,其可適當以相同材料形成。根 據一種例證性實施例,選擇供心層28之材料具有折射率ηι ’及選擇供頂及底包覆層30及26之材料分別具有折射率“ 及 n3 ’ 其中 及 110113。 根據本發明之一種實施例,心層28以及包覆層26及30為 高光致反應材料,諸如鈮酸鳃鋇(SBN)。每一 SBN層之厚度 O:\73\73834-920808 DOQ 4 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)
五、發明説明(5 ) 係依所傳輸能量之特定波長而定。通常光學波導管在電磁 頻譜之可見至近紅外線部位操作。在此實施例,將一有折 射率n3之底包覆層26敷著在緩衝層24上面。包覆層^可為 SBN: 60’其中60標示趣對鎖之比,及〜可等於2 33。將心 層28敷著在底包覆層上面,並且較佳為具有折射率〜高於〜 。心層 28 可為 SBN: 75,¾ 曰 並且ηι可寺於2·35。然後可將頂包 覆層30敷著在心層28上面。在此實施例之一特定方面,頂 包覆層30為與底包覆層26相同材料(亦即沾化6〇 , 1^=2.33)。然而,如以下將更詳細討論,如果周圍媒質具有 折射率低於心層(例如空氣具有折射率等於1},則不必要將 一另外包覆層敷著在心層上面。 在本發明之又一實施例,包覆層26及3〇為具有折射率178 (n2及n3等於1.78)之氧化鎂(Mg〇)。心層28為§6^^: 50至SBN • 75,並且由於SBN: 75之較高折射率,較佳為SBN: 75。 然而,SBN: 50至SBN: 75適合此實施例,以及先前所討論 之實施例。 此實施例,以及先前所討論之實施例,說明一種對稱組 態’其中包覆層為繞心層”對稱”。然而,請予瞭解,在本 發明範圍内考慮所有組態,對稱及反對稱。如以下將更詳 細討論,反對稱組態包括不為相同折射率之包覆層材料。 例如’底包覆層可具有折射率大於或少於頂包覆層,然而 兴論如何,心層折射率通常高於任一包覆層。 根據本發明之一種實施例,在基板22將非晶質中間層32 增長在基板22與增長容納緩衝層間之介面。非晶質中間層 O:\73\73834-920808 D〇C\ 4 . g _ A4^(21〇X297^*) ---- 557584
32較佳為一種藉基板22之氧化作用所形成之氧化物,並更 佳為在層24之增長期間由一種氧化矽(SiOx)所構成。層32之 厚度為足以減輕歸因於基板22與容納緩衝層24之晶格常數 間失配之應變(一般為在約〇·5_5〇毫微米之範圍)。如本文中 所稱’晶格常數指在表面之平面所測量,一單元之原子間 之距離。如果不藉非晶質中間層減輕此種應變,應變可能 在谷納緩衝層之結晶結構導致缺陷。在容納緩衝層之結晶 結構之缺陷,復將會使得難以在單晶層26,28及3〇達成高 品質結晶結構。 根據本發明之一種實施例,容納緩衝器層24為一 ShBak T1O3之單晶層,其中z為在〇至丨之範圍,以及非晶質中間層 32為一層形成在矽基板與容納緩衝層間之介面之氧化矽 (SiOx)。可選擇z之值為獲得一個或多個晶格常數緊密匹配 Pic後所开^/成包覆層2 6之對應晶格常數。容納緩衝層可具有 少數單層至數百埃(100A)之厚度。通常希望具有容納緩衝 層厚足以使單晶氧化物層與基板隔離,以獲得所希望之電 及光學特性。厚於100毫微米之層通常提供很少另外益處, 同時不必要地增加成本;然而,#果需要,可製成較厚層 :在此實施例,氧化矽之非晶質中間層可具有厚度約05二 愛微米,並且較佳為厚度約1.5-2 5毫微米。 基板22為一單晶基板,諸如一單晶矽基板。單晶基板之 結晶結構特徵為一晶格常數及一晶格取向。以相似方式, 容納緩衝器層24也為一種單晶材料,並且該單晶材料之晶 格特徵為-晶格常數及-結晶取向。容納緩衝層及單晶: O:\73\73834-920808 DOC\ 4
557584 A7 B7 五、發明説明(7 ) 板之晶格常數必須緊密匹配,要不然,必須為致使在一結 晶取向相對於另一結晶取向旋轉時,達成在晶格常數之實 際匹配。在此一方面’’實際等於”及’’實際匹配”二詞,意為在 晶格常數之間具有足夠相似性,以允許在下面層增長高品 質結晶層。 圖2以曲線例示高結晶品質之增長結晶層之可達成厚度之 關係,為主晶與增長結晶之晶格常數間失配之函數。曲線 42例示高結晶品質材料之邊界。曲線42右側之區域表示具 有大量缺陷之層。無晶格失配,理論上可在主晶增長一無 限厚’南品質系晶層。在晶格常數之失配增加時’可達成 高品質結晶層之厚度快速減少。例如,作為一參考點,如 果主晶與增長層間之晶格常數失配超過約2%,便無法達成 超過約20毫微米之單晶磊晶層。 根據本發明之一種實施例,基板22為一(100)或(111)取向 單晶矽晶圓,及容納緩衝層24為一層鈦酸鳃鋇。使鈦酸鹽 材料之結晶取向相對於矽基板晶圓之結晶取向旋轉45° , 藉以達成此二材料間之晶格常數之實際匹配。在結構包括 非晶質中間層32 (在此實例為一氧化矽層)如果其為足夠厚 度,用以減低在鈦酸鹽單晶層可能起因於在主矽晶圓及增 長鈦酸鹽層晶格常數之任何失配之應變。因此,根據本發 明之實施例,可達成一種高品質,厚單晶鈦酸鹽層。 請再次參照圖1,包覆層26為一層磊晶增長單晶材料,並 且該結晶材料特徵也為一結晶晶格常數及一結晶取向。根 據本發明之一種實施例,層26之晶格常數不同於基板22之 I O:\73\73834-920808 DOC\ 4 - 10 ~ 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝
線 557584 一~----一—___ 五、發明説明(8 ) —- 晶格常數。要在此磊晶增長單晶層%達成高結晶品質,容 納緩衝層24必須為高結晶品質。另外,為在層⑽成高处 2品質,主晶(在此情況為單晶容納緩衝層)與增長結晶之結° 日曰日“各系數《間希望實際之匹配。利用適當選擇之材料, 由於增長結晶之結晶取向相對於主晶取向之旋轉,而達成 晶格常數之此種實際匹配。下列實例例示一根據本發明之 一種實施例,供製造波導管結構,諸如圖丨中所示結構之方 法。孩万法由提供一包含碎或鍺之單晶半導體基板開始。 根據本發明之-種較佳實施例,半導體基板為一砍晶圓, 具有一(100)取向。基板較佳為取向在軸線,或至多離軸約 〇,5 。半導體基板之至少一部份有一裸露表面,不過如以 下所說明,基板之其他部份可包含其他結構。在此一方面 裸路一 4意為在基板之部份之表面已予以清潔,以除 去任何氧化物,污染物,或其他外來材料。如人們所熟知 ,裸露矽具有高度反應性,並且容易形成一種自然氧化物 。’’裸露’’ 一詞意為包含此種自然氧化物。也可在半導體基 板故思增長一薄氧化矽,不過此種增長氧化物並非根據本 發明足方法所必不可少。為要磊晶增長一覆蓋單晶基板之 單晶氧化物層,必須首先除去自然氧化物層,以使下面基 板之、、、σ日日…構路出。較佳為藉分子束蟲晶bearn epitaxy,簡稱MBE)實施下列方法,不過根據本發明也可使 用其他系晶方法。在一 MBE裝置首先熱敷著一薄層之鳃, 鋇,鳃及鋇之一種組合,或其他鹼土金屬或鹼土金屬之組 合,藉以可除去自然氧化物。在使用鳃之情形,然後將基 O:\73\73834-920808 D0C\ 4 \ Λ 本紙張尺度適用中國國家標準S) 公f 557584 A7
板加熱至溫度約75(TC ’以導致總與自然氧化砍層反應。總 用乂減低氧化矽,以留下一無氧化矽表面。所獲得之呈現 種有序2x1結構之表面,包括鳃,氧,及矽。有序2χΐ結 構形成一樣板’供有序增長一單晶氧化物之覆蓋層。樣板 &供必要《化學及物理特#[±,以使覆蓋層纟結晶增長形成 晶核。 根據本發明之_種替代性實施例,可將自然氧化碎轉換 並可藉MBE在低溫敷著一種鹼土金屬氧化物,諸如氧化 I氧化鳃鋇,或氧化鋇至基板表面,並且隨後將結構加 熱至級度約750 C ’藉以製備基板表面,以供增長單晶氧化 物層。在此溫度,氧化鳃與自然氧化矽之間發生一種固態 反應,導致減低自然氧化矽,並留下一種有序2χ1結構,而 有t氧,及矽餘留在基板表面。而且,這形成一樣板, 供隨後增長一有序單晶氧化物層。 根據本發明之一種實施例,自基板之表面除去氧化矽後 ,將基板冷卻至溫度在約2〇〇-8〇〇它之範圍,並藉分子束磊 晶在樣板層增長一層鈦酸鳃。在MBE裝置開啟光閘,使鳃 ,鈦及氧源露出,藉以起始MBE方法。鳃及鈦比約為丨:i 。將氧之部份壓力最初設定在一最小值,以在增長速率約 0.3-0.5¾微米,每分鐘增長化學計量鈦酸鳃。在起始增長 鈦酸鳃後,使氧之部份壓力增加高於初始最小值。氧之超 壓力導致在下面基板與增長鈦酸鳃層間之介面增長一非晶 質氧化矽層。氧化矽層之增長起因於氧擴散通過增長鈦酸 銘層’至氧在下面基板之表面與矽反應之介面。鈦酸趣增 裝 訂
O:\73\73834-920808 DOCN 4 -12
本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 557584
t曰处種有序早晶,而結晶取向相對於下面基板之有序2x1 結晶結構旋轅4 $。 姓曰、 。在鈦鉍鳃層否則因為在矽基板與增長 1之阳格$數之小失配而可能存在之應變,在非晶質 氧化矽中間層減輕。 在鈥酸趣層已增長至所希望之厚度後,單晶鈥酸鋰由一 有助f於隨後增長所希望包覆層材料之暴晶層之樣板層予 以加| ^供隨後增長-層8·,敷著1_2原子層之材料, 以开y成Sr_〇接合,藉以終止增長,MBE增長鈦酸鳃單晶 層藉以可予以加蓋。要不然,如果容納緩衝層為鈦酸鋇, 可形成一 Ba-Ο接合。 經形成單晶容納緩衝層24 ,便可形成一單晶波導管。 在一種實施例,藉金屬有機化學蒸敷(metal 〇@心 chemical vapor deposition,簡稱 MOCVD)將一層 SBN: 60敷 著在層24上面,並且較佳為予以軸線取向,以供晶格匹配 。藉相同方法將較佳為SBN: 75之心層28敷著在底包覆層 26上面。在一種對稱組態,以相同包覆層材料包圍心層, 在該情形,可將SBN: 60之包覆層30敷著在心層上面。心 層及包覆層厚度根據導入至波導管(心層)之光之波長而有所 變化。 圖3以剖面例示一根據本發明另一實施例之波導管結構4〇 之一部份。除了省略頂包覆層外,結構40為相似於先前所 說明之波導管結構20。如先前所討論,較佳為以一種具有 折射率低於心層之材料或物質包圍心層。結構40包括一有 折射率之心層28及一有折射率以之底包覆層26,其中 O:\73\73834-920808 D0C\ 4 - 13 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 557584
m>n3。在反對稱系統,頂及底包覆層具有不同之折射率, 或要不然’可整個省略包覆層之一。只要周圍包覆層或媒 質具有折射率低於i,波例如光波,將會繼續橫過心層 ’而很少損失。 在本案實施例之一方面,底包覆層26具有折射率n3,心層 馨 有折射率ηι,及空氣鄰接心層28,其中空氣通常具有 折射率等於1,並且1<ηι>η3。 裝 請予察知,先前所說明之結構2〇及4〇,以及下列結構, 可予以作成圖案及蝕刻。特別是,波導管結構之心層及/或 包覆層,可以一種在+導體業界戶斤熟知之方心作成圖案 及蚀刻。更特別是,在結構中所考慮之層,可作成圖案及 蝕刻,以增強波行進,界定波之輸入及輸出等。 訂 圖4以剖面略示一根據本發明實施例之波導管結構45之頂 =圖部份。除了波導管結構45包括另外元件,以形成一調 變器外,結構45為相似於先前所說明之波導管結構2〇及4〇 線 特別疋,結構45包括一結構46,包括心層及包覆層,及 一(諸)電極47。 外4凋變器一般為在心層之區域導入電荷或場,藉以改 變行進波之特徵。例如,在電壓供給至電極47時,便產生 &制電%。在此實例,一光波(例示為hv)可藉自周圍包覆層 或2氣之内部反射行進通過心層。供給至(諸)電極47之電壓 在行進波之路徑產生一定之電場或電荷。在存在電效應時 ,波特徵改變(調變),因此改變(調變)行進波(例示為^,)之 行進模式,相位等。
557584 A7 「 ___ B7 五、發明説明(彳2 ) 在本案實施例之一方面,在矽基板之至少一部份,使用 半導體業界所常使用之習知矽裝置處理技術,形成短劃線 48所略示之電組件。電組件48如線49所概括例示,予以電 耦合至(諸)電極47。組件48可為一主動半導體組件,適當組 態為提供電信號至(諸)電極47,例如一積體電路諸如CMOS 積體電路。組件48可另外或替代性包括一個或多個被動組 件。一層適當絕緣材料(未示)可覆蓋電組件48,以防止電短 路等。 圖5以剖面略示一根據本發明另一實施例之波導管結構5〇 之一邵份。結構50為相似於先前所說明之結構2〇及45。結 構50包括一適合波行進之心層54。如圖所示,結構5〇包括 一較佳為折射率低於心層54之折射率之頂包覆層。然而, 請予察知,可省略頂包覆層(如圖3中所例示),並且一種具 有折射率低於心層54之適當媒質諸如空氣可鄰接心層。 結構50另包括在一層電介質材料52上面之一個或多個電 極56。在本案實施例之一方面,可如先前供結構2〇,仂及 45所說明形成結構5〇。形成結構5〇之層然後可予以向後蝕 刻,以使基板在不同區域露出。例如,結構5〇可予以向後 蝕刻,除其他層外,形成一包含心層及包覆層之,,台面,,。 然後可將一種電介質物質52敷著在靠近其餘台面之區域 。一種適當電介質包括諸如Si〇2及SiN3等材料。然後可將 (;者)私極56置於(諸)電介質層52上面,並電耦合至台面。在 本案貫施例之又一方面,將一電組件58電耦合至(諸)電極56 ,以提供電荷或場。因此,完全實現氧化物基電光學裝置 O:\73\73834-920808 D〇C\ 4 λ c -15 · k張尺舰财格(2igT^公董)------- 557584 A7 B7 五、發明説明(13 ) 與矽電路之單片式整合。 圖6以剖面略示一根據本發明又一實施例之波導管結構60 之頂視圖。結構60係以任何先前所說明之方法製成,並予 另夕卜製成在一種Mach-Zehnder或類似組態。Mach-Zehnder 干涉儀設計62包括二臂,其導致行進波(例示為hv)劃分, 並沿二完全相同,但隔開之路徑繼續行進。在無外部電壓 時,在Mach-Zehnder干涉儀之二臂之光學場經歷完全相同 之相移,並且建設性干涉。在干涉儀之一臂,可將電壓供 給至可使對應波(概括例示為π調變”光波hv’)相移之一個或 多個電極64。另外相移可能破壞干涉之建設性質,並減低 所傳輸之強度。特別是,在二臂間之相位差等於7Γ (pi)時, 因為在該情形所發生之破壞性干涉,而無光可傳輸。因此 ,調變器之電π切換π特性可控制光或其缺少之量。一至少 部份在結構60之基板(例如矽半導體基板)所形成之電組件66 ,可適當耦合至(諸)電極64,以提供調變所需要之電信號。 以上所說明之方法,例示一種供形成一包括一碎基板, 一覆蓋氧化物層,及單晶心層以及包覆層之波導管結構之 方法,其方便由ΜΒΕ及MOCVD法予以說明。然而,請予察 知,任何以上詳細說明之方法,也可藉化學蒸敷(chemical vapor deposition,簡稱 CVD),物理蒸敷(physical vapor deposition,簡稱 PVD),脈動雷射敷著(pulsed laser deposition,簡稱PLD)之方法,或類似方法予以實施。 在以上所述詳細說明,本發明經已參照特定實施例予以 說明。然而,一般精於此項技藝者將會察知,可作成各種 O:\73\73834-920808 D0C\ 4 - 16 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 557584 五、發明説明(Μ I改及變化’而不偏離如在以下申請專利範圍所闡示本發 明之範圍。因之,詳細說明及圖式係視為例證性而非限制 性意義’並且所有此等修改均意為包括在本發明之範圍以 内。 以上業經就特定實施例說明種種益處,其他諸多優點, 及問題之解決辦法。然而,所發生或變成較顯著之種種益 處,優點,及問題之解決辦法,以及可導致任何益處,優 點,士解決辦法之任何(諸)元件,不解釋為任何或所有申請 專利範圍之關鍵性,所需要,或必不可少之特色或元件。 —:::所稱,’包含"一詞或其任何其他變化,意為涵蓄 -種非專屬之内含’因而一種過程: -清單元件之裝置,不僅包括此等元包含 白列示或此過程,方法,物σ,切/ %且可包括未明 物抑或裝置所固有之其他元件。 O:\73\73834-920808 D〇C\ G張尺度適用中國國A4規格(210X297破 -17·

Claims (1)

  1. ^/584
    化物層間之非晶質層。 申明專利範圍第13項之結構,其中非晶質層 氣化物。 •如申睛專利範圍第14項之結構,其中非晶質層包八— 硬。 3氧 如申請專利範圍第1項之結構,另包含 一種波調變結構,包含:一單晶半導體基板; 一形成覆蓋基板之單晶氧化物層; 一形成在氧化物層上面之單晶心層; 一形成靠近心層之單晶包覆層;以及 一與心層電連通之電極。 如申請專利範圍第17項之結構,其中基板包含矽。 19·如申請專利範圍第17項之結構,其中氧化物層包含 選自由鹼土金屬鈦酸鹽所組成類組之氧化物。2〇·如申請專利範圍第19項之結構,其中氧化物層包4 SrzBai-ZTi〇3,其中z為自0至1之範圍。 Q 1 1 •如申睛專利範圍第17項之結構,包含一種對稱組態。 22·如申請專利範圍第17項之結構,包含一種反對稱組態。 23·如申請專利範圍第以項之結構,另包含一至少部份在基 板之電裝置,其中該裝置予以電耦合至電極。 24·如申請專利範圍第23項之結構,其中該裝置包含一矽基 裝置。 25.如申請專利範圍第24項之結構,其中該裝置包含一 14. 15 16,17. 18 O:\73\73834-920808 D〇C\ 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 包含 種 化 波調變器 種 裴 訂 線 557584 A8 B8 C8 D8
    、申請專利範圍 CMOS 〇 26·=料利範圍第17項之結構,另包含—在單晶基板及 早曰日氧化物層之介面之非晶質氧化物層。 一種製造波導管結構之方法,包含下列步騾·· 提供一單晶半導體基板; 形成一覆蓋基板之單晶氧化物層; 形成一在氧化物層上面之心層;以及 形成一至少部份圍繞心層之包覆層。 Μ.如申請專利範圍第27項之方法,其中形成單晶氧化物層 <步驟’包含藉-種選自由分子束蟲晶,化學蒸敷,物 理蒸敷,及脈動雷射敷著所組成類組之方法磊晶辩 化物層。 ^虱 29·如申請專利範圍第27項之方法,其中形成單晶氧化物層 足步驟,包含磊晶增長一層,包含内含SrzBaizTi〇3之層 ’其中z為自〇至1之範圍。 Θ 30·如申請專利範圍第27項之方法 管之步驟。 3 1 ·如申請專利範圍第27項之方法 導管之步驟。 32.如申請專利範圍第π項之方法 包含敷著一層i尼酸總鋇(SBN)。 33·如申請專利範圍第32項之方法 ," ㈣〜少哪,係 一選自由金屬有機化學蒸敷,脈動雷射敷著,化取节 及分子束麻晶所組成類組之方法。 π 27 另包含形成一對稱波導 另包含形成一反對稱波 其中形成一心層之步驟 其中敷著之步驟, 係藉 O:\73\73834-920808DOC\ 5 -3 - 本泜張尺度適用中國國家標準(CNS) Α4規格(210Χ 297公釐) 557584 A8 B8 C8 D8 六、申請專利範圍 34·如申請專利範圍第32項之方法,其中形成一心層之步驟 另包含軸線取向,以使心層及下面層晶格匹配。 3 5.如申請專利範圍第27項之方法,其中形成一包覆層之步 驟包含敷著一層鈮酸鳃鋇(SBN)。 36. 如申請專利範圍第27項之方法,其中形成一包覆層之步 驟包含形成一單晶包覆層。 37. 如申請專利範圍第28項之方法,其中形成一包覆層之步 驟包含: 在氧化物層上面形成一底包覆層;以及 在心層上面形成一頂包覆層, 從而包覆層實際包圍心層。 38. 如申請專利範圍第37項之方法,其中形成一頂包覆層另 包含形成一對稱結構。 39. 如申請專利範圍第27項之方法,另包含形成一波調變器 與心層電連通之步騾。 40. 如申請專利範圍第39項之方法,其中形成一波調變器之 步驟包含形成一 Mach-Zehnder干涉儀。 41. 如申請專利範圍第39項之方法,其中形成一波調變器之 步驟包含: 向後I虫刻層使基板露出,以形成一台面,其中台面包 含心層及包覆層; 在向後蝕刻區域敷著一種電介質材料;以及 在電介質材料上面形成一電極。 ! 42.如申請專利範圍第41項之方法,其中敷著一種電介質材 O:\73\73834-920808 DOC\ 5 - 4 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 557584 A8 B8 C8 D8 六、申請專利範圍 料之步驟包含敷著氧化矽或氮化矽之一。 43.如申請專利範圍第41項之方法,另包含下列步驟: 至少部份在基板形成一電裝置;以及 將裝置電耦合至電極。 44·如申請專利範圍第43項之方法,其中形成之步驟包含至 少部份在基板形成一矽基積體電路。 45·如申請專利範圍第27項之方法,其中形成一心層之步騾 包含形成一單晶心層。 O:\73\73834-920808 DOC\ 5 - 5 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
TW090123359A 2000-09-26 2001-09-21 Electro-optic structure and process for fabricating same TW557584B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/669,602 US6493497B1 (en) 2000-09-26 2000-09-26 Electro-optic structure and process for fabricating same

Publications (1)

Publication Number Publication Date
TW557584B true TW557584B (en) 2003-10-11

Family

ID=24686965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090123359A TW557584B (en) 2000-09-26 2001-09-21 Electro-optic structure and process for fabricating same

Country Status (10)

Country Link
US (1) US6493497B1 (zh)
EP (1) EP1354227B9 (zh)
JP (1) JP2004527778A (zh)
KR (1) KR100809860B1 (zh)
CN (1) CN1239930C (zh)
AT (1) ATE314669T1 (zh)
AU (1) AU2001287142A1 (zh)
DE (1) DE60116381T2 (zh)
TW (1) TW557584B (zh)
WO (1) WO2002027362A2 (zh)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807352B2 (en) * 2001-02-11 2004-10-19 Georgia Tech Research Corporation Optical waveguides with embedded air-gap cladding layer and methods of fabrication thereof
US6785458B2 (en) * 2001-02-11 2004-08-31 Georgia Tech Research Corporation Guided-wave optical interconnections embedded within a microelectronic wafer-level batch package
JP4103421B2 (ja) * 2001-03-28 2008-06-18 セイコーエプソン株式会社 電子デバイス及び電子機器
GB2385427A (en) * 2002-02-06 2003-08-20 Sdl Integrated Optics Ltd Optical devices
US6999670B1 (en) * 2002-08-27 2006-02-14 Luxtera, Inc. Active waveguides for optoelectronic devices
US7388259B2 (en) * 2002-11-25 2008-06-17 International Business Machines Corporation Strained finFET CMOS device structures
US7020374B2 (en) * 2003-02-03 2006-03-28 Freescale Semiconductor, Inc. Optical waveguide structure and method for fabricating the same
US6845198B2 (en) * 2003-03-25 2005-01-18 Sioptical, Inc. High-speed silicon-based electro-optic modulator
WO2004095084A2 (en) * 2003-04-23 2004-11-04 Siophcal, Inc. Sub-micron planar lightwave devices formed on an soi optical platform
US6887798B2 (en) * 2003-05-30 2005-05-03 International Business Machines Corporation STI stress modification by nitrogen plasma treatment for improving performance in small width devices
US7329923B2 (en) * 2003-06-17 2008-02-12 International Business Machines Corporation High-performance CMOS devices on hybrid crystal oriented substrates
US7279746B2 (en) * 2003-06-30 2007-10-09 International Business Machines Corporation High performance CMOS device structures and method of manufacture
US6993212B2 (en) * 2003-09-08 2006-01-31 Intel Corporation Optical waveguide devices having adjustable waveguide cladding
US7410846B2 (en) 2003-09-09 2008-08-12 International Business Machines Corporation Method for reduced N+ diffusion in strained Si on SiGe substrate
US6890808B2 (en) * 2003-09-10 2005-05-10 International Business Machines Corporation Method and structure for improved MOSFETs using poly/silicide gate height control
US6887751B2 (en) * 2003-09-12 2005-05-03 International Business Machines Corporation MOSFET performance improvement using deformation in SOI structure
US7170126B2 (en) * 2003-09-16 2007-01-30 International Business Machines Corporation Structure of vertical strained silicon devices
US6869866B1 (en) 2003-09-22 2005-03-22 International Business Machines Corporation Silicide proximity structures for CMOS device performance improvements
US7144767B2 (en) * 2003-09-23 2006-12-05 International Business Machines Corporation NFETs using gate induced stress modulation
US6872641B1 (en) 2003-09-23 2005-03-29 International Business Machines Corporation Strained silicon on relaxed sige film with uniform misfit dislocation density
US7119403B2 (en) 2003-10-16 2006-10-10 International Business Machines Corporation High performance strained CMOS devices
US7037770B2 (en) 2003-10-20 2006-05-02 International Business Machines Corporation Method of manufacturing strained dislocation-free channels for CMOS
US7303949B2 (en) 2003-10-20 2007-12-04 International Business Machines Corporation High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture
US7129126B2 (en) 2003-11-05 2006-10-31 International Business Machines Corporation Method and structure for forming strained Si for CMOS devices
US7015082B2 (en) * 2003-11-06 2006-03-21 International Business Machines Corporation High mobility CMOS circuits
US7029964B2 (en) * 2003-11-13 2006-04-18 International Business Machines Corporation Method of manufacturing a strained silicon on a SiGe on SOI substrate
US7122849B2 (en) * 2003-11-14 2006-10-17 International Business Machines Corporation Stressed semiconductor device structures having granular semiconductor material
US7247534B2 (en) 2003-11-19 2007-07-24 International Business Machines Corporation Silicon device on Si:C-OI and SGOI and method of manufacture
US7198995B2 (en) 2003-12-12 2007-04-03 International Business Machines Corporation Strained finFETs and method of manufacture
US7247912B2 (en) 2004-01-05 2007-07-24 International Business Machines Corporation Structures and methods for making strained MOSFETs
US7118999B2 (en) 2004-01-16 2006-10-10 International Business Machines Corporation Method and apparatus to increase strain effect in a transistor channel
US7202132B2 (en) 2004-01-16 2007-04-10 International Business Machines Corporation Protecting silicon germanium sidewall with silicon for strained silicon/silicon germanium MOSFETs
US7381609B2 (en) 2004-01-16 2008-06-03 International Business Machines Corporation Method and structure for controlling stress in a transistor channel
US7923782B2 (en) * 2004-02-27 2011-04-12 International Business Machines Corporation Hybrid SOI/bulk semiconductor transistors
US7205206B2 (en) * 2004-03-03 2007-04-17 International Business Machines Corporation Method of fabricating mobility enhanced CMOS devices
US7504693B2 (en) 2004-04-23 2009-03-17 International Business Machines Corporation Dislocation free stressed channels in bulk silicon and SOI CMOS devices by gate stress engineering
GB2430306B (en) * 2004-05-28 2009-10-21 Advanced Micro Devices Inc Semiconductor structure comprising a stress sensitive element and method of measuring a stress in a semiconductor structure
DE102004026145A1 (de) * 2004-05-28 2006-05-11 Advanced Micro Devices, Inc., Sunnyvale Halbleiterstruktur mit einem spannungsempfindlichen Element und Verfahren zum Messen einer elastischen Spannung in einer Halbleiterstruktur
US7223994B2 (en) 2004-06-03 2007-05-29 International Business Machines Corporation Strained Si on multiple materials for bulk or SOI substrates
US7037794B2 (en) * 2004-06-09 2006-05-02 International Business Machines Corporation Raised STI process for multiple gate ox and sidewall protection on strained Si/SGOI structure with elevated source/drain
TWI463526B (zh) * 2004-06-24 2014-12-01 Ibm 改良具應力矽之cmos元件的方法及以該方法製備而成的元件
US7227205B2 (en) * 2004-06-24 2007-06-05 International Business Machines Corporation Strained-silicon CMOS device and method
US7288443B2 (en) 2004-06-29 2007-10-30 International Business Machines Corporation Structures and methods for manufacturing p-type MOSFET with graded embedded silicon-germanium source-drain and/or extension
US7217949B2 (en) * 2004-07-01 2007-05-15 International Business Machines Corporation Strained Si MOSFET on tensile-strained SiGe-on-insulator (SGOI)
US6991998B2 (en) * 2004-07-02 2006-01-31 International Business Machines Corporation Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer
US7384829B2 (en) 2004-07-23 2008-06-10 International Business Machines Corporation Patterned strained semiconductor substrate and device
WO2006028477A1 (en) * 2004-09-07 2006-03-16 Massachusetts Institute For Technology Fabrication of electro-optical structures
US7193254B2 (en) * 2004-11-30 2007-03-20 International Business Machines Corporation Structure and method of applying stresses to PFET and NFET transistor channels for improved performance
US7238565B2 (en) 2004-12-08 2007-07-03 International Business Machines Corporation Methodology for recovery of hot carrier induced degradation in bipolar devices
US7262087B2 (en) * 2004-12-14 2007-08-28 International Business Machines Corporation Dual stressed SOI substrates
US7173312B2 (en) * 2004-12-15 2007-02-06 International Business Machines Corporation Structure and method to generate local mechanical gate stress for MOSFET channel mobility modification
US7274084B2 (en) * 2005-01-12 2007-09-25 International Business Machines Corporation Enhanced PFET using shear stress
US7432553B2 (en) * 2005-01-19 2008-10-07 International Business Machines Corporation Structure and method to optimize strain in CMOSFETs
US7220626B2 (en) * 2005-01-28 2007-05-22 International Business Machines Corporation Structure and method for manufacturing planar strained Si/SiGe substrate with multiple orientations and different stress levels
US7256081B2 (en) * 2005-02-01 2007-08-14 International Business Machines Corporation Structure and method to induce strain in a semiconductor device channel with stressed film under the gate
US7224033B2 (en) * 2005-02-15 2007-05-29 International Business Machines Corporation Structure and method for manufacturing strained FINFET
US7545004B2 (en) 2005-04-12 2009-06-09 International Business Machines Corporation Method and structure for forming strained devices
US7544577B2 (en) * 2005-08-26 2009-06-09 International Business Machines Corporation Mobility enhancement in SiGe heterojunction bipolar transistors
US7202513B1 (en) * 2005-09-29 2007-04-10 International Business Machines Corporation Stress engineering using dual pad nitride with selective SOI device architecture
US20070096170A1 (en) * 2005-11-02 2007-05-03 International Business Machines Corporation Low modulus spacers for channel stress enhancement
US20070099360A1 (en) * 2005-11-03 2007-05-03 International Business Machines Corporation Integrated circuits having strained channel field effect transistors and methods of making
US7655511B2 (en) * 2005-11-03 2010-02-02 International Business Machines Corporation Gate electrode stress control for finFET performance enhancement
US7785950B2 (en) * 2005-11-10 2010-08-31 International Business Machines Corporation Dual stress memory technique method and related structure
US7709317B2 (en) * 2005-11-14 2010-05-04 International Business Machines Corporation Method to increase strain enhancement with spacerless FET and dual liner process
US7348638B2 (en) * 2005-11-14 2008-03-25 International Business Machines Corporation Rotational shear stress for charge carrier mobility modification
US7564081B2 (en) * 2005-11-30 2009-07-21 International Business Machines Corporation finFET structure with multiply stressed gate electrode
US7776695B2 (en) * 2006-01-09 2010-08-17 International Business Machines Corporation Semiconductor device structure having low and high performance devices of same conductive type on same substrate
US7863197B2 (en) 2006-01-09 2011-01-04 International Business Machines Corporation Method of forming a cross-section hourglass shaped channel region for charge carrier mobility modification
US7635620B2 (en) * 2006-01-10 2009-12-22 International Business Machines Corporation Semiconductor device structure having enhanced performance FET device
US20070158743A1 (en) * 2006-01-11 2007-07-12 International Business Machines Corporation Thin silicon single diffusion field effect transistor for enhanced drive performance with stress film liners
US7691698B2 (en) 2006-02-21 2010-04-06 International Business Machines Corporation Pseudomorphic Si/SiGe/Si body device with embedded SiGe source/drain
US8461009B2 (en) * 2006-02-28 2013-06-11 International Business Machines Corporation Spacer and process to enhance the strain in the channel with stress liner
US7608489B2 (en) 2006-04-28 2009-10-27 International Business Machines Corporation High performance stress-enhance MOSFET and method of manufacture
US7521307B2 (en) * 2006-04-28 2009-04-21 International Business Machines Corporation CMOS structures and methods using self-aligned dual stressed layers
US7615418B2 (en) 2006-04-28 2009-11-10 International Business Machines Corporation High performance stress-enhance MOSFET and method of manufacture
US8853746B2 (en) * 2006-06-29 2014-10-07 International Business Machines Corporation CMOS devices with stressed channel regions, and methods for fabricating the same
US7790540B2 (en) 2006-08-25 2010-09-07 International Business Machines Corporation Structure and method to use low k stress liner to reduce parasitic capacitance
US7462522B2 (en) 2006-08-30 2008-12-09 International Business Machines Corporation Method and structure for improving device performance variation in dual stress liner technology
US8754446B2 (en) 2006-08-30 2014-06-17 International Business Machines Corporation Semiconductor structure having undercut-gate-oxide gate stack enclosed by protective barrier material
US20080248598A1 (en) * 2007-04-09 2008-10-09 Rohit Pal Method and apparatus for determining characteristics of a stressed material using scatterometry
US8115254B2 (en) 2007-09-25 2012-02-14 International Business Machines Corporation Semiconductor-on-insulator structures including a trench containing an insulator stressor plug and method of fabricating same
US8492846B2 (en) 2007-11-15 2013-07-23 International Business Machines Corporation Stress-generating shallow trench isolation structure having dual composition
US9070818B2 (en) * 2009-07-17 2015-06-30 Soitec Methods and structures for bonding elements
US8598006B2 (en) 2010-03-16 2013-12-03 International Business Machines Corporation Strain preserving ion implantation methods
US9217830B2 (en) 2010-05-14 2015-12-22 Cornell University Electro-optic modulator structures, related methods and applications
US10718901B2 (en) 2013-06-26 2020-07-21 Micron Technology, Inc. Photonic device having a photonic crystal lower cladding layer provided on a semiconductor substrate
US9595805B2 (en) 2014-09-22 2017-03-14 International Business Machines Corporation III-V photonic integrated circuits on silicon substrate
US9395489B2 (en) 2014-10-08 2016-07-19 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material
US9344200B2 (en) 2014-10-08 2016-05-17 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
CN115151849A (zh) 2020-01-29 2022-10-04 普赛昆腾公司 低损耗高效率光子移相器
CN115427855A (zh) 2020-03-03 2022-12-02 普赛昆腾公司 光子设备的制造方法

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670213A (en) 1969-05-24 1972-06-13 Tokyo Shibaura Electric Co Semiconductor photosensitive device with a rare earth oxide compound forming a rectifying junction
US4242595A (en) 1978-07-27 1980-12-30 University Of Southern California Tunnel diode load for ultra-fast low power switching circuits
US4424589A (en) 1980-04-11 1984-01-03 Coulter Systems Corporation Flat bed scanner system and method
US4289920A (en) 1980-06-23 1981-09-15 International Business Machines Corporation Multiple bandgap solar cell on transparent substrate
DE3168688D1 (en) 1980-11-06 1985-03-14 Toshiba Kk Method for manufacturing a semiconductor device
US4482422A (en) 1982-02-26 1984-11-13 Rca Corporation Method for growing a low defect monocrystalline layer on a mask
US4773063A (en) 1984-11-13 1988-09-20 University Of Delaware Optical wavelength division multiplexing/demultiplexing system
US4748485A (en) 1985-03-21 1988-05-31 Hughes Aircraft Company Opposed dual-gate hybrid structure for three-dimensional integrated circuits
JPS6263828A (ja) 1985-09-06 1987-03-20 Yokogawa Electric Corp 振動式トランスジューサ
US4901133A (en) 1986-04-02 1990-02-13 Texas Instruments Incorporated Multilayer semi-insulating film for hermetic wafer passivation and method for making same
JPS62245205A (ja) * 1986-04-17 1987-10-26 Nec Corp 薄膜光導波路およびその作製方法
US5511238A (en) 1987-06-26 1996-04-23 Texas Instruments Incorporated Monolithic microwave transmitter/receiver
JPH0766922B2 (ja) 1987-07-29 1995-07-19 株式会社村田製作所 半導体装置の製造方法
JPH0695554B2 (ja) 1987-10-12 1994-11-24 工業技術院長 単結晶マグネシアスピネル膜の形成方法
US5073981A (en) 1988-01-22 1991-12-17 At&T Bell Laboratories Optical communication by injection-locking to a signal which modulates an optical carrier
US5227196A (en) 1989-02-16 1993-07-13 Semiconductor Energy Laboratory Co., Ltd. Method of forming a carbon film on a substrate made of an oxide material
US4999842A (en) 1989-03-01 1991-03-12 At&T Bell Laboratories Quantum well vertical cavity laser
US4990974A (en) 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5067809A (en) 1989-06-09 1991-11-26 Oki Electric Industry Co., Ltd. Opto-semiconductor device and method of fabrication of the same
US5504035A (en) 1989-08-28 1996-04-02 Lsi Logic Corporation Process for solder ball interconnecting a semiconductor device to a substrate using a noble metal foil embedded interposer substrate
US5055445A (en) 1989-09-25 1991-10-08 Litton Systems, Inc. Method of forming oxidic high Tc superconducting materials on substantially lattice matched monocrystalline substrates utilizing liquid phase epitaxy
US5051790A (en) 1989-12-22 1991-09-24 David Sarnoff Research Center, Inc. Optoelectronic interconnections for integrated circuits
JPH088214B2 (ja) 1990-01-19 1996-01-29 三菱電機株式会社 半導体装置
US6362017B1 (en) 1990-02-28 2002-03-26 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US5310707A (en) 1990-03-28 1994-05-10 Superconductivity Research Laboratory International Substrate material for the preparation of oxide superconductors
US5281834A (en) 1990-08-31 1994-01-25 Motorola, Inc. Non-silicon and silicon bonded structure and method of manufacture
US5273911A (en) 1991-03-07 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Method of producing a thin-film solar cell
US5185589A (en) 1991-05-17 1993-02-09 Westinghouse Electric Corp. Microwave film bulk acoustic resonator and manifolded filter bank
US5140651A (en) 1991-06-27 1992-08-18 The United States Of America As Represented By The Secretary Of The Air Force Semiconductive guided-wave programmable optical delay lines using electrooptic fabry-perot elements
EP0530972B1 (en) 1991-08-02 1997-11-05 Canon Kabushiki Kaisha Liquid crystal image display unit
EP0536790B1 (en) 1991-10-11 2004-03-03 Canon Kabushiki Kaisha Method for producing semiconductor articles
EP0548391B1 (de) 1991-12-21 1997-07-23 Deutsche ITT Industries GmbH Offsetkompensierter Hallsensor
JP3250673B2 (ja) 1992-01-31 2002-01-28 キヤノン株式会社 半導体素子基体とその作製方法
JP3416163B2 (ja) 1992-01-31 2003-06-16 キヤノン株式会社 半導体基板及びその作製方法
US5155658A (en) 1992-03-05 1992-10-13 Bell Communications Research, Inc. Crystallographically aligned ferroelectric films usable in memories and method of crystallographically aligning perovskite films
US5270298A (en) 1992-03-05 1993-12-14 Bell Communications Research, Inc. Cubic metal oxide thin film epitaxially grown on silicon
US5326721A (en) 1992-05-01 1994-07-05 Texas Instruments Incorporated Method of fabricating high-dielectric constant oxides on semiconductors using a GE buffer layer
US5572052A (en) 1992-07-24 1996-11-05 Mitsubishi Denki Kabushiki Kaisha Electronic device using zirconate titanate and barium titanate ferroelectrics in insulating layer
US5296721A (en) 1992-07-31 1994-03-22 Hughes Aircraft Company Strained interband resonant tunneling negative resistance diode
EP0607435B1 (en) 1992-08-07 1999-11-03 Asahi Kasei Kogyo Kabushiki Kaisha Nitride based semiconductor device and manufacture thereof
US5356509A (en) 1992-10-16 1994-10-18 Astropower, Inc. Hetero-epitaxial growth of non-lattice matched semiconductors
JPH06151872A (ja) 1992-11-09 1994-05-31 Mitsubishi Kasei Corp Fet素子
EP0600303B1 (en) 1992-12-01 2002-02-06 Matsushita Electric Industrial Co., Ltd. Method for fabrication of dielectric thin film
US5248564A (en) 1992-12-09 1993-09-28 Bell Communications Research, Inc. C-axis perovskite thin films grown on silicon dioxide
JPH06196648A (ja) * 1992-12-25 1994-07-15 Fuji Xerox Co Ltd 配向性強誘電体薄膜素子
US5352926A (en) 1993-01-04 1994-10-04 Motorola, Inc. Flip chip package and method of making
JPH06338630A (ja) 1993-05-28 1994-12-06 Omron Corp 半導体発光素子、並びに当該発光素子を用いた光学検知装置、光学的情報処理装置、光結合装置及び発光装置
US5572040A (en) 1993-07-12 1996-11-05 Peregrine Semiconductor Corporation High-frequency wireless communication system on a single ultrathin silicon on sapphire chip
US5394489A (en) 1993-07-27 1995-02-28 At&T Corp. Wavelength division multiplexed optical communication transmitters
JP3333325B2 (ja) 1993-08-26 2002-10-15 株式会社東芝 半導体装置、半導体装置のシミュレーション方法、及び半導体装置のシミュレータ
US5792679A (en) 1993-08-30 1998-08-11 Sharp Microelectronics Technology, Inc. Method for forming silicon-germanium/Si/silicon dioxide heterostructure using germanium implant
JPH07115244A (ja) 1993-10-19 1995-05-02 Toyota Motor Corp 半導体レーザー及びその製造方法
US5549977A (en) 1993-11-18 1996-08-27 Lucent Technologies Inc. Article comprising magnetoresistive material
US5689123A (en) 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
US5883564A (en) 1994-04-18 1999-03-16 General Motors Corporation Magnetic field sensor having high mobility thin indium antimonide active layer on thin aluminum indium antimonide buffer layer
US5828080A (en) 1994-08-17 1998-10-27 Tdk Corporation Oxide thin film, electronic device substrate and electronic device
JPH0864596A (ja) 1994-08-25 1996-03-08 Fujitsu Ltd 半導体装置及びその製造方法
US5504183A (en) 1994-09-12 1996-04-02 Motorola Organometallic fluorescent complex polymers for light emitting applications
US5635741A (en) 1994-09-30 1997-06-03 Texas Instruments Incorporated Barium strontium titanate (BST) thin films by erbium donor doping
US5473047A (en) 1994-10-11 1995-12-05 Motorola, Inc. Soluble precursor to poly (cyanoterephthalydene) and method of preparation
US5486406A (en) 1994-11-07 1996-01-23 Motorola Green-emitting organometallic complexes for use in light emitting devices
JPH08148968A (ja) 1994-11-24 1996-06-07 Mitsubishi Electric Corp 薄膜圧電素子
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
US5937274A (en) 1995-01-31 1999-08-10 Hitachi, Ltd. Fabrication method for AlGaIn NPAsSb based devices
US5552547A (en) 1995-02-13 1996-09-03 Shi; Song Q. Organometallic complexes with built-in fluorescent dyes for use in light emitting devices
US5610744A (en) 1995-02-16 1997-03-11 Board Of Trustees Of The University Of Illinois Optical communications and interconnection networks having opto-electronic switches and direct optical routers
US5679965A (en) 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US5528067A (en) 1995-05-08 1996-06-18 Hughes Aircraft Company Magnetic field detection
US5753934A (en) 1995-08-04 1998-05-19 Tok Corporation Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
EP0765045B1 (en) 1995-09-21 2001-12-19 Alcatel Arrangement for amplifying and combining optical signals, and method for upstream transmission realised therewith
US5659180A (en) 1995-11-13 1997-08-19 Motorola Heterojunction interband tunnel diodes with improved P/V current ratios
JP3036424B2 (ja) 1996-01-12 2000-04-24 日本電気株式会社 信号再生機能を有する光中継器
FR2744578B1 (fr) 1996-02-06 1998-04-30 Motorola Semiconducteurs Amlificateur hautes frequences
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5801072A (en) 1996-03-14 1998-09-01 Lsi Logic Corporation Method of packaging integrated circuits
DE19712496A1 (de) 1996-03-26 1997-10-30 Mitsubishi Materials Corp Piezoelektrische Dünnfilm-Bauelemente
TW410272B (en) 1996-05-07 2000-11-01 Thermoscan Lnc Enhanced protective lens cover
US5863326A (en) 1996-07-03 1999-01-26 Cermet, Inc. Pressurized skull crucible for crystal growth using the Czochralski technique
US6023082A (en) 1996-08-05 2000-02-08 Lockheed Martin Energy Research Corporation Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material
US5987011A (en) 1996-08-30 1999-11-16 Chai-Keong Toh Routing method for Ad-Hoc mobile networks
US5841931A (en) * 1996-11-26 1998-11-24 Massachusetts Institute Of Technology Methods of forming polycrystalline semiconductor waveguides for optoelectronic integrated circuits, and devices formed thereby
US5864543A (en) 1997-02-24 1999-01-26 At&T Wireless Services, Inc. Transmit/receive compensation in a time division duplex system
US5872493A (en) 1997-03-13 1999-02-16 Nokia Mobile Phones, Ltd. Bulk acoustic wave (BAW) filter having a top portion that includes a protective acoustic mirror
ATE550461T1 (de) 1997-04-11 2012-04-15 Nichia Corp Wachstumsmethode für einen nitrid-halbleiter
US6150239A (en) 1997-05-31 2000-11-21 Max Planck Society Method for the transfer of thin layers monocrystalline material onto a desirable substrate
KR100243294B1 (ko) 1997-06-09 2000-02-01 윤종용 반도체장치의 강유전체 메모리 셀 및 어레이
US6078717A (en) 1997-07-22 2000-06-20 Fuji Xerox Co., Ltd. Opical waveguide device
US5907792A (en) 1997-08-25 1999-05-25 Motorola,Inc. Method of forming a silicon nitride layer
JP4221765B2 (ja) 1997-08-29 2009-02-12 ソニー株式会社 光集積化酸化物装置および光集積化酸化物装置の製造方法
US6002375A (en) 1997-09-02 1999-12-14 Motorola, Inc. Multi-substrate radio-frequency circuit
JP3658160B2 (ja) 1997-11-17 2005-06-08 キヤノン株式会社 モールドレス半導体装置
US6049702A (en) 1997-12-04 2000-04-11 Rockwell Science Center, Llc Integrated passive transceiver section
JP3092659B2 (ja) 1997-12-10 2000-09-25 日本電気株式会社 薄膜キャパシタ及びその製造方法
US6011646A (en) 1998-02-20 2000-01-04 The Regents Of The Unviersity Of California Method to adjust multilayer film stress induced deformation of optics
US5993544A (en) 1998-03-30 1999-11-30 Neocera, Inc. Non-linear optical thin film layer system
CA2268997C (en) 1998-05-05 2005-03-22 National Research Council Of Canada Quantum dot infrared photodetectors (qdip) and methods of making the same
US6055179A (en) 1998-05-19 2000-04-25 Canon Kk Memory device utilizing giant magnetoresistance effect
FI108583B (fi) 1998-06-02 2002-02-15 Nokia Corp Resonaattorirakenteita
JPH11354820A (ja) 1998-06-12 1999-12-24 Sharp Corp 光電変換素子及びその製造方法
US6252261B1 (en) 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
TW399309B (en) 1998-09-30 2000-07-21 World Wiser Electronics Inc Cavity-down package structure with thermal via
US6343171B1 (en) 1998-10-09 2002-01-29 Fujitsu Limited Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making
JP3592553B2 (ja) 1998-10-15 2004-11-24 株式会社東芝 窒化ガリウム系半導体装置
US6255198B1 (en) 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6241821B1 (en) 1999-03-22 2001-06-05 Motorola, Inc. Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon
US6248459B1 (en) 1999-03-22 2001-06-19 Motorola, Inc. Semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon
US6107721A (en) 1999-07-27 2000-08-22 Tfr Technologies, Inc. Piezoelectric resonators on a differentially offset reflector
US6291319B1 (en) 1999-12-17 2001-09-18 Motorola, Inc. Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
US6479173B1 (en) 1999-12-17 2002-11-12 Motorola, Inc. Semiconductor structure having a crystalline alkaline earth metal silicon nitride/oxide interface with silicon
US20010013313A1 (en) 2000-02-10 2001-08-16 Motorola, Inc. Apparatus for fabricating semiconductor structures and method of forming the structures
US6313486B1 (en) 2000-06-15 2001-11-06 Board Of Regents, The University Of Texas System Floating gate transistor having buried strained silicon germanium channel layer
US6224669B1 (en) 2000-09-14 2001-05-01 Motorola, Inc. Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon

Also Published As

Publication number Publication date
AU2001287142A1 (en) 2002-04-08
KR100809860B1 (ko) 2008-03-04
WO2002027362A2 (en) 2002-04-04
ATE314669T1 (de) 2006-01-15
WO2002027362A3 (en) 2003-07-31
KR20030051676A (ko) 2003-06-25
EP1354227B9 (en) 2006-06-21
JP2004527778A (ja) 2004-09-09
CN1239930C (zh) 2006-02-01
US6493497B1 (en) 2002-12-10
CN1543580A (zh) 2004-11-03
EP1354227A2 (en) 2003-10-22
EP1354227B1 (en) 2005-12-28
DE60116381D1 (de) 2006-02-02
DE60116381T2 (de) 2006-07-13

Similar Documents

Publication Publication Date Title
TW557584B (en) Electro-optic structure and process for fabricating same
US10718904B2 (en) Thin-film integration compatible with silicon photonics foundry production
US20210072568A1 (en) Heterogeneous structure on an integrated photonics platform
TWI235491B (en) Integrated circuit
TW507301B (en) Semiconductor structure including a partially annealed layer and method of forming the same
TWI480607B (zh) 電子/光子積體電路架構及其製造方法
US20050208694A1 (en) Bonded thin-film structures for optical modulators and methods of manufacture
US20240201525A1 (en) Engineered electro-optic devices
TWI779506B (zh) 光子裝置之製造方法
JPH04355412A (ja) 結晶有機薄膜を含む偏光選択性集積オプトエレクトロニックス装置
TW202336474A (zh) 使用光電材料夾層之相移器
JPH06289341A (ja) 光導波路素子とその製造方法
US9716367B2 (en) Semiconductor optoelectronics and CMOS on sapphire substrate
TWI823061B (zh) 使用透明電極之相移器
JPH06232384A (ja) 光電子電界効果型トランジスタ
TW523809B (en) Monolithic optical system and process for fabricating same
JPH07509689A (ja) シリコン上にエピタキシャル的に成長する立方金属酸化薄膜
TW449935B (en) Electro-optic semiconductor devices and method for making the same
TW508882B (en) Widely tunable laser structure and method for fabricating same
Wessels Thin film ferroelectrics for guided wave devices
WO2006028477A1 (en) Fabrication of electro-optical structures
TWI807389B (zh) 具有標準具補償之高頻寬光子積體電路
US20220373828A1 (en) Optical device and optical communication apparatus
Elshaari et al. PIEZOELECTRIC STRAIN-TUNING of QUANTUM PHOTONIC COMPONENTS
Hu et al. Periodically poled LNOI photonic wires

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees