TW445632B - Integrated CMOS circuit arrangement and method for its production - Google Patents

Integrated CMOS circuit arrangement and method for its production Download PDF

Info

Publication number
TW445632B
TW445632B TW087104881A TW87104881A TW445632B TW 445632 B TW445632 B TW 445632B TW 087104881 A TW087104881 A TW 087104881A TW 87104881 A TW87104881 A TW 87104881A TW 445632 B TW445632 B TW 445632B
Authority
TW
Taiwan
Prior art keywords
layer
mos transistor
channel mos
silicon layer
channel
Prior art date
Application number
TW087104881A
Other languages
English (en)
Inventor
Hermann Fischer
Franz Hofmann
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Application granted granted Critical
Publication of TW445632B publication Critical patent/TW445632B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8256Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using technologies not covered by one of groups H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252 and H01L21/8254
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

45 63 2 A7 _____B7 五、發明説明(1 ) I - H - .^1 —1 - (I I n - In - - H τ {請先閏讀背面之注項再填寫本頁) 當Μ 0 S技術藉由類似的降低尺寸之原理將結構縮減到 最小時,MO S電晶體和C Η 0 S電路之特性基本上仍維持在 微米的範圍之中,但是,例如,在通埴長度約小於2〇〇η 之M0S電晶體的情形中,會發生短通道和穿透效應。 雖然這呰效應部分可Κ藉由增加基板摻雜補償,但是 如此高的基板摻雜特別會導致在通道内之電荷載子移動 率的減少,在通道內之電荷載子移動率的減少尤其在ρ 通道Μ 0 S電晶體中會變的特別明顯。 在CMOS電路配置中,尤其是在反相器,HAND和NOR (¾ ,位移暫存器,記憶體,璉輯和類比電路中,使用製造 之η通道M0S電晶體和ρ通道M0S電晶體不僅具有大小 相同的單位電壓,也有相同的互導和栢同的飽和電流, 其他相同的方法已提出,藉由給定Ρ通道M0S電晶體之 通道寬··長比大於η通道M0S電晶體2倍,建構η通道 M0S電晶體和ρ通道M0S電晶體,Κ完成相同的互導和 相同的飽和電滾(例如,請參見K. Hoffnan在1996年所 著之第三版 VLSI-Entwurf Modelle und Schaltungen [VLSI Design Models and Circuits]第 333到 339頁) 經濟部中央標率局負工消费合作社印裝 ,此係打算補償P通道MOS電晶體中之電洞移動率低於 n通道H0S電晶體中之電子移動率2倍,但是,ρ通道 Μ 0 S電晶體之面積和雜散電容會增加此量測的結果。 A , S a d e k 等人在 1 9 9 5 年 S ο 1 i d ~ S t a t e Eh e c t r 〇 n i c s 第 38期9卷1731-1734頁和K. Ismael在義大利Erice的 1995年 International School of materials science "3 " 本紙張尺度適用中國國家標準(CNS ) Λ4规格(2ΙΟΧ 297公;® ) 445632 經濟部中央標準局員工消費合作社印聚 Α7 Β7 五、發明説明(2 ) and technology的演講論文集第19到20頁提出g由在通 道區提供一受應力的S、vGe層增加p通道M0S電晶體
丄一X X 之通道中的電洞移動率,此層所受之應力係來自其具有 單晶矽晶格常數的實際作用,此層之晶格與^平面匹配 ,為此,會有壓縮應力存在在 SiGe 的X和y方向, 而張開應力則會出現在z方向,其對應於成長方向。此論文中之異 質結構中之假晶層(pseudomorphic layer)以此種方式彈性地受到應 力。為了要製造CH0S電路配置,要形成通道含有Si, Ge 1-x 層之p通道M0S電晶體和形成通道由單晶矽製成之η通 道M0S電晶體,此處需要兩個個別的製程方塊,以製 造Ρ通道M0S電晶體和η通道M0S電晶體。 本發明係根據可Μ降低空間需求和降低製程佈局製造 CMOS積體電路配置之詳加說明的問題,此外,本發明也 詳加說明製造此CMOS電路配置的方法。 此問題係根據本發明藉由申請專利範圍第1項之CMOS 積體電路配置和其產生之申請專利範圍第3項的方來解 決’本發明還包括申請專利範圍附屬項。 根據本發明之CMOS積電路實現在至少具有第一矽層, 受到應力的Si, Ge層和第二矽層之半導體基板中.至
丄一X X 少一 P通道M0S電晶體和至少一 η通道M0S電晶體兩者 皆製作在半導體基板中,本發明中知悉,適當地對Ρ通 道MOS電晶體進行植入’會形成埋入式導電通道(所謂 的埋入式通道),然而在η通道MOS電晶體中,導電通 道係沿著基板表面形成,也就是形成在閘極介電質的 -4 - 本紙張尺度送用中國囤家標準(CNS ) Λ4規格(210ΧΜ7公;f ) -----^—--^— (請先閱讀背面之注意事項再填寫本頁) 訂 445 63 2 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(3) 介面(所謂的表面通道),之後,在CMOS電路配置之 中,在 P通道MOS電晶體區之層中形成通 道,而在η通道MOS電晶體區之第二矽層區中形成導 電通道,結果,電荷載子移動率則由ρ通道MOS電晶 體區中之層和由π通道MOS電晶體區中之 第二矽層決定。 對於P通道MOS電晶體,可以採用Si^Gh層中之 較筒電洞移動率,在Sij.jjGe、層成長時,會在SibyGe^ 層的z方向產生張應力,此z方向之張應力會使重(heavy) 電洞之帶(band)能量增加且會使垂直於應力方向(即,在 電荷載子的傳輸方向)之平面中的T點改變能帶分散,在 此情形下,帶曲線變成像輕電洞者而使電洞質量減輕,在 此情形下,P通道MOS電晶體和π通道MOS電晶體 所需之空間相同,同時,可確定有相同的互導和相同的飽 和電流,因此,ρ通道MOS電晶體和η通道MOS電 晶體可以在一個製程順序中製成,層延伸於n 通道 MOS 電晶體的通道區之下,且不會干擾 n通道 MOS電晶體之工作》
Sii_xGex層之鍺含量最好在25% 和50% 之間,即 X = 0.25〜0_50,受應力的吕^/^層的厚度最好在5ηηι 和ΙΟηιη之間,經常在文獻中稱爲緩衝層且排列在Si^ Gex層之下的第一矽層之厚度最好在3 0nm和70nm之間, 在文獻中經常稱爲帽(cap)層之第二矽層的厚度最好在 5nm 和12nm之間。 第一矽層,受應力的SinGe^層和第二矽層係藉由磊 本紙張尺度適用中國國家標準(CNS)A4規格(2〗0 X 297公釐) ϊ ------I I^---I L----訂 - -------線 (請先閱讀背面之注急事項再填寫本頁) 445632 A7 B7 經濟部中夹標隼局員工消費合作社印製 五、發明説明( 4 ) 1 1 晶 成 長 形 成 茌 至少 在 主 區 域 之 範 圍 中 由 矽 構 成 之 半 導 .ft Mr 體 1 1 基 板 的 主 區 域 上, 適 當 的 半 導 體 基 板 為 早 晶 矽 晶 圓 ) 要 1 1 不 然 就 是 SC I 基板 或 在 主 區 域 之 範 圍 中 由 S i C 構 成 之 基 請 1 先 1 板 0 閱 讀 1 1 定 義 η 通 道 MOS電晶體和Ρ 通道Ν 0 E 電Ϊ %體之工作區的 η 面 1 i 之 1 絶 線 結 構 曰 取 好 先形 成 在 主 區 域 之 上 , 然 後 再 藉 由 選 擇 性 t 1 I 事 喬 晶 成 長 第 一 矽層 受 m 力 的 S i l-xG :層 和 第 二 矽 層 9 項 再 1 此可確保受應力的Si 1- X G ex 層 成 長 » 在 工 作 區 没 有 任 何 缺 填 寫 1 本 陷 〇 頁 ί 1 本 發 明 將 採 用圓 示 之 實 施 範 例 更 詳 細 說 明 於 後 〇 圖 式 1 簡 DD 早 説 明 如 下 : 1 1 第 1 ΓΗ 圆 爲 在 裔晶 成 長 第 一 矽 層 9 受 應 力 之 Si 1 - -X 層. 1 訂 1 和 第 二 砂 層 之 後具 有 絕 緣 結 稱 的 半 導 體 基 板 j 其 界 定 了 P 通 道 MOS 電 晶體 的 工 作 品、 和 P 通 道 M0S 電 P曰體白 β工作區。 1 1 第 2 圖 為 在 形成 閘 極 介 電 質 ’ 閘 極 電 掻 和 源 極 / 汲 極 1 | 區 之 後 的 半 導 體基 板 截 面 圖 0 1 i X I η 型 摻 雜 井 2係用1 80 k e V能量和4 X 10 13 C 1 -2 劑 量 的 砷 藉 由 有 遮 罩 的佈 植 形 成 在 由 具 有 > 例 如 , 對 應 Ω -C m 1 電 阻 率 之 基 本 摻雜 準 位 的 P 型 接 雜 卑 晶 矽 製 成 之 基 板 1 1 中 ( 參 見 第 1 圖) 0 1 | 然 後 藉 由 有 遮罩 的 硼 佈 檀 形 成 P 型 摻 雜 井 3, 硼偽以5 0 1 I 到 7 0 k e V的能量和1 到2 X 10 13 era -2 的 劑 量 佈 植 〇 1 1 之 後 1 在 LO COS 製 程 形 成 绝 線 結 構 4 j 例 如 9 該 結 構 1 I 在 η 型 摻 雜 井 2區域定義p 通道Μ 0 S 電晶體之工作區ί【 1在 J ! P 型 摻 雜 井 3區域定義η 通道M0S -6 - 電晶體之工作區, 二擇 1 1 1 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公犮) 經濟部中央標隼局員工消費合作社印製 445632 A7 __B7___五、發明説明(5 ) 其一地,絶緣結構4也可以在淺溝渠絶緣製程中藉由用絶 緣材料填谋溝渠而形成,此絶緣結構4降到低於ti型摻 雜井2和p型摻雜井3之基板1 ^ 接著藉由使用含有SiH2 Cl2之製程氣體的選擇性磊 晶成長第一矽層5 ,在文獻中常稱為緩衝層之第一矽層 5成長30到7〇nH!厚,此第一矽層5為p型接雜,Μ設定 在稍後製作之η通道H0S電晶體和ρ通道H0S電晶體的 臨限電壓,為此,加入氫化硼(β2Η6)到製程氣體中, 直到層厚達到1 5到2 5 η π為止,然後在沒有氫化硼的情肜 ,再成長沒有摻雜的第一矽層5 ,厚度為10到50πβ,在 成長第一層5期間的製程溫度在7 5 0和8 5 0 t:之間。 之後藉由使用含有GeH4之製程氣體,在550和700Ό 之間的製程溫度,選擇性磊晶成長S卜 G e層6 ,例如 1-x X ,形成之Si 〇0 1層6 ,其緒含量X為0.25,而層厚10 na,二擇其一地,珂K與结含量X為0.5 —起形成層厚 5ηκ 之 Sii_xGe;x^ 6 。 然後藉由使用含有SiH2 Cl2之製程氣體的選擇性磊 晶成長層厚5到12πβ的無摻雜且在文獻上常稱為帽層之 第二矽層7 ,在此情形下,溫度係在550和700TC之間。 接著藉由在下120分鐘的熱氧化法形成由Si02 製成之閘極介電質S ,例如,此形成之閘極介電質8的 層厚為4. 5η® (參見第2匾),在此氧化&期間,大約要 消耗第二矽層7的Si2nm,因此.第二矽層7的使用, 有可能會藉由矽的氧化而形成閘極介電質8 ,以此方式 -7- -------^---d-- (#先聞讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家橾準(CNS ) Λ4Α格(210 X 297公嫠) 445 63 2 A7 B7 經濟部中央標準局員工消費合作社印^ 五、發明説明( ) 1 1 産 生 之 氣 化 矽 因 其 有 較 佳 的 m 久 性 » 所 以 優 於 S ] l G e的 I I 氧 化 物 〇 1 1 對 於 各 種 情 形 下 之 Ρ 通 道 Μ C S 電 晶 體 和 Π 通 道 HOS 電 請 1 先 1 晶 體 的 閘 極 電 極 9 藉 由 沈 積 和 建 構 η —型摻雜β 句多晶 閱 讀 1 | 矽 層 而 形 成 S 之 後 再 m 由 使 用 具 有 2 0到 3 0 k£ V能量和 背 面 I I 之 4到8 X 1 0 15 C Η -2 劑 量 之 硼 及 / 或 BF 2 作 遮 罩 佈 植 S 而 形 t 1 ] 成 用 於 P 通 道 MOS 電 晶 體 之 Ρ 型 摻 雜 源 搔 / 汲 極 區 1 0 項 1 t 再 次 使 用 具 有 1 0 0 - 1 3 0 k eV能 和 4 - 8 X 1 0 15 € nr2劑量之砷 填 寫 本 衣 作 遮 罩 佈 置 1 而 形 成 用 於 η 通 道 M0 S 電 晶 體 之 η 型 摻 雜 頁 1 I 源 極 / 汲 極 區 11 〇 1 1 在 製 程 週 期 中 之 溫 度 負 載 的 結 果 J 硼 摻 雜 <^3 日 在 第 —* 矽 I ί 層 (5 ) 之 中 擴 散 且 分 佈 此 摻 雜 在 表 面 區 域 之 中 ) 在 此 方 1 訂 式 下 對 於 η 通 道 M0 S 電 晶 醱 而 内· 在 表 面 區 域 之 中 可 1 以 得 到 足 夠 高 的 摻 雜 〇 1 1 為 了 最 佳 化 電 晶 體 特 性 $ 可 以 已 知 之 兩 段 式 佈 植 法 分 1 I 別 提 供 L D D 縱 深 和 HD D 縱 深 給 P 型 摻 雜 源 極 / 汲 掻 區 10 1 1 和 η m 摻 雜 源 極 / 汲 棰 區 11 0 | CHOS 電 路 配 置 可 以 已 知 之 沈 積 披 覆 層 開 接 觸 孔 和 形 I 成 金 屬 化 層 等 方 式 完 成 ( 並 未 詳 細 圖 予 說 明 ) ό 1 1 在 各 種 倩 形 下 » η 型 摻 雜 井 2和P 型摻雜井3 都 是 用 1 [ 1 . 5 X 1 0 3 C ]最大雜質濃度形成, 此高雜質濃度偽 1 I 要 防 止 穿 透 效 應 此 高 雜 質 濃 度 在 電 路 配 置 中 是 可 允 許 1 1 的 , 因 為 η 型 摻 雜 井 2和ρ 型摻雜井3都 是 在 晶 晶 之 前 産生 1 I 9 因 此 就 閛 極 介 電 質 8 的 -8 介 面 而 言 1 大 量 的 摻 雜 並 不 1 1 ί 1 1 1 本紙張尺度適用中國國家標準{ CNS ) A4規格(210X 297公楚) 445 63 2 A7 B7 五、發明説明(7 ) ; 能達成。 在上述之CMOS電路配置中,給定應用適當的控制訊號 , 在p通道M0S電晶體配置中,埋入的導電通道係形 成在η型搀雜2的Si Ge層6之中.在另一方面,在
1-X X π通道M0S電晶體配置中,若驅動適當,則導電通道形 成在P型接雜#3中之第二矽層7的表面上。 i I - HI. - -- - I --ΐ - I : - ! - i— I— iv ,1 (請先閱讀背面之注意事項再填寫本頁) 經滴部中央標準局員工消費合作社印聚 _ 9 _ 本纸張尺度適用中國S家標率(CNS ) Λ4規格(210X 297公釐} 4 4 5 6 3 2 A7 B7
頌請-^ .-;否變更原貧質内容 經滴部中央標準局負工消費合作社印裝 五、發明説明(8 ) 符號對照表 1 基板 2 η型摻雜井 3 P型摻雜井 4 絕緣结構 5 第一矽層 6 S ί Ί Ge 層 1-X X 7 第二矽麿 8 閛極介電質 9 閘極電掻 10 p型摻雜之源搔/汲極區 1 1 ti型接雜之源極/汲搔區 -10- 本紙張尺度遙用中國®家標準(CNS >以说格(2丨OXM7公犮) (請先閱讀背面之注意事項再填寫本頁)

Claims (1)

  1. A8 BS C8 D8 六、申請專利範圍 第87i(M881號「CMOS積體電路配置及其製造方法」專利 案 (90年4月修正) A申請專利範圍: 1·—種CMOS積體電路配置,其特徵爲: -提供之半導體基板(1)至少具有一第一矽層(5), 一受應力的SinGh層(6>和一第二矽層(7), -受應力的8丨1_^61[層(6)基本上具有與第一矽層 (5)和第一砂層(7)相同的晶格常數, -受應力的Sine%層⑹在Z方向中具有張應力,此 SihG^層⑹是在Z方向中生長, -p通道MOS電晶體和η通道MOS電晶體係製作 在該半導體基板中= 2·如申請專利範圍第1項之電路配置,其中 -第一矽層(5>具有3〇nm和7〇nm之間的厚度, -受應力的SiuGe,層(6)具有5nm至lOiim之間的厚 度,且鍺含量在5 0原子%和2 5原子%之間, -第二矽層(7)具有Snm和12nm之間的厚度。 經濟部智慧財產局員工消費合作社印製
    145 6 (請先閲讀背面之注意事項再填寫本頁) 3.—種CMOS積體電路配置之製造方法,其特徵爲: -至少在主區域之範圍中由矽組成之半導體基板(1)的 主區域上嘉晶成長第一砂層(5),受應力的Si^Gex 層(6)和第二矽層(7), -受應力的層⑹在Z方向中具有張應力,此 Si^Ge,層⑹是在Z方向中生長, 本紙張尺度適用中國國家標準(CNS ) A4規格(210乂297公釐) 445 63 2 as B8 C8 D8 六、申請專利範圍 -在該半導體基板(1)中形成p通道MOS電晶體和η 通道MOS 電晶體= 4. 如申請專利範圍第3項之方法,其中 -形成絕緣結構以定義一種用於η通道MOS電晶體 之工作區和用於Ρ通道MOS電晶體之工作區, -在成長第一矽層(5>,受應力的層(6)和第 二矽層(7)之後,藉由選擇性磊晶方法分別形成η通 道MOS電晶體和ρ通道MOS電晶體所用之閘極 介電質(8),閘極電極(9)和源極/汲極區(1〇 ,11)。 5. 如申請專利範圍第3或第4項之方法,其中 -形成之第一矽層(5)的厚度在30nm和70nm之間, 形成之第二矽層(7)的厚度在5nm和Unm之間, -形成之8丨1_:^6!(層(6)的厚度在5nm和ι〇ηηι之間, 且鍺含量在50原子%和25原子%之間。 6. 如申請專利範圍第3或第4項之方法, 其中在第一砂層(5)的慕晶成長期間,藉由加質· 以設定π通道MOS電晶體及/或P通道MOS電晶 體之臨限電壓。 7. 如申請專利範圍第3或第4項之方法, 其中嘉晶方法係使用含有SiH^Cl2及/或之製 程氣體,在5S〇°C和850 °C之間的溫度範_中進行。 •2- 本紙張尺度速用中國國家標準(CNS ) A4規格(210x297公釐) (請先閱讀背面之注意事項再填寫本頁) ,1T 經濟部智慧財產局員工消費合作社印製
TW087104881A 1997-05-13 1998-04-01 Integrated CMOS circuit arrangement and method for its production TW445632B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19720008A DE19720008A1 (de) 1997-05-13 1997-05-13 Integrierte CMOS-Schaltungsanordnung und Verfahren zu deren Herstellung

Publications (1)

Publication Number Publication Date
TW445632B true TW445632B (en) 2001-07-11

Family

ID=7829326

Family Applications (1)

Application Number Title Priority Date Filing Date
TW087104881A TW445632B (en) 1997-05-13 1998-04-01 Integrated CMOS circuit arrangement and method for its production

Country Status (6)

Country Link
US (1) US6111267A (zh)
EP (1) EP0884784A1 (zh)
JP (1) JPH10321733A (zh)
KR (1) KR19980086990A (zh)
DE (1) DE19720008A1 (zh)
TW (1) TW445632B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998821B2 (en) 2006-10-05 2011-08-16 United Microelectronics Corp. Method of manufacturing complementary metal oxide semiconductor transistor

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400808B1 (ko) 1997-06-24 2003-10-08 매사츄세츠 인스티튜트 오브 테크놀러지 그레이드된 GeSi층 및 평탄화를 사용한 Si상의 Ge의 쓰레딩 전위 밀도 제어
US7227176B2 (en) * 1998-04-10 2007-06-05 Massachusetts Institute Of Technology Etch stop layer system
JP3592981B2 (ja) * 1999-01-14 2004-11-24 松下電器産業株式会社 半導体装置及びその製造方法
JP2000243854A (ja) * 1999-02-22 2000-09-08 Toshiba Corp 半導体装置及びその製造方法
KR100332108B1 (ko) * 1999-06-29 2002-04-10 박종섭 반도체 소자의 트랜지스터 및 그 제조 방법
US6633066B1 (en) * 2000-01-07 2003-10-14 Samsung Electronics Co., Ltd. CMOS integrated circuit devices and substrates having unstrained silicon active layers
KR100429869B1 (ko) * 2000-01-07 2004-05-03 삼성전자주식회사 매몰 실리콘 저머늄층을 갖는 cmos 집적회로 소자 및기판과 그의 제조방법
US6750130B1 (en) 2000-01-20 2004-06-15 Amberwave Systems Corporation Heterointegration of materials using deposition and bonding
US6602613B1 (en) 2000-01-20 2003-08-05 Amberwave Systems Corporation Heterointegration of materials using deposition and bonding
US6503773B2 (en) 2000-01-20 2003-01-07 Amberwave Systems Corporation Low threading dislocation density relaxed mismatched epilayers without high temperature growth
WO2001093338A1 (en) 2000-05-26 2001-12-06 Amberwave Systems Corporation Buried channel strained silicon fet using an ion implanted doped layer
US6429061B1 (en) * 2000-07-26 2002-08-06 International Business Machines Corporation Method to fabricate a strained Si CMOS structure using selective epitaxial deposition of Si after device isolation formation
AU2001283138A1 (en) * 2000-08-07 2002-02-18 Amberwave Systems Corporation Gate technology for strained surface channel and strained buried channel mosfet devices
WO2002015244A2 (en) 2000-08-16 2002-02-21 Massachusetts Institute Of Technology Process for producing semiconductor article using graded expitaxial growth
US6544854B1 (en) * 2000-11-28 2003-04-08 Lsi Logic Corporation Silicon germanium CMOS channel
US6649480B2 (en) 2000-12-04 2003-11-18 Amberwave Systems Corporation Method of fabricating CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US20020100942A1 (en) * 2000-12-04 2002-08-01 Fitzgerald Eugene A. CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6410371B1 (en) * 2001-02-26 2002-06-25 Advanced Micro Devices, Inc. Method of fabrication of semiconductor-on-insulator (SOI) wafer having a Si/SiGe/Si active layer
US6723661B2 (en) * 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6830976B2 (en) 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6703688B1 (en) 2001-03-02 2004-03-09 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6724008B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
JP3678661B2 (ja) 2001-03-08 2005-08-03 シャープ株式会社 半導体装置
US6940089B2 (en) 2001-04-04 2005-09-06 Massachusetts Institute Of Technology Semiconductor device structure
US20020167048A1 (en) * 2001-05-14 2002-11-14 Tweet Douglas J. Enhanced mobility NMOS and PMOS transistors using strained Si/SiGe layers on silicon-on-insulator substrates
US6900094B2 (en) * 2001-06-14 2005-05-31 Amberwave Systems Corporation Method of selective removal of SiGe alloys
US7301180B2 (en) 2001-06-18 2007-11-27 Massachusetts Institute Of Technology Structure and method for a high-speed semiconductor device having a Ge channel layer
EP1399974A1 (en) * 2001-06-21 2004-03-24 Massachusetts Institute Of Technology Mosfets with strained semiconductor layers
KR100425579B1 (ko) * 2001-07-21 2004-04-03 한국전자통신연구원 게르마늄 조성비에 따라 다른 종류의 소스를 사용하는실리콘 게르마늄 박막 형성 방법
US6730551B2 (en) * 2001-08-06 2004-05-04 Massachusetts Institute Of Technology Formation of planar strained layers
US6974735B2 (en) * 2001-08-09 2005-12-13 Amberwave Systems Corporation Dual layer Semiconductor Devices
US7138649B2 (en) * 2001-08-09 2006-11-21 Amberwave Systems Corporation Dual-channel CMOS transistors with differentially strained channels
ATE449420T1 (de) * 2001-08-09 2009-12-15 Amberwave Systems Corp Cmos bauelemente mit doppelter schicht
KR100433622B1 (ko) * 2001-09-05 2004-05-31 한국전자통신연구원 원자층 에피택시법을 이용한 실리콘 박막, 저매니움 박막 및 실리콘-저매니움 박막 형성 방법
EP1428262A2 (en) 2001-09-21 2004-06-16 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
WO2003028106A2 (en) 2001-09-24 2003-04-03 Amberwave Systems Corporation Rf circuits including transistors having strained material layers
US6703271B2 (en) * 2001-11-30 2004-03-09 Taiwan Semiconductor Manufacturing Company Complementary metal oxide semiconductor transistor technology using selective epitaxy of a strained silicon germanium layer
US7060632B2 (en) 2002-03-14 2006-06-13 Amberwave Systems Corporation Methods for fabricating strained layers on semiconductor substrates
US6995430B2 (en) 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US20030227057A1 (en) 2002-06-07 2003-12-11 Lochtefeld Anthony J. Strained-semiconductor-on-insulator device structures
US7074623B2 (en) 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
US7307273B2 (en) 2002-06-07 2007-12-11 Amberwave Systems Corporation Control of strain in device layers by selective relaxation
US7615829B2 (en) 2002-06-07 2009-11-10 Amberwave Systems Corporation Elevated source and drain elements for strained-channel heterojuntion field-effect transistors
US7335545B2 (en) 2002-06-07 2008-02-26 Amberwave Systems Corporation Control of strain in device layers by prevention of relaxation
WO2003105204A2 (en) * 2002-06-07 2003-12-18 Amberwave Systems Corporation Semiconductor devices having strained dual channel layers
US6982474B2 (en) 2002-06-25 2006-01-03 Amberwave Systems Corporation Reacted conductive gate electrodes
JP4750342B2 (ja) * 2002-07-03 2011-08-17 ルネサスエレクトロニクス株式会社 Mos−fetおよびその製造方法、並びに半導体装置
US6680496B1 (en) * 2002-07-08 2004-01-20 Amberwave Systems Corp. Back-biasing to populate strained layer quantum wells
EP2267762A3 (en) 2002-08-23 2012-08-22 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor heterostructures having reduced dislocation pile-ups and related methods
US6878610B1 (en) * 2002-08-27 2005-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Relaxed silicon germanium substrate with low defect density
US7594967B2 (en) 2002-08-30 2009-09-29 Amberwave Systems Corporation Reduction of dislocation pile-up formation during relaxed lattice-mismatched epitaxy
CN1312758C (zh) * 2002-09-11 2007-04-25 台湾积体电路制造股份有限公司 具有应变平衡结构的cmos元件及其制造方法
US6730576B1 (en) * 2002-12-31 2004-05-04 Advanced Micro Devices, Inc. Method of forming a thick strained silicon layer and semiconductor structures incorporating a thick strained silicon layer
EP1588406B1 (en) 2003-01-27 2019-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structures with structural homogeneity
US6900502B2 (en) * 2003-04-03 2005-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel on insulator device
US6882025B2 (en) * 2003-04-25 2005-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Strained-channel transistor and methods of manufacture
US6867433B2 (en) 2003-04-30 2005-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors
US20050012087A1 (en) * 2003-07-15 2005-01-20 Yi-Ming Sheu Self-aligned MOSFET having an oxide region below the channel
US6940705B2 (en) * 2003-07-25 2005-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor with enhanced performance and method of manufacture
US6936881B2 (en) * 2003-07-25 2005-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor that includes high permittivity capacitor dielectric
US7078742B2 (en) * 2003-07-25 2006-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel semiconductor structure and method of fabricating the same
US7101742B2 (en) * 2003-08-12 2006-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel complementary field-effect transistors and methods of manufacture
US7112495B2 (en) * 2003-08-15 2006-09-26 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method of a strained channel transistor and a second semiconductor component in an integrated circuit
US20050035369A1 (en) * 2003-08-15 2005-02-17 Chun-Chieh Lin Structure and method of forming integrated circuits utilizing strained channel transistors
US20050035410A1 (en) * 2003-08-15 2005-02-17 Yee-Chia Yeo Semiconductor diode with reduced leakage
US7071052B2 (en) * 2003-08-18 2006-07-04 Taiwan Semiconductor Manufacturing Company, Ltd. Resistor with reduced leakage
US7888201B2 (en) 2003-11-04 2011-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator SRAM configured using partially-depleted and fully-depleted transistors
US7223679B2 (en) * 2003-12-24 2007-05-29 Intel Corporation Transistor gate electrode having conductor material layer
US20050170104A1 (en) * 2004-01-29 2005-08-04 Applied Materials, Inc. Stress-tuned, single-layer silicon nitride film
US20050186722A1 (en) * 2004-02-25 2005-08-25 Kuan-Lun Cheng Method and structure for CMOS device with stress relaxed by ion implantation of carbon or oxygen containing ions
JP2005252067A (ja) * 2004-03-05 2005-09-15 Toshiba Corp 電界効果トランジスタ及びその製造方法
US7078723B2 (en) * 2004-04-06 2006-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. Microelectronic device with depth adjustable sill
CN1957461B (zh) * 2004-05-25 2010-10-27 Nxp股份有限公司 半导体器件及其制造方法
US20050266632A1 (en) * 2004-05-26 2005-12-01 Yun-Hsiu Chen Integrated circuit with strained and non-strained transistors, and method of forming thereof
US7547605B2 (en) * 2004-11-22 2009-06-16 Taiwan Semiconductor Manufacturing Company Microelectronic device and a method for its manufacture
US20060113603A1 (en) * 2004-12-01 2006-06-01 Amberwave Systems Corporation Hybrid semiconductor-on-insulator structures and related methods
US7393733B2 (en) 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
KR100607785B1 (ko) * 2004-12-31 2006-08-02 동부일렉트로닉스 주식회사 스플릿 게이트 플래시 이이피롬의 제조방법
US8003470B2 (en) 2005-09-13 2011-08-23 Infineon Technologies Ag Strained semiconductor device and method of making the same
JP4930375B2 (ja) * 2005-09-28 2012-05-16 富士通株式会社 半導体装置及びその製造方法
KR100741923B1 (ko) * 2005-10-12 2007-07-23 동부일렉트로닉스 주식회사 반도체 소자 및 그 제조방법
JP2007158295A (ja) * 2005-11-10 2007-06-21 Seiko Epson Corp 半導体装置および半導体装置の製造方法
US7772060B2 (en) * 2006-06-21 2010-08-10 Texas Instruments Deutschland Gmbh Integrated SiGe NMOS and PMOS transistors
US8558278B2 (en) 2007-01-16 2013-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. Strained transistor with optimized drive current and method of forming
JP5217180B2 (ja) 2007-02-20 2013-06-19 富士通セミコンダクター株式会社 静電放電保護装置の製造方法
US7943961B2 (en) 2008-03-13 2011-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Strain bars in stressed layers of MOS devices
US7808051B2 (en) 2008-09-29 2010-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. Standard cell without OD space effect in Y-direction
CN103545200B (zh) * 2012-07-12 2015-12-09 中芯国际集成电路制造(上海)有限公司 晶体管和晶体管的形成方法
US8841177B2 (en) * 2012-11-15 2014-09-23 International Business Machines Corporation Co-integration of elemental semiconductor devices and compound semiconductor devices
US9466670B2 (en) 2014-03-12 2016-10-11 Taiwan Semiconductor Manufacturing Co., Ltd. Sandwich epi channel for device enhancement
KR102307457B1 (ko) 2015-08-05 2021-09-29 삼성전자주식회사 반도체 장치 및 이의 제조 방법
US9905649B2 (en) 2016-02-08 2018-02-27 International Business Machines Corporation Tensile strained nFET and compressively strained pFET formed on strain relaxed buffer
US10529738B2 (en) * 2016-04-28 2020-01-07 Globalfoundries Singapore Pte. Ltd. Integrated circuits with selectively strained device regions and methods for fabricating same
CN117613005B (zh) * 2024-01-23 2024-04-26 中国科学院长春光学精密机械与物理研究所 一种混合型cmos器件及其制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994866A (en) * 1988-01-07 1991-02-19 Fujitsu Limited Complementary semiconductor device
US5155571A (en) * 1990-08-06 1992-10-13 The Regents Of The University Of California Complementary field effect transistors having strained superlattice structure
US5114876A (en) * 1990-12-07 1992-05-19 The United States Of America As Represented By The United States Department Of Energy Selective epitaxy using the gild process
JPH0691249B2 (ja) * 1991-01-10 1994-11-14 インターナショナル・ビジネス・マシーンズ・コーポレイション 変調ドープ形misfet及びその製造方法
US5091767A (en) * 1991-03-18 1992-02-25 At&T Bell Laboratories Article comprising a lattice-mismatched semiconductor heterostructure
US5268324A (en) * 1992-05-27 1993-12-07 International Business Machines Corporation Modified silicon CMOS process having selectively deposited Si/SiGe FETS
US5534713A (en) * 1994-05-20 1996-07-09 International Business Machines Corporation Complementary metal-oxide semiconductor transistor logic using strained SI/SIGE heterostructure layers
JPH11500873A (ja) * 1995-12-15 1999-01-19 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ SiGe層を具えた半導体電界効果デバイス
US5686744A (en) * 1996-06-17 1997-11-11 Northern Telecom Limited Complementary modulation-doped field-effect transistors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998821B2 (en) 2006-10-05 2011-08-16 United Microelectronics Corp. Method of manufacturing complementary metal oxide semiconductor transistor
US8536653B2 (en) 2006-10-05 2013-09-17 United Microelectronics Corp. Metal oxide semiconductor transistor

Also Published As

Publication number Publication date
US6111267A (en) 2000-08-29
EP0884784A1 (de) 1998-12-16
JPH10321733A (ja) 1998-12-04
KR19980086990A (ko) 1998-12-05
DE19720008A1 (de) 1998-11-19

Similar Documents

Publication Publication Date Title
TW445632B (en) Integrated CMOS circuit arrangement and method for its production
Vinet et al. Germanium on Insulator and new 3D architectures opportunities for integration
Verdonckt-Vandebroek et al. SiGe-channel heterojunction p-MOSFET's
Vinet et al. 3D monolithic integration: Technological challenges and electrical results
US6974735B2 (en) Dual layer Semiconductor Devices
US7175709B2 (en) Epitaxy layer and method of forming the same
CN100481490C (zh) 在先进CMOS技术中应变Ge的集成
Van Dal et al. Ge CMOS gate stack and contact development for vertically stacked lateral nanowire FETs
Duriez et al. Scaled p-channel Ge FinFET with optimized gate stack and record performance integrated on 300mm Si wafers
Le Royer Interfaces and performance: What future for nanoscale Ge and SiGe based CMOS?
WO2004006341A1 (en) Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys
US9123546B2 (en) Multi-layer semiconductor device structures with different channel materials
Yeo et al. Electron mobility enhancement using ultrathin pure Ge on Si substrate
US9786547B2 (en) Channel silicon germanium formation method
Jones Doping challenges in exploratory devices for high performance logic
Abedin et al. Germanium on insulator fabrication for monolithic 3-D integration
Quinones et al. Design, fabrication, and analysis of SiGeC heterojunction PMOSFETs
Waldron III-V Devices and technology for CMOS
US7936017B2 (en) Reduced floating body effect without impact on performance-enhancing stress
Mathew et al. Characterization and profile optimization of SiGe pFETs on silicon-on-sapphire
Lau ULSI Front-End Technology: Covering from the First Semiconductor Paper to CMOS FINFET Technology
Ouyang et al. A novel Si/SiGe heterojunction pMOSFET with reduced short-channel effects and enhanced drive current
Le Royer et al. High mobility CMOS: First demonstration of planar GeOI p-FETs with SOI n-FETs
Claeys et al. Technology development challenges for advanced group IV semiconductor devices
US9064888B2 (en) Forming tunneling field-effect transistor with stacking fault and resulting device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees