TW445632B - Integrated CMOS circuit arrangement and method for its production - Google Patents
Integrated CMOS circuit arrangement and method for its production Download PDFInfo
- Publication number
- TW445632B TW445632B TW087104881A TW87104881A TW445632B TW 445632 B TW445632 B TW 445632B TW 087104881 A TW087104881 A TW 087104881A TW 87104881 A TW87104881 A TW 87104881A TW 445632 B TW445632 B TW 445632B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- mos transistor
- channel mos
- silicon layer
- channel
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 39
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000010703 silicon Substances 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 238000000407 epitaxy Methods 0.000 claims abstract description 3
- 239000013078 crystal Substances 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910006990 Si1-xGex Inorganic materials 0.000 abstract 2
- 229910007020 Si1−xGex Inorganic materials 0.000 abstract 2
- 238000009413 insulation Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002800 charge carrier Substances 0.000 description 4
- 230000002079 cooperative effect Effects 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 229910010277 boron hydride Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910003818 SiH2Cl2 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/8256—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using technologies not covered by one of groups H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252 and H01L21/8254
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0605—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
45 63 2 A7 _____B7 五、發明説明(1 ) I - H - .^1 —1 - (I I n - In - - H τ {請先閏讀背面之注項再填寫本頁) 當Μ 0 S技術藉由類似的降低尺寸之原理將結構縮減到 最小時,MO S電晶體和C Η 0 S電路之特性基本上仍維持在 微米的範圍之中,但是,例如,在通埴長度約小於2〇〇η 之M0S電晶體的情形中,會發生短通道和穿透效應。 雖然這呰效應部分可Κ藉由增加基板摻雜補償,但是 如此高的基板摻雜特別會導致在通道内之電荷載子移動 率的減少,在通道內之電荷載子移動率的減少尤其在ρ 通道Μ 0 S電晶體中會變的特別明顯。 在CMOS電路配置中,尤其是在反相器,HAND和NOR (¾ ,位移暫存器,記憶體,璉輯和類比電路中,使用製造 之η通道M0S電晶體和ρ通道M0S電晶體不僅具有大小 相同的單位電壓,也有相同的互導和栢同的飽和電流, 其他相同的方法已提出,藉由給定Ρ通道M0S電晶體之 通道寬··長比大於η通道M0S電晶體2倍,建構η通道 M0S電晶體和ρ通道M0S電晶體,Κ完成相同的互導和 相同的飽和電滾(例如,請參見K. Hoffnan在1996年所 著之第三版 VLSI-Entwurf Modelle und Schaltungen [VLSI Design Models and Circuits]第 333到 339頁) 經濟部中央標率局負工消费合作社印裝 ,此係打算補償P通道MOS電晶體中之電洞移動率低於 n通道H0S電晶體中之電子移動率2倍,但是,ρ通道 Μ 0 S電晶體之面積和雜散電容會增加此量測的結果。 A , S a d e k 等人在 1 9 9 5 年 S ο 1 i d ~ S t a t e Eh e c t r 〇 n i c s 第 38期9卷1731-1734頁和K. Ismael在義大利Erice的 1995年 International School of materials science "3 " 本紙張尺度適用中國國家標準(CNS ) Λ4规格(2ΙΟΧ 297公;® ) 445632 經濟部中央標準局員工消費合作社印聚 Α7 Β7 五、發明説明(2 ) and technology的演講論文集第19到20頁提出g由在通 道區提供一受應力的S、vGe層增加p通道M0S電晶體
丄一X X 之通道中的電洞移動率,此層所受之應力係來自其具有 單晶矽晶格常數的實際作用,此層之晶格與^平面匹配 ,為此,會有壓縮應力存在在 SiGe 的X和y方向, 而張開應力則會出現在z方向,其對應於成長方向。此論文中之異 質結構中之假晶層(pseudomorphic layer)以此種方式彈性地受到應 力。為了要製造CH0S電路配置,要形成通道含有Si, Ge 1-x 層之p通道M0S電晶體和形成通道由單晶矽製成之η通 道M0S電晶體,此處需要兩個個別的製程方塊,以製 造Ρ通道M0S電晶體和η通道M0S電晶體。 本發明係根據可Μ降低空間需求和降低製程佈局製造 CMOS積體電路配置之詳加說明的問題,此外,本發明也 詳加說明製造此CMOS電路配置的方法。 此問題係根據本發明藉由申請專利範圍第1項之CMOS 積體電路配置和其產生之申請專利範圍第3項的方來解 決’本發明還包括申請專利範圍附屬項。 根據本發明之CMOS積電路實現在至少具有第一矽層, 受到應力的Si, Ge層和第二矽層之半導體基板中.至
丄一X X 少一 P通道M0S電晶體和至少一 η通道M0S電晶體兩者 皆製作在半導體基板中,本發明中知悉,適當地對Ρ通 道MOS電晶體進行植入’會形成埋入式導電通道(所謂 的埋入式通道),然而在η通道MOS電晶體中,導電通 道係沿著基板表面形成,也就是形成在閘極介電質的 -4 - 本紙張尺度送用中國囤家標準(CNS ) Λ4規格(210ΧΜ7公;f ) -----^—--^— (請先閱讀背面之注意事項再填寫本頁) 訂 445 63 2 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(3) 介面(所謂的表面通道),之後,在CMOS電路配置之 中,在 P通道MOS電晶體區之層中形成通 道,而在η通道MOS電晶體區之第二矽層區中形成導 電通道,結果,電荷載子移動率則由ρ通道MOS電晶 體區中之層和由π通道MOS電晶體區中之 第二矽層決定。 對於P通道MOS電晶體,可以採用Si^Gh層中之 較筒電洞移動率,在Sij.jjGe、層成長時,會在SibyGe^ 層的z方向產生張應力,此z方向之張應力會使重(heavy) 電洞之帶(band)能量增加且會使垂直於應力方向(即,在 電荷載子的傳輸方向)之平面中的T點改變能帶分散,在 此情形下,帶曲線變成像輕電洞者而使電洞質量減輕,在 此情形下,P通道MOS電晶體和π通道MOS電晶體 所需之空間相同,同時,可確定有相同的互導和相同的飽 和電流,因此,ρ通道MOS電晶體和η通道MOS電 晶體可以在一個製程順序中製成,層延伸於n 通道 MOS 電晶體的通道區之下,且不會干擾 n通道 MOS電晶體之工作》
Sii_xGex層之鍺含量最好在25% 和50% 之間,即 X = 0.25〜0_50,受應力的吕^/^層的厚度最好在5ηηι 和ΙΟηιη之間,經常在文獻中稱爲緩衝層且排列在Si^ Gex層之下的第一矽層之厚度最好在3 0nm和70nm之間, 在文獻中經常稱爲帽(cap)層之第二矽層的厚度最好在 5nm 和12nm之間。 第一矽層,受應力的SinGe^層和第二矽層係藉由磊 本紙張尺度適用中國國家標準(CNS)A4規格(2〗0 X 297公釐) ϊ ------I I^---I L----訂 - -------線 (請先閱讀背面之注急事項再填寫本頁) 445632 A7 B7 經濟部中夹標隼局員工消費合作社印製 五、發明説明( 4 ) 1 1 晶 成 長 形 成 茌 至少 在 主 區 域 之 範 圍 中 由 矽 構 成 之 半 導 .ft Mr 體 1 1 基 板 的 主 區 域 上, 適 當 的 半 導 體 基 板 為 早 晶 矽 晶 圓 ) 要 1 1 不 然 就 是 SC I 基板 或 在 主 區 域 之 範 圍 中 由 S i C 構 成 之 基 請 1 先 1 板 0 閱 讀 1 1 定 義 η 通 道 MOS電晶體和Ρ 通道Ν 0 E 電Ϊ %體之工作區的 η 面 1 i 之 1 絶 線 結 構 曰 取 好 先形 成 在 主 區 域 之 上 , 然 後 再 藉 由 選 擇 性 t 1 I 事 喬 晶 成 長 第 一 矽層 受 m 力 的 S i l-xG :層 和 第 二 矽 層 9 項 再 1 此可確保受應力的Si 1- X G ex 層 成 長 » 在 工 作 區 没 有 任 何 缺 填 寫 1 本 陷 〇 頁 ί 1 本 發 明 將 採 用圓 示 之 實 施 範 例 更 詳 細 說 明 於 後 〇 圖 式 1 簡 DD 早 説 明 如 下 : 1 1 第 1 ΓΗ 圆 爲 在 裔晶 成 長 第 一 矽 層 9 受 應 力 之 Si 1 - -X 層. 1 訂 1 和 第 二 砂 層 之 後具 有 絕 緣 結 稱 的 半 導 體 基 板 j 其 界 定 了 P 通 道 MOS 電 晶體 的 工 作 品、 和 P 通 道 M0S 電 P曰體白 β工作區。 1 1 第 2 圖 為 在 形成 閘 極 介 電 質 ’ 閘 極 電 掻 和 源 極 / 汲 極 1 | 區 之 後 的 半 導 體基 板 截 面 圖 0 1 i X I η 型 摻 雜 井 2係用1 80 k e V能量和4 X 10 13 C 1 -2 劑 量 的 砷 藉 由 有 遮 罩 的佈 植 形 成 在 由 具 有 > 例 如 , 對 應 Ω -C m 1 電 阻 率 之 基 本 摻雜 準 位 的 P 型 接 雜 卑 晶 矽 製 成 之 基 板 1 1 中 ( 參 見 第 1 圖) 0 1 | 然 後 藉 由 有 遮罩 的 硼 佈 檀 形 成 P 型 摻 雜 井 3, 硼偽以5 0 1 I 到 7 0 k e V的能量和1 到2 X 10 13 era -2 的 劑 量 佈 植 〇 1 1 之 後 1 在 LO COS 製 程 形 成 绝 線 結 構 4 j 例 如 9 該 結 構 1 I 在 η 型 摻 雜 井 2區域定義p 通道Μ 0 S 電晶體之工作區ί【 1在 J ! P 型 摻 雜 井 3區域定義η 通道M0S -6 - 電晶體之工作區, 二擇 1 1 1 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公犮) 經濟部中央標隼局員工消費合作社印製 445632 A7 __B7___五、發明説明(5 ) 其一地,絶緣結構4也可以在淺溝渠絶緣製程中藉由用絶 緣材料填谋溝渠而形成,此絶緣結構4降到低於ti型摻 雜井2和p型摻雜井3之基板1 ^ 接著藉由使用含有SiH2 Cl2之製程氣體的選擇性磊 晶成長第一矽層5 ,在文獻中常稱為緩衝層之第一矽層 5成長30到7〇nH!厚,此第一矽層5為p型接雜,Μ設定 在稍後製作之η通道H0S電晶體和ρ通道H0S電晶體的 臨限電壓,為此,加入氫化硼(β2Η6)到製程氣體中, 直到層厚達到1 5到2 5 η π為止,然後在沒有氫化硼的情肜 ,再成長沒有摻雜的第一矽層5 ,厚度為10到50πβ,在 成長第一層5期間的製程溫度在7 5 0和8 5 0 t:之間。 之後藉由使用含有GeH4之製程氣體,在550和700Ό 之間的製程溫度,選擇性磊晶成長S卜 G e層6 ,例如 1-x X ,形成之Si 〇0 1層6 ,其緒含量X為0.25,而層厚10 na,二擇其一地,珂K與结含量X為0.5 —起形成層厚 5ηκ 之 Sii_xGe;x^ 6 。 然後藉由使用含有SiH2 Cl2之製程氣體的選擇性磊 晶成長層厚5到12πβ的無摻雜且在文獻上常稱為帽層之 第二矽層7 ,在此情形下,溫度係在550和700TC之間。 接著藉由在下120分鐘的熱氧化法形成由Si02 製成之閘極介電質S ,例如,此形成之閘極介電質8的 層厚為4. 5η® (參見第2匾),在此氧化&期間,大約要 消耗第二矽層7的Si2nm,因此.第二矽層7的使用, 有可能會藉由矽的氧化而形成閘極介電質8 ,以此方式 -7- -------^---d-- (#先聞讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家橾準(CNS ) Λ4Α格(210 X 297公嫠) 445 63 2 A7 B7 經濟部中央標準局員工消費合作社印^ 五、發明説明( ) 1 1 産 生 之 氣 化 矽 因 其 有 較 佳 的 m 久 性 » 所 以 優 於 S ] l G e的 I I 氧 化 物 〇 1 1 對 於 各 種 情 形 下 之 Ρ 通 道 Μ C S 電 晶 體 和 Π 通 道 HOS 電 請 1 先 1 晶 體 的 閘 極 電 極 9 藉 由 沈 積 和 建 構 η —型摻雜β 句多晶 閱 讀 1 | 矽 層 而 形 成 S 之 後 再 m 由 使 用 具 有 2 0到 3 0 k£ V能量和 背 面 I I 之 4到8 X 1 0 15 C Η -2 劑 量 之 硼 及 / 或 BF 2 作 遮 罩 佈 植 S 而 形 t 1 ] 成 用 於 P 通 道 MOS 電 晶 體 之 Ρ 型 摻 雜 源 搔 / 汲 極 區 1 0 項 1 t 再 次 使 用 具 有 1 0 0 - 1 3 0 k eV能 和 4 - 8 X 1 0 15 € nr2劑量之砷 填 寫 本 衣 作 遮 罩 佈 置 1 而 形 成 用 於 η 通 道 M0 S 電 晶 體 之 η 型 摻 雜 頁 1 I 源 極 / 汲 極 區 11 〇 1 1 在 製 程 週 期 中 之 溫 度 負 載 的 結 果 J 硼 摻 雜 <^3 日 在 第 —* 矽 I ί 層 (5 ) 之 中 擴 散 且 分 佈 此 摻 雜 在 表 面 區 域 之 中 ) 在 此 方 1 訂 式 下 對 於 η 通 道 M0 S 電 晶 醱 而 内· 在 表 面 區 域 之 中 可 1 以 得 到 足 夠 高 的 摻 雜 〇 1 1 為 了 最 佳 化 電 晶 體 特 性 $ 可 以 已 知 之 兩 段 式 佈 植 法 分 1 I 別 提 供 L D D 縱 深 和 HD D 縱 深 給 P 型 摻 雜 源 極 / 汲 掻 區 10 1 1 和 η m 摻 雜 源 極 / 汲 棰 區 11 0 | CHOS 電 路 配 置 可 以 已 知 之 沈 積 披 覆 層 開 接 觸 孔 和 形 I 成 金 屬 化 層 等 方 式 完 成 ( 並 未 詳 細 圖 予 說 明 ) ό 1 1 在 各 種 倩 形 下 » η 型 摻 雜 井 2和P 型摻雜井3 都 是 用 1 [ 1 . 5 X 1 0 3 C ]最大雜質濃度形成, 此高雜質濃度偽 1 I 要 防 止 穿 透 效 應 此 高 雜 質 濃 度 在 電 路 配 置 中 是 可 允 許 1 1 的 , 因 為 η 型 摻 雜 井 2和ρ 型摻雜井3都 是 在 晶 晶 之 前 産生 1 I 9 因 此 就 閛 極 介 電 質 8 的 -8 介 面 而 言 1 大 量 的 摻 雜 並 不 1 1 ί 1 1 1 本紙張尺度適用中國國家標準{ CNS ) A4規格(210X 297公楚) 445 63 2 A7 B7 五、發明説明(7 ) ; 能達成。 在上述之CMOS電路配置中,給定應用適當的控制訊號 , 在p通道M0S電晶體配置中,埋入的導電通道係形 成在η型搀雜2的Si Ge層6之中.在另一方面,在
1-X X π通道M0S電晶體配置中,若驅動適當,則導電通道形 成在P型接雜#3中之第二矽層7的表面上。 i I - HI. - -- - I --ΐ - I : - ! - i— I— iv ,1 (請先閱讀背面之注意事項再填寫本頁) 經滴部中央標準局員工消費合作社印聚 _ 9 _ 本纸張尺度適用中國S家標率(CNS ) Λ4規格(210X 297公釐} 4 4 5 6 3 2 A7 B7
頌請-^ .-;否變更原貧質内容 經滴部中央標準局負工消費合作社印裝 五、發明説明(8 ) 符號對照表 1 基板 2 η型摻雜井 3 P型摻雜井 4 絕緣结構 5 第一矽層 6 S ί Ί Ge 層 1-X X 7 第二矽麿 8 閛極介電質 9 閘極電掻 10 p型摻雜之源搔/汲極區 1 1 ti型接雜之源極/汲搔區 -10- 本紙張尺度遙用中國®家標準(CNS >以说格(2丨OXM7公犮) (請先閱讀背面之注意事項再填寫本頁)
Claims (1)
- A8 BS C8 D8 六、申請專利範圍 第87i(M881號「CMOS積體電路配置及其製造方法」專利 案 (90年4月修正) A申請專利範圍: 1·—種CMOS積體電路配置,其特徵爲: -提供之半導體基板(1)至少具有一第一矽層(5), 一受應力的SinGh層(6>和一第二矽層(7), -受應力的8丨1_^61[層(6)基本上具有與第一矽層 (5)和第一砂層(7)相同的晶格常數, -受應力的Sine%層⑹在Z方向中具有張應力,此 SihG^層⑹是在Z方向中生長, -p通道MOS電晶體和η通道MOS電晶體係製作 在該半導體基板中= 2·如申請專利範圍第1項之電路配置,其中 -第一矽層(5>具有3〇nm和7〇nm之間的厚度, -受應力的SiuGe,層(6)具有5nm至lOiim之間的厚 度,且鍺含量在5 0原子%和2 5原子%之間, -第二矽層(7)具有Snm和12nm之間的厚度。 經濟部智慧財產局員工消費合作社印製145 6 (請先閲讀背面之注意事項再填寫本頁) 3.—種CMOS積體電路配置之製造方法,其特徵爲: -至少在主區域之範圍中由矽組成之半導體基板(1)的 主區域上嘉晶成長第一砂層(5),受應力的Si^Gex 層(6)和第二矽層(7), -受應力的層⑹在Z方向中具有張應力,此 Si^Ge,層⑹是在Z方向中生長, 本紙張尺度適用中國國家標準(CNS ) A4規格(210乂297公釐) 445 63 2 as B8 C8 D8 六、申請專利範圍 -在該半導體基板(1)中形成p通道MOS電晶體和η 通道MOS 電晶體= 4. 如申請專利範圍第3項之方法,其中 -形成絕緣結構以定義一種用於η通道MOS電晶體 之工作區和用於Ρ通道MOS電晶體之工作區, -在成長第一矽層(5>,受應力的層(6)和第 二矽層(7)之後,藉由選擇性磊晶方法分別形成η通 道MOS電晶體和ρ通道MOS電晶體所用之閘極 介電質(8),閘極電極(9)和源極/汲極區(1〇 ,11)。 5. 如申請專利範圍第3或第4項之方法,其中 -形成之第一矽層(5)的厚度在30nm和70nm之間, 形成之第二矽層(7)的厚度在5nm和Unm之間, -形成之8丨1_:^6!(層(6)的厚度在5nm和ι〇ηηι之間, 且鍺含量在50原子%和25原子%之間。 6. 如申請專利範圍第3或第4項之方法, 其中在第一砂層(5)的慕晶成長期間,藉由加質· 以設定π通道MOS電晶體及/或P通道MOS電晶 體之臨限電壓。 7. 如申請專利範圍第3或第4項之方法, 其中嘉晶方法係使用含有SiH^Cl2及/或之製 程氣體,在5S〇°C和850 °C之間的溫度範_中進行。 •2- 本紙張尺度速用中國國家標準(CNS ) A4規格(210x297公釐) (請先閱讀背面之注意事項再填寫本頁) ,1T 經濟部智慧財產局員工消費合作社印製
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19720008A DE19720008A1 (de) | 1997-05-13 | 1997-05-13 | Integrierte CMOS-Schaltungsanordnung und Verfahren zu deren Herstellung |
Publications (1)
Publication Number | Publication Date |
---|---|
TW445632B true TW445632B (en) | 2001-07-11 |
Family
ID=7829326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW087104881A TW445632B (en) | 1997-05-13 | 1998-04-01 | Integrated CMOS circuit arrangement and method for its production |
Country Status (6)
Country | Link |
---|---|
US (1) | US6111267A (zh) |
EP (1) | EP0884784A1 (zh) |
JP (1) | JPH10321733A (zh) |
KR (1) | KR19980086990A (zh) |
DE (1) | DE19720008A1 (zh) |
TW (1) | TW445632B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7998821B2 (en) | 2006-10-05 | 2011-08-16 | United Microelectronics Corp. | Method of manufacturing complementary metal oxide semiconductor transistor |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100400808B1 (ko) | 1997-06-24 | 2003-10-08 | 매사츄세츠 인스티튜트 오브 테크놀러지 | 그레이드된 GeSi층 및 평탄화를 사용한 Si상의 Ge의 쓰레딩 전위 밀도 제어 |
US7227176B2 (en) * | 1998-04-10 | 2007-06-05 | Massachusetts Institute Of Technology | Etch stop layer system |
JP3592981B2 (ja) * | 1999-01-14 | 2004-11-24 | 松下電器産業株式会社 | 半導体装置及びその製造方法 |
JP2000243854A (ja) * | 1999-02-22 | 2000-09-08 | Toshiba Corp | 半導体装置及びその製造方法 |
KR100332108B1 (ko) * | 1999-06-29 | 2002-04-10 | 박종섭 | 반도체 소자의 트랜지스터 및 그 제조 방법 |
US6633066B1 (en) * | 2000-01-07 | 2003-10-14 | Samsung Electronics Co., Ltd. | CMOS integrated circuit devices and substrates having unstrained silicon active layers |
KR100429869B1 (ko) * | 2000-01-07 | 2004-05-03 | 삼성전자주식회사 | 매몰 실리콘 저머늄층을 갖는 cmos 집적회로 소자 및기판과 그의 제조방법 |
US6750130B1 (en) | 2000-01-20 | 2004-06-15 | Amberwave Systems Corporation | Heterointegration of materials using deposition and bonding |
US6602613B1 (en) | 2000-01-20 | 2003-08-05 | Amberwave Systems Corporation | Heterointegration of materials using deposition and bonding |
US6503773B2 (en) | 2000-01-20 | 2003-01-07 | Amberwave Systems Corporation | Low threading dislocation density relaxed mismatched epilayers without high temperature growth |
WO2001093338A1 (en) | 2000-05-26 | 2001-12-06 | Amberwave Systems Corporation | Buried channel strained silicon fet using an ion implanted doped layer |
US6429061B1 (en) * | 2000-07-26 | 2002-08-06 | International Business Machines Corporation | Method to fabricate a strained Si CMOS structure using selective epitaxial deposition of Si after device isolation formation |
AU2001283138A1 (en) * | 2000-08-07 | 2002-02-18 | Amberwave Systems Corporation | Gate technology for strained surface channel and strained buried channel mosfet devices |
WO2002015244A2 (en) | 2000-08-16 | 2002-02-21 | Massachusetts Institute Of Technology | Process for producing semiconductor article using graded expitaxial growth |
US6544854B1 (en) * | 2000-11-28 | 2003-04-08 | Lsi Logic Corporation | Silicon germanium CMOS channel |
US6649480B2 (en) | 2000-12-04 | 2003-11-18 | Amberwave Systems Corporation | Method of fabricating CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs |
US20020100942A1 (en) * | 2000-12-04 | 2002-08-01 | Fitzgerald Eugene A. | CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs |
US6410371B1 (en) * | 2001-02-26 | 2002-06-25 | Advanced Micro Devices, Inc. | Method of fabrication of semiconductor-on-insulator (SOI) wafer having a Si/SiGe/Si active layer |
US6723661B2 (en) * | 2001-03-02 | 2004-04-20 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6830976B2 (en) | 2001-03-02 | 2004-12-14 | Amberwave Systems Corproation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6703688B1 (en) | 2001-03-02 | 2004-03-09 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6724008B2 (en) | 2001-03-02 | 2004-04-20 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
JP3678661B2 (ja) | 2001-03-08 | 2005-08-03 | シャープ株式会社 | 半導体装置 |
US6940089B2 (en) | 2001-04-04 | 2005-09-06 | Massachusetts Institute Of Technology | Semiconductor device structure |
US20020167048A1 (en) * | 2001-05-14 | 2002-11-14 | Tweet Douglas J. | Enhanced mobility NMOS and PMOS transistors using strained Si/SiGe layers on silicon-on-insulator substrates |
US6900094B2 (en) * | 2001-06-14 | 2005-05-31 | Amberwave Systems Corporation | Method of selective removal of SiGe alloys |
US7301180B2 (en) | 2001-06-18 | 2007-11-27 | Massachusetts Institute Of Technology | Structure and method for a high-speed semiconductor device having a Ge channel layer |
EP1399974A1 (en) * | 2001-06-21 | 2004-03-24 | Massachusetts Institute Of Technology | Mosfets with strained semiconductor layers |
KR100425579B1 (ko) * | 2001-07-21 | 2004-04-03 | 한국전자통신연구원 | 게르마늄 조성비에 따라 다른 종류의 소스를 사용하는실리콘 게르마늄 박막 형성 방법 |
US6730551B2 (en) * | 2001-08-06 | 2004-05-04 | Massachusetts Institute Of Technology | Formation of planar strained layers |
US6974735B2 (en) * | 2001-08-09 | 2005-12-13 | Amberwave Systems Corporation | Dual layer Semiconductor Devices |
US7138649B2 (en) * | 2001-08-09 | 2006-11-21 | Amberwave Systems Corporation | Dual-channel CMOS transistors with differentially strained channels |
ATE449420T1 (de) * | 2001-08-09 | 2009-12-15 | Amberwave Systems Corp | Cmos bauelemente mit doppelter schicht |
KR100433622B1 (ko) * | 2001-09-05 | 2004-05-31 | 한국전자통신연구원 | 원자층 에피택시법을 이용한 실리콘 박막, 저매니움 박막 및 실리콘-저매니움 박막 형성 방법 |
EP1428262A2 (en) | 2001-09-21 | 2004-06-16 | Amberwave Systems Corporation | Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same |
WO2003028106A2 (en) | 2001-09-24 | 2003-04-03 | Amberwave Systems Corporation | Rf circuits including transistors having strained material layers |
US6703271B2 (en) * | 2001-11-30 | 2004-03-09 | Taiwan Semiconductor Manufacturing Company | Complementary metal oxide semiconductor transistor technology using selective epitaxy of a strained silicon germanium layer |
US7060632B2 (en) | 2002-03-14 | 2006-06-13 | Amberwave Systems Corporation | Methods for fabricating strained layers on semiconductor substrates |
US6995430B2 (en) | 2002-06-07 | 2006-02-07 | Amberwave Systems Corporation | Strained-semiconductor-on-insulator device structures |
US20030227057A1 (en) | 2002-06-07 | 2003-12-11 | Lochtefeld Anthony J. | Strained-semiconductor-on-insulator device structures |
US7074623B2 (en) | 2002-06-07 | 2006-07-11 | Amberwave Systems Corporation | Methods of forming strained-semiconductor-on-insulator finFET device structures |
US7307273B2 (en) | 2002-06-07 | 2007-12-11 | Amberwave Systems Corporation | Control of strain in device layers by selective relaxation |
US7615829B2 (en) | 2002-06-07 | 2009-11-10 | Amberwave Systems Corporation | Elevated source and drain elements for strained-channel heterojuntion field-effect transistors |
US7335545B2 (en) | 2002-06-07 | 2008-02-26 | Amberwave Systems Corporation | Control of strain in device layers by prevention of relaxation |
WO2003105204A2 (en) * | 2002-06-07 | 2003-12-18 | Amberwave Systems Corporation | Semiconductor devices having strained dual channel layers |
US6982474B2 (en) | 2002-06-25 | 2006-01-03 | Amberwave Systems Corporation | Reacted conductive gate electrodes |
JP4750342B2 (ja) * | 2002-07-03 | 2011-08-17 | ルネサスエレクトロニクス株式会社 | Mos−fetおよびその製造方法、並びに半導体装置 |
US6680496B1 (en) * | 2002-07-08 | 2004-01-20 | Amberwave Systems Corp. | Back-biasing to populate strained layer quantum wells |
EP2267762A3 (en) | 2002-08-23 | 2012-08-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor heterostructures having reduced dislocation pile-ups and related methods |
US6878610B1 (en) * | 2002-08-27 | 2005-04-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Relaxed silicon germanium substrate with low defect density |
US7594967B2 (en) | 2002-08-30 | 2009-09-29 | Amberwave Systems Corporation | Reduction of dislocation pile-up formation during relaxed lattice-mismatched epitaxy |
CN1312758C (zh) * | 2002-09-11 | 2007-04-25 | 台湾积体电路制造股份有限公司 | 具有应变平衡结构的cmos元件及其制造方法 |
US6730576B1 (en) * | 2002-12-31 | 2004-05-04 | Advanced Micro Devices, Inc. | Method of forming a thick strained silicon layer and semiconductor structures incorporating a thick strained silicon layer |
EP1588406B1 (en) | 2003-01-27 | 2019-07-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures with structural homogeneity |
US6900502B2 (en) * | 2003-04-03 | 2005-05-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained channel on insulator device |
US6882025B2 (en) * | 2003-04-25 | 2005-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained-channel transistor and methods of manufacture |
US6867433B2 (en) | 2003-04-30 | 2005-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors |
US20050012087A1 (en) * | 2003-07-15 | 2005-01-20 | Yi-Ming Sheu | Self-aligned MOSFET having an oxide region below the channel |
US6940705B2 (en) * | 2003-07-25 | 2005-09-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Capacitor with enhanced performance and method of manufacture |
US6936881B2 (en) * | 2003-07-25 | 2005-08-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Capacitor that includes high permittivity capacitor dielectric |
US7078742B2 (en) * | 2003-07-25 | 2006-07-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained-channel semiconductor structure and method of fabricating the same |
US7101742B2 (en) * | 2003-08-12 | 2006-09-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained channel complementary field-effect transistors and methods of manufacture |
US7112495B2 (en) * | 2003-08-15 | 2006-09-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method of a strained channel transistor and a second semiconductor component in an integrated circuit |
US20050035369A1 (en) * | 2003-08-15 | 2005-02-17 | Chun-Chieh Lin | Structure and method of forming integrated circuits utilizing strained channel transistors |
US20050035410A1 (en) * | 2003-08-15 | 2005-02-17 | Yee-Chia Yeo | Semiconductor diode with reduced leakage |
US7071052B2 (en) * | 2003-08-18 | 2006-07-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Resistor with reduced leakage |
US7888201B2 (en) | 2003-11-04 | 2011-02-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator SRAM configured using partially-depleted and fully-depleted transistors |
US7223679B2 (en) * | 2003-12-24 | 2007-05-29 | Intel Corporation | Transistor gate electrode having conductor material layer |
US20050170104A1 (en) * | 2004-01-29 | 2005-08-04 | Applied Materials, Inc. | Stress-tuned, single-layer silicon nitride film |
US20050186722A1 (en) * | 2004-02-25 | 2005-08-25 | Kuan-Lun Cheng | Method and structure for CMOS device with stress relaxed by ion implantation of carbon or oxygen containing ions |
JP2005252067A (ja) * | 2004-03-05 | 2005-09-15 | Toshiba Corp | 電界効果トランジスタ及びその製造方法 |
US7078723B2 (en) * | 2004-04-06 | 2006-07-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Microelectronic device with depth adjustable sill |
CN1957461B (zh) * | 2004-05-25 | 2010-10-27 | Nxp股份有限公司 | 半导体器件及其制造方法 |
US20050266632A1 (en) * | 2004-05-26 | 2005-12-01 | Yun-Hsiu Chen | Integrated circuit with strained and non-strained transistors, and method of forming thereof |
US7547605B2 (en) * | 2004-11-22 | 2009-06-16 | Taiwan Semiconductor Manufacturing Company | Microelectronic device and a method for its manufacture |
US20060113603A1 (en) * | 2004-12-01 | 2006-06-01 | Amberwave Systems Corporation | Hybrid semiconductor-on-insulator structures and related methods |
US7393733B2 (en) | 2004-12-01 | 2008-07-01 | Amberwave Systems Corporation | Methods of forming hybrid fin field-effect transistor structures |
KR100607785B1 (ko) * | 2004-12-31 | 2006-08-02 | 동부일렉트로닉스 주식회사 | 스플릿 게이트 플래시 이이피롬의 제조방법 |
US8003470B2 (en) | 2005-09-13 | 2011-08-23 | Infineon Technologies Ag | Strained semiconductor device and method of making the same |
JP4930375B2 (ja) * | 2005-09-28 | 2012-05-16 | 富士通株式会社 | 半導体装置及びその製造方法 |
KR100741923B1 (ko) * | 2005-10-12 | 2007-07-23 | 동부일렉트로닉스 주식회사 | 반도체 소자 및 그 제조방법 |
JP2007158295A (ja) * | 2005-11-10 | 2007-06-21 | Seiko Epson Corp | 半導体装置および半導体装置の製造方法 |
US7772060B2 (en) * | 2006-06-21 | 2010-08-10 | Texas Instruments Deutschland Gmbh | Integrated SiGe NMOS and PMOS transistors |
US8558278B2 (en) | 2007-01-16 | 2013-10-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained transistor with optimized drive current and method of forming |
JP5217180B2 (ja) | 2007-02-20 | 2013-06-19 | 富士通セミコンダクター株式会社 | 静電放電保護装置の製造方法 |
US7943961B2 (en) | 2008-03-13 | 2011-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain bars in stressed layers of MOS devices |
US7808051B2 (en) | 2008-09-29 | 2010-10-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Standard cell without OD space effect in Y-direction |
CN103545200B (zh) * | 2012-07-12 | 2015-12-09 | 中芯国际集成电路制造(上海)有限公司 | 晶体管和晶体管的形成方法 |
US8841177B2 (en) * | 2012-11-15 | 2014-09-23 | International Business Machines Corporation | Co-integration of elemental semiconductor devices and compound semiconductor devices |
US9466670B2 (en) | 2014-03-12 | 2016-10-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | Sandwich epi channel for device enhancement |
KR102307457B1 (ko) | 2015-08-05 | 2021-09-29 | 삼성전자주식회사 | 반도체 장치 및 이의 제조 방법 |
US9905649B2 (en) | 2016-02-08 | 2018-02-27 | International Business Machines Corporation | Tensile strained nFET and compressively strained pFET formed on strain relaxed buffer |
US10529738B2 (en) * | 2016-04-28 | 2020-01-07 | Globalfoundries Singapore Pte. Ltd. | Integrated circuits with selectively strained device regions and methods for fabricating same |
CN117613005B (zh) * | 2024-01-23 | 2024-04-26 | 中国科学院长春光学精密机械与物理研究所 | 一种混合型cmos器件及其制作方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994866A (en) * | 1988-01-07 | 1991-02-19 | Fujitsu Limited | Complementary semiconductor device |
US5155571A (en) * | 1990-08-06 | 1992-10-13 | The Regents Of The University Of California | Complementary field effect transistors having strained superlattice structure |
US5114876A (en) * | 1990-12-07 | 1992-05-19 | The United States Of America As Represented By The United States Department Of Energy | Selective epitaxy using the gild process |
JPH0691249B2 (ja) * | 1991-01-10 | 1994-11-14 | インターナショナル・ビジネス・マシーンズ・コーポレイション | 変調ドープ形misfet及びその製造方法 |
US5091767A (en) * | 1991-03-18 | 1992-02-25 | At&T Bell Laboratories | Article comprising a lattice-mismatched semiconductor heterostructure |
US5268324A (en) * | 1992-05-27 | 1993-12-07 | International Business Machines Corporation | Modified silicon CMOS process having selectively deposited Si/SiGe FETS |
US5534713A (en) * | 1994-05-20 | 1996-07-09 | International Business Machines Corporation | Complementary metal-oxide semiconductor transistor logic using strained SI/SIGE heterostructure layers |
JPH11500873A (ja) * | 1995-12-15 | 1999-01-19 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | SiGe層を具えた半導体電界効果デバイス |
US5686744A (en) * | 1996-06-17 | 1997-11-11 | Northern Telecom Limited | Complementary modulation-doped field-effect transistors |
-
1997
- 1997-05-13 DE DE19720008A patent/DE19720008A1/de not_active Withdrawn
-
1998
- 1998-03-17 EP EP98104832A patent/EP0884784A1/de not_active Withdrawn
- 1998-04-01 TW TW087104881A patent/TW445632B/zh not_active IP Right Cessation
- 1998-05-04 US US09/071,153 patent/US6111267A/en not_active Expired - Fee Related
- 1998-05-13 JP JP10150606A patent/JPH10321733A/ja active Pending
- 1998-05-13 KR KR1019980017083A patent/KR19980086990A/ko active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7998821B2 (en) | 2006-10-05 | 2011-08-16 | United Microelectronics Corp. | Method of manufacturing complementary metal oxide semiconductor transistor |
US8536653B2 (en) | 2006-10-05 | 2013-09-17 | United Microelectronics Corp. | Metal oxide semiconductor transistor |
Also Published As
Publication number | Publication date |
---|---|
US6111267A (en) | 2000-08-29 |
EP0884784A1 (de) | 1998-12-16 |
JPH10321733A (ja) | 1998-12-04 |
KR19980086990A (ko) | 1998-12-05 |
DE19720008A1 (de) | 1998-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW445632B (en) | Integrated CMOS circuit arrangement and method for its production | |
Vinet et al. | Germanium on Insulator and new 3D architectures opportunities for integration | |
Verdonckt-Vandebroek et al. | SiGe-channel heterojunction p-MOSFET's | |
Vinet et al. | 3D monolithic integration: Technological challenges and electrical results | |
US6974735B2 (en) | Dual layer Semiconductor Devices | |
US7175709B2 (en) | Epitaxy layer and method of forming the same | |
CN100481490C (zh) | 在先进CMOS技术中应变Ge的集成 | |
Van Dal et al. | Ge CMOS gate stack and contact development for vertically stacked lateral nanowire FETs | |
Duriez et al. | Scaled p-channel Ge FinFET with optimized gate stack and record performance integrated on 300mm Si wafers | |
Le Royer | Interfaces and performance: What future for nanoscale Ge and SiGe based CMOS? | |
WO2004006341A1 (en) | Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys | |
US9123546B2 (en) | Multi-layer semiconductor device structures with different channel materials | |
Yeo et al. | Electron mobility enhancement using ultrathin pure Ge on Si substrate | |
US9786547B2 (en) | Channel silicon germanium formation method | |
Jones | Doping challenges in exploratory devices for high performance logic | |
Abedin et al. | Germanium on insulator fabrication for monolithic 3-D integration | |
Quinones et al. | Design, fabrication, and analysis of SiGeC heterojunction PMOSFETs | |
Waldron | III-V Devices and technology for CMOS | |
US7936017B2 (en) | Reduced floating body effect without impact on performance-enhancing stress | |
Mathew et al. | Characterization and profile optimization of SiGe pFETs on silicon-on-sapphire | |
Lau | ULSI Front-End Technology: Covering from the First Semiconductor Paper to CMOS FINFET Technology | |
Ouyang et al. | A novel Si/SiGe heterojunction pMOSFET with reduced short-channel effects and enhanced drive current | |
Le Royer et al. | High mobility CMOS: First demonstration of planar GeOI p-FETs with SOI n-FETs | |
Claeys et al. | Technology development challenges for advanced group IV semiconductor devices | |
US9064888B2 (en) | Forming tunneling field-effect transistor with stacking fault and resulting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |